

REGULATIONS - 2023

CURRICULUM AND SYLLABI

(2023-2024)

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

VISION OF KCG

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

MISSION OF KCG

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

VISION OF ELECTRICAL AND ELECTRONICS ENGINEERING

The Department of Electrical and Electronics Engineering aims to be a centre of excellence recognized for high quality teaching, learning and research, producing competent professionals to serve the nation and promote sustainability.

MISSION OF ELECTRICAL AND ELECTRONICS ENGINEERING

Provide quality education in the field of computer science and engineering & related domains

- Impart quality technical education in Electrical and Electronics Engineering domain
- Nurture industrial collaboration in research and development activities
- Maintain state-of-the-art facilities to provide opportunities for knowledge up-gradation
- Invoke the desire and ability of life-long learning in the students for a successful career

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

The graduates will:

PEO 1	Excel as technically competent, highly skilled professionals in Electrical Engineering and its related fields
PEO 2	Engage in analytical and experimental research activities in Electrical power and utility sectors for the sustainable development of global society
PEO 3	Provide innovative engineering solutions for the challenging problems by communicating effectively with diverse and multi-disciplinary groups in industry and research organizations
PEO 4	Exhibit ethical values, professional attitude and engage in continuous lifelong learning

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

PO 01	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering
	specialization to the solution of complex
	engineering problems.

PO 02	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 03	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 04	Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 05	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 07	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the

	knowledge of, and need for sustainable development.
PO 08	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 09	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 01	Design and investigate complex problems in electrical machines, power, control and electronics systems.
PSO 02	Utilize Digital and Software tools for design, simulation and analysis of electrical and electronics systems.
PSO 03	Adhere to Professional Ethical Standards in their Future Career.

INDEX

Sl.No	Description	Page No.
1	Curriculum	1
2	I Semester Syllabus	16
3	II Semester Syllabus	44
4	III Semester Syllabus	76
5	IV Semester Syllabus	102
6	V Semester Syllabus	126
7	VI Semester Syllabus	146
8	VII Semester Syllabus	161
9	VIII Semester Syllabus	173
10	Vertical 1 : Converters And Drives	176
11	Vertical 2 : Electric Vehicles Technology	200
12	Vertical 3 : Green Energy Technologies	221
13	Vertical 4 : Power Engineering	242
14	Vertical 5 : Diversified Courses	268

KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

REGULATIONS 2023

BE - ELECTRICAL AND ELECTRONICS ENGINEERING CHOICE BASED CREDIT SYSTEM CURRICULUM FOR SEMESTERS I TO VIII

SEMESTER-I

S1.	Course Code	Course Title	Category	Periods Per Week			Total Contact	Credits
INU.	Couc			L	T	P	Periods	
	23IP101	Induction Programme		ı	-	-	-	-
		TH	IEORY					
1	23HS101	Essential Communication	HSMC	3	0	0	3	3
2	23MA101	Matrices and Calculus	BSC	3	0	0	3	3
3	23AD101	<mark>Pro</mark> gramming in Python	ESC	3	0	0	3	3
4	23HS102	Heritage of Tamils	HSMC	1	0	0	1	1
		THEORY AN	D PRAC	TIC	AI	LS		
5	23PH111	Engineering Physics	BSC	3	0	2	AU ⁵ ONO	4
6	23CY111	Engineering Chemistry	BSC	3	0	2	5	4
		PRAG	CTICALS					
7	23AD121	Python Programming Laboratory	ESC	0	0	4	4	2
8	23HS121	Communication Skills Laboratory	HSMC	0	0	2	2	1
9	23HS122	General Clubs / Technical Clubs / NCC / NSS / Extension Activities	HSMC	0	0	2	2	1*
		TOTAL		16	0	12	28	21

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER -II

S1. No.	Course code	Course Title	Category	Periods Per Week		ſ		Credits
				L	T	P	Periods	
		THE	ORY					
1	23HS201	Professional English	HSMC	3	0	0	3	3
2	23MA201	Vector Calculus and Complex Functions	BSC	3	1	0	4	4
3	23PH204	Physics for Electrical Engineering	BSC	3	0	0	3	3
4	23EE201	Electric Circuit Analysis	PCC	3	1	0	4	4
5	23ME271	Basic Mechanical and Building Sciences	ESC	3	0	0	3	3
6	23HS203	Tamils and Technology	HSMC	1	0	0	1	1
		THEORY AND	PRACTI	CA	LS	chi	NOLO	CV
7	23ME211	Engineering Graphics	ESC	3	0	2	AUT5 NO	4
		PRACT	TICALS					
8	23ME221	Engineering Practices Laboratory	ESC	0	0	4	4	2
9	23EE221	Electric Circuits Laboratory	PCC	0	0	4	4	2
10	23HS221	Soft Skills	EEC	0	0	2	2	1*
		TOTAL		19	2	12	33	26

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER-III

S1. No.	Course code	('ourse l'itle		Periods Per Week				Credits	
	. Code			L	T	P	Periods		
		THE	ORY						
1	23MA303	Transforms, Partial Differential Equations and Probability	BSC	3	1	0	4	4	
2	23EE301	DC Machines and Transformers	PCC	3	0	0	3	3	
3	23EE302	Electronic Devices and Integrated Circuits	PCC	3	0	0	3	3	
4	23EE303	Electromagnetic Theory	PCC	3	0	0	3	3	
5	23HS301	<mark>Uni</mark> versal Human Values and Ethics	HSMC	3	0	0	3	3	
	GANIS	THEORY AND	PRACTIC	ALS	S	IN	OLOG'	Υ	
6	23CS381	C Programming and Data Structures	PCC	3	0	2	TONOMOL	4	
		PRACT	ICALS						
7	23EE321	DC Machines and Transformers Laboratory	PCC	0	0	4	4	2	
8	23EE322	Electronic Devices and Integrated Circuits Laboratory	PCC	0	0	4	4	2	
9	23ES391	Presentation Skills	EEC	0	0	2	2	1*	
* TL	o amadoo oa	TOTAL		18	1	12	31	24	

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER-IV

Si. Course code Course Title Category Catego		SEIVIESTEK-IV									
Course Title	SI	Course									
THEORY			Course Title	Category	Per	We	ek	Contact	Credits		
1 23MA403 Numerical and Statistical Methods BSC 3 1 0 4 4 2 23EE401 Induction and Synchronous Machines PCC 3 0 0 3 3 3 23EE402 Microprocessor and Microcontroller Systems PCC 3 0 0 3 3 4 23EE403 Measurements and Instrumentation PCC 3 0 0 3 3 5 23EE404 Transmission and Distribution PCC 3 0 0 3 3 5 23EE404 Transmission and Distribution PCC 3 0 0 3 3 6 23EE411 Digital Logic Circuits PCC 2 0 2 4 3 7 23EE421 Microcontroller Synchronous Machines Laboratory Microprocessor and Microprocessor and Microprocessor and Microprocessor and Microprocessor and Microprocessor and Microprocessor Aptitude and Logical Reasoning - 1 Industrial Skills Training EEC 0 0 2 2 1 10 23EE423 Industrial Skills Training EEC 0 0 2 2 1	NO.	Coue			L	T	P	Periods			
1 23MA403 Statistical Methods BSC 3 1 0 4 4			TI	HEORY		ı					
2 23EE401 Synchronous PCC 3 0 0 3 3 3 3 23EE402 Microprocessor and Systems PCC 3 0 0 3 3 3 4 23EE403 Measurements and Instrumentation PCC 3 0 0 3 3 3 5 23EE404 Transmission and Distribution PCC 3 0 0 3 3 3 THEORY AND PRACTICALS (INTEGRATED COURSE) 6 23EE411 Digital Logic PCC 2 0 2 4 3 7 23EE421 Microprocessor Induction and Synchronous Machines Laboratory Microprocessor and Systems Laboratory Aptitude and Logical Reasoning - 1 Industrial Skills Training EEC 0 0 2 2 1 10 23EE423 Industrial Skills Training EEC 0 0 2 2 1	1	23MA403		BSC	3	1	0	4	4		
3 23EE402 Microcontroller Systems PCC 3 0 0 3 3 3 4 23EE403 Measurements and Instrumentation PCC 3 0 0 3 3 5 23EE404 Transmission and Distribution PCC 3 0 0 3 3 THEORY AND PRACTICALS (INTEGRATED COURSE) 6 23EE411 Digital Logic Circuits PCC 2 0 2 4 3 7 23EE421 Synchronous Machines Laboratory Microprocessor and Machines Laboratory Microprocessor and Machines Laboratory PCC 0 0 4 4 2 8 23EE422 Microcontroller Systems Laboratory Aptitude and Logical Reasoning - 1 Reasoning - 1 10 23EE423 Industrial Skills Training EEC 0 0 2 2 1 11 12 13 14 15 15 16 17 17 12 15 16 17 17 17 13 16 17 17 17 14 15 17 17 15 17 17 17 16 17 17 17 18 17 18 17 17 19 17 17 10 23EE423 Industrial Skills Training EEC 0 0 2 2 1 10 17 17 10 17	2	23EE401	Synchronous	PCC	3	0	0	3	3		
Transmission and Distribution PCC 3 0 0 3 3 3	3	23EE402	Microcontroller		3	0	0	3	3		
THEORY AND PRACTICALS (INTEGRATED COURSE)	4	23EE403		PCC	3	0	0	3	3		
6 23EE411 Digital Logic Circuits PCC 2 0 2 4 3 PRACTICALS 7 23EE421 Induction and Synchronous Machines Laboratory PCC 0 0 4 4 2 8 23EE422 Microprocessor and Microcontroller Systems Laboratory PCC 0 0 4 4 2 9 23ES491 Logical Reasoning - 1 EEC 0 0 2 2 1* 10 23EE423 Industrial Skills Training EEC 0 0 2 2 1	5	23EE404	All D. T. Commercial C	PCC	3	0	0	3	3		
Circuits		THEO	RY AND PRACTIC	ALS (INT)	EGR	ATI	ED (COURSE)			
Taboratory Taboratory Taboratory PCC Tabo	6	23EE411		PCC	2	0	2	4	3		
7 23EE421 Synchronous Machines Laboratory PCC 0 0 4 4 2 8 23EE422 Microprocessor and Microcontroller Systems Laboratory PCC 0 0 4 4 2 9 23ES491 Aptitude and Logical Reasoning - 1 EEC 0 0 2 2 1* 10 23EE423 Industrial Skills Training EEC 0 0 2 2 1	1	18	PRA	CTICALS							
8 23EE422 Microcontroller Systems Laboratory Aptitude and Logical EEC 0 0 2 2 1* Reasoning - 1 10 23EE423 Industrial Skills Training EEC 0 0 2 2 1	7	23EE421	Synchronous Machines	PCC	0	0	4	NOLOG AUTONO	2		
9 23ES491 Logical Reasoning - 1 EEC 0 0 2 2 1* 10 23EE423 Industrial Skills Training EEC 0 0 2 2 1	8	23EE422	and Microcontroller Systems	PCC	0	0	4	4	2		
10 23EE423 Training EEC 0 0 2 2 1	9	23ES491	Logical	EEC	0	0	2	2	1*		
TOTAL 17 1 14 32 24	10	23EE423		EEC	0	0	2	2	1		
			TOTAL		17	1	14	32	24		

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER-V

S1. No.	Course Code	Course Title	Category	Periods Per Week L T P			Total Contact Periods	Credits
		THE	ORY					
1	23RE501	Research Methodology and Intellectual Property Rights	ESC	2	0	0	2	2
2	23EE501	Power Electronics	PCC	3	0	0	3	3
3	23EE502	Power System Analysis	PCC	3	1	0	4	4
4		Department Elective – 1	DEC	3	0	0	3	3
5	SHOWE	Open Elective - 1 (Emerging Technology)	OEC	3	0	0	3	3
	N. A.	THEORY AND	PRACTIO	CAI	S			1
6	23EE511	Control System Engineering	PCC	3	0	2	NC ⁵ LO	GY ⁴
		PRACT	TCALS					ADUS .
7	23EE521	Power Electronics Laboratory	PCC	0	0	4	4	2
8	23EE522	Mini Project	EEC	0	0	4	4	2
9	23ES591	Aptitude and Logical Reasoning -2	EEC	0	0	2	2	1*
	a gradae aar		17	1	12	30	23	

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER VI

S1. No.	Course Code	Course Title	Category	Periods Per Week L T P		Total Contact Periods	Credits			
		T	HEORY							
1		Department Elective – 2	DEC	3	0	0	3	3		
2		Department Elective – 3	DEC	3	0	0	3	3		
3		Department Elective – 4	DEC	3	0	0	3	3		
4		Open Elective - 2 (Management / Safety Courses)	OEC	3	0	0	3	3		
	THEORY AND PRACTICALS									
5	23CE611	Environmental Sciences and Engineering	ESC	3	0	2	5	4		
6	23EE611	Renewable Energy Systems	EEC	3	0	2	5	4		
	100	PRA	CTICALS	5	- 1	-	INIOLO	GV		
7	23EE621	Project Work - Phase 1	EEC AN	0	10/E	4	AL4 ONO	моч2		
8	23EE622	Technical Training	EEC	0	0	2	2	1		
9	23EE623	Technical Seminar– 1	ESC	0	0	2	2	1		
		TOTAL		18	0	12	30	24		

SEMESTER -VII

S1. No.	Course Code	Course Title	Cate Gory	periods Per Week L T P		Total Contact Periods	Credits				
	THEORY										
1		Open Elective - 3 (Management Courses)	OEC	3	0	0	3	3			
2		Department Elective – 5	DEC	3	0	0	3	3			
3		Department Elective – 6	DEC	3	0	0	3	3			
4	23EE701	Comprehension	EEC	2	0	0	2	2			
	THEO	RY AND PRACTICA	LS (INT	EGR.	ΑT	ED	COURSI	Ξ)			
5	23EE711	Power System Protection and Control	PCC	3	0	2	5	4			
		PRAC	TICALS								
6	23EE721	Project Work – Phase 2	EEC	0	0	6	6	3			
7	23EE722	Technical Seminar – 2	ESC	0	0	4	IN 4 LO	G 2			
		TOTAL	Hamilton Control	14	0	12	26	20			

SEMESTER -VIII

Sl. No.	Course code	Course Title	Category]	Periods Per Week L T P		Total Contact Periods	Credits		
	PRACTICALS									
1	23EE821/ 23EE822	Capstone Project / Internship cum project	EEC	0	0	20	20	10		
	TOTAL					20	20	10		

TOTALCREDITS: 172

DEPARTMENT ELECTIVE COURSES: VERTICALS

VERTICAL 1: CONVERTERS AND DRIVES

Sl. No.	Course Code	Course Title	Category		Periods Per Week		Total Contact periods	Credits
				L	T	P	perious	
		Advanced Power						
1	23EE031	Semiconductor	DEC	2	0	2	4	3
		Devices						
2	23EE032	Multi-Level Power	DEC	2	0	2	4	3
2	23EEU32	Converters	DEC	2	U	2	4	3
		Power Electronics						
3	23EE033	for Renewable	DEC	2	0	2	4	3
		Energy Systems	_					
4	23EE034	Special Electrical	DEC	2	0	2	4	3
4	23EE034	Machines		_	U	_	*	
5	23EE03 <mark>5</mark>	SMPS & UPS	DEC	3	0	0	3	3
6	23EE036	Solid State Drives	DEC	3	0	0	3	3
7	23EE037	Control of Power	DEC	2	0	2	4	3
		Electronics Circuits	NTED TO ANN	A.UA	IVER	SIT	AUTONO	4005
8	23EE038	Analysis of Electrical Machines	DEC	3	0	0	3	3

VERTICAL 2: ELECTRIC VEHICLES TECHNOLOGY

Sl. No.	Course Code	Course Title	Category		rioc Per Veel		Total Contact periods	Credits
				L	T	P	perious	
1	23EE039	Electric Vehicle	DEC	3	0	0	3	3
1	2 0EE007	Architecture	DEC		Ů	Ů		U
		Design of Electric						
2	23EE040	Vehicle Charging	DEC	2	0	2	4	3
		System						
2	23EE041	Intelligent Control	DEC	2	0	2	4	3
3 2	23EE041	of Electric Vehicles	DEC	_	U	_	4	3
4	23EE042	Grid Integration of	DEC	3	0	0	3	3
4	23EE042	Electric Vehicles	DEC)	U	U	3	3
5	23EE043	Testing of Electric	DEC	2	0	2	4	3
	1	Vehicles		K.		0.		33
}	N.V	Design of Motor						
6	23EE044	and Power	DEC	2	0	2	4	3
O	ZOLLOTT	Converters for	DEC	_		-	-	
	TEN	Electric Vehicles						
	CIVIS	Embedded System	LEGE O	F	ΓE	CH-	INOLO	GY
7	23EE045	for Automotive	DEC	2	0	2	AU4DNO	3
		Applications					e esti tatte de la fall	

VERTICAL 3: GREEN ENERGY TECHNOLOGIES

Sl. No.	Course Code	Course Title	Category		Periods Per Week L T P		Total Contact periods	Credits
1	23EE046	Solar Energy Systems	DEC	2	0	2	4	3
2	23EE047	Wind Energy Conversion System	DEC	3	0	0	3	3
3	23EE048	Energy Storage Systems	DEC	3	0	0	3	3
4	23EE049	Distributed Generation and Microgrid	DEC	3	0	0	3	3
5	23EE050	Grid Integration Challenges for RES	DEC	3	0	0	3	3
6	23EE051	Smart Grids	DEC	3	0	0	3	3
7	23EE052	H <mark>yb</mark> rid Energy Technology	DEC	3	0	0	3	3

COLLEGE OF TECHNOLOGY

VERTICAL 4: POWER ENGINEERING

S1.	Course		VEIX EIX	Pe	rioc Per		Total	
No.	Code	Course Title	Category	V	Veel	•	Contact	Credits
				L	T	P	periods	
		Utilization and						
1	23EE053	Conservation of	DEC	3	0	0	3	3
		Electrical Energy						
2	23EE054	HVDC	DEC	3	0	0	3	3
	23111034	Transmission	DEC	5	U	U	5	3
		Energy						
3 2	23EE055	Management and	DEC	3	0	0	3	3
		Auditing						
		Flexible AC						
4	23EE056	Transmission	DEC	3	0	0	3	3
		Systems						
5	23EE057	Power System	DEC	3	0	0	3	3
0	23EE037	Transients	DEC		U	U	3	3
6	23EE058	High Voltage	DEC	3	0	0	3	3
	20111000	Engineering	DLC		Ü			
7	23EE059	Power Quality	DEC	3	0	0	3	3
	131	15 / 10			Ŭ	_	Ü	
8	23EE060	Restructured	DEC	3	0	0	M3L0	3
	VAB:	Power Market	ren vo Ausia	100	v/cm		AUTOROL	centries

VERTICAL 5: DIVERSIFIED COURSES

Sl. No.	Course Code	Course Title	Category		rioc Per Veel		Total Contact periods	Credits
				L	T	P	perious	
1	23EE061	VLSI Design	DEC	3	0	0	3	3
2	23EE062	PLC Programming	DEC	3	0	0	3	3
3	23EE063	Wearable Electronics	DEC	3	0	0	3	3
4	23EE064	Embedded Systems	DEC	3	0	0	3	3
5	23EE065	Neural Network and Fuzzy Systems for Electrical Engineers	DEC	3	0	0	3	3
6	23EE066	IoT for Power Systems	DEC	3	0	0	3	3

OPEN ELECTIVE - EMERGING TECHNOLOGIES

S1. No.	Course Code	Course Title	Category	Periods Per Week L T P		C	Total Contact periods	Credits
		A ('C' ' 1		L	I	ľ	-	
1	23OAD971	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2	23OCS971	Augmented Reality and Virtual Reality	OEC	2	0	2	4	3
3	23OCS972	Data Science and Fundamentals	OEC	2	0	2	4	3
4	23OEC971	IoT Concepts and Applications	OEC	2	0	2	4	3
5	23OEC972	Fundamentals of Wearable Devices	OEC	3	0	0	3	3
6	23OED971	Introduction to Design Thinking	OEC	3	0	0	1113-0	3
7	23OED972	Intellectual Property Law	OEC	3	0	0	3	3
8	23OED973	Circular Economy	OEC	3	0	0	3	3
9	23OEE972	Integrated Energy Planning for Sustainable Development	OEC	3	0	0	3	3
10	23OEE973	Electric and Hybrid Vehicles	OEC	3	0	0	3	3
11	23OIT971	Block Chain Technology	OEC	3	0	0	3	3
12	23OMT971	Foundation of Robotics	OEC	3	0	0	3	3

OPEN ELECTIVE - MANAGEMENT COURSES

S1. No.	Course Code	Course Title	Category]	rio Pei /ee	_	Total Contact Periods	Credits
				L	T	P	1 CIIOUS	
1	23OMG971	Total Quality Management	OEC	3	0	0	3	3
2	23OMG972	Engineering Economics and Financial Accounting	OEC	3	0	0	3	3
3	23OMG973	Engineering Management and Law	OEC	3	0	0	3	3
4	23OMG974	Knowledge Management	OEC	3	0	0	3	3
5	23OMG975	Industrial Management	OEC	3	0	0	0100	3
6	23OMG976	Entrepreneurship and Business Opportunities	OEC	3	0	0	3	3
7	23OMG977	Modern Business Administration and Financing	OEC	3	0	0	3	3
8	23OMG978	Essentials of Management	OEC	3	0	0	3	3

OPEN ELECTIVE - SAFETY COURSES

Sl. No.	Course Code	Course Title	Category]	vveek		Total Contact Periods	Credits
				T	P	1 CIIOUS		
1	23OAU981	Automotive Safety	OEC	3	0	0	3	3
2	23OCE981	Disaster Management	OEC	3	0	0	3	3
3	23OME981	Industrial Safety	OEC	3	0	0	3	3

SEMESTER-WISE CREDIT DISTRIBUTION

SEMESTER	HSMC	BSC	ESC	PCC	DEC	OEC	EEC	Total
Semester I	5	11	5					21
Semester II	4	7	9	6				26
Semester III	3	4		17				24
Semester IV		4	OLLE	19	FTEC	HNO	oL l oG	24
Semester V	Ren	A	FIL2 TED	TO13 NA	UNI 3 ERSI	14 3 AU	тоі2)мо	23
Semester VI			5	4	9	3	3	24
Semester VII			2	4	6	3	5	20
Semester VIII							10	10
Total	12	26	23	63	18	9	21	172

SEMESTER -I

23IP101	INDUCTION PROGRAMME	L	T	P	C
		-	1	ı	0

COURSE OBJECTIVES:

- This is a mandatory 2 weeks Programme to be conducted as soon as the students enter the institution.
 Normal classes start only after the induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character
- Hence, the purpose of this Programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and

students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature

• Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

• Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

Value Based Communication

This module will focus on improving the communication skills of students

Lectures by Alumni

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

Familiarization to Dept/Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities

Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests / assessments during this Programme.

REFERENCES:

Guide to Induction program from AICTE

23HS101	ESSENTIAL COMMUNICATION	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

UNIT I FORMATION OF SENTENCES 9

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing- framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development-Parts of Speech, Wh- Questions, yes or no questions, direct and indirect questions. Vocabulary development- prefixes- suffixes-articles – countable and uncountable nouns

UNIT II NARRATION AND DESCRIPTION 9

Reading – Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development – Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing – Write short narrative paragraphs, biographies of friends/relatives – writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures.

UNIT III | COMPARING AND CONTRASTING

9

Reading- short texts and long texts -understanding different types of text structures, -coherence-jumbled sentences. Language development- degrees of comparison, concord- Vocabulary development – single word substitutes- discourse markers- use of reference words Writing - comparative and contrast paragraphs writing- topic sentence- main idea, free writing, compare and contrast using some suggested vocabulary and structures.

UNIT IV | SOCIAL MEDIA COMMUNICATION

9

Reading- Reading blogs, social media reviews, posts, comments, process description, Language development - relative clause, Vocabulary development- social media terms-words, abbreviations and acronyms Writing--e-mail writing-conventions of personal email, descriptions for simple processes, critical online reviews, blog, website posts, commenting to posts.

UNIT V ESSAY WRITING

•

Reading- Close reading non-technical longer texts Language development - modal verbs, phrasal verbs- Vocabulary development - collocation. Writing- Writing short essays-brainstorming - developing an outline- identifying main and subordinate ideas.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize simple, level-appropriate texts of around 300 words recognizing main ideas and specific details.
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing.

CO3:	Use appropriate expressions to describe, compare and contrast people, things, situations etc., in writing.															
		•														
CO4:	Establish the ability to communicate effectively through															
	emails.															
CO5:	Determine the language use appropriate for different social															
	media platforms.															
CO6:	Use appropriate expressions for narrative descriptions and															
	process		scrip	otio	ns.											
TEXT	EXT BOOKS:															
1	Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange															
	Level 2. Cambridge University Press and Assessment															
2	Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange															
	Level 3. Cambridge University Press and Assessment															
REFE	FERENCES:															
1	Dutt P. Kiranmai and Rajeevan Geeta. Basic Communication															
	Skills, F	our	ıdat	ion	Во	oks	: 20	13							- 111	ř.
2	Means,l	L. T	hon	nas	anc	d Ela	aine	e La	ngl	ois.	Eng	glish	&			
	Commu	ınic	atio	n fo	or C	Colle	eges	s. C	eng	age	Lea	rnin	g,L	JSA	: 20	007
	COs	K	45	62			Ι	POs						Ι	SC	s
	COS CIAVE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	1	-	-	ı	AFE	1	1	PANI	2	3	SILY	2	N.	0	-
	2	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
	3	-	-	-	-	-	1	1	-	2	3	1	2	-	-	-
	4	-	-	-	-	-	-	-	-	-	3	1	2	-	-	-
	5	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	6	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	verall relation	-	-	-	-	-	1	1	_	3	3	-	2	-	-	-
	mmende	d by	, Во	ard	of S	Stud	ies	28-	07-2	023			l			<u> </u>
			ove						AC			Date	•	09-0	9-2	023
L	11															

23MA101	MATRICES AND CALCULUS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley - Hamilton theorem – Diagonalization of matrices by orthogonal transformation – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms – Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

UNIT IV INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques of

Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V MULTIPLE INTEGRALS

9

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2: Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3: Find the derivative of functions of several variables
- **CO4:** Examine the application of partial derivatives
- CO5: Compute integrals by different techniques of Integration.
- CO6: Apply the concept of integration to compute multiple integrals.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

REFERENCES:

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2 Anton. H, Bivens. I and Davis. S, "Calculus ", Wiley, 10th Edition, 2016

- Bali. N., Goyal. M. and Watkins. C., —Advanced Engineering Mathematics, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- Narayanan. S. and Manicavachagom Pillai.T. K., —Calculus" 4 Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.

	POs										PSOs				
\mathbf{COs}															
205	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
6	3	2	1	1	1	-	1	1	1		1	1	3	1	-
Overall Correlation	3	2	1	1	-	V		-/		-		1	3	7	-
Recommended by Board of Studies 02-08-2023															

1st ACM Date 09-09-2023 Approved

23AD101	PROGRAMMING IN PYTHON	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To know the basics of Programming.
- To convert an algorithm into a Python program.
- To construct Python programs with control structures.
- To structure a Python Program as a set of functions.
- To use Python data structures-lists, tuples, dictionaries and files.

UNIT I COMPUTATIONAL THINKING

q

Introduction to Computing and Problem Solving: Fundamentals of Computing –Computing Devices – Identification of Computational Problems – Pseudo Code and Flowcharts – Instructions – Algorithms – Building Blocks of Algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion).

UNIT II INTRODUCTION TO PYTHON

9

Introduction to Python Programming: Python Interpreter and Interactive Mode- Variables and Identifiers - Arithmetic Operators - Values and Types - Statements, Reading Input, Print Output, Type Conversions, type () Function and Is Operator, Dynamic and Strongly Typed Language. Control Flow Statements: if, if...else, if...else Decision Control Statements, Nested if Statement, while Loop, for Loop, continue and break Statements.

UNIT III | FUNCTIONS AND STRINGS

9

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the Function, The return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments. Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

UNIT IV LISTS, TUPLES, DICTIONARIES AND FILES 9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list Parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension. Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages.

UNIT V OBJECT-ORIENTED AND FUNCTIONAL 9 PROGRAMMING

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, Polymorphism. Functional Programming: Lambda. Iterators, Generators, List Comprehensions.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs using Control Statements
- CO3: Develop simple Python programs for solving problems using Functions and Strings
- CO4: Build a Python program using lists, tuples, dictionaries and files.
- CO5: Construct a code related to Object-Oriented Programming Concept
- **CO6:** Construct a code related to Functional Programming.

TEXT BOOKS:

Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/think-python/).

	T/ 1 D			" ~				1 1		1.		4 B			".	
2	Karl Be				-						_		_			
	Guide t						_			_		_		t Ec	ditic	n,
	BCS Lea		ing	&aı	np;	De	vel	opn	nen	t Li	mit€	ed, 20	017.			
REFI	ERENCE	S:														
1	Learnin	_		_	ran	n w	ith	Py	tho	n. F	Richa	ard I	J. Н	alte	rma	ın.
	Copyrig															
2	Python	for	Ev	eryl	ood	y, E	Exp	lori	ng l	Dat	a Us	sing	Pyth	non	3. I	Or.
	Charles															
3	Paul De	Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.														
	Pearson	Εc	luca	tio	n, 1	st E	dit	ion,	202	21.						
4	G Venl	cate	esh	an	d N	Mad	lha	van	M	ukı	und,	"C	omp	uta	tior	nal
	Thinkin	g:	A P	rim	er f	or l	Pro	gra	mm	ers	and	l Da	ta So	cien	tist	s",
	1st Edition, Notion Press, 2021.															
5	John V Guttag, "Introduction to Computation and															
	Programming Using Python: With Applications to															
	Computational Modeling and Understanding Data", Third															
	400	Edition, MIT Press , 2021														
6	Annual Co.	Eric Matthes, "Python Crash Course, A Hands - on Project														
1	Based					to	Pro	ogra	ımr	nin	g",	2nd	Edi	itio	n, I	Vo
	Starch I							1					1			Р.
7	https:/						_									-
8	Martin	C.	Bro	wn	, "F	yth	on:	Th	ie C	Com	nplet	e Re	efere	nce	", 4	lth
	Edition,								DAN	NA I	NIVE	ISITY	AUT	DIVO	MOU	
١ ،	COs]	POs	3		and the same			I	PSC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	-	-	-	-	1	3	1	-
	2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	5	3	2	1	1	1	-	-	-	ı	ı	-	1	3	1	-
	6	3	2	1	1	1	-	-	1	1	1	1	1	3	1	1
O	verall	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
	relation											1	1	3	1	1
Reco	mmended				of S	tud	ies									
	\mathbf{A}	ppr	ove	d				1^{st}	AC	M		Date	:	09-0	9-20)23

23HS102	HERITAGE OF TAMILS	L	T	P	C
		1	0	0	1

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil Nadu.

UNIT I LANGUAGE AND LITERATURE 3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism & Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO 3 MODERN ART - SCULPTURE

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

UNIT III	FOLK AND MARTIAL ARTS	3
Therukoot	hu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillat	tam,
Leatherpu	ppetry, Silambattam, Valari, Tiger dance - Sports	and
Games of T	Гamils.	
UNIT IV	THINAI CONCEPT OF TAMILS	3
Flora and	Fauna of Tamils & Aham and Puram Concept f	rom
	yam and Sangam Literature - Aram Concept of Tam	
Education	and Literacy during Sangam Age - Ancient Cities	and
Ports of Sa	angam Age - Export and Import during Sangam Ag	ge -
Overseas O	Conquest of Cholas	
UNIT V	CONTRIBUTION OF TAMILS TO INDIAN	3
	NATIONAL MOVEMENT AND INDIAN	
	CULTURE	
Contributi	on of Tamils to Indian Freedom Struggle - The Cult	ural
11.77	of Tamils over the other parts of India - Self-Res	
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t - Role of Siddha Medicine in Indigenous System	•
Medicine	- Inscriptions & Manuscripts - Print History of Ta	amil
Books.	COLLEGE OF TECHNOLOGY	** 53
	TOTAL: 15 PERI	ODS
COURSE	OUTCOMES:	
After comp	pletion of the course, the students will be able to:	
CO1: Expl	ain the evolution of Tamil language and literature,	
focus	sing on its cultural, ethical, and secular themes.	
CO2: Outli	ine the making of musical instruments related to Tam	il
herit	ě	
	uss the sports and games of Tamils	
	ain the education and literacy during Sangam age.	
_	ess the importance and contribution of Tamils to Indi	an
	dom Struggle	
CO6: Outli	ine the print history of books in Tamil Nadu	

TEXT	BOOK	S:														
1	தமிழ் தமிழக):	
2	கணில	ரித்	தமி	ழ் - (ழ்க	ഞ	υij	இ	ა. ௬ ļ	ந்த	ரம் (6	விகட	ன் ।	பிரச	ஈ ரம்)	
REFEI	RENCI	ES:														
	முஆக ரகார														ъŢ	
	பொரு துறை			_			560) і	БП	கரி	ிகம்) (ရ	தா	လ်ရ	ிய	လ်
	துறை வெளியீடு) POs]	PSO	s
C	Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	-	-	-	-	-	2	2	-	-	-	-	-	-	-	-
2	2	-	-	-	-	-	2	2	-	-	-	-	-	-	-	-
3	3	Ξ;	Das	-	-	-	2	2	r - y	-	-	-		-	-	-
4	1	-		4	(-	-	2	2	4	-	-	-/	W-	-	-	-
5	5	-	-	$\langle A \rangle$	\-	7	2	2	4	F		-1	k	-]-	-
(5	-	- //	¥.	/-		2	2	ļ.,	7	_	-	7	_		-
	erall lation	Z 200	REAL	(B)	_	co	2	2	E) F	TE	CHI	101	.00	GY	-
Recom	mende	d t	у Во	ard	of S	tudi	es	28-0	7-20)23	NIVER	2111	010	N O M	005	
	A	App	rove	ed				1st	ACI	M]	Date		09-	-09-2	023

23PH111	ENGINEERING PHYSICS	L	T	P	C
		3	0	2	4

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses-factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule – torque –rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

UNIT II | ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

UNIT III	OPTICS AND LASERS	9
Reflection	and refraction of light waves - total internal reflecti	on –

types of optical fiber, Numerical Aperture and acceptance angle - interference -Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating
- 6. Airwedge- Determination of thickness of a thinsheet / wire

- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
 - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Determine the mechanical properties of materials.
- CO2: Apply the principles of electromagnetic waves to real world system.
- CO3: Determine the thickness of thin wire and the characteristic parameter of an optical fiber.
- **CO4:** Apply the principles of lasers to real world application.
- CO5: Organize the quantum mechanical properties of particles and waves.
- CO6: Utilize the quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1 D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", McGraw Hill Education (Indian Edition), 2017.
- 2 Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", McGraw-Hill (Indian Edition), 2017.

REFI	ERENCE	S:														
1	R.Wolfs	son	," E	Esse	ntia	al U	niv	ers	ity	Phy	sics	", V	olur	ne i	1 &	2.
	Pearson	Ed	uca	tio	n (Iı	ndia	an E	dit	ion)	, 20	009.					
2	Paul A	. T	iple	r, '	"Ph	ysio	: -	Vo	lun	ne 1	1 &	2",	CBS	5, (Indi	an
	Edition)	, 20	004.													
3	K.Thya	gar	ajar	n a	nd	A.C	Gha	tak,	"La	ser	s: F	unda	ame	ntal	s a	nd
	Applica	tion	ns,"	La	xmi	Pu	blic	atic	ns,	(In	dian	Edi	tion), 20)19.	
4	D.Hallio	day	, R.	Res	nicl	c ar	ıd J.	Wa	lke	r, "]	Prin	ciple	es of	Ph	ysic	s",
	Wiley (I	ndi	an I	Edi	tior	1), 2	015									
5	N.Garc	ia, <i>i</i>	A.D	am	ask	ano	1 S.S	Sch	war	Z, "	Phy	sics	for (Con	npu	ter
	N.Garcia, A.Damask and S.Schwarz, "Physics for Computer Science Students", Springer Verlag, 2016.															
	POs PSOs															
	COs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
	CO5	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1, HPOW	1 3	2	3	4 1	- 5	6	7	8	9	10	11 -	12	1 3	2	3
		7.4			_	5 - -	6 -	7 - -	8 -	9 -	10 - -	11 - -			- -	3 - -
	1 HPOW	3	2	1	1	5 - - -	6	Z	-/	9 -	10 - -		1	3	- - -	-
	1	3	2	1 1 1 1	1	5 - - -	6 - - -	Z	-/	9	10 - - -		1	3	- - -	-
	1 2 3	3 3 3 3	2 2 2	1 1 1	1 1 1	5 - - - -	6	Z	-/	9	10 - - - -		1 1 1 1	3 3 3 3		-
	1 2 3 4 5 6	3 3 3 3	2 2 2 2	1 1 1 1	1 1 1 1	5 - - - -	6	Z	-/	9	10 - - - -		1 1 1 1	3 3 3		-
0	1 2 3 4 5 6 verall	3 3 3 3	2 2 2 2 2	1 1 1 1	1 1 1 1 1	5 - - - - - - - -	6	Z	-/	9	10 - - - - - - - -		1 1 1 1	3 3 3 3		-
O	1 2 3 4 5 6 verall	3 3 3 3 3 3	2 2 2 2 2 2 2	1 1 1 1 1 1	1 1 1 1 1 1	- - - - - -	- - - - - - - - - - - - - - - - - - -	E	- I	OF VAC	- - TE		1 1 1 1 1	3 3 3 3 3		-
O	1 2 3 4 5 6 verall relation mmended	3 3 3 3 3 3	2 2 2 2 2 2 2	1 1 1 1 1 1 1 ard	1 1 1 1 1 1	- - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - 28-	- I	- - - - - 2023	TE		1 1 1 1 1	3 3 3 3 3 3	2	-

23CY111	ENGINEERING CHEMISTRY	L	T	P	C
		3	0	1	4

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical

vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO₂ system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

UNIT IV | FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO₂ emission and carbon sequestration, Green Hydrogen.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid battery and lithium-ion battery; Electric vehicles – working

principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

COURSE OUTCOMES:

- CO1: Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2: Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3: Estimate the knowledge of phase rule and composites for material selection requirements
- CO4: Choose a suitable fuel for engineering processes and applications
- CO5: Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6: Explain the different types of batteries, fuel cells and working principles of Electric vehicles

TEX	Т ВООК	S:														
1	P. C. Ja	in a	and	Mo	onic	a Ia	ain,	"E	ngii	nee	ring	Che	emis	trv"	, 17	7th
	Edition,															
	Delhi, 2			1					O		1	,	` /			
2	Sivasar	ıkaı	r B.,	"E	ngi	nee	ring	g Cl	nem	istr	y", [Гata	Mc	Grav	w-F	Hill
	Publish															
3	S.S. Dar															
	Publish	U'											.S.,			
	Enginee					atic	s",	Kh	ann	а Р	ubli	sher	s, N	ew	Del	hi,
DEE	44th Edi		1, 20)18.												
	ERENCE			01		1		1 1			D D	- D	.1	-	_	
1	B. S. M															
	Murday															
	Univers Science,			ress	5-111	VI J	еп	25 1	11 1	чец	ınuı	gy d	anu	IVIa	tem	ais
2				. "	Eng	oine	eri	nσ	Ch	em	istrv	<i>r</i> "]	McG	raw	<i>7</i> F	Hill
_	O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.															
3															enti	ific
	Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014New Delhi, 2018.															
4	ShikhaAgarwal, "Engineering Chemistry-Fundamentals and															
	W 1/2	Applications", Cambridge University Press, Delhi, Second														
	Edition,			(V)	1	CC							NO			12
5	O.V. Ro															
	Book fo												ınge	r S	cıer	nce
	Busines	S IVI	leai	a, N	New	YYO		2nc POs		litic	n, 2	013		T	PSO) c
	COs	1	2	3	4	5		7	8	Ω	10	11	12	1	2	
	1			3	4	3	6		0	9		11				3
	1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	3	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	4	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	5	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
				ı		_	-	2	-	-	-	_	1	2	_	1
	6	2	1	-	_									_		_
	verall			1	1	_	_	3	_	-	_	_			_	_
Cor	verall relation	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
Cor	verall relation ommended	3	2	ard		- Stud	- ies	28-	- 07-2			- Date	2	3	-	2023

23AD121	PYTHON PROGRAMMING	L	T	P	C
	LABORATORY	0	0	4	2

The main objective of this laboratory is to put into practice computational thinking. The students will be expected to write, compile, run and debug Python programs to demonstrate the usage of:

- Operators and Conditional Statements
- Control Structures and Functions (both recursive and iterative) and Recursion.
- String functions
- Lists, Sets, Dictionaries, Tuples and Files.
- Object-Oriented Programming

Exercise 1 Programs to demonstrate the usage of operators and conditional statements.

- 1. Write a program that takes two integers as command line arguments and prints the sum of two integers.
- 2. Program to display the information:
 Your name, Full Address, Mobile Number,
 College Name, Course Subjects
- 3. Program that reads the URL of a website as input and displays contents of a webpage.

Exercise 2 Programs to demonstrate usage of control structures.

- 4. Program to find the sum of all prime numbers between 1 and 1000.
- 5. Program to find the product of two matrices.
- 6. Program to find the roots of a quadratic equation.

Exercise 3 Programs to demonstrate the usage of Functions and Recursion

- 7. Write both recursive and non-recursive functions for the following:
 - a. To find GCD of two integers
 - b. To find the factorial of positive integer
 - c. To print Fibonacci Sequence up to given number n

- d. To convert decimal number to Binary equivalent
- 8. Program with a function that accepts two arguments: a list and a number n. It should display all the numbers in the list that are greater than the given number n.
- 9. Program with a function to find how many numbers are divisible by 2, 3,4,5,6 and 7 between 1 to 1000.

Exercise 4 Programs to demonstrate the usage of String functions.

- 10. Program that accepts two strings S1, S2, and finds whether they are equal are not.
- 11. Program to count the number of occurrences of characters in each string.
- 12. Program to find whether a given string is palindrome or not.

Exercise 5 Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

- 13. Simple sorting, Histogram, Students marks statement, Retail bill preparation
- 14. Write a program that combines lists L1 and L2 into a dictionary.
- 15. Program to display a list of all unique words in a text file and word count, copy file, Voter's age validation, Marks range validation (0-100).

Exercise 6 Programs to demonstrate the usage of Object-Oriented Programming

- 16. Program to implement the inheritance.
- 17. Program to implement polymorphism

TOTAL: 60 PERIODS

COURSE OUTCOMES:

- **CO1:** Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs.

CO3: Constru	ct p	rog	ran	ns ii	n Py	/tho	n u	sin	g co	ndi	tion	als a	and 1	oop	S
for solvi	ng j	pro	bleı	ns.	-				_					-	
CO4: Utilize f	unc	tior	ns to	o de	ecor	npc	se a	а Ру	thc	n pı	ogra	am.			
CO5: Analyse	cor	npo	oun	d da	ata	usiı	ng I	yth	ion	data	strı	ıctu	ıres.		
CO6: Interpre	O6: Interpret data from/to files in Python Programs														
COs PSOs															
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	1	-	-	-	-	1	3	1	_
2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	_
4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	_
5	3	3	2	2	1	-	-	-	-	-	-	1	3	1	-
6	2	1	-	-	1	-	-	1	1	1	1	1	3	1	1
Overall	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
Correlation	334	RE											3	1	-
Recommende	d by	Во	ard	of S	Stud	lies	28-	07-2	2023						ri .
A	ppr	ove	d				1st	AC	\mathbf{M}		Date		09-09	9-20	23

23HS121	COMMUNICATION SKILLS	L	T	P	С
	LABORATORY	0	0	2	1
COURSE O	BJECTIVES:				
• To en	able the students to comprehend the mai	n id	ea a	and	
specif	ic information of the listening passage				
 To he 	lp students express themselves clearly, a	nd			
comn	nunicate effectively with others.				
	troduce authentic language use and conte		_		
vocab	oulary that might not be encountered in to	extb	ook	S.	
Exercise:1	Listening to conversations set in everyda	ay s	ocia	ıl	
	context and complete gap-filling exercise	e			
Exercise: 2	Listening to a monologue in everyday so	ocia	l co	nte	‹t.
	Diagram labelling and MCQ				
Exercise: 3	Listening to a group conversation in aca	den	nic s	setti	ng
(100)	and answer MCQ			A.	
Exercise: 4	Listening to a lecture and answer MCQ	or g	ap i	filliı	ng
Exercise: 5	Listening to Ted Talks, podcasts, docum	ent	arie	s -	
1 1	discussion	-			
Exercise: 6	Listening to a lecture and reading a text	on	the	san	ıe
0.00	subject- compare and contrast				
Exercise: 7	Speaking Introducing oneself				
Exercise:8	Answering questions based on the intro	duc	tior	1	
Exercise: 9	Speaking on a given prompt for 2 mins.				
Exercise :10	Answering questions based on the topic	spo	okei	1	
Exercise :11	Role play- Engaging in conversation				
Exercise :12	Engaging in Podcast Discussion				
	TOTAL	L: 30) PE	RIC	DDS
COURSE O	UTCOMES:				
After c	ompletion of the course, the students wil	l be	abl	e to):
CO1: Demo	nstrate fluency in speaking in variety of s	situa	atio	ns	

42

CO2: Express their knowledge by talking continuously for more

than two minutes on a topic

CO3:	Develop	o ac	tive	e lis	teni	ng	for	moı	re n	near	ning	ful i	nter	acti	ons	and
	convers	atic	ns													
CO4:	Use a fu	ıll r	ang	ge o	f str	uct	ure	s na	tur	ally	and	lapp	orop	riat	tely	
CO5:	Identify	the	e sp	ecif	ic iı	nfor	ma	tior	ı in	cor	vers	atio	ns, i	nte	rvie	ws,
	talks an	alks and lectures														
CO6:	Develop	Develop the ability to compare and analyse different forms of														
	informa	information, identifying key similarities and differences.														
	COs							Os						PSOs		
`	LUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	1					1	1	ı	2	3	-	2	ı	-	-
	2	ı	1	1	-	-	-	ı	•	2	3	•	2	ı	-	-
	3	ı	ı	ı	ı	-	1	1	ı	2	3	•	2	ı	-	-
	4	-	-	-	-	-	-	-	•	-	3	•	2	ı	-	-
	5	1	ı	ı	1	-	1	1	1	3	3	1	2	1	1	-
	6 OW	ER L	\mathscr{L}	1	-	-	1	1	-2	2	3		4	ŀ		
	Overall							1	-	3	3		2	-	-	-
Reco	mmende	d by	Во	ard	of S	tud	ies	28-	07-2	023					The same	
1	Approved						1st ACM Date				09-09-2023					

SEMESTER - II

23HS201	PROFESSIONAL ENGLISH	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays.
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

UNIT I WORKPLACE COMMUNICATION

9

Reading - Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing - Writing emails -emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development- Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary - One-word substitutes; Abbreviations & Acronyms as used in technical contexts and social media.

UNIT II EXPRESSING CAUSE AND EFFECT

9

Reading - Reading longer technical texts- Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development- Active, Passive and Impersonal Passive Voice transformations, Infinitive and Gerunds Vocabulary - Synonyms- contextual meaning of

words, Same word acting as different parts of speech, causal expressions.

UNIT III | PROVIDING SOLUTIONS TO PROBLEMS

9

Reading - Case Studies, editorials, news reports etc. Writing - Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional sentences Vocabulary - Compound Words, discourse markers.

UNIT IV | INTERPRETATION OF GRAPHICS

9

Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. Language development-Possessive & Relative pronouns, numerical adjectives Vocabulary Homonyms and Homophones, sequence words.

UNIT V REPORT WRITING AND RESUME WRITING

9

Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- CO1: Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing
- CO3: Use appropriate expressions to describe process and product, compare and contrast data, analyze problems, provide solutions and prove an argument in writing

CO4: Establish ability the to communicate effectively in professional environment through emails and reports CO5: Determine the language use appropriate for different social media platforms used for digital marketing CO6: Convert skills to assets and position themselves in job market through their own professional narratives TEXT BOOKS: 1 V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha Priyadharshini, Veena Selvam, English for Science & Technology I, Cambridge University Press and Assessment V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 2 Priyadharshini, Veena Selvam, English for Science & Technology II, Cambridge University Press and Assessment **REFERENCES:** Business Correspondence and Report Writing by Prof. R.C. 1 Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi. Developing Communication Skills by Krishna Mohan, 2 Meera Bannerji- Macmillan India Ltd. 1990, Delhi. **POs PSOs** COs 2 5 6 9 12 2 1 3 8 10 11 1 2 2 3 1 1 1 2 2 3 2 3 1 2 3 2 4 2 3 2 2 3 2 5 1 6 2 3 3 **Overall** 2 3 3 1 1 Correlation Recommended by Board of Studies 28-07-2023

Approved

1st ACM

Date

09-09-2023

23MA201	VECTOR CALCULUS AND	L	T	P	C
	COMPLEX FUNCTIONS	3	1	0	4

- To acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines. To acquaint the student with Fourier Transform techniques used in wide variety of situations.
- To develop an understanding of the standard techniques of complex functions theory so as to enable the student to apply them with confidence, in application areas. To introduce the basic concepts of probability and random variables
- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS

9+3

Gradient and directional derivative – Divergence and curl – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green's, Gauss divergence and Stoke's theorems (excluding proofs)–Verification and simple application involving cubes and rectangular parallelopipeds.

UNIT II ANALYTIC FUNCTION

9+3

Functions of complex variable -Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function – Conformal mapping – w=z+c, cz, 1/z, z2 , Bilinear Transformation

UNIT III | COMPLEX INTEGRATION

9+3

Line integral-Cauchy's integral theorem (exclude proof)-Cauchy's integral formula- Taylor's and Laurent's series - Singularities -

Residues – Residue theorem (exclude proof) – Application of residue theorem for evaluation of real definite integrals as contour integrals around contour and semi circular contour (with poles NOT on real axis).

UNIT IV ORDINARY DIFFERENTIAL EQUATIONS 9+3

Higher order linear differential equations with constant coefficients-Method of variation of parameters – Linear Differential equations with variable coefficients - Homogenous equation of Euler's and Legendre's type – System of simultaneous linear differential equations with constant coefficients.

UNIT V LAPLACE TRANSFORMS

9+3

Existence conditions – Transforms of elementary functions – Transform of unit step function and unit impulse function – Basic properties – Shifting theorems. Transforms of derivatives and integrals-Initial and final value theorems – Inverse transforms – Convolution theorem (exclude proof) – Transform of periodic functions – Application to solution of linear second order ordinary differential equations with constant coefficients.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

- CO1: Utilize the concept of Vector Calculus needed in different Engineering disciplines.
- CO2: Apply the concepts of analytic functions in solving engineering problems
- CO3: Examine the problems of conformal mappings and Bilinear Transformation
- CO4: Apply the complex integration techniques in solving engineering problems
- CO5: Make use of the Laplace transform techniques in physical problems.
- CO6: Solve Ordinary Differential Equations that model some Engineering Problems.

TEX	Т ВООК	S:														
1	Kreyszi	g.E	, ",	Adv	van	ced	Eı	ngiı	nee	ring	g M	athe	emat	ics"	, Jo	hn
	Wiley a	nd	Son	ıs, 1	0th	Ed	litio	n, l	Vev	v D	elhi,	201	6.			
2	Grewal	B.S	i., "	Hig	ghe	r E	ngi	nee	rin	g N	lath	ema	tics'	", k	Char	nna
	Publish	Publishers, New Delhi, 44th Edition, 2018.														
REF	FERENCES:															
1	P.Sivaramakrishna Das and C.Vijayakumari "Engineering															
	Mathematics - II" - Pearson Publications															
2	Naraya	Narayanan. S., Manicavachagom Pillay.T.K and														
	Ramanaiah.G "Advanced Mathematics for Engineering															
	Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd,															
	Chennai, 1998.															
3	Ramana	Ramana. B.V., "Higher Engineering Mathematics", McGraw														
	Hill Edı	uca	tion	ı Pv	t. L	td,	Ne	wΙ)ell	i, 2	018.					
	co sow	ER L)RE				I	POs		A		-	7	Jan .	PSC)s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 /	3	2	1	1	-	-		-	(2)	·-	ī	1	3	-	-
	2	3	2	1	1	_	_	74		-	•	7	1	3	-	-
1	3	3	2	1	1	-	-	-	-	-	1	-	1	3	1	-
	4 GIVE	3	2	1	1	U)L	LE	Q.E	O			1	3) <u>G</u>	Υ_
	5	3	2	1	1	AF	ILIA	ED.	O.A.	INIA.	UNIVE	8511	1	3	OMO	-
	6 3 2 1 1 -							-	-	-	-	-	1	3	-	-
O	Overall 3 2 1 1 -												1	2		
Cor	relation	3	_	1	1	-	_	_	-	_	-	-	1	3	-	-
	mmended			-				28-07-2023								

1st ASM

Date

Approved

09-09-2023

23PH204	PHYSICS FOR ELECTRICAL	L	T	P	C
	ENGINEERING	3	0	0	3

- To make the students to understand the basics of dielectric materials and insulation.
- To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials.
- To instil knowledge on physics of semiconductors, determination of charge carriers and device applications.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications.
- To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications.

UNIT I DIELECTRIC MATERIALS AND INSULATION 9

Matter polarization and relative permittivity: definition – dipole moment and polarization vector P polarization mechanisms: electronic, ionic, orientational, interfacial and total polarization – frequency dependence – local field and Clausius-Mosotti equation – dielectric constant and dielectric loss – Gauss's law and boundary conditions – dielectric strength, introduction to insulation breakdown in gases, liquids and solids – capacitor materials – typical capacitor constructions – piezoelectricity, ferroelectricity and pyroelectricity – quartz oscillators and filters – piezo and pyroelectric crystals.

UNIT II	ELECTRICAL AND MAGNETIC PROPERTIES	9
	OF MATERIALS	

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Quantum free electron theory : Tunnelling - degenerate states - Fermi- Dirac statistics - Density of energy states - Magnetic materials: Dia, para

and ferromagnetic effects – exchange interaction and domain theory of ferromagnetism and hysteresis – quantum interference devices – GMR devices.

UNIT III | SEMICONDUCTORS AND TRANSPORT | PHYSICS

9

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – Carrier transport in Semiconductors: Drift, mobility and diffusion (qualitative) – Hall effect and devices – Ohmic contacts – Schottky diode – introduction to solid state drive (SSD).

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption, loss and gain. Optical processes in quantum wells – Optoelectronic devices: light detectors and solar cells – light emitting diode – laser diode – optical processes in organic semiconductor devices –excitonic state.

UNIT V NANO DEVICES

9

Density of states for solids - Significance between Fermi energy and volume of the material - Quantum confinement - Quantum structures - Density of states for quantum wells, wires and dots - Band gap of nanomaterials -Tunnelling - Single electron phenomena - Single electron Transistor. Carbon nanotubes: Properties and applications - Spintronic devices and applications - Optics in quantum structures - quantum well laser.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Compute the polarization of a dielectric material. CO2: Compute charge carrier density of metals and fermi energy level. CO3: Apply the properties of magnetic materials and assess real world examples. CO4: Compute carrier concentration in intrinsic and extrinsic semiconductor. CO5: Apply the optical properties of materials and assess real world examples. CO6: Compute the density of states for quantum structures and assess the real world applications. TEXT BOOKS: S.O. Kasap. Principles of Electronic Materials and Devices, McGraw Hill Education (Indian Edition), 2020. R.F. Pierret. Semiconductor Device Fundamentals. Pearson 2 (Indian Edition), 2006. G.W. Hanson. Fundamentals of Nanoelectronics. Pearson 3 Education (Indian Edition), 2009. REFERENCES: Laszlo Solymar, Walsh, Donald, Syms and Richard R.A., 1 Electrical Properties of Materials, Oxford Univ. Press (Indian Edition) 2015. Jasprit Singh, Semiconductor Optoelectronics: Physics and 2 Technology, McGraw-Hill Education (Indian Edition), 2019. Charles Kittel, Introduction to Solid State Physics, Wiley 3 India Edition, 2019. Mark Fox, Optical Properties of Solids, Oxford Univ. Press, 4 2001. A Beginner's 5 K. Lala, Ouantum Computing: Parag Education (Indian Edition), Introduction, McGraw-Hill 2020.

COs						I	POs						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
5	3	2	1	1	-	-	-	-	-	1	-	1	3	-	-
6	3	2	1	1	-	-	-	-	-	1	-	1	3	-	-
Overall Correlation	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
Recommended by Board of Studies							28-07-2023						· · · · ·		
A	Approved						1st ACM Date 09-09-2					2023			

23EE201	ELECTRIC CIRCUIT ANALYSIS	L	T	P	С
		3	1	0	4
COURSE OB	ECTIVES:	<u> </u>			
• To in	ntroduce electric circuits and its analys	is			
• To p	rovide key concepts to analyze and un	ders	stan	d	
	rical circuits				
	mpart knowledge on solving circuit eq	uatio	ons	usiı	ng
	vork theorems		c		
	ducate on obtaining the transient respo	onse	of		
circu				1	1
• 10 II circu	ntroduce the phenomenon of resonance	e m	cou	piec	1
	erform the analysis of three phase circ	nite			
	SIC CIRCUITS ANALYSIS	arts.			12
	concepts of R, L and C Elements -Ene	0,			>
Ohm's Law-K	irchhoff's Laws - DC Circuits - Resis	stors	in	ser	ies
and parallel <mark>ci</mark>	<mark>rcuits - A.C Circuits -Complex Impeda</mark>	nce	-Re	al a	nd
Reactive Pow	<mark>er, P</mark> ower Factor, Energy -Mesh curr	ent	and	no	de
voltage metho	ods of analysis D.C and A.C Circuits.	-		1000	
UNIT II NE	TWORK REDUCTION AND THEO	REN	1S		12
FO	R DC AND AC CIRCUITS				
Notaral mad	Arritaled to Anna University	oi ou	DNU	MINO	
	luction: voltage and current divi			oui	
	n-star delta conversion. Theorems - S				
	nd Norton's Theorem – Maximum p	owe	r tr	ans	ter
	man's theorem			-	
UNIT III TR	ANSIENT RESPONSE ANALYSIS				12
Introduction -	Laplace transforms and inverse Laplace	ce tra	ansf	orn	ns-
standard test	signals Transient response of RL,	RC	and	RI	LC
circuits using	Laplace transform for source free and	DC i	inpı	ıt	
UNIT IV RE	SONANCE AND COUPLED CIRCU	ITS			12
Series and par	allel resonance -frequency response -	Qua	lity	fact	tor
and Bandwid	th - Self and mutual inductance -	Coef	fici	ent	of
coupling- Dot	Rule-Analysis of coupled circuits				

		_ 1
UNI	T V THREE PHASE CIRCUITS 12	2
Anal	ysis of three phase 3-wire and 4- wire circuits with star and	ł
delta	connected loads, balanced and unbalanced -phasor diagram	ı
of vo	ltages and currents.	
	TOTAL: 60 PERIOD	S
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able to:	
CO1:	Make use of mesh current and nodal voltage methods for	r
CO2	solving the given DC and AC circuits.	1
	Apply network reduction techniques for the given DC and AC networks	
CO3:	Apply network theorems such as Thevenin's Theorem	
	Norton's Theorem, Superposition Theorem, Maximum	1
	Power Transfer Theorem and Milliman's theorem for solving	5
COA	the given DC and AC networks.	,
CO4.	Apply Laplace transform to the given RL, RC and RLC Circuits with DC input to determine their transient response	
CO5:	Analyze the resonant and coupled circuits to find the circuit	t
	parameters.	
CO6:	Analyze the three phase circuits (Star and Delta) to find	1
TT-V	voltage, current and power.	
	T BOOKS: AFFILIATED TO ANNA UNIVERSITY AUTONOMOUS	
1	William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin	
	-Engineering Circuits Analysis , Mc Graw Hil	I
	publishers,9th edition, New Delhi, 2020.	
2	Charles K. Alexander, Mathew N.O .Sadiku,—Fundamentals	3
	of Electric Circuits, Second Edition, Mc GrawHill, 2019.	
3	Allan H. Robbins, Wilhelm C. Miller, —Circuit Analysis	3
	Theory and Practice , Cengage Learning India, 2013.	
REFI	ERENCES:	
1	Chakrabarti A, — Circuits Theory (Analysis and synthesis),	
	Dhanpat Rai &Sons, New Delhi, 2020.	
2	Joseph A. Edminister, Mahmood Nahvi, —Electric circuits,	
	Schaum's series, McGraw-Hill, First Edition, 2019.	

3	ME Van Valkenburg, —Network Analysis, Prentice-Hall of															
	India P	India Pvt Ltd, New Delhi, 2015.														
4	Richard	l C.	Do	rfaı	nd J	am	es A	1. S	vob	oda	a, —I	ntro	duc	tion	to	
	Electric	Electric Circuits, 7th Edition, John Wiley &Sons, Inc. 2018.														
	POs											I	PSC)s		
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3 2 1 1 1 - 3 - 1							3	-	1					
	2	2 3 2 1 1 -				-	-	-	1	1	3	-	1	3	-	1
	3	3	2	1	1	-	-	-	1	-	3	-	1	3	-	1
	4	3	2	1	1	-	-	-	1	-	3	-	1	3	-	1
	5	3	3	2	2	-	-	-	1	-	3	-	1	3	-	1
	6	3 3 2 2					1	1	3	-	1	3	-	1		
O	verall	3	3	2	2				1		3	_	1	3		1
Corı	Correlation 3 3 2 2 2							1		3		1	3	1	1	
Reco	Recommended by Board of Studies							28-07-2023					2023			
	Approved					1st ACM Date					09-09-2023					

COLLEGE OF TECHNOLOGY

23ME271	BASIC MECHANICAL AND	L	T	P	C
	BUILDING SCIENCES	3	0	0	3

- Introduce fundamental concepts of civil and mechanical engineering.
- Develop interdisciplinary knowledge and skills.
- Acquire knowledge on traditional & new energy sources and to gain basic knowledge about the functioning of basic energy conversion devices like boilers, turbines and pumps.
- Gain basic knowledge on the construction and working of IC engines, refrigerator and air-conditioner.
- Acquire knowledge on basic power plant engineering.
- Acquire knowledge on surveying and construction materials.
- Provide knowledge on building foundation, components and construction.

UNIT I	ENERGY SOURCES, BOILERS TURBINES	9
	AND PUMPS	

Conventional and Renewable sources of energy, Indian and global energy scenario, Working Principle of: Boilers - fire tube and water tube (one example for each type), Hydraulic, Steam, and Gas turbines, Reciprocating Pumps (single acting and double acting) and Centrifugal Pumps.

UNIT II	IC ENGINES, REFRIGERATOR AND AIR	9
	CONDITIONER	

Internal combustion engines as automobile power plant - Working principle of Petrol and Diesel Engines - Four stroke and two stroke cycles, Comparison of four stroke and two stroke engines, petrol and diesel engines. Terminology of Refrigeration and Air Conditioning, Principle of vapour compression and absorption system - Layout of typical domestic refrigerator - Window and Split type room Air conditioner.

	,	
UNI	T III POWER PLANTS	9
Princ	iple of operation, construction and working of: Hydel, Stea	am,
Diese	el, Gas and Nuclear power plants along with accessorie	es -
selec	tion, comparison, merits and demerits.	
UNI	T IV SURVEYING AND CONSTRUCTION	9
	MATERIALS	
Surv	eying: Objects - Classification - Principles - Measurement	s of
Dista	nces and angles - Leveling - Determination of are	as-
Cont	ours. Construction Materials: Bricks – Stones – Sand – Cem	ent
- Co	ncrete - Steel - Timber - Modern Materials, Thermal a	and
Acou	stic Insulating Materials, Decorative Panels, Water Proof	ing
Mate	rials. Modern uses of Gypsum.	
UNI	T V FOUNDATION AND BUILDING	9
	COMPONENTS	>
Build	ling pl <mark>ans - Foundations - Types of foundations - Bear</mark>	ing
capa	city an <mark>d settle</mark> ment - Brick masonry - Stone Masonry - Bea	ms
- Co	lumns - Lintels - Roofing - Flooring - Plastering. Types	s of
	ges and Dams – Water Supply Network - Rain Wa esting – Solid Waste Management.	iter
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able t	o:
CO1:	Explain conventional and renewable energy sources and	the
	working of basic energy conversion devices such as boile	ers,
	turbines, and pumps.	1
CO2:	Summarize the construction, working, and comparison of	IC.
CO2	engines. Describe the working principle of refrigerators and	air
CO3.	conditioners.	all
CO4:	Explain the fundamental working principle of power plan	nts.
	Explain surveying, its types, the determination of an ar	
	and various types of construction materials.	,

CO6:	CO6: Describe the foundation of a building, its types, and the															
	building components used in construction.															
TEXT BOOKS:																
1																
_	Mechanical Engineering", 2nd edition, Tata McGraw Hill															
	Publishing Co., New Delhi, 2000.															
REFERENCES:																
1	Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai															
	Publish	ing	Co.	(P)	Ltd	l, 20)13.									
2	Seetharaman S., "Basic Civil Engineering", Anuradha															
	Agencie				D 1	// 7			. 1						<i>''</i> T	τ.
3	Shantha Kumar S R J., "Basic Mechanical Engineering", Hitech Publications, Mayiladuthurai, 2000.															
4												Racio	, N/I	och	ani	201
*	Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, 2000.															
	Lignice	.1111	<u>8 / </u>	2 111	ura	aria		POs		3, 1	uiii	Jako	ııaıı		SO.)c
(COs	1	2	2	4	5	6	7	8	9	10	11	1 2 3			
		-	4	3	4	3	0	V. *		W.		11	12	1		3
	1	2	-	X.	1	-	A,	1	2	1	2	-	2	-	-	-
	2	2	-	5	-	-	-	1	2	1	2		2	1	1	-
	3	2	7L	4	Æ		-	1	2	1	2	1	2	1	1	1
	4	2	3	(2)	-	cc) F I	1	2	1	2	H	2	5	9	3
	5	2		-	-	AFF	LIAT	1	2	1	2	SITY	2	ONO	NOU	90.
	6	2	ı	-	-	-	-	1	2	1	2	-	2	1	-	1
Overall		2						1	2	1	2		2			
Cor	Correlation 2 - - - -		-	1	2	1	2	-	2	-	-	-				
Recommended by Board of Studies 28-07-2023												_				
Reco	mmenaec	ı by	ВО	ara	01 5	tua	ıes				28-	-07-2	023			

23HS203	TAMILS AND TECHNOLOGY	L	T	P	C
		1	0	0	1

- To summarize the weaving industry and ceramic technology during Sangam Age
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola, Pallava and Pandya period
- To Explain about the water bodies of Sangam age and relate it to the agricultural usage
- To Outline to students the agriculture and irrigation technology during the Chola Period
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software

Weaving Industry during Sangam Age - Ceramic technology - Black and Red Ware Potteries (BRW) - Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION 3 TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III | MANUFACTURING TECHNOLOGY 3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV | AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use -Agriculture and Agro Processing - Knowledge of Sea - Fisheries -Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3 Development of Scientific Tamil - Tamil computing Digitalization of Tamil Books -Development of Tamil Software -Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize the weaving industry and ceramic technology during Sangam Age CO2: Explain the design and construction of houses during Sangam Age CO3: Explain the sculptures and temples of Chola, Pallava and Pandya period. **CO4:** Explain about the water bodies of Sangam age and relate it to the agricultural usage CO5: Outline the agriculture and irrigation technology during the Chola Period. CO6: Interpret and explain the digitalization of tamil books and development of Tamil software **TEXT BOOKS:** Dr.K.K.Pillay ,"Social Life of Tamils", A joint publication of 1 TNTB & ESC and RMRL

REFERENCES:																		
1	Dr.S.Singaravelu, "Social Life of the Tamils - The Classical												cal					
	Period", Published by: International Institute of Tam												nil					
	Studies.																	
2 Dr.S.V.Subatamanian , Dr.K.D. Thirunavukkan											aras	rasu,						
	"Historical Heritage of the Tamils", Published by											y:						
	International Institute of Tamil Studies																	
	CO-		POs PSOs												s			
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-		
	2	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-		
	3	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-		
	4	-	1	-	-	-	1	1	1	-	-	-	-	1	1	1		
	5	-	ı	ı	1	d	1	1	1	1	1	-	-	1	1	1		
	6 .0W	ER D	į	1	1	1	1	1	1					-	7	1		
	verall relation	1	11	5	1	-	1	1	1	L	,	-	E	-		-		
Reco	Recommended by Board of Studies								28-07-2023									
Approved									1st ACM Date 09-09-2023									

COLLEGE OF TECHNOLOGY

23ME211	ENGINEERING GRAPHICS	L	T	P	С
		3	0	2	4

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

UNIT II	PROJECTION OF POINTS, LINES AND	9+6
	PLANE SURFACE	

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method. Projection of planes (hexagonal and pentagonal planes

only) inclined to both the principal planes by rotating object method.

LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

UNIT III PROJECTION OF SOLIDS AND FREE HAND 9+6 SKETCHING

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

NIT IV	PROJECTION OF SECTIONED SOLIDS AND	9+6
	DEVELOPMENT OF SURFACES	

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section plane inclined to the horizontal plane

UNIT V ISOMETRIC PROJECTION 9+6

Principles of isometric projection - Isometric scale - Isometric view - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions.

LIST OF EXERCISES:

- 1. Drawing Isometric view and projection of simple solids.
- 2. Drawing three dimensional modeling of isometric projection of combination of solids.

TOTAL: 75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Construct the conic curves, involutes and cycloids.
- CO2: Develop and Sketch the orthographic projections of points, lines and plane surfaces.
- CO3: Develop and Sketch the orthographic projections of simple solids.
- CO4: Construct the projections of sectioned solids and development of the lateral surfaces of solids.
- CO5: Develop and Sketch the isometric sections of solids.
- CO6: Develop and Sketch the orthographic projection 2D and 3D objects using Auto CAD.

TEXT BOOKS:

- Bhatt N.D. and Panchal V.M., —Engineering Drawingl, Charotar Publishing House, 53rd Edition, 2019.
- 2 Basant Agarwal and Agarwal C.M.,—Engineering Drawingl, McGraw Hill, 2nd Edition, 2019

REFERENCES:

- 1 Natrajan K.V., —A Text Book of Engineering Graphicsl, Dhanalakshmi Publishers, Chennai, 2018.
- 2 Gopalakrishna K.R., —Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition, 2017.

3	Luzzad	er,	Wa	rre	n.J.	and	d D	uff,	, Jo	hn i	M.,	–Fu	nda	mei	ntals	of
	Engine	Engineering Drawing with an introduction to Interactive														
	Compu	Computer Graphics for Design and Production, Eastern														
	Econon	ny E	Edit	ion	, Pr	enti	ice l	Hal	l of	Ind	lia P	vt. L	td, N	Vew	7 De	lhi,
	2005.															
4	Parthas	ara	thy	N	J. :	S.	anc	ı t	Vela	a l	Mura	ali,	— Е1	ngiı	neer	ing
	Graphic	cs∥,	Ox	for	d U	Jniv	ers	sity,	P ₁	ess	, Ne	ew l	Delh	i, 2	2015	5.
	Shah M	.В.,	an	d R	ana	В.	C., -	–Er	ngir	ieer	ring	Dra	wing	ʒ∥, F	ears	son
	Educati	on	Ind	ia,	2nd	l Ed	itic	n, 2	2009	9.						
5	Venugo	pal	IK.	and	d Pı	rabl	nu I	Raja	ıV.	, —l	Engi	neer	ing	Gra	phi	cs",
	New A	ge I	nte	rna	tior	nal ((P)	Lim	iite	d, 2	008.					
	COs						I	POs	3						PSC)s
	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	1	-	3	2	2	2	2	ı
	2 OW	3	2	1	1	2	- ,	4	1	A	3	2	2	2	2	a.
	3	3	2	1	1	2	A	(-	1	_	3	2	2	2	2	-

Ī	A	ppr	ove	d				1st	AC	M		Date		09	-09-2	2023
Ī	Recommended	l by	Во	ard	of S	Stuc	lies	28-	07-2	2023	}					
	Correlation	3		1	1	AFI	ILIA	ED.	O A	INA.	3	R Z IT	AU	i C N	0/401	15
	Overall	D.R	2	1	1	2	JL	LE	1	U	2	2		2	20	T.

1 2

3 2 1 1

3 2 1

2 2 2

2 2 2 2

23ME221	ENGINEERING PRACTICES	L	T	P	C
	LABORATORY	0	0	4	2

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment; Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

GROUP A (CIVIL and MECHANICAL)

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK

- a) Sawing
- b) Planning
- c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture
- b) Study of common industrial trusses using models.

PART II MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

BASIC MACHINING PRACTICE

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

SHEET METAL WORK

- a) Forming and Bending
- b) Making of a square Tray

MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.

pre	eparation.	
	TOTAL: 30 PERI	ODS
	GROUP B (ELECTRICAL & ELECTRONICS)	
PART III	ELECTRICAL ENGINEERING PRACTICES	15
1 Res	idential House wiring using Switches Fuse Indic	ators

- Lamp and Energy Meter.
- 2. Staircase Wiring.

- 3. Fluorescent Lamp Wiring with Introduction to CFL and LED Types.
- 4. Measurement of Energy using Single Phase Energy Meter.
- 5. Study of Iron Box Wiring and Assembly
- 6. Study of Fan Regulator Electronic Type

PART IV | ELECTRONICS ENGINEERING PRACTICES | 15

- 1. Study of Electronic components and equipment Resistors, Colour coding measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering simple electronic circuits and checking continuity.
- 5. Study the elements of smart phone
- 6. Study of LED TV (Block diagram

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Plan the pipeline layout for common household plumbing work.
- CO2: Make use of welding equipment and carpentry tool for making joints.
- CO3: Demonstrate on centrifugal pump, air conditioner and foundry operations.
- CO4: Demonstrate the electrical wiring connections for household applications and study the working of iron box and fan regulator.
- CO5: Identify the basic electronic components and explain the gates and soldering methods.
- **CO6:** Examine the performance and operation of CRO, LED TV and Smart phone.

COs						I	POs	,]	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
2	3	2	1	1	1	1	1	•	-	2	2	2	2	1	-
3	3	2	1	1	1	1	1	•	-	2	2	2	2	1	-
4	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
5	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
6	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
Overall	3	2	1	1	1	1	1			2	2	2	2	1	
Correlation	•	۷	1	1	1	1	1	1	-	4	4			1	-
Recommended	l by	Во	ard	of S	Stud	lies	26-	07-2	2023						
A	ppr	ove	d				1st	AC	\mathbf{M}		Date	9	09-	-09-2	2023

23EE221	ELECTRIC CIRCUITS	L	T	P	C
	LABORATORY	0	0	4	2

- To simulate various electric circuits using PSPICE/ MATLAB/ MULTISIM
- To gain practical experience on electric circuits and verification of theorems

PRACTICALS:

- 1. Simulation and experimental verification of series and parallel electrical circuit using fundamental laws.
- 2. Simulation and experimental verification of electrical circuit problems using Thevenin's theorem.
- 3. Simulation and experimental verification of electrical circuit problems using Norton's theorem.
- 4. Simulation and experimental verification of electrical circuit problems using Superposition theorem.
- 5. Simulation and experimental verification of electrical circuit problems using Maximum Power transfer theorem.
- 6. Simulation and experimental verification of R-L electric circuit transients.
- 7. Simulation and experimental verification of R-C electric circuit transients.
- 8. Simulation and experimental verification of RLC electric circuit transients
- 9. Simulation and experimental validation of frequency response of RLC electric circuit.
- 10. Simulation and experimental verification of three phase balanced and unbalanced star, delta networks circuit.

TOTAL: 60 PERIODS

COUR	RSE OU	TC	\overline{OM}	IES:												
	After co					0.00	1110	ο f	ho s	tud	onto	. xazi1	1 ho	ahl	o to	
			nws to electric circuits. nevenin's and Norton Theorem to electric circuits.													
CO2:	Apply T	Thev	eni	n's	anc	l No	rto	n T	heo	ren	ı to	elect	tric (circ	aits	
CO3: A	Apply	Suj	uperposition and Maximum Power Transfer													
-	Theorer	heorem to electric circuits.														
CO4: 1	Demon	strat	te R	L, F	RC a	and	RL	C el	ectr	ic c	ircu	it tr	ansi	ents	S.	
CO5: 1	Demon	strat	te tl	ne fr	equ	ıenc	y re	esp	ons	e of	RLO	C El	ectri	ic ci	rcu	it.
	Analyze				_		•	_								
	using M				_											
				- / -			P	Os						F	SO	١٥
	Os	1	2	2	1		1		Q	a	10	11	12			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
-	1	3	2	1	1	2	1		1	2	3	11 -	1	1 3	2 2	3
2	1 2 ,00W			1	_	2	1		1	2 2	3	11 - -		1	2 2 2	3
2	1	3	2	1	1	2	1		1	2	3	11 - -	1	1 3	2 2	3
	1 2 ,00W	3	2	1	1	2	1		1	2 2	3	11 - - -	1	1 3 3	2 2 2	3 1 1
2	1 2 3	3 3	2 2 2	1	1	2	1		1 1 1	2 2 2	3 3	-	1 1 1	1 3 3 3	2 2 2	3 1 1
	1 2 3 4	3 3 3 2	2 2 2 1	1	1	2	1		1 1 1 1	2 2 2 3	3 3 3 1	-	1 1 1 1	1 3 3 3 2	2 2 2	3 1 1 1 1
	1 2 3 4 5	3 3 3 2 2	2 2 2 1	1 1 1 -	1 1 1 -	2 2 2 -	1		1 1 1 1 1	2 2 2 3	3 3 3 1 2	-	1 1 1 1	1 3 3 3 2 2	2 2 2 2 -	3 1 1 1 1 1
Ove	1 2 3 4 5 6 erall	3 3 3 2 2 2 3	2 2 2 1 1 3	1 1 1 - - 2	1 1 1 - - 2	2 2 2 - - 3		7 28-	1 1 1 1 1	2 2 2 3 2 - 2	3 3 1 2 1	-	1 1 1 1 1 1 2	1 3 3 2 2 2 3	2 2 2 2 - 3 2	3 1 1 1 1 1 1 1

23HS221	SOFT SKILLS	L	T	P	С
		0	0	2	1

- To help learners improve their interpersonal skills and critical thinking
- To familiarize learners with the attributes of a leader to enhance team performance
- To prepare students to face job interviews
- To help learners to know the importance of ethics in work place

UNIT I INTERPERSONAL COMMUNICATION

6

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

UNIT II TEAM WORK AND LEADERSHIP

6

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

UNIT III TIME MANAGEMENT AND STRESS MANAGEMENT

Ć

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self- awareness and regulation.

UNIT IV CRITICAL THINKING AND WORK ETHICS

6

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance, attitude, character, organizational skills, productivity, respect.

UNI	T V INTERVIEW SKILLS AND RESUME	6
	BUILDING TECHNIQUES	
Telep	phonic interview, online interviews, f2f interviews, FAQ) soft
skills	interview questions, drafting error-free CVs/ Resumes	s and
Cove	er Letters, selecting the ideal format for resume, con	ntent
	ing along with sequencing, art of representing	
	fications and most relevant work history, video res	
	site resume.	
	TOTAL: 30 PER	IODS
COU	IRSE OUTCOMES:	
	After completion of the course, the students will be able	e to:
CO1:	Express their thoughts, opinions and ideas confidently	to
	one or more people in spoken form	
CO2:	Develop evolving competences required for professiona	al
	success	4
CO3:	Demonstrate knowledge and skills in a group as team p	olayer
Ì	and leader	
CO4:	Compose a comprehensive resume reflecting qualificat	ions,
	exposure and achievements	GY
CO5:	Exhibit knowledge and skills confidently during job	ious
	interviews	
CO6:	Demonstrate ethical and professional behaviour at	
	workplace in all situations	
TEX	Γ BOOKS:	
1	Soft Skills: Key to Success in Workplace and Lif	e by
	Meenakshi Raman & Shalini Upadhyay. Cengage	
REFI	ERENCES:	
1	English for Job Seekers (Language and Soft Skills for t	he
	Aspiring) by Geetha Rajeevan, C.L.N. Prakash) Camb	oridge
	University Press pvt, Ltd.	
2	Business Benchmark by Norman Whitby. Cambridge	
	University Press pvt, Ltd	

COs						I	POs	,					F	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	1	-	-	-	-	-	-	2	2	-	-	-	-	-
2	-	ı	-	-	-	2	2	2	3	3	2	2	-	-	2
3	-	•	-	-	-	-	-	-	3	3	-	-	-	-	-
4	-	•	-	-	-	-	-	-	3	3	-	-	-	-	-
5	-	ı	-	-	-	-	-	-	3	3	•	-	-	-	-
6	-	ı	1	-	-	1	-	3	3	3	ı	-	-	1	3
Overall Correlation	-	2 2 2 3 3 2 2										-	2		
Recommended by Board of Studies 28-07-202									023						
A	ppr	ove	d				1st ACM Date				?	09-09-2023			

SEMESTER -III

23MA303	TRANSFORMS, PARTIAL	L	T	P	С
	DIFFERENTIAL EQUATIONS	3	1	0	4
	AND PROBABILITY				

COURSE OBJECTIVES:

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To develop Z transform techniques for discrete time systems
- To introduce the basic concepts of probability and random variables

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9+3

Formation of partial differential equations –Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II | FOURIER SERIES

9+3

Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series and cosine series - Root mean square value - Parseval's identity - Harmonic analysis.

UNIT III FOURIER TRANSFORMS

9+3

Statement of Fourier integral theorem– Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem (Statement Only) – Parseval's identity.

UNIT IV Z-TRANSFORMS AND DIFFERENCE EQUATIONS

9+3

Z-transforms - Elementary properties - Convergence of Z-

transforms – Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations – Solution of difference equations using Z - transforms.

UNIT V | PROBABILITY AND RANDOM VARIABLES | 9+3

Axioms of probability - Conditional probability - Discrete and continuous random variables - Moments - Moment generating functions - Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Solve the given standard partial differential equations.
- CO2: Compute the Fourier series, which place a vital role in Engineering applications.
- CO3: Examine the mathematical principles on Fourier transforms for some physical problems of engineering.
- CO4: Apply effective mathematical tools for the solutions of difference equations by using Z transform techniques for discrete time systems.
- CO5: Make use of probability techniques for solving practical problems.
- CO6: Apply standard probability distributions in engineering applications.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi,2016.
- **2** Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.
- P.Sivaramakrishna Das and C.Vijayakumari "A Text Book on TPDE" Pearson Publications

REF	ERENCE	S:														
1	P.Sivara	ıma	kris	shna	a D	as a	and	C.	Vija	yak	uma	ari "	A T	ext	Во	ok
	on Pro	bal	oilit	y	anc	l F	Rand	don	י ו	vari	able	s "	-	Pe	ears	on
	Publica	tion	S													
2	Naraya	nan		S.,		Ma	nica	ivac	hag	gom	1	Pilla	y.T.	K	aı	nd
	Ramana	aiah	.G	"A	dva	ance	ed	Ma	the	mat	ics	for	Eng	gine	eeri	ng
	Student	s",	Vol	. II	& I	II, S	5.Vi	swa	anat	thar	ı Pu	blisł	ners	Pvi	t. Li	td,
	Chenna	i, 19	998.													
3	Ramana	a. B.	V.,	"Hi	ghe	er E	ngi	nee	ring	χ M	athe	mat	ics",	Mc	Gra	ıw
		Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.														
	60							POs						I	PSC	s
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	£	-	Ы	-	-	- (-	1	3	1	-
	3 DOW	3	2	1	1	-	-2	7	- /	5	ľ	1	1	3		-
	4	3	2	1	1	-		-	-(1	Y-	•	-	1	3	-	i-
	5	3	2	1	1	- "	-7	9	-/	1	_=	-	1	3	الح	-
	6	3	2	1	1	-	-		-	1	_	-	1	3	1000	-
	verall relation	3	2	1	1	CC)EL	.EC	iΕ	OF.	TE	CH	10	3	G١	*** ***-
Reco	mmende	d by	Во	ard	of S	Stud	ies	10.11	3 ANI	NA.U	08-	-04-2	024	3NO	MUU	2

2nd ACM

Date

25-05-2024

Approved

23EE301	DC MACHINES AND	L	T	P	C
	TRANSFORMERS	3	0	0	3

- To understand the concept of electromechanical energy conversion system.
- To identify the appropriate machine for a given application based on its characteristics.
- To identify the appropriate test to determine the performance parameters of a given machine.
- To familiarize with the procedure for parallel operation of generators and transformers.
- To deliberate the working of auto transformer and three phase transformers.

UNIT I ELECTROMECHANICAL ENERGY CONVERSION

Fundamentals of Magnetic circuits- Statically and dynamically induced EMF - Principle of electromechanical energy conversion forces and torque in magnetic field systems- energy balance in magnetic circuits- magnetic force- co-energy in singly excited and multi excited magnetic field system.

UNIT II DC GENERATORS 9

Principle of operation, constructional details, armature windings and its types, EMF equation, wave shape of induced emf, armature reaction, demagnetizing and cross magnetizing Ampere turns, compensating winding, commutation, methods of improving commutation, interpoles, OCC and load characteristics of different types of DC Generators.

UNIT III DC MOTORS 9

Principle of operation, significance of back emf, torque equations and power developed by armature, speed control of DC motors, starting methods of DC motors, load characteristics of DC motors, losses and efficiency in DC machine, condition for maximum

efficiency. Testing of DC Machines: Brake test, Swinburne's test, Hopkinson's test. Separation of core losses-applications of DC motors

UNIT IV | SINGLE PHASE TRANSFORMER

9

Construction and principle of operation, equivalent circuit, phasor diagrams, testing - open circuit and short circuit tests, voltage regulation, losses and efficiency, all day efficiency, back-to-back test, separation of core losses, parallel operation of single-phase transformers, applications of single-phase transformer.

UNIT V AUTOTRANSFORMER AND THREE PHASE TRANSFORMER

9

Construction and working of auto transformer, comparison with two winding transformers, applications of autotransformer. Three Phase Transformer- Construction, types of connections and their comparative features, Scott connection, applications of Scott connection

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Develop the fundamentals of magnetic circuits and various types of induced EMF
- CO2: Apply the laws governing the electromechanical energy conversion for singly and multiple excited systems.
- CO3: Examine the construction, principle, and working of DC generator.
- CO4: Identify the various characteristics of DC motor
- CO5: Model the performance parameters of the transformer using Sumpner's test, OC and SC test
- CO6: Solve for the copper saving of autotransformers with respect to two winding transformers, and explain the three-phase transformers with different types of connections.

TEX	T BOOK	S:														
1	I. J. Nag	ratl	n an	ıd I). P.	Ko	tha	ri, "	Ele	ctri	c Ma	chir	nes",	Mo	Gra	aw
	Hill Edu	ıcat	tion	, 5t	h E	diti	on,	201	7.							
2	P. S. Bin	nbh	ra,	"Ele	ectr	ic N	/Iacl	hine	ery"	, K	hanr	na Pı	ublis	her	s, 2	nd
	Edition,	202	21.													
REF	ERENCE	S:														
1	A. E. Fit	zge	eral	d aı	nd (C. K	ing	slev	, "I	Elec	tric	Mac	hine	rv"	, Ne	ew
	York, M	_					_	•								
2	A. E. Cl	avt	on a	and	N.	N.	Haı	100	ck, '	'Pe	rfori	nan	ce aı	nd c	lesi	gn
		of DC machines", CBS Publishers, 2018.														
3	M. G. Sa	M. G. Say, "Performance and design of AC machines", CBS														
		Publishers, First Edition 2008.														
4	Sahdev	Sahdev S. K. "Electrical Machines", Cambridge University														
	Press, 20											·				,
	Woo oo	eR i	RE.				1	POs P							PSC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	- 8	1	1	1	1		4-		3	-	1
	2	3	2	1	1	Ļ	1	1	1	7		-	-	3	The same	1
	3	3	3	2	2	-	1	1	1	1	-	-	-	3	1	1
	4 GINE	3	2	1	1	C	1	1	1	<u>U</u> 1	LE	CH.	NU	3	5	1
	5	3	2	1	1	WEE	1	1	1	NA U	MIVE	SHY	AUT	3	40U	1
	6 3 2 1 1 -							1	1	ı	1	-	-	3	ı	1
	verall	3	3	2	2		1	1	1					3		1
	relation														1	
Reco	mmende				of S	Stud	lies					-04-2				
	Approved						2 nd ACM Date 25.05.202							024		

23EE302	ELECTRONIC DEVICES AND	L	T	P	C
	INTEGRATED CIRCUITS	3	0	0	3

- Expose to active and passive circuit elements.
- Familiarize the operation and applications of transistor like bjt and fet.
- Analyze the characteristics of amplifier gain and frequency response.
- Comprehend the essential operations of positive and negative feedback systems and oscillators
- Develop signal analysis using op-amp based circuits.
- Familiarize the operation and applications of op-amp.
- Analyze the characteristics of applications of special ICs like timers, PLL circuits, and regulator.

UNIT I PN JUNCTION DIODES AND TRANSISTORS

9

PN junction diode – V-I characteristics, ratings and types – Clipping & Clamping circuits - Rectifiers – Half Wave and Full Wave Rectifier– BJT, IGBT- structure, operation, characteristics and Biasing.

UNIT II AMPLIFIERS AND OSCILLATORS

9

BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET small signal model – Analysis of CS and Source follower – Gain and frequency response - High frequency analysis, power amplifiers –Types (Qualitative analysis). Advantages of negative feedback – voltage / current, series, Shunt feedback –positive feedback – Condition for oscillations, phase shift – Wien bridge and Crystal oscillators.

UNIT III OP AMP & ITS APPLICATIONS

9

OPAMP– definition, block diagram, operation, characteristics, applications, μA 741 pin diagram. CMRR and Slew rate. OPAMP applications– inverting, integrator, differentiator, summer, voltage follower, and comparator. Filters– definition, Working– low pass, high pass active filters, applications.

TINIT	T IV SPECIAL ICs	9
UNI	I IV SI ECIAL ICS	9
Func	tional block, characteristics of 555 Timer and its PW	VM
appli	ication - IC-566 voltage-controlled oscillator IC; 565-pha	ase
locke	ed loop IC.	
UNI	T V APPLICATION ICs	9
ADC	22 I(11
	23 Instrumentation Amplifier and its application as load of	
_	ht measurement - IC voltage regulators -LM78XX, LM79	
	d voltage regulators its application as Linear power suppl	,
	723 Variability voltage regulators, switching regulator-SM	IPS
- ICL	. 8038 function generator IC.	
	TOTAL: 45 PERIC	DS
COU	JRSE OUTCOMES:	
	After completion of the course, the students will be able to	o:
CO1:	Interpret the structure, operation, Applications a	ind
9	characteristics of Diodes and Transistors	
CO2:	Analyze the performance of various configurations of I	ВЈТ
1	and MOSFET based amplifier.	
CO3:	Develop the phase shift mechanisms in oscillator circuits a	ind
	describe the different feedback arrangements seen	
	amplifiers. AFFILIATED TO ANNA UNIVERSITY I AUTONOMOL	
CO4:	Apply operational amplifiers (OP-AMPs) in various	ous
	applications.	
CO5:	Identify the applications of IC555 – in Astable mode a	nd
	Monostable mode of operation.	
CO6	Apply integrated circuit (IC) voltage regulators and function	ion
CO0.	generator ICs in practical applications.	1011
TEV	T BOOKS:	
		<u></u>
1	Mike Tooley, "Electronic Circuits Fundamentals a Applications", CRC Press, 2019.	and
2	David A. Bell, "Electronic devices and circuits", Oxfo	ord
_	University higher education, 5th edition 2008.	JI U
3	Morris Mano. M, 'Digital Logic and Computer Design	π΄,
	Pearson India, 2017.	, ,

REFI	ERENCE	S:															
1	Sedra a	nd	sn	nith	, "	Mic	roe	lect	ron	ic (circu	iits"	,7th	Ed	itio	n.,	
	Oxford	Uni	iver	sity	7 Pr	ess,	201	17.									
2	Thomas	L.	Flo	yd,	"El	ectr	oni	c de	evic	es"	Con	iven	tion	al cı	urre	ent	
	version,	Pe	arso	on p	orer	ntice	e ha	11, 1	0th	Ed	itior	ı, 20	17.				
3	Donald	D.	Gi	vor	ne,	'Dig	gita	1 P	rinc	ciple	es a	nd 1	Desi	gn'	, Tá	ata	
	McGrav	McGraw Hill,1st Edition, 2003															
4	Thomas	Thomas L Floyd, 'Digital fundamentals', Pearson Education															
	Limited	Limited, 11th Edition, 2018.															
	CO.						I	Os						I	PSC	s	
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	-	-	-	1	-	-	-	-	2	-	1	
	2	3	3	2	2	-	-	-	1	-	-	-	-	3	-	1	
	3	3	2	1	1	_	-	5_	1	- 1	-	1	- s	3	-	1	
	4 oow	3	2	1	1	-	-2	9	1		-	2	A	3	4	1	
	5	3	2	1	1	_		-	1	7-	-	-	-	3	-	1	
1	6	3	2	1	1	- 8	-	9	1			6		3		1	
	verall relation	3 2 1 1 - - 1 - - - - 3 - 1															
Reco	mmended	d by	Во	ard	of S	Stud	ies	E(JE.	OF	08-	04-2	024	LO	(G)		
	Approved									2nd ACM Date 25-05-2024							

23EE303	ELECTROMAGNETIC THEORY	L	T	P	C
		3	0	0	3

- To introduce the basic mathematical concepts related to electromagnetic vector fields
- To impart knowledge on the concepts of Electrostatic fields, electric potential, energy density and their applications.
- To impart knowledge on the concepts of Magneto static fields, magnetic flux density, vector potential and its applications.
- To impart knowledge on the concepts of Different methods of emf generation and Maxwell's equations
- To impart knowledge on the concepts of Electromagnetic waves and characterizing parameters

UNIT I ELECTROSTATICS - I

9

Sources and effects of electromagnetic fields – Coordinate Systems – Vector fields – Gradient, Divergence, Curl – theorems and applications - Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and applications.

UNIT II ELECTROSTATICS - II O ARMA UNIVERSITY AUTONOM

9

Electric potential – Electric field and equipotential plots, Uniform and Non-Uniform field, Utilization factor – Electric field in free space, conductors, dielectrics - Boundary conditions, Poisson's and Laplace's equations, Applications.

UNIT III | MAGNETOSTATICS

9

Lorentz force, magnetic field intensity (H) – Biot–Savart's Law – Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – B in free space, conductor, magnetic materials – Magnetization, Magnetic field in multiple media –Boundary conditions, scalar and vector potential, Poisson's Equation, Applications.

UNIT IV | ELECTRODYNAMIC FIELDS 9 Magnetic Circuits - Faraday's law - Transformer and motional EMF - Displacement current -Maxwell's equations (differential and integral form) - Relation between field theory and circuit theory - Applications. UNIT V ELECTROMAGNETIC WAVES 9 Electromagnetic wave generation and equations - Wave parameters; velocity, intrinsic impedance, propagation constant -Waves in free space, lossy and lossless dielectrics, conductors-skin depth -Poynting vector. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Apply Gradient, Divergence, Curl operations, theorems, Coordinate systems on Electromagnetic vector fields. CO2: Analyse electrostatic fields using Coulomb's law and Gauss law along with their applications. CO3: Analyse electric potential, electrostatic boundary conditions along with their applications. CO4: Analyse magnetostatic fields using Biot Savart's Law, Ampere's circuit law and magnetic boundary conditions along with their applications. **CO5:** Apply Maxwell's equations to Electromagnetic vector fields. electromagnetic wave equation to determine wave parameters. TEXT BOOKS: Mathew N. O. Sadiku, S.V. Kulkarni 'Principles 1 Electromagnetics', 6th Edition, Oxford University Press Inc. Asian edition, 2015. 2 William Hayt and John A. Buck, 'Engineering Electromagnetics', McGraw Hill Special Indian edition, 2014.

REF	ERENCE	S:														
1	J. P. 7	Геw	ari,	'F	ingi	nee	ring	3 E	Elec	tror	nagr	netic	s -	Tł	neoi	y,
	Problem	ns	an	d	Ap	plica	atic	ns'	,Sec	onc	i E	diti	on,	Κŀ	nan	na
	Publish	Publishers 2013.														
2	Joseph.		A.]	Edn	ninis	ster	,	Sc	hau	m's	(Outl	ine		of
	Electro	Electromagnetics, Fifth Edition (Schaum's Outline Series),														
	McGrav	McGraw Hill, 2018.														
3	S. P. G	hos	h, I	_ipi	ka 1	Datt	a, '	Ele	ctro	ma	gnet	ic F	ield	Th	eor	y',
	First E	ditio	on,	Mc	Gra	w		H	ill 1	Edu	catio	on(Iı	ndia) P:	riva	ite
	Limited	First Edition, McGraw Hill Education(India) Private Limited, 2017.														
4	KAG	A Gangadhar, 'Electromagnetic Field Theory', Khanna														
	Publish	rublishers; Sixteenth Edition Eight Reprint :2015														
	CO.	Os												I	PSC	s
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 ow	3	2	1	1	-	-2	7	2	-		-	4	3	4300	2
,	2	3	3	2	2	- 1		-	2	Y-	-	-	7	3		2
	3	3	3	2	2	-7	À	A	2	1		-	1	3		2
	4	3	3	2	2	_	-	1	2	7		_	-	3		2
	5	3	2	1	1	-	-	-	2	-	-	-	-	3		2
	6 CYNE	3	2	1	1	CC	ĻĻ	EC	2	DF.	TE	H	NO	3	Gì	2
O	verall	3	2	2	_	AFF	JAT	Dit	Ani	AU	VIVER	SHTY	AUTE	2	100	2
Cor	relation	3	3	2	2	-	-	- - 2 - - - 3								2
Reco	mmende	d by	Во	ard	of S	tudi	ies				08-	04-2	024			
_	A	ppı	ove	d				2nd	AC	M		Date	9	25-()5-2	024

23HS301	UNIVERSAL HUMAN VALUES	L	T	P	C
	AND ETHICS	3	0	0	3

- Development of a holistic perspective based on selfexploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.
- Strengthening of self-reflection.
- Development of commitment and courage to act.

UNIT I	COURSE INTRODUCTION	9

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration - Continuous Happiness and Prosperity- A look at basic Human Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority -Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

	· · · · · · · · · · · · · · · · · · ·	
UNIT II	UNDERSTANDING HARMONY IN THE	9
	HUMAN BEING	

Harmony in Myself- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body'- Sukh and Suvidha- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Harmony in Human-Human Relationship -Understanding Harmony in the family – the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust(Vishwas) and Respect as the foundational values of relationship -Understanding the meaning of Vishwas; Difference between intention and competence -Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family)-Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order- from family to world family.

UNIT IV ENGINEERING ETHICS

9

9

Senses of <u>_Engineering</u> Ethics, - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

UNIT V | SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination-Moral Leadership - Code of Conduct - Corporate Social Responsibility.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Understand the need of value education.

CO2: Comprehend the difference between self and body.

CO3: Understand the need to exist as an unit of Family and society. CO4: Understand Harmony at all levels. CO5: Apply the values acquired in the professional front. CO6: Identify appropriate technologies for ecofriendly production systems. **TEXT BOOKS:** Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010 3. Mike W. Martin and Roland Schinzinger, -Ethics in 2 Engineering, Tata McGraw Hill, New Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, 3 -Engineering Ethicsl, Prentice Hall of India, New Delhi, 2004 REFERENCES: Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya 1 Prakashan, Amarkantak, 1999. Human Values, A.N. Tripathi, New Age Intl. Publishers, 2 New Delhi, 2004. The Story of Stuff (Book). 3 The Story of My Experiments with Truth - by Mohandas 4 Karamchand Gandhi AICTE Model Curriculum Humanities, Social Science and Management Courses (UG Engineering & Technology) 169 | Page . Small is Beautiful - E. F Schumacher. 6 Slow is Beautiful - Cecile Andrews. 7 Economy of Permanence - J C Kumarappa 8. Bharat Mein Angreji Raj - Pandit Sunderlal. Rediscovering India - by Dharampal. 8 Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi. 9 India Wins Freedom - Maulana Abdul Kalam Azad. 10 Vivekananda - Romain Rolland (English) 13. Gandhi -11 Romain Rolland (English).

12	Charles	В. І	Flec	ldei	rma	nn,	—Е	ingi	nee	ring	g Etl	nics	, Pea	arso	n		
	Prentice	На	all, I	Nev	v Je	rsey	y, 2	004									
13	Charles	E. I	Har	ris,	Mi	cha	el S	. Pr	itch	ard	and	Mic	chae	1 J.			
	Rabins,	— Е	ngi	nee	ring	g Et	hics	s – (Con	сер	ts ar	nd C	ases	∥,			
	Cengage Learning, 2009.																
WEB	EB SOURCES:																
1	www.onlineethics.org																
2	www.nspe.org																
3	www.globalethics.org																
	COs						1	POs	,		I	PSC	s				
,	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3	
	2	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3	
	3	ı	-	-	-	П	3	3	3	3	3	1	- 5	-	1	3	
	4 00W	1 <u>2</u> L	200	1	-	-	3	3	3	3	3	2	4	-	7	3	
	5	-	-	4	<u> </u>	- 1	3	3	3	3	3	-	_	-	-	3	
	6	4	-))-	1	- 9	3	3	3	3	3	-	[-]	-	-	3	
	Overall rrelation 3 3 3 3 3 3											3					
Reco	mmende	d by	Во	ard	of S	tud	lies	08-	04-2	2024	TE	CH	NO	LO	G)		
	A	ppr	ove	d		AFF	ILIAT	2nd ACM Date					AUT	25-05-2024			

23CS381	C PROGRAMMING AND	L	T	P	C								
23C3361		2	0	2	3								
	DATA STRUCTURES		U	_	3								
	OBJECTIVES:												
	introduce the basics of C programming la	_	age	•									
• To	learn the concepts of advanced features o	f C.											
To understand the concepts of ADTs and linear data													
structures.													
To know the concepts of non-linear data structure and													
hashing.													
To familiarize the concepts of sorting and searching													
techniques.													
UNIT I	C PROGRAMMING FUNDAMENTAL	S			6								
Data Types – Variables – Operations – Expressions and Statement													
- Condition	onal Statements -Functions - Recursive	Fur	nctio	ons	_								
Arrays - S	ingle and Multi-Dimensional Arrays.			- 10									
UNIT II	C PROGRAMMING - ADVANCED				6								
	FEATURES												
Churchan	Heine Formered Deta Trans. Dain	Laua	Da	: 4-0									
	- Union - Enumerated Data Types - Poin												
Directives	es, Arrays and Functions- File Handling -	Prep	oroc	ess	or								
UNIT III	LINEAR DATA STRUCTURES				-								
UNITIII	LINEAR DATA STRUCTURES				6								
Abstract	Data Types (ADTs) - List ADT -	Arr	ay-l	Base	ed								
Implemen	tation – Linked List – Doubly- Linked Lis	sts -	Ciı	cul	ar								
Linked Lis	st - Stack ADT - Implementation of Stack -	App	olica	atio	ns								
- Queue	ADT -Priority Queues - Queue Imple	emer	ntati	ion	_								
Application	ns.												
UNIT IV	NON-LINEAR DATA STRUCTURES				6								
Trees - Bir	l nary Trees – Tree Traversals – Expression T	rees	- B	ina	rv								
	ee - Hashing - Hash Functions - Separat				•								
	lressing – Linear Probing– Quadratic Prob												
_	Rehashing.	0		. ~	-								
0	U												

UNI	ΓV	SORTING AND SEARCHING TECHNIQUES 6
Inser	tion S	Sort - Quick Sort - Heap Sort - Merge Sort -Linear
Searc	ch – Bi	inary Search.
		TOTAL: 30 PERIODS
PRA	CTIC	AL EXERCISES:
1.	Prac	ctice of C programming using statements, expressions,
	deci	sion making and Iterative statements
2.	Prac	tice of C programming using Functions and Arrays
3.	Imp	lement C programs using Files
4.	Dev	elopment of real time C applications
5.	Arra	ay implementation of List ADT
6.	Arra	ay implementation of Stack and Queue ADTs
7.	App	olications of List, Stack and Queue ADTs
8.	Imp	lementation of Binary Search Trees
9.	Imp	lementation of searching techniques
10		lementation of Sorting algorithms: Insertion Sort, Quick, Merge Sort
1	N. S.	TOTAL: 30 PERIODS
COU	RSE (OUTCOMES:
	After	completion of the course, the students will be able to:
CO1:	Deve	elop programs in C using basic constructs.
CO2:	Deve	elop programs in C using basic control structures
CO3:	Solve	e various liner data structure algorithms
CO4:	Appl	ly appropriate data structures to solve tree and graph
	algor	rithms
CO5:	Impl	ement the use of hash table in probing techniques
CO6:	Appl	ly appropriate data structure to solve various searching
	and s	sorting algorithms
TEXT	ГВОС	OKS:
1	Mark	Allen Weiss, "Data Structures and Algorithm Analysis
	in C'	', Second Edition, Pearson Education, 1997.
2		', Second Edition, Pearson Education, 1997. na Thareja, "Programming in C", Second Edition,

Oxford University Press, 2016.

REFI	ERENCE	S:														
1	Brian	W.	K	err	iigh	an,	R	ob	Pi	ke,	"]	The	Pra	ectic	ce	of
	Program	nm	ing	", P	ears	son	Edı	uca	tion	, 19	99.					
2	Paul J. l	Deit	tel,	Haı	vey	7 De	eitel	,"(СН	ow	to P	rogr	am"	, Se	ven	th
	Edition, Pearson Education, 2013.															
3	Alfred	V. 1	Ahc	, Jo	hn	E. 1	Hop	ocro	oft,	Jeff	rey 1	D. U	Illma	an,	"Da	ita
	Structures and Algorithms", Pearson Education, 1983.															
4	Ellis Horowitz, SartajSahni and Susan Anderson,															
	"Fundamentals of Data Structures", Galgotia, 2008.															
COs PSOs													s			
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	-	ı	-	1	2	3	2	-
	2	3	2	1	1	2	-	-	-	-	-	1	2	3	2	-
	3	3	2	1	1	2	-	J	-	-	1	1	2	3	2	-
	4 oow	3	2	1	1	2	-2		- /	9	_	1	2	3	2	-
,	5	3	2	1	1	2	400	e -	-//	1	-	-	2	3	2	ř-
	6	3	2	1	1	2	4	3	-\	7		V	2	3	2	-
	verall relation	3	2	1	1	2	-	-	_	-	_	-	2	3	2	-
Reco	mmende	d by	Во	ard	of S	Stud	lies	.E(oE.	OF	08-	-04-2	024	LO	(G)	
•	A	ppr	ove	d		AFF	ILIA	2nd	1 A($\overline{\mathbf{M}}$	NIVER	Date	AUT	25-	05-2	024

		,		ı	
23EE321	DC MACHINES AND	L	T	P	C
	TRANSFORMERS LABORATORY	0	0	4	2
COURSE OBJ					
• To ex	pose the students to determine the cha	racte	erist	ics	of
DC m	achines and transformers by performing	ng			
exper	iment on these machines.				
• To pr	ovide hands on experience to evaluate	the			
perfo	rmance parameters of DC Machines an	d tra	ansf	orn	ner
by con	nducting suitable tests.				
LIST OF EXP	ERIMENTS:				
-	ircuit and load characteristics of DC sh	-	_	erat	or-
	tion of critical resistance and critical sp				• • • •
	characteristics of DC compound go	ener	ator	W	'ith
0 11	ntial and cumulative connections.			4	
	est on DC shunt motor.				ř.
	est on DC compound motor.				
. 30%	est on DC series motor.				
	urne's test and speed control of DC shu				**
	nson's test on DC motor - generator set				
8. Load transfo	test on single-phase transformer and	ı tn	ree	pn	ase
		cin	, 10	nh	200
9. Open transfo	circuit and short circuit tests on	SIII§	gie	рп	ase
	ner's test on single phase transformers.				
-	ation of no-load losses in single phase t		for	mar	
•	of starters and 3-phase transformers co				
12. Study	TOTAL:				
COURSE OU		00 1	LLIN	10	טט
	mpletion of the course, the students wi	11 be	abl	e to	· ·
	ct the circuit with appropriate connec				
COLOUR	et die effecti with appropriate confice			. · ·	

CO2: Develop the characteristics of different types of DC

given DC machine/transformer

machines.

CO3:	Demon	stra	te t	he	spe	ed	con	trol	tec	hni	ique	s for	a I)C 1	mot	or
	for indu	ıstr	ial a	app	lica	tior	ıs.									
CO4:	Identify	su	itab	le r	net	hod	ls fo	r te	stir	ıg o	f tra	nsfo	rme	r ar	nd I	OC
	machines															
CO5:	Build the performance parameters of transformers and DC															
	motor.															
CO6:	Identify DC motor starters and 3-phase transformer															
	connections.															
COs PSOs														s		
`	LUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	1	1	1	-	-	3	-	1
	2	3	2	1	1	-	-	-	1	1	1	-	-	3	-	1
	3	2	1	-	-	-	-	-	1	1	1	-	-	2	-	1
	4	3	2	1	1	1	-	1	1	1	1	1	1	3	1	1
	5 POW	3	2	1	1	-	-2	7	1	1	1	-	A	3	1	1
8	6	3	2	1	1	-		-	1	1	1	-	-	3	-	1
	verall relation	3	2	1	1	-	-		1	1	1			3	-	1
Reco	mmende		-00	0.720	of S	Stud	lies	08-	04-2	2024						
	G/A	ppr	ove	d		((JLI	2nd	1 A(CM		Date	NO	25-	05-2	2024

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

23EE322	ELECTRONIC DEVICES AND	L	T	P	C
	INTEGRATED CIRCUITS	0	0	4	2
	LABORATORY				

- To enable the students to understand the behavior of semiconductor device based on experimentation.
- To familiarize the operation and characteristics of transistor like BJT and FET.
- To explore the characteristics of amplifier gain and frequency response.
- To learn design, testing and characterizing of Oscillator circuits.
- To familiarize the operation of CRO for Measurements.
- To learn design, testing the application circuits of Op Amp, timer and Voltage regulator ICs.

LIST OF EXPERIMENTS:

- 1. Characteristics of Semiconductor diode, Zener diode, photo diode, and photo transistor.
- Characteristics of NPN Transistor under common emitter, common collector and common base configurations
- 3. Characteristics of JFET and draw the equivalent circuit
- 4. Design and testing of RC phase shift and LC oscillators
- 5. Measurement of frequency and phase angle using CRO
- 6. Realization of passive filters
- Application of Op-Amp: Inverting & Non-Inverting Amplifier,
- 8. Application of Op-Amp: Adder and Comparator
- 9. Application of Op-Amp: Differentiator & Integrator
- 10. Variability Voltage Regulator using IC LM317.
- 11. Timer NE/SE 555 IC applications Astable Multivibrator
- 12. Timer NE/SE 555 IC applications Monostable Multivibrator

TOTAL: 60 PERIODS

	COURSE OUTCOMES:															
COU																
	After co															
CO1:	Analyz	e s	emi	cor	ıdu	ctor	d	evic	ce o	cha:	racte	eristi	ics a	and	th	eir
	applica	tion	ıs, i	nclı	udi	ng (dioc	des,	Ze	ner	dio	des,	pho	otod	iod	es,
	and pho	otot	ran	sist	ors											
CO2:	Experin	nen	t w	ith	the	beł	navi	oui	of	NP	N tr	ansi	stor	anc	1 JF	ET
	from th	eir (cha	ract	teris	stics	S.									
CO3:	Model t	he j	peri	orr	nar	ice (of p	has	e sh	ift (oscil	lato	rs an	d p	assi	ive
	filters.															
CO4:	: Demonstrate proficiency in designing and implementing															
	Op-Amp-based application circuits.															
CO5:	Build a variable voltage regulator using the LM317															
	integrated circuit, ensuring stable output under varying															
	load conditions.															
CO6:	Make u	ıse	of	NI	E/S	E 5	55	tim	ers	by	con	stru	cting	g A	stal	ble
5	Multivi	bra	tor	an	d 1	nor	ost	abl	e n	nult	ivib	rato	r cii	rcui	ts	for
1	signal g	gene	rati	ion	and	l tir	nin	g ap	opli	cati	ons.			. "		
	70			7/	7,		I	POs		1			-]	PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 0/18	3	3	2	2	C	DLI	Εľ	1	1	1	CH	NO	3	G)	1
	2	3	2	1	1	AFF	LIA	11.1	1	1	NIVE	511Y	AUT	3	MUL	1
	3	3	2	1	1	_	-	-	1	1	1	-	-	3		1
	4	2	1	-	-	-	-	-	1	1	1	-	-	2		1
	5	3	2	1	1	_	-	_	1	1	1	_	_	3		1
6 3 2 1 1							-	-	1	1	1	-	_	3		1
Overall									_	_	_					
Corr	Correlation 3 2 1 1 - -								1	1	1	-	-	3		1
Reco	mmended	d by	Во	ard	of S	Stud	ies	08-	04-2	2024						
-								2 ^{nc}	1 A(CM		Date	9	25-	05-2	2024

23ES391	PRESENTATION SKILLS	L	T	P	C
		0	0	2	1*

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

UNIT I BRAINSTORMING AND OUTLINING

6

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

UNIT II | STRUCTURING THE PRESENTATION

6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

UNIT III DELIVERY TECHNIQUES

6

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language- eye

conta	act, ges	stures, movement on stage.	
UNI	ΓΙΥ	USE OF TECHNOLOGICAL AIDS	6
Use	of pres	sentation software like MS Power Point, Google Sli	ides
etc,	incorp	oorating images, graphs, charts and videos, us	sing
inter	active	tools like quizzes and polls, using remote presenta	tion
tools	like z	zoom, MS Teams, WebEx for screen sharing, vir	tual
whit	eboard	ls and chat functionalities, incorporating AR/VR	for
more	imme	ersive presentations.	
UNI	Γ V	HANDLING QUESTIONS AND FEEDBACK	6
		engagement through questions, PAR (Point, Answ	
	,	strategy for structuring responses to question	
		ding feedback process - Receiving, interpreting	lb>
	117538	constructively, active listening techniques	
proc	essing	feedback, responding to feedback- acknowledg	ing,
clarit	ying a	nd appreciating, Dealing with challenging feedbac	k.
	18	TOTAL: 30 PERIO	ODS
COU	RSE C	OUTCOMES:	Y
	After	completion of the course, the students will be able	to:
CO1:	Const	truct ideas for presentation through mind mapping iques	
CO2:		nize ideas and structure the presentation with	
		vating introduction, body paragraphs illustrated w	ith
		ples and reasons and compelling conclusion	
CO3:		y vocal variety and body language techniques to nee delivery	
CO4:		are engaging presentations by integrating multimed	lia
	eleme		
CO5:		onstrate proficiency in delivering presentations in	
		te platforms utilizing various technological tools an	ıd
COC		gies to engage audience in Virtual environments	
CO0:		oit active listening skills by responding to questions clarity and confidence and incorporating constructi	
		ack for professional development	VE
		<u> </u>	

TEXT BOOKS:

- 1 Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.
- **2** Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

REFERENCES:

1 Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

COs						I	POs	,]	PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
2	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
3	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
4	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
5	2	2	1	1	-	- 3	A,	1	1	1	-	1	2	2	1
6	2	2	1	1	-	A	-	1/	1	1	-	1	2	2	1
Overall Correlation	2	2	1	1	-	4		1	1	1	>	1	2	2	1
Recommended by Board of Studies							08-	04-2	024						

Approved 2nd ACM Date 25-05-2024

SEMESTER -IV

23MA403	NUMERICAL AND	L	T	P	C
	STATISTICAL METHODS	3	1	0	4

COURSE OBJECTIVES:

- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems
- To provide the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.

UNIT I SOLUTION OF EQUATIONS AND 9+3 EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a square matrix by Power method

UNIT II	INTERPOLATION, NUMERICAL	9+3
	DIFFERENTIATION AND NUMERICAL	
	INTEGRATION	

Interpolation - Newton's forward and backward difference interpolation -Lagrange's and Newton's divided difference interpolations -- Approximation of derivative using

interpolation polynomials – Numerical single integration and doubleintegrations using Trapezoidal and Simpson's 1/3rules.

UNIT III NUMERICAL SOLUTION OF 9+3

UNIT III NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order differential equations - Multi step methods: Milne's and Adam's Bashforth method.

UNIT IV TESTING OF HYPOTHESIS

9+3

Sampling distributions – Standard error - Large sample test for single mean, proportion, difference of means – Small sample Tests– t Test for single mean and difference of means - F test for equality of variance – Chi square test for single variance-Independence of attribute-Goodness of fit (Binomial Distribution, Poisson Distribution).

UNIT V DESIGN OF EXPERIMENTS

9+3

One way and two way classifications - Completely randomized design - Randomized block design - Latin square design

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Find numerical solutions for nonlinear (algebraic or transcendental) equations, large system of linear equations and Eigen value problem of a matrix, when analytical methods fail to give solution.
- CO2: Determine the intermediate values of the experimental data using Newton's forward, backward, divided difference and Lagrange's method.
- CO3: Find the solution of the problems using numerical differentiation and integration.
- CO4: Solve numerically, ordinary differential equations which is used to solve different kinds of problems occurring in engineering and technology.

CO5:	Examine the given data for large and small samples.															
	Examir															ts
	ГВООК			P-0	-				3	,			enp.			
1	Grewa		SS.	an	d (Gre	wa	1. T	S.	"N	ume	rica	1 M	[eth	ods	in
	Engine															
	Edition		_					υ,				_ 0	01101		, -	0 111
2	Johnson							an	d	Fre	und	J.,	_N	4ille	er a	ınd
	Freund											-				
	Educat				-	,						0		,		
REFE	FERENCES:															
1	Dr.P. Sivaramakrishnadas, Dr. C. Vijayakumari,															
	-Statistics and Numerical Methods Pearson															
	Publications.															
2	Burden, R.L and Faires, J.D, "Numerical Analysis", 9th															
	Edition, Cengage Learning,2016.															
3	Devore.J.L. Probability and Statistics for Engineering and															
1	the Sciences, Cengage Learning, New Delhi, 8th															
1	Edition,2014.															
4	Gerald	. C	F.	and	1 1	Wh	eat	ley.	Р.	O.	"A _]	ppli	ed 1	Vui	neri	ical
	Analys	is∥	Pe	ars	on											
	Analysis Pearson Education, Asia, New Delhi, 7th Edition, 2007.															
	COs						I	POs	,						PSC)s
	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	ı	ı	-	1	ı	1	3	1	ı
	2	3	2	1	1	-	-	-	-	-	1	-	1	3	-	1
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	•
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	•
	5	3	2	1	1	-	-	-	-	-	1	-	1	3	-	1
	6	3	2	1	1	-	-	-	-	-	_	_	1	3	_	-
O	erall	3	2	1	1		_	_	_		_	_	1	3	_	_
	elation											_			_	
Reco	nmende				of S	Stuc	lies						2024			
	A	Approved							1 A(CM		Date	•	25	-05-2	2024

23EE401	INDUCTION AND	L	T	P	C
	SYNCHRONOUS MACHINES	3	0	0	3

- Construction and performance of salient and non salient type synchronous generators.
- Principles of operation and performance of synchronous motor.
- Construction, principle of operation and performance of induction machines.
- Starting and speed control of three-phase induction motors.
- Construction, principle of operation and performance of single-phase induction motors and special machines.

UNIT I SYNCHRONOUS GENERATOR

9

Constructional details – Types of rotors –winding factors- EMF equation – Synchronous reactance –Armature reaction – Phasor diagrams of non-salient pole synchronous generator connected to infinite bus- Synchronizing torque -Change of excitation and mechanical input- Voltage regulation – EMF, MMF, and ZPF methods –Two reaction theory –slip test.

UNIT II SYNCHRONOUS MOTOR

9

Principle of operation – Torque equation – Operation on infinite bus bars - V and Inverted V curves –Power input and power developed equations – Starting methods – Current loci for constant power input, constant excitation and constant power Developed-Hunting – natural frequency of oscillations –damper windings- synchronous condenser.

UNIT III THREE PHASE INDUCTION MOTOR

9

Constructional details - Types of rotors -- Principle of operation - Slip -cogging and crawling- Equivalent circuit - Torque-Slip characteristics - Condition for maximum torque - Losses and efficiency - Load test - No load and blocked rotor tests - Circle

diag	ram –	Separation of losses -Double cage induction moto	rs -
Indu	ction	generators - Synchronous induction motor	
UNI	ΓIV	STARTING AND SPEED CONTROL OF	9
		THREE PHASE INDUCTION MOTOR	ĺ
Need	d for	starting – Types of starters – DOL, Rotor resistar	nce,
		former and Star delta starters - Speed control - Volt	
conti	rol, I	Frequency control and pole changing - Casca	ded
Con	nectio	n-V/f control - Slip power recovery Scheme-Brakin	g of
three	e pha	se induction motor: Plugging, dynamic braking	and
regei	nerati	ve braking	
UNI	Г۷	SINGLE PHASE INDUCTION MOTORS	9
Cons	truct	ional details of single phase induction motor - Dou	1 h lo
		ving theory and operation -Equivalent circuit - No l	
		ed rotor test - Performance analysis - Starting meth	
	480	phase induction motors – Capacitor-start capacitor	
		motor-Shaded pole induction motor - Linear induct	
	V.	TOTAL: 45 PERIO	
COU	RSE	OUTCOMES:	_
	After	completion of the course, the students will be able	to:
CO1:		pute the regulation of alternator using EMF, MMF	
		method and slip test.	
CO2:	Expl	ain the construction, working and performance	of
	sync	hronous motor	
CO3:	Desc	cribe the construction and working principle of Th	ıree
	Phas	se Induction Motor	
CO4:	Sum	marize the different methods of starting, speed con	trol
	of th	ree phase induction motor	
CO5:	Illus	trate the construction and working of single ph	nase
		action motor and special electrical machines	
CO6:	Exa	mine the performance parameters of single phase	and
	thre	e phase induction motor.	

TEX	TEXT BOOKS: 1 A.E. Fitzgerald, Charles Kingsley, Stephen. D.Umans,															
1	A.E. F	itzg	era	ld,	Cł	narl	es	Kir	igsl	ey,	Ste	phe	n. I	D.U	ma	ns,
	'Electric	2]	Mac	hin	ery	,	Tat	a	Mc	Gra	ıw	Hil	l p	ubl	ishi	ng
	Compa	ny l	Ltd,	200	03.											
2	Stepher	ı J. (Cha	pm	an,	'El	ectr	ic N	Лас	hin	ery l	Tunc	dame	enta	als'4	lth
	edition,	Mo	Gra	aw i	Hill	l Ed	luca	tio	n Pv	zt. I	۲td, ۱	4th I	Editi	on :	201	7.
3	D.P. Ke	otha	ari	anc	1 I.	J. N	Vag	ratl	ı, '	Ele	ctric	Ma	chir	ies',	. Ta	ata
	McGrav	νH	ill I	Pub	lish	ing	Co	mp	any	Lto	1, 20	02.				
4	P.S. Bh	imb	hra	, 'E	Elec	trica	al N	Лас	hin	ery	, Kl	nanr	a P	ubli	she	rs,
	2003.															
REFI	EFERENCES:															
1	Vincent Del Toro, 'Basic Electric Machines' Pearson India															
	Education, 2016															
2	M .N. Bandyopadhyay, Electrical Machines Theory and															
	Practice, PHI Learning PVT LTD., New Delhi, 2009.															
3	B.R. Gupta, 'Fundamental of Electric Machines' New age															
	International Publishers, 3rd Edition, Reprint 2015. K. Murugesh Kumar, 'Electric Machines', Vikas Publishing															
4	W. 1977	_				, 'E	lect	ric	Ma	chir	ies',	Vik	as P	ubl	ishi	ng
	House l		_0	19		00			-	n i	7.5	сн	NO	10		,
5	Alexand				_				T 0 11				ALIT	g-C	urre	ent
	Machin	ery	, Ta	ta N	VIC(irav				lıca	tion	s, 20	01.		200	
(COs	1	2	2	1	-		POs		0	10	11	12		PSC	
	1	3	2	3	4	5	6	7	8	9	10	11	12 3		2	3
	2	2	1	1	1	2	-	-	1	-	2	-	3	3	2	1
	3	2	1	-	- -	2	_	- -	1	_	2	_	3	2	2	1
	4	2	1	-	-	2	_	_	2	_	2	_	2	2	2	2
	5 2 1 2 -							_	1	_	2	_	3	2	2	1
									3	_	2	_	3	3	2	3
O	verall						1	1								
	Correlation $\begin{vmatrix} 3 & 2 & 1 & 1 & 2 \end{vmatrix}$						1	1	2	-	3	-	3	3	2	2
Reco	mmende	d by	Во	ard	of S	Stud	ies				08	-04-2	024			
	Approved							2 ^{no}	1 A(CM		Date	2	25-	05-2	2024

23EE402	MICROPROCESSOR AND	L	Т	P	C							
	MICROCONTROLLER SYSTEMS	3	0	0	3							
COURSE OB	JECTIVES:											
	dy the addressing modes & instruction	ı set	of	808	<u></u>							
&8051												
• To dev	elop skills in simple program writing	in a	sse	mb	ly							
langua	C		_	_								
	oduce commonly used peripheral/inter		_									
	dy and understand typical application	ns o	t m	ucr	0-							
process To stud	ly and understand the typical application	ns (of m	nicr	0-							
controllers												
	TRODUCTION TO CISC ARCHITEC	TUI	RE		9							
Eunstional bl	ook diagram Mamary interfacing I/	<u> </u>	onto	2 2*								
Functional block diagram – Memory interfacing-I/O ports and												
data transfer concepts – Timing Diagram – Interrupt structure UNIT II CISC INSTRUCTION SET AND 9												
PROGRAMMING												
l gr	OGRAMMING											
Instruction for	ormat and addressing modes - Assemb	oly 1	ang	gua	ge							
format - Data	transfer, data manipulation & control i	nstr	acti	ons	; –							
	g: Loop structure with counting & Indexi											
table - Subrou	itine instructions, stack.											
UNIT III IN	TERFACING BASICS AND ICS				9							
Study of Arch	itecture and programming of ICs: 8255 I	PI,	825	9PI	C,							
_	8279 Keyboard display controller			82								
	er – Interfacing with 8085 -A/D and D			ert	er							
interfacing.	, ,											
U	TRODUCTION TO MICROCONTRO	LLE	R		9							
			•									
	ock diagram - Instruction format and				_							
	terrupt structure – Timer – I/O po											
	on, Simple programming -keyboard											
interface – Temperature control system –stepper motor control -												
Usage of IDE	for assembly language programming.											

UNI	T V OVERVIEW OF RISC-BASED ARCHITECTURE 9
	6 /18 architecture, Memory organization - Addressing
mod	es – Instruction set - Programming techniques – Timers – I/O
ports	s – Interrupt programming.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the Architecture of Microprocessor 8085 and its
	Interrupt structure.
	Summarize the addressing modes & instruction set of 8085.
CO3:	Develop simple programming concepts for interfacing of
	8085 with 8255: S259: 8254: 8279: and A/D &D/A converters
	interfacing with 8085 and 8051
CO4:	Explain the Architecture of Microcontroller 8051& its
	Interrupt structure.
CO5:	Classify different instruction sets used for 8051
CO6:	Develop simple programming exercise using PIC
1	Microcontroller
TEX	T BOOKS:
1	Ramesh S. Gaonkar, 'Microprocessor Architecture
	Programming and Application', Penram International
	(P)ltd., Mumbai, 6th Education, 2013.
2	Muhammad Ali Mazidi& Janice Gilli Mazidi, 'The 8051
	Micro Controller and Embedded Systems', Pearson
	Education, Second Edition 2011.
3	Muhammad Ali Mazidi& Janice Gilli Mazidi, 'The PIC Micro
	Controller and Embedded Systems', 2010.
REFI	ERENCES:
1	Douglas V. Hall, "Micro-processors & Interfacing", Tata
	McGraw Hill 3rd Edition, 2017.
2	Krishna Kant, "Micro-processors & Micro-controllers",
	Prentice Hall of India, 2007.
3	Mike Predko, "8051 Micro-controllers", McGraw Hill, 2009

4	Kennet	h A	yal	a, '	The	805	51 I	Mic	roco	onti	olle	r', T	hom	sor	ı, 3	rd
	Edition															
	COs						ŀ	Os						I	PSC)s
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	1	1	-	-	-	3	1	1
	2	2	1	-	-	-	-	-	1	1	-	-	-	3	-	1
	3	3	2	1	1	1	-	-	1	1	-	-	-	3	1	1
	4	2	1	-	-	-	-	-	1	1	-	-	-	2	-	1
	5	2	1	-	-	1	-	-	1	1	-	-	-	2	1	1
	6	3	2	1	1	1			1	1				2	1	1
O	verall	3	2	1	1	1		-	1	1				3	1	1
Corı	elation	3	4	1	1	1	-	_	1	1	1	,	_	3	1	1
Reco	mmende	ies		•	•	08-	04-20	024	•							
	Approved							2 ^{nc}	AC	M		Date		25-0)5-2	024

23EE403 MEASUREMENTS AND INSTRUMENTATION COURSE OBJECTIVES: To educate the fundamental concepts and characteristics of measurement and errors To impart the knowledge on the functional aspects of measuring instruments To infer the importance of various bridge circuits used with
COURSE OBJECTIVES: To educate the fundamental concepts and characteristics of measurement and errors To impart the knowledge on the functional aspects of measuring instruments To infer the importance of various bridge circuits used with
 To educate the fundamental concepts and characteristics of measurement and errors To impart the knowledge on the functional aspects of measuring instruments To infer the importance of various bridge circuits used with
 measurement and errors To impart the knowledge on the functional aspects of measuring instruments To infer the importance of various bridge circuits used with
 To impart the knowledge on the functional aspects of measuring instruments To infer the importance of various bridge circuits used with
measuring instrumentsTo infer the importance of various bridge circuits used with
To infer the importance of various bridge circuits used with
measuring instruments.
 To educate the fundamental working of sensors and
transducers and their applications
• To summarize the overall measurement and
instrumentation with the knowledge on digital
instrumentation principles.
UNIT I CONCEPTS OF MEASUREMENTS 9
Instruments: classification, applications - Elements of a
generalized measurement system - Static and dynamic
characteristics - Errors in measurement -Statistical evaluation of
measurement data
UNIT II MEASUREMENT OF PARAMETERS IN
ELECTRICAL SYSTEMS
Classification of instruments - moving coil and moving iron
Classification of instruments – moving coil and moving iron meters – Induction type, dynamometer type watt meters – Energy
meters – Induction type, dynamometer type watt meters – Energy
meters – Induction type, dynamometer type watt meters – Energy meter – Megger – Instrument transformers (CT & PT).
meters – Induction type, dynamometer type watt meters – Energy meter – Megger – Instrument transformers (CT & PT). UNIT III AC/DC BRIDGES AND INSTRUMENTATION 9

Instrumentation Amplifiers.

UNIT IV TRANSDUCERS FOR MEASUREMENT OF 9 **NON- ELECTRICAL PARAMETERS** Classification of transducers - Measurement of pressure, temperature, displacement, flow, angular velocity - Digital transducers - Smart Sensors. UNIT V DIGITAL INSTRUMENTATION A/D converters: types and characteristics - Sampling, Errors-Measurement of voltage, Current, frequency and phase - D/A converters: types and characteristics- DSO- Data Loggers - Basics of PLC programming and Introduction to Virtual Instrumentation - Instrument standards. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the functional elements of the Instrumentation system, its characteristics, Errors. CO2: Analyze the working principle of MC and MI Induction type, wattmeter, energy meter and the instruments used for resistance, instrument transformers CT & PT. CO3: Apply various measurement techniques in AC and DC Bridges, transformer ratio bridges and Instrument amplifiers. CO4: Infer transducer, smart sensor & digital transducer, Measurement of pressure, temperature, displacement, flow, angular velocity. CO5: Explain various types of A/D converter and D/A converter and measurement of various electrical parameters. CO6: Outline DSO. Data loggers, PLC. and virtual instrumentation. TEXT BOOKS: A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai

and Co, New Delhi, Edition 2011.

2	H.S. Ka	10:	/E1	ootu	oni	a In	ot-m	11220	nto	tion	У Т	ata N	A _C C	WOTA	, Ц	:11
					OHI	C III	strt	ше	ınıa	uoi	1, 1	ata N	VICG	raw	-	ш,
	New D		, 20	10.												
	ERENCE															
1	M.M.S.				,	Ί.						trun		_		nd
	Instrum Delhi, 2			on	Tec	hnc	olog	y',	Pre	enti	ce I	Hall	Ind	lia,	Nε	eW.
2	J.J. Car	rr,	'Ele	eme	nts	of	E	lect	ron	ic	Instr	ume	entat	ion	aı	nd
	Measur															
3	W. Bol	ton	, Pr	ogr	am	mal	ole	Log	gic	Cor	ntrol	lers,	6th	Ec	litic	n,
	Elseive															
4	R.B. N	R.B. Northrop, 'Introduction to Instrumentation and														
	Measur	em	ents	s', T	ayl	or &	& F:	ran	cis,	Ne	w D	elhi,	3 rc	d E	diti	on
	2014.				,											
5	E. O. D	E. O. Doebelin and D. N. Manik, "Measurement Systems –														
								- 400	7	- 4				•		
	The second	Application and Design", Tata McGraw- Hill, New Delhi, 6th Edition 2017.														
	6th Edi	tior	20	17.						7		77				,
6	A		- 91	V/	ctri	cal	A									Ė
6	R. K. R	ajpı	1t, "	Ele			and	Ele	ectr	oni						Ė
	R. K. Ra Instrum	ajpı	1t, "	Ele			and l Pu	Ele	ectr	oni				ent	s aı	nd
	R. K. R	ajpı	ıt, " tatio	Ele on",			and l Pu	l Ele ıb, 2	ectr	onio	cs M	easu	ırem	nent I		nd Os
	R. K. Ra Instrum	ajpu nem	ut, "tatio	Ele	. Ch	anc	and l Pu I	Ele	ectr 2016	oni			ırem	ent	s an	nd Os
	R. K. Ra Instrun	ajpu nen 1	ut, " tatio	Ele on",	. Ch	anc	and l Pu	Ele 1b, 2 Os	ectr 2016	onio	cs M	easu	ırem	nent I	s ai	nd Os
	R. K. Ra Instrum COs	nen 1 2	1t, "tation 2 1 3	Eleon",	Ch 4	5 -	and I Pu I 6 2	Ele 1b, 2 Os	2016 8 1	onio 5. 9 -	cs M	easu	12 3 3	1 1 2 3	PSC 2	nd Os 1 1
	R. K. Ra Instrum COs	ajpu nen 1	ut, " tatio	Eleon", 3 - 2	4 - 2	5 -	and l Pu I	Ele 1b, 2 POs 7 -	ectr 2016 8 1	onio	10 -	11 - -	12 3	I 1 2	S an	nd Os 1
	R. K. Ra Instrum COs 1 2 3	ajpunen 1 2 3	2 1 3 2	Eleon", 3 - 2	4 - 2	5 - -	and I Pu I 6 2	Ele 1b, 2 POs 7 -	8 1 1	onio 5. 9 -	10 -	11 - -	12 3 3 3	1 1 2 3 2	PSC 2	nd Ds 3 1 1 1
	R. K. Ra Instrum COs 1 2 3 4	1 2 3 3	2 1 3 2	Eleon", 3 - 2	4 - 2 1 -	5 - -	and I Pu I 6 2	7	8 1 1 1	onio 5. 9 -	10 -	11 - -	12 3 3 3	1 1 2 3 2 2	**SC 2 1	nd Ss 3 1 1 1 1
	R. K. Ra Instrum COs 1 2 3 4 5	1 2 3 2 2 2	2 1 3 2 1 1	3 - 2 1	4 - 2 1	5 - - 1 -	and Pu I 6 2 - 2 - 2	Eldab, 2 POs 7	8 1 1 1 1 1	9 2 - 2 - 2	10 -	11 - -	12 3 3 3 3 -	1 1 2 3 2 2 2	s an s an s an s s an s s an s an s s an s	nd 3 1 1 1 1 1
O	R. K. Ra Instrum COs 1 2 3 4 5	1 2 3 3 2	2 1 3 2 1	Eleon", 3 - 2	4 - 2 1 -	5 - - 1	and Pu I 6 2 - 2 -	7	8 1 1 1 1	9 2	10 -	11 - -	12 3 3 3 3	I 1 2 3 2 2 2 2	PSC 2 1 -	nd 3 1 1 1 1
O	R. K. Ra Instrum COs 1 2 3 4 5 6 verall	1 2 3 2 2 2 2	2 1 3 2 1 1 1	(Eleon", 3 - 2 1 1	4 - 2 1 1	5 - - 1 - 1	and Pu I 6 2 - 2 - 2 1	Eldab, 2 POs 7	8 1 1 1 1 1	9 2 - 2 - 2	10	11 - -	12 3 3 3 3 - 3	1 1 2 3 2 2 2	s an s an s an s s an s s an s an s s an s	nd 3 1 1 1 1 1

23EE404	TRANSMISSION AND	L	T	P	C
	DISTRIBUTION	3	0	0	3

- To impart knowledge about the configuration of the electrical power systems.
- To study the line parameters and interference with neighbouring circuits.
- To understand the mechanical design and performance analysis of transmission lines.
- To learn about different insulators and underground cables.
- To understand and analyze the distribution system.

UNIT I TRANSMISSION LINE PARAMETERS 9

Structure of electric power system - Parameters of single and three phase transmission lines with single and double circuits - Resistance, inductance, and capacitance of solid, stranded, and bundled conductors - Typical configuration, conductor types - Symmetrical and unsymmetrical spacing and transposition - application of self and mutual GMD; skin and proximity effects - Effects of earth on the capacitance of the transmission line - interference with neighbouring communication circuits.

UNIT II MODELLING AND PERFORMANCE OF TRANSMISSION LINES 9

Performance of Transmission lines – short line, medium line and long line – equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance –transmission efficiency and voltage regulation– Ferranti effect – Formation of Corona – Critical Voltages – Effect on line Performance.

UNIT III SAG CALCULATION AND LINE SUPPORTS 9

Mechanical design of overhead lines - Line Supports -Types of towers - Tension and Sag Calculation for different weather conditions - Methods of grounding - Insulators: Types, voltage

distribution in insulator string, improvement of string efficiency, testing of insulators. UNIT IV **UNDERGROUND CABLES** 9 Underground cables - Types of cables - Construction of singlecore and 3-core belted cables -Insulation Resistance - Potential Gradient - Capacitance of single-core-Grading of cables - Power factor and heating of cables- DC cables. UNIT V DISTRIBUTION SYSTEMS 9 Distribution Systems - General Aspects - Kelvin's Law - AC and DC distributions -concentrated and Distributed loading- Power factor improvement - Distribution Loss - Types of Substations -Trends in Transmission and Distribution: EHVAC, HVDC and FACTS (Qualitative treatment only). **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Illustrate the structure of power system, transmission line parameters for different configurations and the impact of skin and proximity effects. CO2: Develop the various models the transmission lines to determine the line performance and the impact of Ferranti effect and corona on line performance. CO3: Analyze the mechanical design of transmission lines and concept of grounding. CO4: Compute the voltage distribution in insulator strings in transmission system **CO5:** Identify the performance analysis of underground cable. CO6: Explain the modelling, performance analysis and modern

trends in distribution system.

TEX	Т ВООК	S:														
1	D.P. Ko	tha	ri,	I. J.	Na	agai	rath	ı, "I	ow	er	Syst	em	Engi	inee	rin	g",
	Tata Mo			•		0					,		0			
	Third E							O		•	J					·
2	C. L. W	adl	ıwa	ı, "E	Elec	trica	al P	ow	er S	Syst	ems	", N	ew A	Aca	den	nic
	Science									-						
REF	ERENCES:															
1	J.B. Gu	pta	. "	Tra	ans	mis	sior	1 &	: D	istr	ibut	ion	Of	Ele	ctri	cal
	Power",	S.K	. Ká	atar	ia &	z Sc	ns,	Ne	wΙ	Delh	i, Fi	fth E	Editi	on,	201	2.
2	V.K. Me	ehta	a, R	ohi	t M	leht	a, "	Priı	ncip	oles	of p	owe	er sy	ste	m",	S.
	Chand o	& C	om	par	ıy L	td,	Ne	wΣ	elh	i, 20	022					
3	Hadi S	Saac	lat,	"P	ow	er	Sys	ten	ı A	\na	lysis	", N	AcG	raw	H	Iill
	Educati	on	Pvt	. Lt	td.,	Ne	w l	Dell	hi, 🤅	3rd	Edi	tion	,23rc	d re	pri	nt,
	2015.															
4	R. K. R	ajpı	ıt, '	'A '	Гех	t Bo	ook	of	Pov	ver	Sys	tem	Eng	ine	erir	ıg"
1	2nd edi	tion	ı, Lâ	axm	i Pı	ubli	cati	ons	s (P)) Lte	d, N	ew I	Delh	i, 20)16.	ľ.
	COs	A		Λ		ř		POs		A				I	PSC	s
	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	5	/-	-	1	1	1	-	3		3	2	_	1
	2 SINE	3	2	1	1	3	1	1	1	<u>0</u> 1	3	5	2	3	5	1
	3	3	3	2	2	AFE	1	1	1	NA.W	3	SITY	2	3	NOU.	1
	4	3	2	1	1	-	1	1	1	-	3	-	2	3	-	1
	5	3	2	1	1	-	1	1	1	-	3	-	3	3	-	1
	6	2	1	-	-		1	1	1		3		3	2		1
	verall	3	2	1	1	_	1	1	1	_	3	_	3	3	_	1
	relation	J 1	. D ·	E	-C C	1	ا ـ و دا				00	04.2	024			
Keco	mmended by Board of Studies 08-04-2024 Approved 2 nd ACM Date 25-05-2024															
	A	ppr	ove	u				۷	A	_171		Date	:	25-	U O- 4	1 024

23EE411	DIGITAL LOGIC CIRCUITS	L	T	P	C
		2	0	2	3
COURSE OF	JECTIVES:				
• To i	ntroduce the fundamentals of combina	atio	nal	an	d
sequ	ential digital circuit.				
• To s	tudy various number systems and to s	imp	olify	th	ıe
math	nematical				
• expr	essions using Boolean functions word pro	oble	ems		
• To st	tudy implementation of combinational ci	rcui	its u	ısin	g
Gate	s` and MSI Devices.				
• To :	study the design of various synchr	ono	us	an	d
asyn	chronous circuits				
 To 	introduce digital simulation techn	niqu	ıes	fc	or
deve	elopment of application oriented logic circ	cuit			
UNIT I NU	MBER SYSTEMS AND DIGITAL LOG	IC		277	6
10	MILIES	K			
307	em, error detection, corrections & codes o				
	bra: DeMorgan's theorem - Digital Logi	c Fa	ami	lies	-
- N. P.	of TTL and MOS families.				
	MBINATIONAL CIRCUITS	IV.	U	3 [6
	al logic - representation of logic function				
	-map representations - minimization usi	_		-	
simplification	n and implementation of combination	nal	log	ic	-
multiplexers	and de multiplexers - code converte	ers,	ad	der	s,
subtractors.					
	NCHRONOUS SEQUENTIAL CIRCUIT				6
-	gic- SR, JK, D and T flip flops - level trig		_		
edge triggeri	ng - counters - asynchronous and synchro	ono	us t	ype	- :

edge triggering - counters - asynchronous and synchronous type - Modulo counters. - Design of synchronous sequential circuits -

Moore and Melay models- Counters.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABILITY LOGIC DEVICES

Asynchronous sequential logic circuits-Transition stability, flow

6

stability-race conditions, hazards & errors in digital circuits; introduction to Programmability Logic Devices: PROM – PLA – PAL, CPLD-FPGA.

UNIT V VHDL

6

RTL Design – combinational logic – Sequential circuit – Operators – Introduction to Packages – Subprograms –Tutorial Examples: adders, Counters, flip flops, Multiplexers & De multiplexers).

TOTAL: 30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- Implementation of Boolean Functions, Adder and Subtractor circuits.
- 2. Code converters: Excess-3 to BCD and Binary to Gray code converter and vice-versa.
- 3. Parity generator and parity checking.
- 4. Encoders and Decoders.
- Counters: Design and implementation of 3-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.
- 6. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitability IC's.
- 7. Study of multiplexer and de multiplexer

TOTAL: 30 +30 =60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the concepts of number systems to frame the binary codes
- CO2: Summarize the characteristics and operation of digital logic families TTL and MOS
- CO3: Make use of k map concepts to implement the combinational logic circuits experimentally
- CO4: Analyse synchronous and asynchronous sequential circuit with state reduction and build the circuits using digital ICs

CO5:	Apply				-		-	0				0				
	PROM			, P	LA,	CI	PLI) a	nd	FI	'GA	for	an	у 8	give	en
	expres															
	Develo	_		ng fo	or a	give	en l	ogi	c cir	cui	t usi	ng V	HD	L		
	Г ВООІ															
1	Morris					0		0				mpu	ter	Des	sigr	ı',
	Prentice Hall of India, 3rdEdition,2005.															
2	Donald	1		D.C	Givo	ne,'	Dig	gital	l		Prin	ciple	es		an	ıd
	Design	1 ,T	'ataN	AcG:	raw	Hill	,1s	tEdi	tior	1,20	003					
3	Thoma	ıs I	_ Flo	yd,	'Dig	gital	fu	nda	mer	ıtal	s', Pe	earso	n E	duc	atic	n
	Limite	d, 1	11th	Edi	tion	, 201	l8.									
REF	ERENC	ES:	:													
1	Tocci I	R.J.	, Ne	al S.	Wi	dme	er,	'Dig	gital	Sy	stem	s: Pr	inci	ples	s an	ıd
	Applic	ati	ons'	, Pea	arso	n Ec	luc	atio	n A	sia	,2017	7. 12t	h Ec	ditic	n.	
2	Donald	1P	Lea	ch, A	Albe	rt Pa	aul	Ma	lvin	10,	Gout	am 1	Sha	,'D	igit	al
	Princip	oles	anc	d Ap	plic	atio	ns'	, Ta	ta N	1cC	Graw	Hill,	7th	Ed	itio	n,
	2010.	A		M								. 1				
(COs			V.			F	Os	M	1				P	SO	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	_
	1	_		0.70	1					- 1 000						3
	2 2 1 1 2 2 - 1								1	-	L		2	3	3.Y	1
		2		1 -	1 -	APPI	IA	EDIL	1	20	NIVER	ulž II		2	005	1
	2 3		11770		- 1	- - 2		EDITO	No.	200	NIVER			- 11 Y	71	1
		2	1	-	-	- 2 2	-	EDIT	1	381	NIVER	1	2	2	005	1
	3	2	1 2	- 1	- 1				1	2	NIVER		2	2	2	1 1 1
	3 4	2 3 3	1 2 3	- 1 2	- 1 2	2		-	1 1 1		NIVER		2 2 2	2 3 3	2	1 1 1
	3 4 5 6 verall	2 3 3 3	1 2 3 2 2	- 1 2 1	- 1 2 1	2 1 1		-	1 1 1 1 1		-	-	2 2 2 1 1	2 3 3 3 3	2 2 1 1	1 1 1 1 1
Corr	3 4 5 6	2 3 3 3 3	1 2 3 2 2 2	- 1 2 1 1	- 1 2 1 1	2 1 1	-		1 1 1 1		NIVER		2 2 2 1	2 3 3 3	2 2 1	1 1 1 1

2nd ACM

Date

25-05-2024

Approved

23EE421	INDUCTION AND	L	T	P	C
	SYNCHRONOUS MACHINES	0	0	4	2
	LABORATORY				
					i !

 To expose the students to the operation of synchronous machines and induction motors and give them experimental skill.

LIST OF EXPERIMENTS:

- 1. Regulation of three phase alternator by EMF and MMF methods.
- 2. Regulation of three phase alternator by ZPF method.
- 3. Regulation of three phase salient pole alternator by slip test.
- 4. Measurements of negative sequence and zero sequence impedance of alternators.
- 5. V and Inverted V curves of Three Phase Synchronous Motor.
- 6. Load test on three-phase induction motor.
- 7. No load and blocked rotor tests on three-phase induction motor (Determination of equivalent circuit parameters).
- 8. Separation of No-load losses of three-phase induction motor.
- 9. Load test on single-phase induction motor.
- 10. No load and blocked rotor test on single-phase induction motor.
- 11. Study of Induction Motor Starters

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Experiment with three phase alternator to find regulation using EMF, MMF and ZPF methods
- CO2: Analyze the characteristics of synchronous motor using V and Inverted V curves

CO3:	Develop	th:	ер	erfo	orm	anc	e ir	ndic	es	of a	lteri	nato	rs u	sing	, bo	th
	analytic	al	as	wel	1 a	.s ę	grap	hic	al :	met	hod	s by	y cc	ndı	ıcti	ng
	various	tes	ts													
CO4:	Identify	th	e ci	ircu	it p	oara	ame	ters	of	sir	ngle	pha	ise a	nd	thr	ee
	phase i	phase induction motor by conducting various tests														
CO5:	Examin	Examine the Separation of No-load losses of three-phase														
	induction	n n	not	or.												
CO6:	Demons	stra	te t	he v	ari	ous	Inc	luct	ion	Mo	otor	Star	ters			
	COs	POs												I	s	
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	1	1	1	3	3	-	2	3	-	1
	2	3	3	2	2	-	1	1	1	3	3	-	2	3	ı	1
	3	3	2	1	1	-	1	1	1	3	3	-	1	3	-	1
	4	3	2	1	1	-	1	2	1	3	3	-	1	3	1	1
	5 LOOW	3	3	2	2	-	1	1	1	2	2	P 2	2	3	6	1
	6	2	1	5	-	_	1	1	1	2	2	-	2	3	-	1
- 1	verall elation	erall 3 3 2 2 1 2 1 3 3 2 2 3 1														
Reco	mmended by Board of Studies 08-04-2024															
	Approved 2 nd ACM Date 25-05-2024															

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

23EE422	MICROPROCESSOR AND	L	T	P	C
	MICROCONTROLLER SYSTEMS	0	0	4	2
	LABORATORY				

- To perform simple arithmetic operations using assembly language program and study the addressing modes & instruction set of 8085 & 8051
- To develop skills in simple program writing in assembly languages
- To write an assembly language program to convert Analog input to Digital output and Digital input to Analog output
- To perform interfacing experiments with μP8085
- To perform interfacing experiments with μC8051.

LIST OF EXPERIMENTS:

- 1. Simple arithmetic operations: Multi precision addition / subtraction / multiplication / division.
- Programming with control instructions: Increment /
 Decrement, Ascending / Descending order, Maximum /
 Minimum of numbers, Rotate instructions, Hex / ASCII /
 BCD code conversions.
- 3. Interface Experiments: A/D Interfacing. D/A Interfacing. Traffic light controller
- 4. Stepper motor controller interface.
- 5. Displaying a moving/ rolling message in the student trainer kit's output device.
- 6. Simple arithmetic operations with 8051: Multi precision addition / subtraction / multiplication/ division.
- 7. Programming with control instructions: Increment / Decrement, Ascending / Descending order, Maximum / Minimum of numbers, Rotate instructions, Hex / ASCII / BCD code conversions.
- 8. Interface Experiments: A/D Interfacing. D/A Interfacing. Traffic light controller
- 9. Stepper motor controller interface.
- 10. Displaying a moving/rolling message in the student trainer kit's output device.
- 11. Programming PIC architecture with software tools

										,	ТОТ	' A T 4	60 1	PER	210	ns		
COL	RSE OU	ITC	OM	EC.	<u> </u>						101	AL,	. 00 1	LLIN		υs		
000	After co					0.00	11111	o t	ho	c+110	lonto	TATI	II bo	ahl	o to			
CO1.		_																
	Analyz		_					-					-			ıs		
	Develop																	
CO3:	Analyze their performance of A/D and D/A converters.																	
CO4:	Design	an	d ar	aly	ze	the	pe	rfo	rma	nce	of	a st	epp	er 1	not	or		
	controll	er i	nter	face	2.													
CO5:	Develop	o a	prog	ran	n to	dis	spla	y a	mo	vin	g/ro	ollin	g me	essa	ige			
															_	ire		
	tools.	evelop and verify simple programs for PIC using software ols.																
	70-	POs													PSOs			
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	3	3	2	2	_	-	_	_1	1	1	-	-	3	-	1		
	2 POW	3	2	1	1	-	-1	Z	1/	1	1	-		3	4	1		
1	3	3	3	2	2	-	1	-	1	1	1	-	1	3	-	1		
Í	4	3	3	2	2	-	-7	à	1	1	1	-	1	3	-	1		
1	5	3	2	1	1	-	-	Ī	1	1	1	1	1.7	3	-	1		
	6	3	2	1/	1	2	ō	5	1	1	1	e E B	10	3	Ć.	1		
O	verall 🗐	3	3	2	2		IATI	0.70	1	1	II E		NO.	3	7	1		
Corr	elation	3	3	_	_		0211	0-10	/11	101	ii MEn	STEV	60-13		11. 5 (3	1		
Reco	mmende	ies																
	Approved								1 A(CM		Date	9	25-0)5-2	024		

23ES	491	AP	TITU	JDE A	ND LO	OGICA	L	L	T	P	С
			REA	SONI	ING - 1	L		0	0	2	1
COU	RSE OB	JECTIV:	ES:								
•	To imp	rove the	e probl	lem so	olving	and log	ical th	inki	ng	abil	ity
	of the s	tudents.	•								
•		uaint stu									
		s in qua	ntitati	ive apt	titude	and log	ical re	easo	ning	3.	
UNI											4
	bers, LC	M, HCF	F, Ave	erages,	Ratio	& Prop	ortio	n, M	lixtı	ures	3 &
_	gation.										
UNI											4
	entages, [Γime and	d worl	k, Pipe	es and	Cistern	ı, codi	ng a	nd		
deco											
UNI											4
	Speed D	Distance,	Train	ı, Boats	s and S	Streams	, Ana	logy	•		
UNI											4
	Interpre	tation (B	BAR,Pl	IE,LIN	VE), Se	ating ar	range	mer	ıt.	4	
UNI						1. 1					4
-	le Intere	st and C	Compo	ound Ir	nterest	, Profit	loss a	nd I	Disc	our	ıt,
Partr	nership.	, V				1					P.L.
	18	12/				TC	TAL	20 1	PER	(IO	DS
COU	RSE OU			COL	LEGE	OFT	ECH	NO	LO	GY	10
001	After co										
CO1:	Analyse						and	tost	er (criti	cal
604		g and log	_								
CO2:	Solve f								er	ıhaı	nce
000		mputation									
CO3:	Develop										
		courage		use of	r muli	пріе ар	oproa	cnes	to	so	ive
CO4:		ns efficie		<u> </u>	. 1	1:	1	. 1	- C-	1:	
CU4:	Analyse						-				me
COF		tance, an								_	1.00
CU3:	Derive i										
		nematica , and sta	-				s, pro]	porti	OHS	, Da	iSIC
COG	Solve q						11to 1	icina	- c1	ort	C11+
CO0:	method	-	5 ш а	i Hact	1011 01	a IIIII	iule l	SHIE	, SI	ioi t	cut
	memoa	S									

TEXT BOOK:								
1	Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.							
2	Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand							
	Publishing.							

REFERENCES:

1 Agarwal, R.S. "A Modern Approach to Verbal & Non-Verbal Reasoning." 2nd ed., S. Chand Publishing

Cos						F	Os						PSOs					
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
1	3	3	2	-	-	2	1	1	2	1	2	3	1	-	3			
2	2	3	3	-	-	2	-	1	3	2	2	3	2	1	3			
3	3	3	3	-	-	2	-	1	2	2	2	3	2	-	3			
4	2	3	2	3	-	2	1	2	3	3	2	3	1	2	3			
5	3	2	2	-	1	3	-	2	2	3	3	3	3	1	3			
6	3	3	3	3	2	3	1	3	3	2	3	3	3	1	3			
Overall	E37	Š	K			1		- 4						4				
Correlation	3	3	3	1	1	3	1	2	3	3	3	3	2	1	3			
Recommende	Recommended by Board of Studies 08											08-04-2024						
A	2nd ACM Date					25-05-2024												

COLLEGE OF TECHNOLOGY

SEMESTER -V

T-	<u>, </u>											
23RE501	RESEARCH METHODOLOGY	L	T	P	C							
	AND INTELLECTUAL PROPERTY	2	0	0	2							
	RIGHTS											
COURSE OBJECTIVES:												
To provide an overview on selection of research problem												
based	on the Literature review											
• To enh	ance knowledge on the Data collection	anc	l Aı	naly	sis							
 To outline the importance of ethical principles to be 												
followed in Research work and IPR												
UNIT I IN	TRODUCTION TO RESEARCH				6							
FORMULATION												
Meaning of research problem, Sources of research problem												
Criteria- good research problem, and selecting a research problem,												
Scope and objectives of research problem. Defining and												
formulating the research problem - Necessity of defining the												
	oortance of literature review in defining			_								
	TERATURE REVIEW				- 6							
THE	COLLEGE OF TECHI			GY	p.							
	iew - Primary and secondary source											
	ographs-patents – web as a source – s			_								
	l literature review – Identifying gap		eas	iro	m							
	ew - Development of working hypothe ATA ANALYSIS	SIS			_							
UNII III DA	ATA ANALYSIS				6							
Execution of the	ne research - Data Processing and Analy	sis s	stra	tegi	ies							
	sis with Statistical Packages - Genera											
Interpretation												
UNIT IV RE	PORT, THESIS PAPER, AND RESEA	RCI	Η		6							
PR	OPASAL WRITING											
Structure and	components of scientific reports - Type	es o	f re	por	t –							
Technical repo	orts and thesis - Significance - Differen	ıt ste	eps	in t	he							
preparation -	Layout, structure and Language of typ	ical	rep	orts	s –							

Illustrations and tables - Bibliography, types of referencing, citations- index and footnotes, how to write report- Paper Developing,- Plagiarism- Research Proposal- Format of research proposal- a presentation - assessment by a review committee

UNIT V INTELLECTUAL PROPERTY AND PATENT RIGHTS

6

Ethical principles- Plagiarism, Nature of Intellectual Property - Patents, Designs, Trade and Copyright- patent search, Process of Patenting and Development: technological research, innovation, patenting, and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of Patent Rights - Scope of Patent Rights, Geographical Indications

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the literature to identify the research gap in the given area of research.
- CO2: Identify and formulate the research Problem
- CO3: Analyze and synthesize the data using research methods and knowledge to provide scientific interpretation and conclusion.
- CO4: Prepare research reports and proposals by properly synthesizing, arranging the research documents to provide comprehensive technical and scientific report
- CO5: Conduct patent database search in various countries for the research problem identified.
- CO6: Apply ethical principles in research and reporting to promote healthy scientific practice

TEXT BOOKS:

- Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An Introduction to Research Methodology, RBSA Publishers.
 - 2 Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.

	C:1 (1 D	1. :		Λ 7	[Z C	1000) D		1- 1	/r - 11-	_ 1	-1	
3	Sinha, S Ess Ess									2. K	esea	rcn I	vietr	ioa	3108	<i>y</i> ,
4	Trochi									h N	Joth	ode	. +b.	2 00	an ci	ico
4	knowle													2 ((JHC	ise
5	Wadeh													10 N	/larl	
3	Copy r															
	Law Pu	_		_	15 a	iia v	Gec	gra	РШ	car	man	can	713. t	OIII	VCI	sai
REFI	ERENCE		.01111	18												
1			Л (Gra:	ziar	10	A 1/	f ar	nd I	2211	lin I	M I	200	19		
_	Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. Research Methods: A Process of Inquiry, Allyn and Bacon.															
2	Carlos, C.M., 2000. Intellectual property rights, the WTO															
	and developing countries: the TRIPS agreement and policy															
	options. Zed Books, New York.															
3	Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing",															
	Sage Publications.															
4	Day, R.A., 1992. How to Write and Publish a Scientific															
	Paper, Cambridge University Press.															
5	Fink, A., 2009. Conducting Research Literature Reviews:															
	From the Internet to Paper. Sage Publications Leedy, P.D. and Ormrod, J.E., 2004 Practical Research:															
6											ictica	al Re	eseai	ch:	The same	
7	Plannin										.1	: - 1- 1		1		-
7	Satarkar right. ES						лест	uai	pro	pei	rty r	ignts	s and	1 со	ру	
	rigitt. Ed	JJ 1	ub.	пса	HOI	ıs.	LIAT	POs	DAN.	NA U	MIVE	SITY	AUT	ONC	PSO)c
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1						U		_							
	_	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	2	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	3	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	4	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	5	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	6	2	2	1	1	1	-	-	1	1	2	-	1	3	2	1
O	verall	3	2	1	1	1			1	1	2		1	3	2	1
Cor	relation	<u> </u>					_	_	1	1				٥		1
Reco	mmended	d by	во Во	ard	of S	Stud	lies	13-	11-2	024						
Approved						3rd ACM Date 30-11-							11-2	2024		

23EE501	POWER ELECTRONICS	LTP										
		3	0	0	3							
COURSE OBJ	ECTIVES:		I									
• To u	nderstand the various applications	of	po	we	er							
electronic devices for conversion, control and												
	tioning of the electrical power and		_									
overview of different types of power semiconductor devices and their dynamic characteristics.												
 To understand the operation, characteristics and 												
	performance parameters of controlled rectifiers											
_	dy the operation, switching technique		nd l	oasi	.C							
topologies of DC-DC switching regulators.												
• To learn the different modulation techniques of pulse												
width modulated inverters and to understand harmonic												
	reduction methods.To study the operation of AC voltage controller and											
	us configurations of AC voltage control		iici	an	а							
	WER SEMI-CONDUCTOR DEVICE				9							
Study of swi	tching devices MOSFET, IGBT and	SC	R-	Sta	tic							
characteristics	: MOSFET, IGBT SiC, GaN and SCR -	Intr	odu	ictio	on							
to Driver and	snubber circuits of MOSFET and IGBT.	NO		GY								
UNIT II PH	ASE-CONTROLLED CONVERTERS	AUTO)NO/	40U	9							
2-pulse, 3-puls	se and 6-pulseconverters- performanc	e pa	ran	nete	ers							
(Average out	put voltage, RMS output voltage,	rec	tific	catio	on							
efficiency) -H	Effect of source inductance, Appl	icati	ons	-lig	ht							
dimmer, Excita	ation system, Solar PV systems.											
UNIT III DO	TO DC CONVERTERS				9							
Step-down and	d step-up chopper-control strategy-Sw	itch	ed	mo	de							
regulators- Bu	ick, Boost, Buck- Boost regulator, Int	rod	ucti	on	to							
Resonant Con	verters, Applications-Battery operated	veh	icles	5								
UNIT IV IN	VERTERS				9							
Single phase and three phase voltage source inverters (both 1200												
mode and 1	mode and 1800 mode)- Voltage& harmonic controlPWM											

techniques: Multiple PWM, Sinusoidal PWM, modified sinusoidal PWM - Introduction to space vector modulation -Current source inverter, Applications-Type of UPS. UNIT V AC TO AC CONVERTERS Single phase AC voltage controllers-single phase step up and step down Cyclo- converters - Introduction to Matrix converters. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize the operation of semiconductor devices and static characteristics CO2: Analyze the various uncontrolled rectifiers and its waveform. CO3: Make use of the operation of the DC-DC converters and evaluate the performance parameters. CO4: Explain various PWM techniques and apply voltage control and harmonic elimination methods to inverter circuits. **CO5:** Demonstrate the operation of AC voltage controllers. CO6: Illustrate the operation of Step up and Step Down Cyclo-

TEXT BOOKS:

converter.

- Ned Mohan, T.M. Undeland, W.P. Robbins, "Power Electronics: Converters, applications and design", John Wiley and Sons, 3rd Edition (reprint), 2009
- 2 Rashid M.H., Power Electronics Circuits, Devices and Applications, Prentice Hall India, 3rd Edition, New Delhi, 2004.

REFERENCES:

- 1 Cyril. W.Lander, Power Electronics, McGraw Hill International, Third Edition, 1993.
- 2 P.S.Bimbhra, Power Electronics, Khanna Publishers, Third Edition 2003.

3	Philip	ilip T.Krein, Elements of Power Electronics, Oxford														
	University Press, 2013.															
4	P.C.Sen	P.C.Sen, Power Electronics, Tata McGraw-Hill, 30th reprint,														
	2008.															
	CO_{α}						I	POs	,					PSOs		
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	1	-	1	2	-	-
	2	3	3	2	2	-	1	-	-	-	1	-	1	3	2	-
	3	3	2	1	1	-	1	-	1	-	1	-	1	2	2	1
	4	2	1	-	-	-	1	1	-	-	1	1	1	3	2	-
	5	2	1	-	-	-	-	-	-	-	1	-	1	2	-	-
	6	2	1	-	-	-	1	1	1	-	1	-	1	2	2	1
	verall relation	3	2	1	1	1	1	- 1	1	1	1	1	1	3	2	1

Recommended by Board of Studies

Approved

COLLEGE OF TECHNOLOGY

3rd ACM

08-11-2024

Date

30-11-2024

23EE502	POWER SYSTEM ANALYSIS	L	T	P	С						
		3	1	0	4						
COURSE OB	JECTIVES:		I								
• Imp	act knowledge on need for operational	stu	lies	, an	d						
-	nodel the power system under steady st										
	dition.		-								
• To u	ınderstand and apply iterative techniqu	aes f	or p	ow	er						
flow	analysis										
To model and carry out short circuit studies for power											
system during symmetrical fault											
• To n	To model and carry out short circuit – studies during										
fault											
 To study about the various methods for analyzing power 											
syst	em stability										
0	OWER SYSTEM	1			12						
Introduction-	Single line diagram – per unit qua	ntiti	es	- p	.u.						
impedance d	i <mark>agra</mark> m – p.u. reactance diagram, Ne	etwc	rk	gra	ph						
The second second	incidence matrices, Primitive paramete										
of bus admit	tance matrix - Direct inspection met	hod	-Siı	ngu	lar						
Transformation		AUT	ONO	MOU	ş						
UNIT II PO	OWER FLOW ANALYSIS				12						
Bus classifica	tion - Formulation of Power Flow pro	blen	ı in	po	lar						
coordinates -	Power flow solution using Gauss Sei	del	met	hoc	l –						
Handling of	Voltage controlled buses - Power Flov	v Sc	luti	on	by						
Newton Raph	nson method – Flow charts – Compariso	n of	me	tho	ds.						
UNIT III SY	MMETRICAL FAULT ANALYSIS				12						
Assumptions	in short circuit analysis - Symmetrica	1 sh	ort	circ	uit						
analysis usin	ng Thevenin's theorem - Bus Imped	dano	e 1	nat	rix						
building algo	rithm (without mutual coupling)-sym	met	rica	l fa	ult						

analysis through bus impedance matrix - Post fault bus voltages -

Fault level.

UNIT IV UNSYMMETRICAL FAULT ANALYSIS 9 Symmetrical components - Sequence impedances - Sequence networks - Analysis of unsymmetrical faults at generator terminals: LG, LL and LLG - unsymmetrical fault occurring at any point in a power system. UNIT V STABILITY ANALYSIS 9 Classification of power system stability - Rotor angle stability -Power-Angle equation – Steady state stability – Swing equation – Solution of swing equation by step by step method - Swing curve, Equal area criterion - Critical clearing angle and time, Multimachine stability using Modified Euler method **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Develop the mathematical model of the power system components under steady state operating condition. **CO2:** Examine the bus admittance matrix for power system CO3: Solve Power Flow Analysis using various iterative Techniques CO4: Apply the Z-bus matrix and Thevenin theorem for symmetrical fault analysis CO5: Build the sequence networks for L-G, L-L and L-L-G fault of the power system CO6: Illustrate the stability of power system during transient condition using different methods. TEXT BOOKS: John J. Grainger, William D. Stevenson, Jr, 'Power System Analysis', Mc Graw Hill Education (India) Private Limited, New Delhi, 2015. Kothari D.P. and Nagrath I.J., 'Power System Engineering',

Tata McGraw-Hill Education, Second Edition, 2008

2

Hadi Saadat, 'Power System Analysis', Tata McGraw Hill 3 Education Pvt. Ltd., New Delhi, 21st reprint, 2010. **REFERENCES:** 1 Pai M A, 'Computer Techniques in Power System Analysis',

- Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
- 2 J. Duncan Glover, Mulukutla S.Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012.
- 3 Gupta B.R., 'Power System - Analysis and Design', S. Chand Publishing, 2001.
- Kundur P., 'Power System Stability and Control', Tata 4 McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.

COs	POs POs												PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	1	1	- 1	1	3	1	1	1	1		3	- 1	1		
2	3	3	2	2	1	1	7	1	V	1	_	-	3	1	1		
3	3	2	1	1	1	1	-	1	-	1	-	-	3	1	1		
4 S/NE	3	2	1	1	1	1	-51	1	Ü	1	J	MC	3	1	1		
5	3	2	1	1	1	1	14	1	DIA.	1	15111	AU	3	1	1		
6	2	1	-	-	1	1		1		1	-	-	2	1	1		
Overall Correlation	3	2	1	1	1	1	-	1	-	1	-	-	3	1	1		
Recommended by Board of Studies								08-11-2024									

23EE511	CONTROL SYSTEM ENGINEERING	L	T	P	C					
		3	0	2	4					
COURSE	OBJECTIVES:									
• To :	make the students to familiarize with vario	us								
rep	resentations of systems.									
To make the students to analyze the stability of linear										
syst	tems in the time domain and frequency do	mair	١.							
 To 1 	make the students to analyze the stability o	of lin	ear							
syst	tems in the frequency domain.									
 To 1 	make the students to design compensator b	oase	d or	th	e					
tim	e and frequency domain specifications.									
 To e 	develop linear models: mainly state variabl	le m	ode	l ar	ıd					
Tra	nsfer function model									
UNIT I	MODELING OF LINEAR TIME INVAL	RIAI	T		9					
	SYSTEM (LTIV)	4								
C 1 13		11	1	7	1					
- / Allenter - 103	vstem: Open loop and Closed loop - Feed	1000	-							
-	naracteristics – First principle modeling:	100000								
	and Electromechanical systems - Trans		tur	1Ct10	on					
70,77, 910	ations: Block diagram and Signal flow grap	h.		_						
UNIT II	TIME DOMAIN ANALYSIS			91	9					
Standard t	test inputs – Time response – Time domain s				ns					
	analysis: Concept of stability - Routh Hur	-								
criterion – Root locus: Construction and Interpretation. Effect of										
	les and zeros.	1011.		cci	O1					
0 1	EDECLIENCY DOMAIN ANALYSIS				0					

UNIT III FREQUENCY DOMAIN ANALYSIS 9

Bode plot, Polar plot and Nyquist plot: - Frequency domain specifications - Introduction to closed loop Frequency Response.

UNIT IV DESIGN OF FEEDBACK CONTROL SYSTEM 9

Introduction and design specifications – Lead, Lag and Lag-lead compensators using Bode plot techniques – Introduction to P, PI, and PID controller.

UNIT V	STATE VARIABLE ANALYSIS	9

State variable formulation – Non uniqueness of state space model – State transition matrix –Eigen values – Eigen vectors – Controllability – Observability.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES:

- 1. Mathematical modeling and simulation of physical systems in at least two fields. (a) Mechanical (b)Electrical
- 2. Stability analysis using Pole zero maps and Routh Hurwitz Criterion in simulation platform.
- 3. Root Locus based analysis in simulation platform.
- 4. Determination of transfer function of a physical system using frequency response and Bode's asymptotes in simulation platform.
- 5. Design of Lag, lead compensators and evaluation of closed loop performance in simulation platform.
- 6. Test of controllability and observability in continuous and discrete domain in simulation platform.

CO1: Develop the mathematical model for the given mechanical, electrical and electromechanical systems and derive its transfer function CO2: Identify the time responses of the given system from the mathematical model. CO3: Analyze the system stability in time domain using Routh Hurwitz and Root locus methods. CO4: Analyze the system performance in frequency domain in terms of the key characteristics of the models. CO5: Analyze the system stability and design a suitable compensator for a closed loop system. CO6: Develop the state variable form of the system.

TEX	TEXT BOOKS:															
1	Benjam	in (C. K	uo,	"A	uto	mat	tic (Con	trol	Sys	tems	s", 7	th e	diti	on
	PHI Lea	arni	ng	Priv	vate	e Lto	d, 2	010								
2	M Na	gara	ath,	I.	J.	and	1 (Gop	al,	M.	, "	Con	trol	Sy	stei	ns
	Engineering", New Age International Publishers,2017															
REFERENCES:																
1	Richard C.Dorf and Bishop, R.H., "Modern Control															
	Systems	s",]	Pea	rsoı	n Eo	duc	atio	n, 2	:009							
2	John J.D., Azzo Constantine, H. and HoupisSttuart, N															
	Sheldon, "Linear Control System Analysis and Design with															
	MATLAB", CRC Taylor& Francis Reprint 2009.															
3	Katsuhiko Ogata, "Modern Control Engineering", PHI															
	Learnin	ıg P	riva	ate :	Ltd	, 5tl	n Ec	litic	n, 2	2010)					
4	NPTEL	Vi	deo	Le	ctu	re N	Jote	es o	n "	Cor	ntrol	Eng	gine	erin	g "	by
	Prof. S.	D	Aga	ashe	e, II	ТВ	oml	oay				•			-	
	COs	Jan I			POs	- 4	Y				PSOs					
	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	7/	-	N.	1	-	-/-	3	1	_
1	2	3	2	1	1	1	1	1	1	1	1	-	-	3	1	1
	3 GINE	3	3	2	2	1	1	1	2	U)	1	UH.	2	3	1	2
	4	3	3	2	2	1	1	1	1	1124. 11	1	2117	2	3	1	1
	5	3	3	2	2	1	1	1	2	-	1	-	2	3	1	2
	6 3 2 1 1 1 1		1	1	2	-	1	-	2	3	1	2				
O	verall	3	3	2	2	1	1	1	2		1		2	3	1	2
Correlation 3 3 2				1	1	1		_	1			3	1			
Recommended by Board of Studies 08-11-2024																
Approved					3rd ACM				Date	9	30-11-2024					

23EE521	POWER ELECTRONICS	L	T	P	С						
	LABORATORY	0	0	4	2						
COURSE OBJECTIVES:											

- To study the VI characteristics of SCR, TRIAC, MOSFET and IGBT.
- To analyse the performance of semi converter, full converter, step up, step down choppers by simulation and experimentation.
- To study the behaviour of voltage waveforms of PWM inverter applying various modulation techniques.
- To design and analyse the performance of SMPS.
- To study the performance of AC voltage controller by simulation and Experimentation.

PRACTICALS

- 1. Characteristics of SCR and TRIAC.
- Characteristics of MOSFET and IGBT.
- AC to DC half controlled converter.
- 4. AC to DC fully controlled converter.
- 5. Step down and step up MOSFET based choppers.
- 6. IGBT based single phase PWM inverter.
- 7. IGBT based three phase PWM inverter.
- 8. AC Voltage controller.
- Switched mode power converter.
- 10. Simulation of PE circuits ($1\Phi \& 3\Phi$ semi converter, 1Φ & 3Φ full converter, DC-DC converters, AC voltage controllers).

	TOTAL: 60 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Demonstrate the static V-I Characteristics of SCR, TRIAC,
	MOSFET and IGBT.
CO2:	Analyse the given AC to DC Half and Full controlled
	converter.
CO3:	Make use of Step down and step up MOSFET based
	choppers to find duty cycle

CO4:	Demon	stra	te t	he	wo	rkir	ng c	of IC	GBT	ba	sed	sing	le p	has	e aı	nd
	three pl	nase	e PV	VM	inv	ert	er.									
CO5:	Analyse	Analyse the working of AC Voltage controller and SMPS														
	circuit.															
CO6:	Analyse the given Power electronic circuit such as $1\Phi \& 3\Phi$															
	semi converter, $1\Phi \& 3\Phi$ full converter, dc-dc converters, ac															
	voltage controllers using MATLAB/PSPICE.															
	COs				I	POs						PSOs				
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	-	2	1	2	3	-	1	2	2	1
	2	3	3	2	2	2	-	2	1	2	3	-	1	3	2	1
	3	3	2	1	1	2	-	2	1	2	3	-	1	3	2	1
	4	2	1	-	-	-	-	2	1	3	1	-	1	2	-	1
	5	3	3	2	2	2	-	2	1	-	1	-	1	3	2	1
	6 POW	3	3	2	2	2	-/	2	1	7	1	-	1	3	2	1
Overall 3 3 2 2 2 -		4	2	1	2	2		1	3	2	1					
Reco	mmende	d by	Во	ard	of S	Stud	ies	13-	11-2	2024			7		The same	
	Approved					3rd ACM Date				:	30-11-2024					

23EE522	MINI PROJECT	L	T	P	C
		0	0	4	2

COURSE OBJECTIVES:

- Encourage students to apply foundational theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork and effective communication.
- Train students in basic research methodology, technical documentation, and presentation techniques to articulate project outcomes clearly.
- Enhance students' ability to systematically design, analyze, and evaluate simple prototypes or models.
- Prepare students for real-world engineering challenges and lay the foundation for multidisciplinary teamwork and problem-solving in advanced projects.

COURSE DESCRIPTION:

This course serves as an introductory platform for students to apply the foundational knowledge acquired from their core and interdisciplinary subjects in a practical setting. This course enables students to work on small-scale, department-relevant projects that focus on problem identification, basic design, and preliminary prototype development. With limited prior expertise, students will explore the process of translating theoretical concepts into tangible solutions, fostering creativity, teamwork, and critical thinking. The course emphasizes hands-on communication, and project documentation, laying a strong foundation for advanced projects and professional challenges in later semesters.

PROJECT OUTLINE:

Week 1	Course Orientation and Topic Selection
Week 2	Problem Definition and Objective Setting

Week 3	Literature Review and Research
Week 4	First Review and Feedback
Week 5	Problem Refinement and Research Gap Identification
Week 6	Conceptual Design and Initial Approach
Week 7	Methodology and Project Planning
Week 8	Second Review and Project Evaluation
Week 9	Design Refinement and Testing
Week 10	Resource Identification and Budget Estimation
Week 11	Report Writing and Presentation Preparation
Week 12	Third Review Presentation and Submission of Thesis
TXIATTIAT	IONI

EVALUATION:

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The project should focus on topics from first three or four semester (whichever is applicable) subjects / industry demand topics, or futuristic technologies. It is recommended for Faculty of Aeronautical Engineering, Civil Engineering, and Mechanical Engineering students, the project should demonstrate an understanding of first principles of engineering.
- Similarly for students of Faculty of Computer Science Engineering, the project may involve programming using Python or C language. For Faculty of Electronics and Communication Engineering, the student project shall

- incorporate appropriate techniques and systems relevant to the field. For the students of Faculty of Fashion Technology, the project based on material innovations, or technology in fashion is recommended.
- The evaluation will focus on how well the project is structured, including clarity and logical flow in both oral presentations and written texts.
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability, innovation, and SDG-aligned goals.
- The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content.

COU	RSE OUTCOMES:								
4	After completion of the course, the students will be able to:								
CO1:	Apply basic engineering principles to solve simple problems.								
CO2:	Choose relevant sources to understand the current knowledge and identify areas to improve.								
CO3:	Utilise basic tools and techniques to test simple solutions.								
CO4:	Interpret the impact of engineering solutions on society and the environment.								
CO5:	Combine in teams to plan and complete projects within given constraints.								
CO6:	Develop comprehensive technical reports and deliver structured presentations to effectively convey project outcomes.								

COs						P	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
2	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
3	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
4	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
5	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
6	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
Overall	3)	1	1	1	1	1	2	2	•	2	1	2	1	2	
Correlation	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
Recommende	Recommended by Board of Studies							08-11-2024								
Approved							3rd ACM Date					30-11-2024				

23ES	591	APTITUDE AND LOGICAL	L	T	P	C
		REASONING -2	0	0	2	1
COU	RSE OF	BJECTIVES:	1			
•	To im	prove the problem solving and logi	cal	thin	king	7
		of the students.				,
•	To acq	uaint the student with frequently aske	d pa	tteri	ns ir	ı
	quanti	tative aptitude and logical reasor	ning	du	ring	5
		s examinations and campus interviews	S			
UNI	ГΙ					4
Prob	ability, I	Permutation & Combination, Algebra,	Prol	olem	s or	1
ages						
UNI	ГІІ					4
Mens	suration	, Logarithms, inequalities and modulu	s, Sy	llog	ism	
UNI	ΓIII					4
Dire	ctions, 1	ogical sequence words, number ser	ies,	Ana	alyt	ical
Reas	oning	THE CONTRACTOR OF THE CONTRACT	- 4		4	38
UNI	ΓΙΥ	71,0		- 1		4
Blood	d relatio	n, Clock and Calendar, Picture puzzle	s		1	
UNI		, ce		9		4
Data	sufficie	ncy, cube and cuboids, odd man out				
	CINE	TOTA	L: 20	PE	RIO	DS
COU		JTCOMES: AFFILIATED TO ANNA UNIVERSITY	AU	TONO	MOU	5
		empletion of the course, the students w		e ab	le to) :
CO1:		concepts of probability, permutation, a	and			
		ation to solve real-world problems.				
CO2:		lgebraic problems and age-related pro	blen	ns us	sing	
)	approaches and techniques.				
CO3:	-	e and solve problems in mensuration,	loga	rith	ms,	
		equalities.				
CO4:	-	et and solve problems related to direct	ions	, log	ical	
00-	_	ce, and number series.	•	- 1		
CO5:		y and solve problems in logical reason	_	such	as	
666		sm, blood relations, clock and calendar		1		
CO6:		y and solve problems in logical reason		such	as	
	syllogis	sm, blood relations, clock and calendar	1.			

TEX	Г ВООК	:														
1	Smith,	Joh	n. ".	AP	ΓIPΕ	EDIA	4 ." <i>2</i>	2nd	ed.	, W	iley	Pub	lish	ers,	202	20.
2	Agarw	al, I	R.S.	"Q1	uant	itat	ive	Ap	titu	de."	2nc	l ed.	, S. (Cha	nd	
	Publish	ning	<u>.</u>					_								
REFI	ERENCE	ES:														
1	Agarw	al,	R.S.	. "A	Mo	der	n A	ppı	oac	h to) Ve	rbal	& N	lon-	-	
	Verbal	Verbal Reasoning." 2nd ed., S. Chand Publishing.														
	POs PSOs															
`	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	3	2	2	2	1	3	1	2	3	2	2
	2	3	2	2	2	3	2	3	2	1	2	1	2	3	2	3
	3	3	3	2	2	2	2	2	2	1	3	1	2	3	3	2
	4	2	3	2	1	2	3	1	2	3	3	2	3	2	2	3
	5	2	3	3	2	2	2	2	3	2	2	2	3	3	3	3
	6	3	3	2	2	3	2	3	3	2	2	1	2	3	3	2
O	verall	ER	900	2		2	2	2	2	2	2	~	2	2	2	2

3 3

Recommended by Board of Studies

Approved

Correlation

2

3 3

3

COLLEGE OF TECHNOLOGY

3 2 3

13-11-2024

Date

3 3

30-11-2024

3 2

3rd ACM

SEMESTER -VI

23CE611	ENVIRONMENTAL SCIENCE	L	T	P	C
	AND ENGINEERING	3	0	1	4

COURSE OBJECTIVES:

- To provide basic knowledge on environment impact assessment
- To create an awareness on the pollutants in the environment
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products
- To develop simple climate models and evaluate climate changes using models

UNIT I INTRODUCTION TO ENVIRONMENT 9 IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework

UNIT II MOVEMENT OF POLLUTANTS IN 9 ENVIRONMENT 9

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

UNIT III	ECOL	OG	SICAL R	ESTORAT	ΓION	1			9
Wastewate	er t	reat	tment:	anaerob	ic,	aerob	oic p	oroc	cess,
methanog	enesis,	tre	eatment	schemes	for	waste	water:	da	airy,
distillery,	tannei	ry,	sugar,	antibiotic	inc	dustries;	solid	W	aste

treatment: sources and management (composting, vermiculture and methane production, landfill. hazardous waste treatment).

UNIT IV ECOLOGICALLY SAFE PRODUCTS AND PROCESSES 9

Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation

UNIT V CLIMATE CHANGE MODELS 9

Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date

TOTAL: 60 PERIODS

LIST OF EXPERIMENTS

- 1. Determination of Bio fuel parameters such as flash point and fire point.
- 2. Determination of density of biofuels.
- 3. Determination of BOD/COD in water.
- 4. Simulating the RCM and GCM model for different geographic conditions.
- **5.** Measurement of Pollutant in environment by Gaussian Plume model.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the importance of the process of Environmental impact assessment and its types.
- CO2: Illustrate the chemical processes and pollutant chemistry
- CO3: Identify the methods to solve environmental problems
- **CO4:** Apply the knowledge to develop ecofriendly products.
- CO5: Construct the various simple climate models for simulation

CO6:	Apply t	he o	lim	ate	mo	del	sin	nula	atio	n to	mo	nito	r cliı	nat	e		
	change																
TEX	г воок	S:															
1	David .l	David .E Neelin "Climate Change and Modelling",															
	Cambri							•					Ü				
2	Evans, 0	Evans, G.G. & Furlong, J. 2010. Environmental															
	Biotechnology: Theory and Application (2nd edition).																
	Wiley-Blackwell Publications.																
3	Pani, B.	Pani, B. 2007. Textbook of Environmental Chemistry. IK															
	internat	international Publishing House															
4	N.S. Raı	mar	1 , A	.R.	Ga	jbhi	iye	& S	.R. 1	Kha	nde	shw	ar,				
	Environ	me	ntal	Im	pac	t A	sse	ssm	ent	, 20	14,II	< Int	erna	atio	nal		
	Pvt Ltd.																
REFE	RENCES:																
1	Carson (1907-1964). Environment Conservation-book																
2	Encyclopaedia of Environmental Issues by Craig W. Allin																
i i	&F	rob	e.				۸			A			W.	_			
3	Encyclo	pae	dia	of 1	Env	iro	nme	enta	ıl st	udi	es b	y Wi	lliar	n	1000		
1	Ashwor	th.		62													
4	Climate	Ch	ang	ge a	nd (Clir	nat	e M	ode	ling	g- Ki	indle	e Ed	itio	n.		
5	Environ	me	nta	lly-	Frie	end	ly I	roc	luct	de	velo	pme	nt -	DIVO:	MOU	5	
	Eberhar	nd A	Abil	e ,R	lein	er A	And	lerl,	200	5							
	COs]	POs						I	PSC)s	
`	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	-	2	1	-	1	-	-	-	2	-	-	
	2	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-	
	3 3 2 1 1 - 3						3	2	-	1	-	-	1	3	-	-	
	4	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-	
	5 3 2 1 1 - 3 2								-	-	-	1	3	-	-		
	6	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-	
	verall	3	2	1	1	_	3	2	_	_	_	_	1	3	_	_	
	elation												_	J	_		
Reco	nmended				of S	tud	ies		11-2			<u> </u>		• •			
	Approved											Date	3rd ACM Date 30				

23EE611	RENEWABLE ENERGY SYSTEMS	L	T	P	C
		3	0	2	4
COURSE	OBJECTIVES:				
and To g rend To 1	create an Awareness about renewable Ener technologies. give adequate inputs on a variety of issues ewable Energy. recognize current and possible future role or rgy sources.	in h	arn	essi	ng
UNIT I	RENEWABLE ENERGY (RE) SOURCES	5			9
Environm	ental consequences of fossil fuel use, Ir	npoi	rtan	ce	of
renewable developm	sources of energy, Sustainable lent, Types of RE sources, Limitations of		_	_	nd es,

UNIT II WIND ENERGY

and RE sources.

9

Power in the Wind- Types of Wind Power Plants(WPPs)-Components of WPPs-Working of WPPs- Siting of WPPs-Grid integration issues of WPPs.

Present Indian and international energy scenario of conventional

UNIT III | SOLAR PV AND THERMAL SYSTEMS WITCHOM

9

Solar Radiation, Radiation Measurement, Solar Thermal Power Plant, Central Receiver Power Plants, Solar Ponds. - Solar Photovoltaic systems -Basic Principle of SPV conversion - Types of PV Systems - Types of Solar Cells-Photovoltaic cell concepts: Cell, module, array, PV Module I-V Characteristics, Efficiency & Quality of the Cell, series and parallel connections - Applications.

UNIT IV | BIOMASS ENERGY

9

Introduction-Biomass resources-Energy from Bio mass: conversion processes-Biomass Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothermal Electricity. Mini/micro hydro power: Classification of hydropower schemes

UNIT V OTHER ENERGY SOURCES

Tidal Energy: Energy from the tides, Barrage and Non Barrage Tidal power systems. Ocean Thermal Energy Conversion (OTEC)

- Hydrogen Production and Storage- Fuel cell: Principle of working- various types-construction and applications- Hybrid Energy Systems

TOTAL: 45 PERIODS

9

LIST OF EXPERIMENTS

- 1. Simulation study on Solar PV Energy System.
- 2. Simulation study on Wind Energy Generator.
- 3. Experiment on Performance assessment of micro-Wind Energy Generator.
- 4. Experiment on "VI-Characteristics and Efficiency of 1kWp Solar PV System".
- 5. Experiment on "Shadowing effect diode-based solution in 1 kWp Solar PV System"
- 6. Experiment on Performance assessment of Grid connected and Standalone 1 kWp Solar Power System.
- 7. Simulation study on Fuel Cell System.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build Solar PV Energy System using MATLAB utilizing the various Renewable Energy Sources and Technologies with present Energy Scenario.
- CO2: Model the types of Wind Power Plants (WPP) and its Grid integration issues and identify the performance assessment of Micro-wind Energy generator.
- CO3: Summarize the technologies used in solar thermal power plant, and thermal energy storage system.
- CO4: Make use of different types of PV systems and its applications to summarize the V-I characteristics and efficiency of the 1kWp Solar PV system with and without shadowing effects.
- CO5: Explain Biomass energy, geothermal energy, classification of hydropower schemes

CO6:	Model	fue	1 ce	11 s	yste	em	usi	ng	ΜA	TL	AB a	and	illus	stra	te t	he
	princip															
	Sources	- tio	dal	Ene	ergy	, O	TEC	С, Н	[ydı	roge	en E	nerg	y, F	uel	cell	
TEX	Г ВООК															
1	Joshua															
	,	Project Development', PHI Learning Pvt.Ltd, New Delhi,														
	2011.	.1	• т		<u>C:</u>	1	D 1	1	D		// [1	1 17		
2	D.P. Ko Sources				•	_				,		kene , Pl				0,5
	Pvt.Ltd							i ec	шк	nog	ies ,	, []	111	Lea	ши	ng
3	Scott G							Enc	erov	v &-	Sus	tain	able	De	sion	າ".
	CENGA									, α	Ous	COLLE	abic	20	×-6-	. ,
REFI	ERENCE				0	,										
1	A. K.			,												
	Systems	s: 1	Ana	lysi	is a	and	D	esię	gn",	P	HI :	Lear	ning	g P	riva	ate
	Limited							_								
2		Richard A. Dunlap," Sustainable Energy" Cengage Learning														
		India Private Limited, Delhi, 2015.														
3		Chetan Singh Solanki, "Solar Photovoltaics: Fundamentals, Technologies and Applications", PHI Learning Private														
1	Limited							tioi	is,	P.	П	Lear	nıng	5 1	riva	ite
4	Bradley							avc	, A		Onir	din	ar	nd	Mai	ria
_	Papada															
	and D															
	Limited							, ,			•					
	COs						I	POs						I	PSC)s
`	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	2	2	2	-	-	-	2	2	1	2
	2	3	2	1	1	1	2	2	2	-	-	-	2	3	1	2
	3 2 1 2						2	2	2	-	-	-	2	2	-	2
4 3 2 1 1 1		2	2	2	-	-	-	2	3	1	2					
5		2	1	-	-	-	2	2	2	-	-	-	2	2	-	2
6 3 2 1 1 1 2						2	2	2	-	-	-	2	2	1	2	
O	verall 3 2 1 1 1 2 2 2 2 2 3 1 2															
	relation			1	1		2		2	_	_	_	2	٥	1	2
D	Recommended by Board of Studies 08-11-2024															
Keco			ove		01 0	πuu	iics		AC			Date				2024

23EE621	PROJECT WORK PHASE-1	L	T	P	C
		0	0	4	2

COURSE DESCRIPTION:

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

COURSE OBJECTIVES:

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

PROJECT OUTLINE:

Week 1	Orientation and course overview. Formation of project
	teams and approval of topics by HoD.
Week 2	Initial meeting with supervisors. Define problem
	statement and objectives
Week 3	Literature review: Research methodologies and topic-
	specific studies.
Week 4	Zeroth Review.

Week 5	Refinement of literature review and identification of
	research gaps.
Week 6	Identification of Base Paper.
Week 7	First Review.
Week 8	Conceptual design discussions and brainstorming
	solutions.
Week 9	Narrowing done on the exact work.
Week 10	Completion of first stage of the Project.
Week 11	Development of detailed conceptual design and
	methodology.
Week 12	Incorporation of feedback and refinement of design
	and methodology.
Week 13	Second Review.
Week 14	Compilation of Phase 1 results, report writing, and
- 18	presentation preparation.
Week 15	Final Viva Voce Presentations.
Individual	meetings will be set up on a need's basis in conjunction

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is required to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDG-aligned goals.

Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written communication, ensuring effective delivery of technical content. **COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Develop feasible solutions by analyzing complex engineering problems using foundational knowledge, mathematics, and science. **CO2:** Survey literatures to identify gaps, define research questions, and propose designs and methods for solving engineering problems. CO3: Make use of modern tools to check the feasibility of the solutions effectively. **CO4:** Evaluate societal and environmental impacts of solutions while incorporating sustainability and ethical practices. CO5: Combine in teams to plan, manage, and lead projects within professional and economic constraints. CO6: Formulate technical reports, deliver presentations, and engage in lifelong learning to adapt to new technologies. **POs PSOs COs** Overall

13-11-2024

3rd ACM

Date

30-11-2024

Correlation

Recommended by Board of Studies

Approved

23EE622	TECHNICAL TRAINING	L	T	P	С
		0	0	2	1

PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

COURSE OBJECTIVES:

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

COURSE OUTCOMES:

A	fter completion of the course, the students will be able to:
CO1:	Identify specific domain from the enrolled branch and to
	get training preferable in computer-oriented platform.
CO2:	Survey and apprehend the learning modules in the
	training program and to become expert in the specific
	domain.

CO3:	Apply theoretical learning in the practical environment
	and enhance the skillset of learner.
CO4:	Estimate the learning using available data.
CO5:	Defend a presentation about the learning done in the
	specified skillset.
CO6:	Construct a technical report about the training.

GUIDELINES:

- More than one training program may be given depending on availability and interest of the students. One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

EVALUATION PATTERN:

Training Coordinator:

50 marks (Training Manual - 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall

approve the entries in the Training Manual during the weekly meeting with the student), Attendance – 10,).

Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

						Training duration - 30 Hours									
COs				PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	2	1	-/	-	-	-	3	3	-	-
2	3	3	2	1	- >	2	1	-	7	-	-	3	3	-	-
3	3	3	3	3	3	-	M	1	1	2		3	3	3	1
4	3	3	3	2	2	-	-	1	-	3	-	3	3	2	1
5 6///5	3	3	3	2	(10	2	E	2	Θ	2	CH	2	3	(1)	2
6	3	3	3	3	2	2	ED.T	2	14	3	RSHY	3	3	2	2
Overall Correlation	3	3	3	3	2	2	1	2	1	3	-	3	3	2	2
Recommended	l by	Bo	ard	of S	tud	ies	s 13-11-2024								
\mathbf{A}_{1}		3rd ACM Date					!	30-11-2024							

23EE623	TECHNICAL SEMINAR - 1	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every

member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Identify	aca	adei	mic	do	cun	nen	ts fr	om	the	lite	ratu	re w	hicl	n ar	e
	related t	to h	er/	his	are	as c	of in	itere	est.							
CO2:	Survey	and	ар	pre	hen	d a	n ac	cade	emi	c do	ocun	nent	fror	n th	ie	
	literatur	e w	hic	h is	rel	ate	d to	hei	r/ h	is a	reas	of i	nter	est.		
CO3:	Compile a presentation about an academic document.															
CO4 :	Estimate the Contents using available literature.															
CO5:	Defend a presentation about an academic document.															
CO6:	Construct a technical report.															
		POs PSOs														s
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
- 0	verall relation													2		
Reco	Recommended by Board of Studie								es 13-11-2024							-
	Approved							3rd ACM Date					30-11-2024			

ACERTATED TO ANNA UNIVERSITY | ALTONOMOUS

SEMESTER - VII

23EE	701	COMPREHENSION	L	T	P	C
			2	0	0	2
PUR	POSE:					
То	provide	a complete review of the topics co	vere	ed i	n t	he
pr	evious	semesters, to ensure that a co	mpr	ehe	nsi	ve
ur	nderstand	ing of the subjects is achieved. The str	uder	nt w	ill i	be
		per the guidelines given by na				
		ns like GATE, TANCET etc. It will also l	-	stu	der	ıts
	,	nterviews and competitive examination	ns.			
COU		TCOMES:				
		mpletion of the course, the students wil				
CO1:	Analyse	the phenomena involved in the concer	ned	pro	ble	m
	and solv		A			
		rinciples to new and unique circumstar		27.7	~	
CO3:	Estimate	concepts and principles of concerned	bran	ıch	of	
	engin <mark>e</mark> er					
CO4:	Visit Indiana	ish between facts and opinion in the er	ngin	eeri	ng	
	field.	COLLEGE OF TECHI				
		cause-and-effect relationships of any re			ip.	
CO6:		t data from charts and graphs and judg	e th	e		
	relevanc	e of information.				
GUII	DELINES	:				
•	The D	Department shall form an Internal	As	sess	sme	nt
		ittee for the Comprehension with				
		nator for that class as the Comprehensi	on I	nstr	uct	or
	and Cla	ass coordinator as member.				
•		tor shall provide required input to tl				
	regard	ing the overview of all topics covered in	the	pre	vio	us

Periodic tests can be conducted to assess students.

semesters.

COs						I	POs						I	PSC	s	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2	1	-	2	1	-	-	-	-	1	3	-	-	
2	3	2	1	1	-	1	1	ı	-	•	-	1	3	1	-	
3	3	3	3	3	3	-	-	3	-	3	-	3	3	3	3	
4	3	2	1	1	2	-	-	1	-	3	-	3	3	2	1	
5	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2	
6	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2	
Overall	3	3	3	3	3	2	1	2		3		3	3	3	2	
Correlation	3	•	•	3	3	۷	1	4	1	•	-	•	3	3		
Recommende	d by	by Board of Studies 13-11-2024														
A	ppı	ove	d				3rd ACM Date					?	30-11-2024			

23EE711	POWER SYSTEM PROTECTION	т	T	P	
23EE/11	AND CONTROL	1 3			$\frac{c}{4}$
COLIBERO		3	0	2	4
COURSE O	-				
	understand the characteristics and funct	ions	of		
	erent types of relays				
	learn the various apparatus protection s				
	familiarize with numerical relays and fu	ncti	oni	ng c	of
ciro	ruit breakers				
• To	impart knowledge of real power- freque	ency			
inte	eraction and reactive power- voltage into	erac	tion	l	
• To	study the economic operation and Comp	oute	r A	ideo	1
Con	ntrol of power system				
UNIT I P	ROTECTION SCHEMES AND BASIC	S Ol	F		9
R	ELAYS				
C: :(:	IER DO.	6	_		
1 (All and All	and types for protective schemes-Zones	_	4000		riv .
1	qualities of protection-Power system gr			_	na
	f grounding-Operating principles			-	P. —
	etic Relays - Over current, Direction	ai a	ina	no	n-
NBS27.199	Distance, Differential relays.	VO	LO	G)	
UNITII	VERVIEW OF EQUIPMENT PROTEC	TIO	No	MON	9
Current tra	nsformers and Potential transformer	s a	nd	the	eir
applications	in protection schemes - Protection of	trai	nsfc	rm	er,
generator, m	otor and transmission line.				
UNIT III N	UMERICAL PROTECTION AND CIR	CUI	Т		9
В	REAKERS				
C: 1	DI 1 1: (A)				
-	-Block diagram of Numerical relays -				
*	transformer differential protection, a	ind	dis	stan	ce
protection of	transmission lines				

protection of transmission lines Types of circuit breakers – air blast, oil, SF6 and vacuum circuit

Types of circuit breakers – air blast, oil, SF6 and vacuum circuit breakers – comparison of different circuit breakers

UNIT IV VOLTAGE AND FREQUENCY 9 CONTROL 9

Necessity of voltage and frequency regulation -Basics of speed governing mechanisms and modelling -Load Frequency Control (LFC) of single area system-Automatic Voltage Regulator (AVR) - Block diagram representation of AVR loop

UNIT V ECONOMIC LOAD DISPATCH AND COMPUTER AIDED CONTROL OF POWER SYSTEM

Statement of economic dispatch problem – Input and output characteristics of thermal plant-incremental cost curve – Optimal operation of thermal units without transmission losses– Lambda-iteration method- Statement of Unit Commitment (UC) problem – Constraints on UC problem. Need of computer control of power system – Concept of energy control centers and functions - System hardware configurations – SCADA and EMS functions -Various operating states – State transition diagram.

TOTAL: 45 PERIODS

PRACTICALS:

- 1. Computation of Transmission Line Parameters
- 2. Computation and modeling of Transmission Lines
- 3. Formation of bus admittance matrices and solution of networks
- 4. Formation of Bus Impedance Matrices
- 5. Fault analysis with symmetrical fault
- 6. Economic Dispatch in Power Systems.
- 7. Load-Frequency dynamics of Single area systems

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Model and compute transmission line parameters using MATLAB along with various grounding methods and types of relays used in protective schemes.

CO2: Develop the protection methods in transformer, generator, and motor and transmission line and make use of MATLAB to form bus admittance matrices and bus impedance matrices. CO3: Summarize static relays and numerical relays used for over current protection, transformer differential protection and distance protection of transmission lines. CO4: Make use of MATLAB programming to conduct fault analysis for symmetrical fault and illustrate the basic operating principles, rating and selection of different types of circuit breakers. CO5: Examine the load frequency control (LFC) of single area system and automatic voltage regulator (AVR) and Model Load-Frequency dynamics of Single area systems using MATLAB /Simulink. **CO6:** Solve the economic dispatch problem and unit commitment problems for economic operation in power systems using MATLAB along with computer controls in power system. **TEXT BOOKS:** Sunil S.Rao, 'Switchgear and Protection', Khanna Publishers, 1 New Delhi, Four Edition, 2010. Badri Ram ,B.H. Vishwakarma, 'Power System Protection 2 and Switchgear', New Age International Pvt Ltd Publishers, Second Edition 2011 Olle. I. Elgerd, 'Electric Energy Systems theory - An 3 introduction', McGraw Hill Education Pvt. Ltd., New Delhi, 2nd edition, 2017. Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, 4 Operation and Control', John Wiley & Sons, Inc., 3rd edition,

2013.

REF	ERENCE	S:														
1	Kothari	D.	P. a	nd	Nag	grat	th I	J., '	Pov	ver	Syst	tem	Eng	ine	erin	g',
	Tata M	[cG	raw	- I	Hill	Ec	luca	atio	n, 9	Seco	ond	Edi	tion	, R	epr	int
	2018.															
2	Hadi S	Saac	lat,	'P	ow	er	Sys	ten	ı A	\na	lysis	', N	AcG	raw	7 H	Iill
	Educati	on i	Pvt.	. Lt	d., 1	Nev	v D	elhi	, 23	rd 1	epri	nt, 2	2015	. K	und	lur
	P., 'Power System Stability and Control, McGraw Hill															
	Education Pvt. Ltd., New Delhi, 12th reprint, 2015.															
3	B.M. Weedy, B.J. Cory et al, 'Electric Power systems', Wiley,															
	Fifth Edition, 2012															
4	C.L. Wadhwa, 'Electrical Power Systems', 6th Edition, New															
	Age International (P) Ltd., 2018															
5	V.K. Metha," Principles of Power Systems", S. Chand,															
	Reprint, 2013															
	керип	, 20	10			-			-				5	_		
	W _O	, 20 R	REA	h.			1	POs							PSC)s
	COs	1	2	3	4	5	6	POs	8	9	10	11	12	1	PSC 2)s 3
	W _O	ER L	REA	3	4 1	5 1	1		- 4	9	10 1	11	12 1			
	COs	ER <i>L</i>	2	V	N-		6	7	8	9 -		11		1	2	3
	COs	1 3	2 2	1	1	1	6	7	8	9	1	11	1	1 3	1	3
	COs 1 2	1 3 3	2 2 2	1	1	1	6 1 -	7 1 1	8 1 1	9	1	11	1	1 3 3	1 1	3 1 1
	COs 1 2 3	1 3 3 2	2 2 2 2	1 1	1 1 -	1 1 -	6 1 - 1	7 1 1 1	8 1 1		1 1 1	11	1 1 1	1 3 3 2	1 1 -	3 1 1 1
	COs 1 2 3 4	1 3 3 2 3	2 2 2 2 1 2	1 1 -	1 1 -	1 1 -	6 1 - 1	7 1 1 1 1	8 1 1 1 1		1 1 1 1	11	1 1 1	1 3 3 2 3	1 1 - 1	3 1 1 1
	COs 1 2 3 4 5	1 3 3 2 3 3 3	2 2 2 1 2 3 2	1 1 - 1 2	1 1 - 1 2 1	1 1 - 1 1 1	6 1 - 1 -	7 1 1 1 1 1 1	8 1 1 1 1 1		1 1 1 1 1	11	1 1 1 1 1	1 3 3 2 3 3 3	1 1 - 1 1 1	3 1 1 1 1 1
O	COs 1 2 3 4 5 6 verall relation	1 3 3 2 3 3 3 3	2 2 2 1 2 3 2	1 1 - 1 2 1	1 1 - 1 2 1	1 1 - 1 1 1	6 1 - 1 -	7 1 1 1 1 1 1	8 1 1 1 1 1 1	-	1 1 1 1 1 1	11	1 1 1 1	1 3 3 2 3 3	1 1 - 1 1	3 1 1 1 1
O	COs 1 2 3 4 5 6 verall	1 3 3 2 3 3 3 3	2 2 2 1 2 3 2	1 1 - 1 2 1	1 1 - 1 2 1	1 1 - 1 1 1	6 1 - 1 -	7 1 1 1 1 1 1 1 1 1	8 1 1 1 1 1 1		1 1 1 1 1 1	11	1 1 1 1 1	1 3 2 3 3 3 3	1 1 1 1 1 1	3 1 1 1 1 1

23EE721	PROJECT WORK PHASE-2	L	T	P	C
		0	0	6	3

COURSE DESCRIPTION:

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through fabrication, simulation, or experimental validation. Students will refine their designs, validate test problems, and commission setups for final testing. This phase emphasizes hands-on application, calibration, and demonstration of results, culminating in a final presentation and report submission.

COURSE OBJECTIVES:

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

PROJECT OUTLINE:

Week 1	Review of Phase 1 outcomes and refinement of proposed methodology.
Week 2	Material procurement/ software setup for simulation, and initiation of fabrication/simulation work.
Week 3	Intermediate fabrication/simulation work and initial testing or calibration, troubleshooting challenges.

Week 4	Second Review.
Week 5	Validation of test problem or refinement of prototype/simulation
Week 6	Optimisation of the test setup or solution trials, Data curation / uncertainty analysis
Week 7	Final testing of setup or simulation outcomes, Validation of Data .
Week 8	Third Review
Week 9	Demonstration of the solution with high level of data accuracy and precision.
Week 10	Compilation of Phase 2 results, report writing, and presentation preparation.
Week 11	Preparing or publishing of research article/ Filing or Grant of Patent
Week 12	Final Viva Voce Presentations.
In dividua	mostings will be set up an a need's basis in conjunction

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.

Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project. **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply appropriate methodologies to implement solutions for complex engineering problems identified in phase -1 using hardware / software or both systems. **CO2:** Develop existing functional prototypes or simulations models by integrating theoretical and practical knowledge. **CO3:** Evaluate solutions ensuring compliance with design specifications. **CO4:** Appraise the performance of solutions by refining designs or improving algorithms for enhanced outcomes. CO5: Collaborate effectively with team members to plan, manage, and execute engineering projects adhering to ethical principles and professional standards. CO6: Prepare technical reports, impactful presentations that communicate solutions effectively.

COs	X	1	47			ı I	POs	T F			CH		d	PSC	s	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3	
5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Overall Correlation	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Recommended	d by	Во	ard	of S	Stud	ies	3 13-11-2024									
Approved							3rd ACM Date						30-11-2024			

23EE722	TECHNICAL SEMINAR - 2	L	T	P	C
		0	0	4	2

PREAMBLE:

The course 'Technical Seminar 2' is intended to be continuation of Technical Seminar 1. It enables a B.E./B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10).

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

COL	RSE OU	тс		/IEC												
COU									. 1		1 .		11 1	1 1		
-	After co	-														
CO1:	Identify									the	lite	ratu	re w	hicl	n ar	e
	related	to h	er/	his	are	as c	of in	iter	est.							
CO2:	Survey	and	lap	pre	hen	d a	n ac	cade	emi	c do	ocun	nent	fror	n th	ıe	
	literatur	e w	hic	h is	rel	ate	d to	he	r/ h	nis a	reas	of i	nter	est.		
CO3:	Compile a presentation about an academic document.															
	Estimate the Contents using available literature.															
	Defend a presentation about an academic document.															
	c: Construct a technical report.															
POs PSOs)c				
(COs		1 2 3 4 5 6							0	10	11	10		2	
								7	8	9	10	11	12	1	_	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
Y	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
,	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	Overall Correlation 3 3 2 1 1 1 1 2 3 3 2 2 3 2 2											2				
Reco	mmende	d by	Во	ard	of S	tud	ies	es 13-11-2024 IVERSITY AUTONOMOUS							5	
	Approved							3rd ACM Date 30-11-2						2024		

SEMESTER-VIII

23EE821	CAPSTONE PROJECT	L	T	P	С
		0	0	20	10

COURSE DESCRIPTION:

Prerequisites:

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

COURSE OBJECTIVES:

The Capstone Project should demonstrate the depth and extent of knowledge of students

During this course, students will

- Investigate and evaluate prominent literature connected to vour CP.
- Present a clearly articulated investigative framework, while situating projects within established academic

- practices and/ or ideas.
- Develop and create practical resources (either computational or experimental) for the concerned area of interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

PRO	JECT	OUTL	INE:
-----	-------------	-------------	------

•	
Week 1	Identification problem.
Week 2	Literature review.
Week 3	Preliminary work.
Week 4	First review.
Week 5	Completion of first stage of the Project methodology.
Week 6	Development.
Week 7	Testing & Validation.
Week 8	Second review.
Week 9	Repeatability.
Week 10	Report correction and Documentation
Week 11	Third review-Submission of paper for conference/journal
Week 12	Thesis Correction and Submission
Individual	meetings will be set up on a need's basis in conjunction

Individual meetings will be set up on a need's basis in conjunction with developing work

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Take p					_	_	-			-			and	fir	nd
CO2:	Plan res	seaı	ch	me	thoc	dolo	gy	to t	ack	le a	spe	cific	pro	ble	m.	
CO3:	Constru	ıct (exte	ensi	ve s	tud	y o	n p	arti	cul	ar re	sear	ch p	roje	ects.	•
CO4:	Develop experimental and computational studies on innovative research projects.															
CO5:	Estimate incremental study on existing research projects.															
CO6:	Take part in real life engineering challenges and propose appropriate solutions.															
(COs	POs PSO:)s	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	2	3	2	3	3	2	3	2	3	2	3	2	3	3	2	3
· V	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3
	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	5	2	3	3	3	3	3	3	3	3	3	3	3	2	3	_3
	6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Corr	verall elation	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Reco	mmende	d by	В о	ard	of S	Stud	ies	es 08-11-2024								
	Approved								3rd ACM Date					30-11-2024		

VERTICAL-1-CONVERTERS AND DRIVES

23EE031	ADVANCED POWER	L	T	P	C							
	SEMICONDUCTOR DEVICES	2	0	2	3							
COURSE	OBJECTIVES:											
•	Understand the static and dynamic chara	acter	istic	cs c	of							
	various current controlled and voltage-controlled											
	power semiconductor devices.											
•	Learn the advanced devices and new materials for											
	power devices											
•	Explore the design and selection of devices	for o	liffe	erer	ıt							
	power electronics applications.											
•	Familiarize the control and firing circuit	for o	liffe	erer	ıt							
	power devices											
UNIT I	INTRODUCTION	4			6							
Power sw	ritching devices overview - Attributes of an	idea	al sv	witc	h,							
application	on requirements, Safe operating Area; Dev	vice	sele	ectio	on							
strategy -	- On-state and switching losses, EMI due t	o sw	ritcl	ning) _							

application requirements, Safe operating Area; Device selection strategy – On-state and switching losses, EMI due to switching – Power diodes – operation, static and switching characteristics—Types.

UNIT II	CURRENT CONTROLLED DEVICES	6

BJT- Construction, static and switching characteristic, second breakdown; - Thyristors - Operating mode, two transistor analogy; Gate and switching characteristics; Gate turn-off thyristors; comparison of BJT and Thyristor.

UNIT III VOLTAGE CONTROLLED DEVICES 6

Principle of voltage-controlled devices; Power MOSFETs and IGBTs – construction, types, equivalent circuits, static and switching characteristics, Comparison.

UNIT IV EMERGING DEVICES 6

MCT, FCT, RCT, IGCT; New semiconductor materials for devices - Super junction Structures, Silicon Carbide Power Devices,

Gallium Nitride Power Devices - Power Integrated Circuits-Simulation of SiC and GaN devices.

UNIT V FIRING AND PROTECTING CIRCUITS

6

Necessity of isolation, pulse transformer, optocoupler – Gate drives circuit: SCR, MOSFET, IGBTs and base driving for power BJT. - Over voltage, over current and gate protections; Snubber circuits; Thermal protection - heat sink types and design

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Static and Switching Characteristics of Power Diodes
- 2. Firing Circuit Design for Thyristors
- 3. Switching Characteristics of Power MOSFETs and IGBTs
- 4. Simulation of SiC and GaN Power Devices
- 5. Snubber Circuit Design and Protection Analysis
- 6. Gate Drive Circuit Design for IGBTs
- 7. Converter Topologies for Power Switching Devices

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyse the characteristics of power diodes and verify it experimentally using Matlab.
- CO2: Experiment with the working principles and characteristics of different current controlled devices and verify using Matlab simulation.
- CO3: Examine and demonstrate the working principles different voltage-controlled devices and its characteristics using Matlab simulation.
- CO4: Explain the different power switches in the Thyristor Family.
- CO5: Outline the operation of New Semiconductor materials-based Switches.
- CO6: Develop firing and protection circuits for the power switches and experiment the operation with Matlab simulation.

TEX	TEXT BOOKS:															
1	Mohan,		Jnd	elaı	nd	an	d	Rob	ins	, F	owe	er I	Elect	ron	ics	_
	Concep									•						ns,
	Singapo			-					C	, , ,			J			,
2	Yung (Gaı	nesł	ı S	Sa	mu	dra	, Cl	nih-l	Fang	Н	uar	ng,
	Power			_									_			_
	World S	Scie	ntif	ic, 2	2nd	Ed	itio	n, 2	017						Ü	
3	Rashid M.H., Power Electronics Circuits, Devices and															
	Applications, Prentice Hall India, Third Edition, New Delhi,															
	2004.															
REFI	REFERENCES:															
1	Williams B.W., Power Electronics Circuit Devices and															
	Applications.															
2	Singh M.D., and Khanchandani K.B., Power Electronics,															
	Tata McGraw Hill, 2001.															
3	Joseph		51					D					incip	oles	a	nd
1	Applica			W				1	_							
4	P. S. Bir	nbł	ıra,	Po	wer	El€				Cha	nna	Pub	lishe		1000	
	COs	X	5	de la		_		POs		_			NO	-	PSC	
	NEE	_R 1,	2	3	4	5	6	7	8	9	10	11	12	-1	2	3
	1	3	3	2	2	1	2	2	2	112.0	1	811 <u>1</u> 2.0	2	3	1	2
	2	3	2	1	1	1	3	3	3	-	1	-	3	3	1	3
	3	3	3	2	2	1	-	-	1	-	1	-	2	3	1	1
	4	2	1	-	-	-	-	-	-	-	1	-	2	2	-	-
	5	2	1	-	-	-	-	-	-	-	1	-	2	2	-	-
	6	3	2	1	1	1	-	-	-	-	1	-	2	3	1	-
_	verall	3	2	1	1	1	1	1	1	-	1	-	3	3	1	1
Cor	relation															

23EE032	MULTILEVEL POWER CONVERTERS	L	T	P	С							
		2	0	2	3							
COURSE	OBJECTIVES:											
•]	Learn multilevel topology (Symmetry & As	ymr	neti	ry)								
_	with common DC bus link.											
• 5	Study the working of cascaded H Bridge, D	iode	e Cla	amj	ped							
á	and Flying Capacitor MLI.											
• 5	Study the working of MLI with reduced sw	itch	cou	ınt.								
Simulate three level diodes clamped MLI and three level												
flying capacitor based MLI with resistive and reactive												
load												
• 9	Simulate the MLI with reduced switch cour	1t										
UNIT I	MULTILEVEL TOPOLOGIES				6							
Introducti	on - Generalized Topology with a Comm	on I	C	bus	; –							
100	on - Generalized Topology with a Comm s derived from the generalized topology			-0								
Converter	OWENDER	- sy	ymr	netı								
Converter	s derived from the generalized topology	- sy topo	ymr	netı								
Converted topology	s derived from the generalized topology without a common DC link - Asymmetric t	- sy topo	ymr	netı	ric							
Converter topology UNIT II	rs derived from the generalized topology without a common DC link - Asymmetric to CASCADED H-BRIDGE MULTILEVEL INVERTERS	- sy topo L	ymr log <u>y</u>	netı y.	ric 6							
Converter topology UNIT II	cs derived from the generalized topology without a common DC link - Asymmetric to CASCADED H-BRIDGE MULTILEVEI INVERTERS con -H-Bridge Inverter, Bipolar Pulse Width	- sy topo L	ymr logy dul	neti y. atio	6							
Converter topology UNIT II Introducti Unipolar	cs derived from the generalized topology without a common DC link - Asymmetric to CASCADED H-BRIDGE MULTILEVEL INVERTERS con -H-Bridge Inverter, Bipolar Pulse Width Pulse Width Modulation. Multilever	- sy topo L Mo vel	ymr logy dul Inv	neti y. atio	6 on,							
Converter topology UNIT II Introducti Unipolar Topologie	cs derived from the generalized topology without a common DC link - Asymmetric to CASCADED H-BRIDGE MULTILEVEI INVERTERS don -H-Bridge Inverter, Bipolar Pulse Width Pulse Width Modulation. Multilevers, CHB Inverter with Equal DC Voltage, H-	- sy topo L Mo vel -Bric	dula Inv	y. atio	6 on, ter							
Converter topology UNIT II Introducti Unipolar Topologie Unequal	cs derived from the generalized topology without a common DC link - Asymmetric to CASCADED H-BRIDGE MULTILEVEL INVERTERS Ton -H-Bridge Inverter, Bipolar Pulse Width Pulse Width Modulation. Multilevels, CHB Inverter with Equal DC Voltage, H-DC Voltages - PWM, Carrier-Based PW	- sy topo L Mo vel -Bric	dula Inv Iges Sch	atio	on, ter ith es,							
Converter topology UNIT II Introducti Unipolar Topologie Unequal Phase-Shi	cs derived from the generalized topology without a common DC link - Asymmetric to CASCADED H-BRIDGE MULTILEVEI INVERTERS don -H-Bridge Inverter, Bipolar Pulse Width Pulse Width Modulation. Multilevers, CHB Inverter with Equal DC Voltage, H-	- sy topo L Mo vel -Bric /M :	dula logg dula Inv lges Schalltic	atio	on, ter ith es, ier							

UNIT III DIODE CLAMPED MULTILEVEL 6
CONVERTER

Introduction – Converter structure and Functional Description – Modulation of Multilevel converters – Voltage balance Control – Effectiveness Boundary of voltage balancing in DCMC converters – Performance results.

UNIT	IV	FLYING CAPACITOR MULTILEVEL	6
		CONVERTER	
Intro	fuctio	 n – Flying Capacitor topology – Modulation scheme	for
		- Dynamic voltage balance of FCMC.	. 101
UNIT		MULTILEVEL CONVERTER WITH REDUCED	6
CIVII	. •	SWITCH COUNT	Ü
Multi	level i	nverter with reduced switch count-structures, work	ing
princ	iples a	and pulse generation methods.	
		TOTAL: 30 PERIO	DDS
PRAC	CTICA	AL EXERCISES:	
1.	Simu	ılation of Fixed PWM, Sinusoidal PWM for an inve	rter.
2.	Simu	ılation of H bridge inverter with R load.	
3.		lation of three level diode clamped MLI with R loa	
4.	Simuload.	ulation of three level capacitor clamped MLI wit	h R
5.	ALC:	ulation of MLI with reduced switch configuration.	
	V	TOTAL:30 PERIO	DDS
COU	RSE C	OUTCOMES:	
	After	completion of the course, the students will be able t	to:
CO1:	Mode	el the various multilevel Inverter Topologies and bu	ıild
	the d	lifferent types of PWM for Inverter using MATL	AB
	Simu	link.	
CO2:	Cons	truct an H-Bridge multilevel inverter topology a	and
	mode	el it using MATLAB Simulink.	
CO3:	Make	e use of the PWM methods to reduce harmonics	in
	Multi	ilevel inverter.	
CO4:	Deve	lop a Diode Clamped Multilevel Inverter Topologie	s to
	simu	late three level diodes clamped MLI.	
CO5:	Deve	lop a Flying Capacitor Multilevel Inverter Topolog	gies
	and s	simulate three level Capacitor clamped MLI.	
l l			
CO6:	Make	e use of MATLAB Simulink to explain the working	g of
			J

TEXT BOOKS: Rashid M.H,"Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi, 2014 Pearson 4th edition. Sergio Alberto Gonzalez, Santiago Andres Verne, Maria Ines Valla,"Multilevel Converters for Industrial Applications", CRC Press, 22-Jul-2013, 2017 1st Edition. BinWu, Mehdi Narimani, High Power Converters and AC drives by IEEE press 2017, 2nd Edition. **REFERENCES:** Thomas A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, D. Grahame Holmes, John Wiley & Sons, Oct-2003, 1st Edition Fang Lin Luo, Hong Ye, Advanced DC/AC Inverters: Applications in Renewable Energy, CRC Press, 22-Jan-2013, 2017, 1st Edition. Hani Vahedi, Mohamed Trabelsi, Single-DC-Source Multilevel Inverters, Springer, 2019, 1st Edition Ersan Kabalcı, Multilevel Inverters Introduction and Emergent Topologies, Academic Press Inc, 2021, 1st Edition Iftekhar Maswood, Dehghani Tafti, Advanced Multilevel Converters and Applications in Grid Integration, Wiley, 2018, 1st Edition. **PSOs POs** COs _ Overall Correlation

23EE033	POWER ELECTRONICS FOR	L	T	P	C
	RENEWABLE ENERGY SYSTEMS	2	0	2	3
COURSE	OBJECTIVES:				
• To	provide knowledge about the stand alone	ane	d gr	id	
со	nnected renewable energy systems.				
• To	equip with required skills to derive the cr	iter	ia fo	or tl	ne
de	sign of power converters for renewable en	erg	y		
ap	plications.				
• To	analyse and comprehend the various ope	ratii	ng r	noc	les
of	wind electrical generators and solar energ	y sy	ster	ns.	
• To	design different power converters namely	/ AC	C to	DC	- <i>i</i>
Do	C to DC and AC to AC converters for renew	wab	le e	ner	gy
sy	stems.				
• To	develop maximum power point tracking	algo	rith	nms	.
UNIT I	INTRODUCTION	4		7	6
Environme	ental aspects of electric energy conversion	n: in	npa	cts	of
renewable	energy generation on environment - Qual	itat	ive :	stu	dy
of differen	t renewable energy resources: Solar, Wind,	oce	an ((Tic	lal
and OTEC), Biomass, Fuel cell, Hydrogen energy sys	tem	s	G)	
UNIT II	ELECTRICAL MACHINES FOR RENE	WA	BLE	lou	6
	ENERGYCONVERSION				
Constructi	I on, Principle of operation and characteristi	CS O	f Sq	uirı	rel
	uction Generator (SCIG), Doubly Fed		-		
O	(DFIG) - Permanent Magnet Synchronou				
(PMSG).					
UNIT III	POWER CONVERTERS FOR SOLAR P	Y			6
	SYSTEMS				
Power Cor	l nverters: Line commutated converters (inve	ersio	n-n	nod	le)
	nverter - buck-boost converters- selection				,

Power Converters: Line commutated converters (inversion-mode)

- Boost converter - buck-boost converters- selection of inverter,
battery sizing, array sizing. Block diagram of the solar PV systems

- Types of Solar PV systems: Stand-alone PV systems, Grid
integrated solar PV Systems - Grid Connection Issues.

UNIT IV POWER CONVERTERS FOR WIND SYSTEMS

Power Converters: Three-phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid-Interactive Inverters - Matrix converter -Fixed and variable configuration of WECS

UNIT V HYBRID RENEWABLE ENERGY SYSTEMS

Need for Hybrid Systems- Range and type of Hybrid systems-Case studies of Diesel-PV, Wind-PV -. Maximum Power Point Tracking (MPPT) - Direct and indirect MPPT technique for solar PV system

TOTAL: 30 PERIODS

6

PRACTICAL EXERCISES:

- 1. Simulation on Modelling of fuel cell- V I Characteristics
- 2. Simulation on modelling of Solar PV System- V I Characteristics
- 3. Simulation of self- excited Induction Generator.
- 4. Simulation of a Squirrel Cage Induction Generator (SCIG)
- 5. Simulation of Boost Converter Design for Solar PV Array
- 6. Simulation of Three Level Diode Clamped MLI for PV System
- 7. Simulation of converter characteristics for DFIG/ PMSG based Wind turbine
- 8. Simulation of P&O MPPT controller for Solar PV System

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Identify the environmental aspects, working principle of different renewable energy sources and demonstrate their performance using MATLAB simulation.
- CO2: Model the electrical machines viz., IG, PMSG, SCIG and DFIG, and experiment with their performance using MATLAB simulation.

600	3: Build the Solar PV energy systems using different power															
CO3:																
	convert							sım	ıula	t101	n cii	'Cuit	to	ver	ıty	ıts
604	operatii								1	DI	7			1		. 1
CO4:	Explain					pes	of	50	olar	Р١	√ sy	ster	ns a	ınd	Gı	10
	Connec					ъ.	,	1		. 1	-				1	
CO5:	Make u											-				
	circuit											ın V	/Vinc	1 E	ner	gy
COC	Systems											г		C		
CO6:	Outline													Sy	stei	ns
TEVI	and Maximum Power Tracking (MPPT) methods. Γ BOOKS:															
1	Rashid. M. H "Power electronics Hand book", Academic															
1																
2	press,2nd Edition, 2006 4th Edition, 2017 B. H. Khan "Non conventional Energy sources" Tata Mo															
	B H. Khan "Non-conventional Energy sources", Tata Mc															
	Graw-hill Publishing Company, New Delhi, 2017, 3rd Edition.															
REEL	Edition. FERENCES:															
1	ARK 13.7 ARK		"N	lon-	cor	ivei	atio	nal	er	ero	v s	01110	es"	K1	nan	na
- //	Rai. G.D, "Non-conventional energy sources", Khanna publishers, 6th Edition, 2017.															
2	Rai. G.I								ion'	′. K	hani	na n	ublis	shei	rs. F	ith
_ /	Edition					6J `		Zuc		, 1.	11011	P	acin	J1101	, 0	
3	Gray, L			son	. "\	Vin	d e	ner	σv	svsi	em"	_Pr	entic	re 1	all	of
	India, 2							.EC	0)		TE	CH	NO	LO	G)	
4	S.N.Bha				•			S.	Ва	ner	iee	"Wi	nd	Ele	ctri	cal
	Systems										,					
								POs		-				_	PSC	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	2	2	1	_	_	-	2	3	1	1
	2	3	2	1	1	1	3	3	1	_		_	3	3	1	1
	3	3	2	1	1	1	_	-	1	_	_	_	2	3	1	1
	4	2	1	-	-	-	_	_	1	_	_	_	2	2	-	1
	5 3 2 1 1 1 1 2 3 1 1															
	6	2	1	-	-	-	-	-	1	-	-	-	2	2	-	1
O	verall	3	2	1	1	1	1	1	1	_	_	_	3	3	1	1
Corr	elation	3	_	*	1	1	1	1	1	_	_	_	3	3	1	1

23EE034	SPECIAL ELECTRICAL MACHINES	L	T	P	С				
		2	0	2	3				
COURSE	OBJECTIVES:								
• Tc	understand the working of special ma	achi	nes	lik	e				
stepper motor, switched reluctance motor, BLDC motor									
&	PMSM								
• To	derive torque equation and study the ch	arac	teri	stic	S				
of special machines									
To design the controller for special machines									
To study the working principle of synchronous									
reluctance motor									
To simulate closed loop operation of BLDC motor.									
UNIT I	STEPPER MOTORS				6				
Constructi	onal features -Principle of operation -Tv	nes	-VI	? P	M				
	Constructional features –Principle of operation –Types -VR, PM and hybrid stepper motors – Torque predictions – Characteristics								
	cuits -Applications.	nara	ic tc	130	.03				
UNIT II	SWITCHED RELUCTANCE MOTORS				6				
1 30		-			U				
100,7700	onal features -Principle of operati			orq					
-	-Characteristics-Power controllers - Mi	-							
Control of	SRM drive- rotor position measurement ar	nd es	stim	ati	on				
	pplications.								
UNIT III	PERMANENT MAGNET BRUSHLESS	DC			6				
	MOTORS								
Fundamen	l tals of Permanent Magnets- PMBLDC me	otor	- T	vpe					
	of operation- EMF and Torque		- Jua						
1	stics- Controller design.	,	1		-				
UNIT IV	PERMANENT MAGNET SYNCHROU	NOI	US		6				
	MOTORS								
PMSM - F	 Principle of operation = EME and Torque	e ea	nati	ions					
PMSM - Principle of operation - EMF and Torque equations - Torque speed characteristics -Self-control and Microprocessor									
Control of PMSM- Constructional features, operating principle									
	eteristics of synchronous reluctance motor	16	r.,,	1	.10				
aria criarac	delicated of system offout refuetured filotor								

UNIT		6
	MACHINES	
Princ	ole of operation and characteristics of Hysteresis motor – A	C
series	motors - Linear motor (LIM), Axial Flux Motors	_
Appl	cations.	
	TOTAL: 30 PERIOI	DS
PRA	TICAL EXERCISES:	
1.	Simulation of stepper motor	
2.	Simulation of SRM motor	
	Simulation of BLDC motor.	
	Simulation of PMSM motor	
5.	Simulation of any other special machines	
	TOTAL:30 PERIOR	DS
COU	SE OUTCOMES:	
	After completion of the course, the students will be able to	:
CO1:		ne
Ŷ	perfo <mark>rmance</mark> of different types of Stepper Motors ar	ıd
1	Illustrate their operation & construction.	
CO2:	Develop the MATLAB simulation circuits to verify the	
	operating characteristics of Switched Reluctance Motor ar	ıd
	describe the operation & construction.	
CO3:	Construct the types of Permanent Magnet Brushless D	C
	(PMBLDC) Motors and verify its torque characteristics by	у
	employing simulation tools.	
CO4:	Examine the operation, characteristics, and construction	of
	Permanent Magnet Synchronous Motor and Synchronou	ıs
	Reluctance Motor and perform simulation.	
CO5:	Explain the operation, characteristics and applications	of
	Hysteresis Motor, AC Series Motor and Linear Motor.	
CO6:	Analyze the different types of controller designs employe	ed
	in stepper Motor, Switched Reluctance Motor, PMBLD	
	Motor, PM Synchronous Motor	

г																
TEXT	г воок	S:														
1	Jacek F	. G	iera	ıs, l	Dr.	Ro	ng-]	Jie '	Wa	ng,	Pro	fesso	or M	l aaı	ten	J.
	Kampe	r -	· A	Axia	1]	Flu	x l	Peri	nar	ent	M	lagn	et 1	Bru	shle	ess
	Machin	es-9	Spri	inge	er N	leth	erla	and	s 20	08.						
2	Bilgin,	Ber1	ker	Em	adi	, Al	i Jia	ing,	. Jar	nes	Wei	ishe	ng -	Sw	itch	ed
	reluctance motor drives: fundamentals to applications-CRC															
	2019.															
REFI	ERENCE	S:														
1	Ramu	Kri	shn	an	- I	err	nan	ent	M	agn	et S	Sync	hror	ous	s a	nd
	Brushle				Mo					_			ress,		/lar	
	Applica	tio	ns -	CR	C P	ress	20	09								
2	T.Kenjo	T.Kenjo, ' Stepping motors and their microprocessor														
	_	controls', Oxford University press, New Delhi, 2000 Dekker														
	2009	• •														
3	T.J.E. N	/Iill	er,	'Bı	ush	iles	s n	nag	net	an	d F	Reluc	ctano	e :	mot	or
v	drives',	drives', Clarendon press, London, 1989														
4	R. Krish	nna	n - 9	Swi	tch	ed I	Relu	ıcta	nce	Mo	otor	Driv	es N	Лod	lelir	ıg,
1	Simulat	ion	, A	naly	ysis,	, De	esig	n, a	nd	Ap	plica	atior	ıs -C	RC	Pre	ess
3	2017.		4	6						-						
	CANEE	0 8	TU	7		CC	ΣĹ	POs	aE.	OF	TE	CH	NO	Lq	PSC	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	2	2	2	-	-	-	2	3	1	2
	2	3	2	1	1	1	3	3	3	-	-	-	3	3	1	3
	3	3	2	1	1	1	-	-	-	-	-	-	2	3	1	-
	4	3	2	1	1	1	-	-	-	-	-	-	2	3	1	-
	5	2	1	-	-	1	-	-	-	-	-	-	2	2	1	-
	6	3	3	2	2	1	_	_	_	-	_	_	2	3	1	_
O	verall	3	2	1	1	1	1	1	1	_	_	_	3	3	1	1
Cor	relation															

23EE035	SMPS & UPS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the working of isolated & non-isolated DC-DC converters
- To design isolated & non-isolated DC-DC converters.
- To derive the equations related with converter dynamics.
- To design and simulate P, PI & PID controller for buck, boost and buck-boost Converters.
- To summarize and study different configurations of the UPS.

UNIT I ANALYSIS OF NON-ISOLATED DC-DC 9 CONVERTERS

Basic topologies: Buck, Boost and Buck-Boost - Principles of operation - Continuous conduction mode- Concepts of volt-sec balance and charge balance- Introduction to discontinuous conduction mode.

UNIT II	ANALYSIS OF ISOLATED DC-DC	9
The state of	CONVERTERS	Υ

Introduction - classification- forward- flyback- pushpull - half bridge - full bridge topologies- Cuk converter as cascade combination of boost followed by buck - isolated version of Cuk converter design of SMPS - Introduction to design of magnetic components for SMPS, using relevant software- Simulation of bidirectional DC-DC converter (both non-isolated and isolated) considering EV as an example application.

UNIT III | CONVERTER DYNAMICS 9

AC equivalent circuit analysis – State space averaging – Circuit averaging – Transfer function model for buck, boost and buckboost converters – Simulation of basic topologies using state space model derived – Comparison with the circuit model-based simulation already carried out.

TINIT	Γ IV CONTROLLER DESIGN	9
ONI.	TIV CONTROLLER DESIGN	9
Revie	ew of P, PI, and PID control concepts - gain margin and ph	ase
marg	rin – Bode plot-based analysis – Design of controller for bu	ıck,
boost	t and buck-boost converters.	
UNI	T V POWER CONDITIONERS AND UPS	9
Intro	 duction – Power line disturbances – Power conditioner	'e _
	Offline and On-line – Need for filters – Filter for PWM VS	
	t-end battery charger – boost charger.	J1
11011	TOTAL: 45 PERIO	DS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able t	0:
CO1·	Analyze the Non-Isolated DC-DC Converters in continue	
201.	Conduction Mode.	0 010
CO2:	Analyze the Isolated DC-DC Converters in continue	0115
002	Conduction Mode.	
CO3:	Make use of the mathematical modelling to Study	the
	converter dynamics.	
CO4:	Develop a Controller for Power Converters.	-
	Explain the operation of Power Conditioners.	Υ
	Summarize the working of different types of UPS.	US.
	F BOOKS:	
1	Robert W. Erickson & Dragon Maksimovic, "Fundamen	tals
	of Power Electronics", Third Edition, 2020	
2	Ned Mohan," Power Electronics: A First Course", Johnwi	ley,
222	2013.	
	ERENCES:	
1	Marian K. Kazimierczuk and Agasthya Ayachit,"Laborat	
	Manual for Pulse-Width Modulated DC- DC Pov	wer
	Converters", Wiley 2016.	•
2	Power Electronics handbook, Industrial Electronics ser	ies,
	S.K.Varenina, CRC press, 2002.	
3	Power Electronic Converters, Teuvo Suntio, Tuomas Mes	sso,
	Joonas Puukko, First Edition 2017.	

COs						I	POs	,					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2	2	-	2	2	1	-	-	-	2	3	-	1	
2	3	3	2	2	-	3	3	1	-	-	-	3	3	-	1	
3	3	2	1	1	-	-	-	1	-	-	-	2	3	-	1	
4	3	2	1	1	-	-	-	1	-	-	-	2	3	-	1	
5	2	1	-	-	-	-	-	1	-	-	-	2	2	-	1	
6	2	1	-	-	-	-	-	1	-	-	-	2	2	-	1	
Overall Correlation	3	2	1	1	-	1	1	1	-	-	-	3	3	-	1	

		-	-	_				
23EE036	SOLID STATE DRIVES	L	T	P	<u>C</u>			
COLIDGE OD	TOWN HO	3	0	0	3			
COURSE OBJ								
	derstand steady state operation and tra	ansi	ent					
	nics of a motor load system.							
	dy and analyse the operation of the co	nve	rter	/				
	per fed dc drive, both qualitatively and							
_	itatively.							
To study and understand the operation and performance								
of AC Induction motor drives.								
To study and understand the operation and performance								
of AC Synchronous motor drives.								
 To analyse and design the current and speed controllers 								
for a closed loop solid state DCmotor drives								
UNIT I DRIVE CHARACTERISTICS 9								
Electric drive -	- Equations governing motor load dyna	mics	s – s	tead	dy			
100	y – multi quadrant Dynamics:							
deceleration,	starting & stopping - typical	load	t	orq	ue			
characteristics	- Selection of motor.			GY				
7 7 7 7 7	NVERTER / CHOPPER FED DC MO	_						
DR	RIVE							
Steady state a	nalysis of the single and three phase of	conv	erte	er fo	ed			
separately exc	ited DC motor drive -continuous and d	lisco	ntir	nuo	us			
conduction -	Time ratio and current limit control -	- 4	qua	dra	nt			
operation of co	onverter / chopper fed drive.							
UNIT III IN	DUCTION MOTOR DRIVES				9			
Stator voltage control – energy efficient drive – v/f control –								
constant air gap flux - field weakening mode - voltage / current								
fed inverter – closed loop control–Field-oriented control								
UNIT IV SY	NCHRONOUS MOTOR DRIVES				9			
V/f control and self-control of synchronous motor: Margin angle								

contr	ol and power factor control – permanent magnet
syncl	nronous motor.
UNI	TV DESIGN OF CONTROLLERS FOR DRIVES 9
Trans	sfer function for DC motor / load and converter – closed loop
	ol with current and speed feedback – armature voltage
	ol and field weakening mode – design of controllers; current
	oller and speed controller-converter selection and
	acteristics.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Demonstrate a comprehensive understanding of steady-
	state operation and transient dynamics of motor load
	systems.
CO2:	Analyze the operation of converter and chopper-fed DC
S S	drives, including the identification of continuous and
Í	discontinuous conduction modes.
CO3:	Explain and assess the performance of AC induction motor
	drives, focusing on energy-efficient control methods such as
	V/f control. AFFILIATED TO ANNA UNIVERSITY AUTONOMOUS
CO4:	Illustrate the principles of operation and control strategies
	for synchronous motors, including margin angle and power
	factor control.
CO5:	Examine the current and speed controllers for closed-loop
	solid-state DC motor drives, utilizing appropriate control
	strategies.
CO6:	Apply theoretical knowledge to solve real-world problems
	in electric drive systems, including the selection of suitable
	motor and converter systems based on load requirements.
TEX	T BOOKS:

192

Publishing House, 2nd Edition January 2010.

Gopal K.Dubey, Fundamentals of Electrical Drives, Narosa

1

2 Bimal K.Bose. Modern Power Electronics and AC Drives, Pearson Education, 2002 1st Edition.

REFERENCES:

- 1 S.K.Pillai, A First course on Electrical Drives, Wiley Eastern Limited, 3rd Edition 2012.
- 2 Murphy J.M.D and Turnbull, Thyristor Control of AC Motor, Pergamon Press, Oxford 1988, 1st Edition.
- Gopal K.Dubey, Power semiconductor controlled Drives, Prentice Hall Inc., New Jersey,1989,1st Edition.
- 4 R.Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Prentice hall of India, 2001, 1st Edition.

COs		POs												PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	2	1	-	-	_	2	2	2	-1	_	-	2	3	1	2		
2 POW	3	3	2	2	-	3	3	1	9	-)	-	3	3		1		
3	2	1	(2)	\ -	-	620	<u></u>	-//	7-	-	-	2	3	-	ř-		
4	2	1	/ -	1	- 8	2	8	-\	A		7	2	3	-	-		
5	3	3	2	2	_	-	_	1	1	_	_	2	2	1	1		
6	2	1	5	//_	-	-	-	1	-	-	-	2	2	-	1		
Overall Correlation	3	2	1	1	ATF	1	1	1	UF	NIVER	SITY	3	3	400	1		

23EE037	CONTROL OF POWER ELECTRONICS	L	T	P	C
	CIRCUITS	2	0	2	3

COURSE OBJECTIVES:

- To learn the basics of control system simulation
- To do symbolic calculation
- To study the principles of sliding mode control and the way of apply smc for buck converter
- To learn the concept of power factor correction.
- To design simulate smc for buck converter and power factor correction circuit with controller.

SIMULATION BASICS IN CONTROL	6
SYSTEMS	

Transfer Function-How to build transfer function, identify Poles, zeros, draw time response plots, bode plot (Bode Plots for Multiplication Factors, Constant, Single and Double Integration Functions, Single and Double Differentiation Functions, Single Pole and Single Zero Functions, RHP Pole and RHP Zero Functions), state space modelling-transfer function from state space Model.

UNIT II SYMBOLIC CALCULATIONS WERSHY AUTONOME AS 6

Symbolic Variables - Symbolic Vector Variables, Commands for Handling Polynomial Expressions - Extracting Parts of a Polynomial -. Factorization and Roots of Polynomials, Symbolic Matrix Algebra - Operations with Symbolic Matrices - Other Symbolic Matrix Operations.

UNIT III | SLIDING MODE CONTROL BASICS | 6

Introduction- Introduction to Sliding-Mode Control- Basics of Sliding-Mode Theory- Application of Sliding-Mode Control to DC-DC Converters—Principle-Sliding mode control of buck converter.

UNI	ΓIV	POWER FACTOR CORRECTION CIRCUITS	6
Intro	ductio	on, Operating Principle of Single-Phase PFCs, Contro	ol of
boos	conv	verter based PFCs, Designing the Inner Avera	age-
Curr	ent-Co	ontrol Loop, Designing the Outer Voltage-Con	trol
Loop	, Exan	nple of Single-Phase PFC Systems.	
UNI	ΓV	CONTROLLER DESIGN FOR PFC CIRCUITS	6
Powe	er facto	or correction circuit using other SMPS topologies:	Cuk
and	SEPIC	C converter - PFC circuits employing bridge	less
topol	ogies.		
		TOTAL: 30 PERIO	ODS
PRA	CTICA	AL EXERCISES:	
1.	Simu	ılation exercises on zero, first and second order b	asic
	blocl	ks.	
2.	Simu	ulation exercises based on symbolic calculations.	>
3.	Simu	ı <mark>lation</mark> of Sliding mode control based buck converte	er.
4.		u <mark>lation</mark> of Single-Phase PFC circuit employing be verter.	oost
5.	Simu	ulation of Single-Phase PFC circuit employing	Cuk
		erters.	
		TOTAL:30 PERIO	ODS
COU	RSE C	OUTCOMES:	
	After	completion of the course, the students will be able	to:
CO1:	Anal	yze transfer function model and time response plots	for
	contr	rol systems.	
CO2:	Expe	riment with symbolic calculations and polynor	nial
	expre	essions using MATLAB.	
CO3:	Appl	y sliding mode control principles in a buck conve	rter

CO4: Build the power factor correction circuits using boost

CO5: Explain the power factor correction circuits using various

and build the simulation circuit.

converters in Simulink.

SMPS topologies.

CO6:	Utilize	sim	ula	tior	ı to	ols	to e	nha	nce	e pr	actic	al u	ndei	sta	ndi	ng
	of power	er e	lect	ron	ics	con	trol									
TEXT	BOOK	S:														
1	Dean F	red	eric	k aı	nd J	oe (Cho	w,	"Fe	edb	ack	Con	trol	pro	bler	ns
	using N	/IAI	ΓLA	Ва	nd	the	Co	ntro	ol sy	yste	m to	ool b	ox",	200	00, 1	lst
	Edition	, Ce	enga	age	Lea	rni	ng.									
2	Ned Mo	oha	n,"l	Pow	er]	Elec	ctro	nics	s: A	Fire	st Co	urse	e", Jo	hn	wile	2 у,
	2013, 1s	st E	diti	on.												
3	Marian	ŀ	ζ.	Ka	zim	ier	czu	k	anc	1	Aga	sthy	a .	Aya	chi	t,"
	Laborat	tory	7 N	Ianı	ual	for	Pι	ılse	-W	idtł	ı M	odul	lated	l D	C-I	C
	Power	Cor	ivei	ters	s", I	Wil	ey 2	2016	, 1s	t E	ditio	n.				
4	S.K. Va	arei	nina	ι, "	Pov	ver	Ele	ectr	oni	cs :	hand	dboo	k, I	ndı	ıstr	ial
	Electro	Electronics series", CRC press, 2002,1st Edition.														
REFE	ERENCES:															
1	Slew-Chong Tan, Yuk Ming Lai Chi-Kong Tse, "Sliding															
8	mode c	ont	rol	for	Sw	itch	ing	Po	wei	r Co	onve	rter	s: Te	chr	iiqu	ıes
Î	and Im	plei	mer	ntati	ion'	', 1s	st E	diti	on,	CR	C Pr	ess.				
2	Andre					-				-	s of	Sw	itchi	ng-	Mo	de
9	DC/DC	CC	onv	erte	ers"	, Sp	rin	ger	199	1.						
3	Lopez	Ces	ar,	"M	ΙΑΤ	LA	B S	ym								
	Tools",	Ap	res	s, 20)14.	AFF	ILIAT	ED T	DAN	NA U	NIVER	SITY	AUTO	3140)	MOU	5
(COs						1	POs	3					I	SO	s
	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	2	1	2	2	2	-	-	-	2	3	1	2
	2	3	2	1	1	1	3	3	3	-	-	-	3	3	1	3
	3	3	2	1	1	1	-	-	_	-	-	-	2	3	1	-
	4	3	2	1	1	1	-	-	_	-	-	-	2	3	1	-
	5	2	1	-	-	-	-	-	-	-	-	-	2	2	-	-
	6	3	2	1	1	1	-	-	2	-	-	-	2	2	1	2
	verall	3	2	1	1	1	2	2	2	_	_	_	3	3	1	2
Corr	elation	-	-	-	-	_	-	l –	-						_	-

23EE038		ANALYSIS OF ELECTRICAL	L	T	P	C
		MACHINES	3	0	0	3
COURSE	ЭBJ	ECTIVES:				
		nodel & simulate all types of DC mach				
		levelop reference frame equations for v	vario	ous		
		nents like R, L and C				
		nodel an induction (three phase and 'n chronous machine	' ph	ase)	an (d
	-	drive reference frame equations for ind	ncti	nn a	nd	
		chronous machine	ucti	<i>3</i> 11 C	iiia	
	,	study the need and working of multiph	ase	ind	ucti	ion
		synchronous machine.				
UNIT I	M(ODELING OF BRUSHED-DC ELECT	RIC			9
	MA	ACHINERY				
Fundamen	tals	of Operation - Introduction - Govern	ing e	equa	atio	ns
	BECT 1 1	ng of Brushed DC-Motor -Shunt,				
(用うぎ)		State model derivation - Construction				
DC Machir	ne u	sing state equations- Shunt, Series and	Coı	npo	oun	d.
UNIT II	RE	FERENCE FRAME THEORY				9
Historical	bac	karayad phase transformation and	con	21221	1101	-O#
		kground - phase transformation and				
		n - transformation of variables from	Stati	OH	пу	10
		ence frame.				0
UNITIII	IIN.	DUCTION MACHINES				9
Three pha	ase	induction machine - equivalent	circı	ıit–	fr	ee
acceleration	n c	haracteristics - voltage and torque	equ	atio	ns	in
machine v	ari	ables and arbitrary reference frame	va	riab	les	_
Simulation	un	der no- load and load conditions- Mac	hine	va	rial	ole
form, arbit	rary	reference variable form.				
UNIT IV	SY	NCHRONOUS MACHINES				9
Three phas	se sv	ynchronous machine - voltage and torc	ue e	equa	atio	ns
_	-	riables and rotor reference frame vari	_	_		
equations).				,		

UNIT V MULTIPHASE (MORE THAN THREE-PHASE) **MACHINES CONCEPTS** Preliminary Remarks - Necessity of Multiphase Machines -Evolution of Multiphase Machines- Advantages of Multiphase Machines - Working Principle - Multiphase Induction Machine, Multiphase Synchronous Machine -Modelling of 'n' phase machine. Applications of Multiphase Machines TOTAL: 45 PERIODS **COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Develop mathematical models and simulations for various types of DC machines. CO2: Apply reference frame transformations for analyzing electrical variables in machines. CO3: Analyze operational characteristics and equivalent circuits of three-phase induction machines. CO4: Develop the voltage and torque equations for synchronous machines using Park's transformation. CO5: Explain principles, advantages, and applications of multiphase machines. CO6: Utilize simulation software to model and analyze the performance of electrical machines. **TEXT BOOKS:** Stephen D. Umans, "Fitzgerald & Kingsley's Electric 1 Machinery", Tata McGraw Hill, 7th Edition, 2020. Bogdan M. Wilamowski, J. David Irwin, The Industrial 2 Electronics Handbook, Second Edition, Power Electronics and Motor Drives, CRC Press, 2011, 1st Edition. **REFERENCES:** Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven 1 D. Pekarek, "Analysis of Electric Machinery and Drive

Systems", 3rd Edition, Wiley-IEEE Press, 2013.

2	R. Krisl	R. Krishnan, Electric Motor & Drives: Modeling, Analysis														
	and Co	and Control, Pearson Education, 1st Imprint, 2015, 1st														
	Edition											•				
3	R. Ran	nan	ujai	m,	Mo	ode	ling	, a	nd	Aı	naly	sis	of	Ele	ctric	cal
	Machin															
4	Chee M															
	using M			_	-											J
5														n R	edd	lv.
	_	Atif Iqbal, ShaikhMoinoddin, Bhimireddy Prathap Reddy, Electrical Machine Fundamentals with Numerical														
	Simulat															
	Edition		-		, -			,				-, .		, ,	,	
	2011011						1	POs	<u> </u>					F	SO)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12		2	3
		_		_	_	3	Ŭ		Ŭ	9	10	11				
	1	3	2	1	1	-	1	2	1	-	-	-	2	3	-	1
	2	3	2	1	1	-	1	3	1	-	-	-	3	3	-	1
	3	3	3	2	2	-	1	A	1	4	-	b -	2	3	-	1
	1	0		1	1		1	9	1/	7		7	10	_	-	
	4	3	2	1	1	-	1	r:-	1	7	-	-	2	3	-	1

1

1 1 1

1

6

Overall

Correlation

3 2 1 1

3 2

1 1

MEET LATED TO ANNA IDJIVEDSITY | AUTOMOMOLIC

2

3

3

1

1

VERTICAL - 2 - ELECTRIC VEHICLES TECHNOLOGY

23EE039	ELECTRIC VEHICLE	L	T	P	C
	ARCHITECTURE	3	0	0	3
COURSE	OBJECTIVES:				
	 To learn the structure of Electric Vehicle 	le, H	[ybı	id	
	Electric Vehicle				
	 To study about the EV conversion com 	pon	ent	3	
	 To know about the details and specific 	atioı	ns fo	or	
	Electric Vehicles				
	• To understand the concepts of Plug-in	Hyb	rid		
	Electric Vehicle				
	 To model and simulate all types of DC 	mot	tors		
UNIT I	VEHICLE ARCHITECTURE AND SIZIN	1G			9
Electric Ve	hicle History, and Evolution of Electric Veh	icle	s. H	vbı	rid
	re - Series, Parallel and Series parallel			•	
100000	Bike - Motorcycle- Electric Cars and Heav		-		-
1000	d Specifications.	1			
100	VEHICLE MECHANICS				9
77.1.1	TO LECE OF THE	VIC.			,
	echanics- Roadway fundamentals, Laws				
	netics, Dynamics of vehicle motion, propu		_		
_	nd acceleration, Tire -Road mechanics	, P1	opi	11S1	on
System De	0				
UNITIII	POWER COMPONENTS AND BRAKES	•			9
Power tra	in Component sizing- Gears, Clutches,	Dif	fere	enti	al,
Transmiss	ion and Vehicle Brakes. EV power train	sizi	ng,	Н	ΞV
Powertrain	_		Ü		
UNIT IV	HYBRID VEHICLE CONTROL STRATE	EGY			9
Micro and	Mild architectures, Vehicle supervisory c	ontr	ol,	Mo	de
	trategy, Modal Control strategies.				
UNIT V	PLUG-IN HYBRID ELECTRIC VEHICL	E			9
Constructi	on and working of PHEV-Block d	iagr	am	aı	nd

comp	onents-Charging mechanisms-Advantages of PHEVs.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the evolution and various architectures of Electric
	Vehicles, including Series, Parallel, and Series-Parallel
	designs.
CO2:	Apply the principles of vehicle mechanics and dynamics to
	analyze the motion and propulsion system design of Electric
	Vehicles.
CO3:	Analyze the sizing and functionality of power train
	components, including gears, clutches, and brakes, for
	Electric and Hybrid Electric Vehicles.
CO4:	Explain different control strategies for Hybrid Vehicles,
201.	focusing on vehicle supervisory control and mode selection
	strategies.
CO5:	Summarize the construction, working, and charging
CO3.	mechanisms of Plug-in Hybrid Electric Vehicles (PHEVs).
CO6:	Model and examine the simulation of DC motors in the
CO0.	context of Electric Vehicles, applying appropriate simulation
	tools and techniques.
TEY	T BOOKS:
1	Mehrdad Ehsani, YiminGao, Sebastian E. Gay, Ali Emadi,
1	'Modern Electric, Hybrid Electric and Fuel Cell Vehicles:
	Fundamentals, Theory and Design', CRC Press, 2004.
2	Build Your Own Electric Vehicle, Seth Leitman, Bob Brant,
	McGraw Hill, Third Edition 2013.
3	Advanced Electric Drive Vehicles, Ali Emadi, CRC Press,
	First edition 2017.
4	The Electric Vehicle Conversion Handbook: How to Convert
	Carry, Trucks, Motorcycles, and Bicycles -Includes EV
	Components, Kits, and Project Vehicles Mark Warner, HP Books,2011.
1	DUURG, 2011.

REF	REFERENCES:															
1	Heavy-	Heavy-duty Electric Vehicles from Concept to Reality,														
	Shashar	nk .	Ar	ora,	Α	lire	za	Ta	sha	kor	i A	bkeı	nar,	Sh	ant	ha
	Gamini	Jay	asir	ngh	e, K	ari	Tar	nm	i, El	lsev	ier S	Scier	ice, 2	202	1	
2	Electric	Vε	hic	les	Mo	ode	rn	Тес	hnc	olog	ies	and	Tre	end	s, N	Vil
	Patel, A	kas	h K	um	ar I	3ho	i, Sa	nje	evil	kun	nar I	Padn	nana	bar	ı, Je	ns
	Bo Holr	n-N	liels	sen	Spr	ing	er, 2	2020).							
	POs PSOs															
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	1	1	1	-	-	-	1	2	1	1
	2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	3	3	3	2	2	1	1	1	-	-	-	-	1	3	1	-
	4	2	1	-	-	-	1	-	1	-	-	-	1	2	-	1
	5	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	6	3	2	1	1	3	-		1	Ą		1	1	3	3	1
	verall relation	3	2	1	2	1	1	1	1	-	-	-	1	3	1	1

23EE040	DESIGN OF ELECTRIC VEHICLE	L	T	P	C
	CHARGING SYSTEM	2	0	2	3
COURSE	OBJECTIVES:				
	To know the charging station and standard				
	To learn the concepts of power converters				7
	To find the charging scheme in renewable	base	ed E	V	
	charging				
	To demonstrate the wireless power transfe			-	
UNIT I	To design & simulate power factor correcting CHARGING STATIONS AND STANE			ıits	6
UNITI	CHARGING STATIONS AND STANL	M	DS		U
Introduction	on-Charging technologies- Conductive o	har	ging	z, E	EV
charging in	nfrastructure, International standards and	d re	gula	itio	ns
(IEC 61851	-1, IEC 61851-23, SAE J1772, SAE J3068an	dIE	C 62	2196	6)-
Inductive c	harging, need for inductive charging of EV	V, M	ode	s aı	nd
operating	principle, Static and dynamic char	rgin	g,	V2	G,
Bidirection	al power flow.				ř
UNIT II	POWER ELECTRONICS FOR EV CHA	RGI	NG		6
Levels of E	V Battery Charging Systems-AC charging	-DC	cha	rgii	ng
systems- P	ower Electronic Converters for EV Batte	ry C	Char	gin	g-
AC-DC con	nverter with boost PFC circuit, with bridge	anc	l wi	tho	ut
bridge circ	ruit - Bidirectional DC-DC Converters-	Nor	ı-isc	olate	ed
DC-DC	bidirectional converter topologies-	На	ılf-b	rid	ge
bidirection	al converter.				
UNIT III	EV CHARGING USING RENEWABLE	AN	D		6
	STORAGE SYSTEMS				
Introduction	on EV charger topologies, EV charging	/dis	cha	rgiı	ng
strategies -	- Integration of EV charging-home solar	· PV	sy sy	ste	m,
Operation	modes of EVC-HSP system , Control	str	ateg	gy	of
EVCHSP s	ystem - fast-charging infrastructure with	sola	r PV	√ aı	nd
energy stor	age.				
UNIT IV	WIRELESS POWER TRANSFER				6

Introduction - Inductive, Magnetic Resonance, Capacitive types.

Wireless Chargers for Electric Vehicles - Types of Electric Vehicles - Battery Technology in EVs - Charging Modes in EVs - Benefits of WPT. - WPT Operation Modes - Standards for EV Wireless Chargers, SAE J2954, IEC 61980.

UNIT V POWER FACTOR CORRECTION IN 6 CHARGING SYSTEM

Need for power factor correction- Boost Converter for Power Factor Correction, Sizing the Boost Inductor, Average Currents in the Rectifier and calculation of power losses

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Simulation and analysis for bi-directional charging V2G and G2V.
- 2. Design and demonstrate solar PV based EV charging station.
- 3. Simulate and infer wireless power charging station for EV charging.
- 4. Simulation of boost converter-based power factor correction.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the various charging technologies and international standards for Electric Vehicle charging systems.
- CO2: Analyze the role of power electronic converters in AC and DC charging systems for Electric Vehicles using MATLAB simulation.
- CO3: Evaluate renewable energy-based EV charging schemes, including the integration of home solar PV systems and energy storage using simulation.
- CO4: Apply wireless power transfer techniques, including inductive, magnetic resonance, and capacitive types, to Electric Vehicle charging systems and model the simulation circuit

- CO5: Build power factor correction circuits for EV charging systems, focusing on boost converters and power loss calculations using MATLAB.
- CO6: Apply the operation modes and benefits of wireless power transfer in Electric Vehicle charging, along with the relevant international standards.

TEXT BOOKS:

- Mobile Electric Vehicles Online Charging and Discharging, Miao Wang Ran Zhang Xuemin (Sherman) Shen, Springer 2016, 1st Edition.
- 2 Alicia Triviño-Cabrera, José M. González-González, José A. Aguado, Wireless Power Transferor Electric Vehicles: Foundations and Design Approach, Springer Publisher 1st Edition. 2020.
- 3 Nil Patel, Akash Kumar Bhoi, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, Electric Vehicles Modern Technologies and Trends. Springer Publisher 1st Edition, 2021.

REFERENCES:

- Cable Based and Wireless Charging Systems for Electric Vehicles, Technology and control, management and grid integration, Rajiv Singh, Sanjeevikumar Padmanaban, Sanjeet Dwivedi, Marta Molinas and Frede Blaabjerg, IET 2021, 1st Edition.
- 2 Electric and Hybrid Electric Vehicles, James D Halderman, Pearson, 2022, 1st Edition.
- 3 Handbook of Automotive Power Electronics and Motor Drives, Ali Emadi, Taylor & Francis, 2005.

COs						I	POs	5					I	PSC	s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	1	2	2	-	-	-	2	2	-	2
2	3	3	2	2	1	1	ı	-	ı	ı	ı	3	3	1	-
3	3	3	2	2	1	2	3	2	ı	ı	ı	2	3	1	2
4	3	2	1	1	1	1	1	2	-	-	-	2	3	1	2
5	2	1	-	-	1	-	1	-	-	-	-	2	2	1	1
6	3	2	1	1	-	ı	ı	1	ı	ı	ı	2	3	ı	1
Overall Correlation	3	2	1	1	1	1	2	2	1	1	ı	3	3	1	2

23EE041	INTELLIGENT CONTROL OF	L	T	P	C
	ELECTRIC VEHICLES	2	0	2	3

COURSE OBJECTIVES:

- To design and drive the mathematical model of a BLDC motor and its characteristics
- To learn the different control schemes for BLDC motor
- To study the basics of fuzzy logic
- To study the FPGA & VHDL basics
- To implement fuzzy logic control of BLDC motor in real time.

UNIT I	MATHEMATICAL MODEL AND	6
	CHARACTERISTICS ANALYSIS OF THE	
	BLDC MOTOR	

Structure and Drive Modes - Basic Structure, General Design Method, Drive Modes. Mathematical Model, Differential Functions, Equations, Transfer State-Space Equations. Characteristics Analysis, Starting Characteristics, Steady-State Operation, Dynamic Characteristics, Load Matching Commutation Transients.

UNIT II SPEED CONTROL FOR ELECTRIC DRIVES 6

Introduction -PID Control Principle, Anti windup Controller, Intelligent Controller. Vector Control. Control applied to BLDC motor.

UNIT III FUZZY LOGIC 6

Membership functions: features, fuzzification, methods of membership value assignments Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures - measures of fuzziness - fuzzy integrals - fuzzy rule base and approximate reasoning: truth values and tables, fuzzy propositions, formation of rules decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems, overview of fuzzy expert system-fuzzy decision making.

UNI	TIV FPGA AND VHDL BASICS	6
0111		
	duction - FPGA Architecture-Advantages-Review of FP	
	y processors- Spartan 7. VHDL Basics- Fundament	
Instr	uction set-data type-conditional statements- programs	like
	metic, sorting, PWM generation, Speed detection.	
UNI	T V REAL TIME IMPLEMENTATION	6
Inver	ter design, identifying rotor position via hall effect sens	ors,
open FPG/	loop and fuzzy logic control of 48 V BLDC motor us	sing
1101	TOTAL: 30 PERIO	DDS
PRA	CTICAL EXERCISES:	
1.	Design and simulate speed controller for induction mo	tors
	in EV for dynamic state performance	
2.	Design and simulate speed controller for induction mo	tors
	in EV for steady state performance	
3.	Simulate a fuzzy logic controller based energy stor	age
Ž.	system for EV.	
4.	Fuzzy logic control of BLDC motor using FPGA in real t	ime
1	TOTAL:30 PERIO	DDS
COU	RSE OUTCOMES:	Υ
	After completion of the course, the students will be able	to:
CO1:	Build the mathematical model and the characteristics	of of
	BLDC motors, including drive modes and load matching	5.
CO2:	Apply various control schemes, including PID and ver	ctor
	control, for the speed control of Electric Drives with a fo	cus
	on BLDC motors and model the simulation circuits.	
CO3:	Explain the fundamentals of fuzzy logic, include	_
	membership functions, fuzzification, and fuzzy rule-ba	sed
	systems.	
CO4:	Develop basic FPGA programs using VHDL for applicati	
	like PWM generation and speed detection in Elec	tric
00-	Vehicles.	1
CO5:	Evaluate the effectiveness of fuzzy logic control w	
	applied to BLDC motors in real-time applications v	vith
	MATLAB simulation.	

CO6:	Develo	p fuzzy logio	control	on a 48\	/ BLI	OC mo	tor using
		integrating					
	identifi	cation throug	gh hall eff	ect senso	rs.		_

TEXT BOOKS:

- 1 Electric Powertrain Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, Wiley 1st Edition 2018.
- 2 VHDL Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1 st Edition 2015.
- Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Third Edition" CRC Press, Taylor & Francis Group, 2021, 1 st Edition.
- 4 Chang-liang, Permanent Magnet Brushless DC Motor Drives and Controls, Xia Wiley 2012, 1 st Edition

- M.N. Cirstea, A. Dinu, J.G. Khor, M. McCormick, Neural and Fuzzy Logic Control of Drives and Power Systems, Newnes publications, 1 st Edition, 2002.
- Wei Liu, Hybrid Electric Vehicle System Modeling and Control, Wiley 2017, 2nd Edition
- 3 Electric and Plug-in Hybrid Vehicle Networks Optimization and Control, Emanuele Crisostomi Robert Shorten, Sonja Stüdli, Fabian Wirth, CRC Press, 1 st Edition. 2018.

COs						Ι	POs			in Continues		estat Patri	I	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	1	-	1	-	-	-	2	3	-	1
2	3	2	1	1	1	-	-	1	-	-	-	3	3	1	1
3	2	1	-	-	-	-	-	1	-	-	-	2	2	-	1
4	3	2	1	1	1	-	-	1	-	-	-	2	3	1	1
5	3	3	2	2	1	-	-	1	-	-	-	2	3	1	1
6	3	2	1	1	-	-	-	1	-	-	-	2	3	-	1
Overall Correlation	3	3	2	2	1	1	-	1	1	-	1	3	3	1	1

23EE042	GRID INTEGRATION OF	L	T	P	C
	ELECTRIC VEHICLES	3	0	0	3
COURSE	OBJECTIVES:				
• To 1	know the basic details of V2G				
• To s	study the benefits & challenges of V2G				
	earn EV & V2G on the smart grids renewa	able	ene	ergy	7
	ems			0)	
3	know the grid integration				
	DEFINITION, And STATUS Of V2G				9
UNITI	DEFINITION, Alla STATUS OF V2G				פ
Defining V	ehicle to Grid (V2G) - History and Dev	zelo ₁	ome	ent	of
	porating V2G to the EV, Auditing and M				
	V2G - Power Markets and Application				
	nd V2G Suitability, Long-Term Storage				
	d Other Grid Applications, Beyond the				
Concepts R	elated to V2G.	1			
UNIT II	BENEFITS AND CHALLENGES OF V20	G			9
Benefits of	V2G, Technical Benefits: Storage Superior	rity	and	Gı	id
Efficiency,	Economic Benefits: EV Owners and Soci	etal	Sa	ving	gs,
Environme	nt and Health Benefits: Sustainability in E	lecti	icit	y aı	nd
Transport,	Other Benefits.	NO.	LO	G)	
UNIT III	CHALLENGES TO V2G CANNAUNIVERSITY			MOU	9
Technical	Challenges-Battery Degradation, Charge	er E	ffic	ieno	CV,
	n and Communication, V2G in a Digital				
	nd Business Challenges to V2G - Evaluatii				
	ues , EV Costs and Benefits , Adding V2				
	Additional V2G Costs , The Evolving Na				
Costs and I	e de la companya de				
UNIT IV	IMPACT OF EV AND V2G ON THE SM	[AR	Т		9
	GRID AND RENEWABLE ENERGY SYS				
T . 1	m (m (, , , , , , , , , , , , , , , ,				

Introduction - Types of Electric Vehicles - Motor Vehicle Ownership and EV Migration - Impact of Estimated EVs on Electrical Network - Impact on Drivers and the Smart Grid - Standardization and Plug-and-Play - IEC 61850 Communication Standard and IEC 61850-7-420 Extension.

1		
UNI		9
	OF EVS	
Intro	duction - Machine to Machine (M2M) in distributed ener	gy
	gement systems - M2M communication for EVs - M2	~
comn	nunication architecture (3GPP) - Electric vehicle data loggi	ng
- Sca	lability of electric vehicles -M2M communication with	ith
sched	uling.	
	TOTAL: 45 PERIO	DS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able to):
CO1:	Explain the concept, history, and development of Vehicle-	to-
	Grid (V2G) technology, along with its applications in pow	ver
	markets.	
CO2:	Analyze the technical, economic, environmental, a	nd
	societal benefits of V2G technology for grid integration.	
CO3:	Explain the challenges related to V2G, including batte	
,	degra <mark>dation, charger efficiency, and econon</mark>	nic
	considerations in a digital society.	
CO4:	Explain the impact of Electric Vehicles and V2G on small	
1	grids and renewable energy systems, consideri	ng
	standardization and communication protocols.	/_
CO5:	Summarize the role of Machine-to-Machine (M2)	,
	communication in managing the integration and scalabil	
	of Electric Vehicles within distributed energy manageme	ent
CO6.	systems. Apply the principles of M2M communication architectu	120
CO0.	and scheduling for effective grid integration and da	
	management of Electric Vehicles.	ata
TEXT	BOOKS:	
1	Advanced Electric Drive Vehicles, Ali Emadi, CRC Pre	ess
-	2017, 1st Edition.	
2	Plug In Electric Vehicles in Smart Grids, Charging Strategi	es,
	Sumedha Rajakaruna, Farhad Shahnia and Arinda	am
	Ghosh,Springer,2015, 1st Edition.	
3	ICT for Electric Vehicle Integration with the Smart Gr	id,
	Nand Kishor 1; Jesus Fraile-Ardanuy, IET 2020, 1st Edition	

REFERENCES:

- 1 Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid, Junwei Lu and Jahangir Hossain, IET 2015, 1st Edition.
- 2 Lance Noel · Gerardo Zarazua de Rubens Johannes Kester · Benjamin K. Sovacool, Vehicleto-Grid A Sociotechnical Transition Beyond Electric Mobility, 2019, 1st Edition.

COs						I	POs						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	-	1	-	-	-	2	2	-	1
2	3	3	2	2	-	1	-	1	-	-	-	3	3	-	1
3	2	1	-	-	-	-	-	1	-	-	-	2	2	-	1
4	2	1	-	-	-	1	-	1	-	-	-	2	2	-	1
5	2	1	-	-	-	-	-	1	-	-	-	2	2	-	1
6	3	2	1	1	-	-	-	1	-	-	-	2	3	-	1
Overall Correlation	3	2	1	1	-	1	9	1				3	3		1

COLLEGE OF TECHNOLOGY

23EE043	TESTING OF ELECTRIC VEHICLES L T I	P C
	2 0 2	2 3
COURSE	OBJECTIVES:	ı
•	To know various standardization procedures	
•	To learn the testing procedures for EV & HEV	
	components	
•	To know the functional safety and EMC	
•	To realize the effect of EMC in EVs	
•	To study the effect of EMI in motor drives and in D	C-
	DC converter system	
UNIT I	EV STANDARDIZATION	6
	on - Current status of standardization of elec	
	electric Vehicles and Standardization - Standardization	
	tive in the Field – Standardization activities in count	100-
	 The International Electro Technical Commission Zation of Vehicle Components. 	n -
UNIT II	TESTING OF ELECTRIC MOTORS AND	6
ONII II	CONTROLLERS FOR ELECTRIC AND	U
	HYBRID ELECTRIC VEHICLES	
19.	HIDRID ELECTRIC VEHICLES	v
Test Proc	redure Using M-G Set, electric motor, control	ller,
	n of Test Procedure, Analysis of Test Items for the T	
	tor Test and Controller Test (Controller Only) T	Гest
	Using Eddy Current Type Engine Dynamometer.	
UNIT III	FUNDAMENTALS OF FUNCTIONAL SAFETY	6
	AND EMC	
Functional	l safety life cycle - Fault tree analysis - Hazard and	risk
assessmen	• •	
	ent assessments - Configuration managemen	t -
	- Reliability block diagrams and redundance	y -
	safety and EMC - Functional safety and quality.	
UNIT IV	EMC IN ELECTRIC VEHICLES	6
Introduction	on - EMC Problems of EVs, EMC Problems of Mo	otor
	MC Problems of DC-DC Converter System, E	
Problems of	of Wireless Charging System, EMC Problem of Veh	icle

Controller, EMC Problems of Battery Management System, Vehicle EMC Requirements.

EMI IN MOTOR DRIVE AND DC-DC UNIT V CONVERTER SYSTEM

6

Overview -EMI Mechanism of Motor Drive System, Conducted Emission Test of Motor Drive System, IGBT EMI Source, EMI Coupling Path, EMI Modelling of Motor Drive System. EMI in DC-DC Converter.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Design motor controller for hybrid electric vehicle applications
- 2. Simulation of motor controller for hybrid electric vehicle applications
- 3. Design of Wireless power transfer EV charging.
- 4. Simulation of EMC analysis for Wireless power transfer EV charging.
- 5. Design and simulation of EMI filter

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the current standardization processes for Electric Vehicles, including the role of international and national standardization bodies.
- CO2: Apply testing procedures for Electric Motors Controllers in both Electric and Hybrid Electric Vehicles using different testing setups.
- CO3: Analyze the fundamentals of functional safety and Electromagnetic Compatibility (EMC) in Electric Vehicles, including fault tree analysis and risk assessment.
- CO4: Examine the impact of EMC on various components of Electric Vehicles, such as motor drives, DC-DC converters, and battery management systems.
- CO5: Summarize the Electromagnetic Interference (EMI) issues in motor drive systems and DC-DC converter systems, including EMI sources and coupling paths.

	1															
CO6:	Survey															for
	ensurin		MC	an	d E	MI	con	npli	anc	e in	Ele	ctric	Veh	icle	s.	
TEXT	Г ВООК	S:														
1	Handbook of Automotive Power Electronics and Motor Drives, Ali Emadi, Taylor & Francis, 2005, 1st Edition.															
	Drives,	Drives, Ali Emadi, Taylor & Francis, 2005, 1st Edition.														
2	Electron	Electromagnetic Compatibility of Electric Vehicle, Li Zhai,														
		Springer 2021, 1st Edition. EMC and Eurotional Safety of Automotive Electronics, Kail														
3	EMC ar	EMC and Functional Safety of Automotive Electronics, Kai														
	Borgees	Borgeest, IET 2018, 1st Edition.														
4	EMI/EMC Computational Modeling Handbook, Druce															
	Archambeault, colin branch, Omar M.Ramachi ,Springer															
	· · · · ·	2012, 2nd Edition.														
REFE	ERENCE	RENCES:														
1	Automo	otiv	e El	MC	, M	ark	Ste	ffik	a, S	prii	nger	201	3, 1s	t Ec	litic	on.
2	Electric	Ve	hic	le S	yst	ems	A ₁	rchi	tect	ure	anc	l Sta	ında	rdiz	zati	on
	Needs,	Re	por	ts	of	the	P	PP	Εu	rop	ean	Gr	een	Ve	hic	les
	Initiativ	e, l	Bea	te N	Λül	ler,	Ge	reo	n N	l ey	er, S	prir	nger	201	5,	1st
N	Edition		1				Æ							1		
	COs	A					1	POs	. 1					I	PSC)s
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
V	1	2	1	9	//_	-	-	1	-	-	-	-	2	2	-	_
	2 GAVEE	3	2	1	1	CC	1	.Et	1	Ut-	LE	CH	3	3	9	1
	3	3	3	2	2	AFF	LIAI	1	1	NA U	MIVER	SHIY	2	3	400	1
	4	3	2	1	1	-	-	1	-	-	-	-	2	3	-	-
	5	2	1	-	-	-	-	-	1	-	-	1	2	2	-	1
	6	3	2	1	1	-	-	-	1	-	-	1	2	3	-	1
O	verall	3	2	1	1		1	1	1				3	3		1
l _	elation	3		T	1	_	1	I	I	_	_	-	3	3	_	I

23EE044	DESIGN OF MOTOR AND POWER	L	T	P	C
	CONVERTERS FOR ELECTRIC	2	0	2	3
	VEHICLES				
	OBJECTIVES:				
• '	To review the drive cycles and requiremen	its of	f EV	$7_{ m S}$	
•	To know the working of motors used in Ele	ectri	c V	ehi	cle
•	To analyze and model the buck/boost con-	vert	er		
	operation and to design the same.				
•	To learn the simulation basics of control sy	sten	ns		
•	To derive transfer functions for DC-DC co	nver	ters	3.	
UNIT I	ELECTRIC VEHICLE DYNAMICS				6
Standard	drive cycles-Dynamics of Electric Vehi	icles	_Tr	acti	Ve
	imum speed, torque, power, energy req				
EVs.					-
UNIT II	MOTORS FOR ELECTRIC VEHICLES	A			6
		M.			
	on – Speed and Torque control of above and				
	ed control of EV in the constant power regi				
	OC Motors, Induction Motor, Perman				
- 1 The Control of th	ous Motors (PMSM), Brushless DC Moto e Motors (SRMs). Synchronous Reluctand				
	electric machines for EVs.				
UNIT III	BASICS OF SIMULATION IN CONTR		INU	AUU	6
	SYSTEMS	CL			Ů
Transfer F	lunction-How to build transfer function, ic	lent	ifw]	Pol	es.
	w time response plots, bode plot (Bo		-		
	tion Factors, Constant, Single and Double				
	Single and Double Differentiation Fund				
	Single Zero Functions, RHP Pole and				
	, state space modelling-transfer function				
space Mod	lel.				
UNIT IV	MODELING OF CONVERTERSFOR				6
	ELECTRIC VEHICLES				
Overview	of PWM Converter Modelling -Power Stag	ge N	Iod	elli	ng
	ock Modelling - Voltage Feedback Circui				
	adal of DIAIM Conventor Averaging				

215

Signal Model of PWM Converter - Averaging Power Stage

Dynamics - Average Models for buck/boost Converter - Small-Signal Model of Converter Power Stage - Frequency Response of Converter-Overview of PWM Inverter Modelling.

UNIT V POWER STAGE TRANSFER FUNCTIONS OF DC - DC CONVERTERS

Power Stage Transfer Functions of buck-boost Converter in CCM Operation, Input-to-Output Transfer Function, Duty Ratio-to-Output Transfer Function, Load Current-to-Output Transfer Function.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Simple simulation exercises of basic control systems
- 2. Bode plots and calculation of Gain margin and Phase margin for power stage transfer function via simulation.
- 3. Design of buck converter
- 4. Design of boost converter
- 5. Simulation of buck, boost and buck boost converter-open loop (With power circuit and Transfer function).

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the dynamics of Electric Vehicles by evaluating standard drive cycles, tractive force, and power requirements.
- CO2: Apply the working principles and speed control techniques for various motors used in Electric Vehicles, including DC motors, Induction motors, PMSMs, and SRMs.
- CO3: Apply simulation techniques to build transfer functions and analyze the time and frequency response of control systems used in Electric Vehicles.
- **CO4:** Model the operation of DC-DC converters, including the power stage and PWM block, to develop small-signal and average models for buck and boost converters.
- CO5: Explain the transfer functions for buck-boost converters in Continuous Conduction Mode (CCM) operation, focusing on input-to-output, duty ratio-to-output, and load current-to-output relationships.

CO ₆	: Develop and utilize DC-DC converters for Electric Vehicles,
	considering the dynamics and frequency response of the
	converter power stage.

TEXT BOOKS:

- Power Electronic Converters, Teuvo Suntio, Tuomas Messo, Joonas Puukko, First Edition 2017.
- 2 Fundamentals of Power Electronics with MATLAB, Randall Shaffer, 2nd Edition, 2013, Lakshmi publications
- 3 Feedback Control problems using MATLAB and the Control system tool box, Dean Frederick and Joe Cho, 2000, 1st Edition, Cengage learning.
- 4 Handbook of Automotive Power Electronics and Motor Drives, Ali Emadi, Taylor & Francis, 2005,1st Edition.

- 1 Electrical Machine Fundamentals with Numerical Simulation using MATLAB/SIMULINK, Atif Iqbal, Shaikh Moinoddin, Bhimireddy Prathap Reddy, Wiley, 2021, 1st Edition.
- 2 Emerging Power Converters for Renewable Energy and Electric Vehicles Modeling, Design, and Control, Md. Rabiul Islam, Md. Rakibuzzaman Shah, Mohd. Hasan Ali, CRC Press, 2021, 1 st Edition.
- Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Second Edition" CRC Press, Taylor & Francis Group, Third Edition 2021.

COs						I	POs						I	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	2	1	-	1	1	-	1	-	2	2	1	1
2	3	2	1	1	1	-	-	1	-	1	-	3	3	1	1
3	3	2	1	1	1	-	-	1	-	1	-	2	3	1	1
4	3	2	1	1	1	-	-	1	-	1	-	2	3	1	1
5	2	1	-	-	-	-	-	1	-	1	-	2	2	-	1
6	3	2	1	1	1	-	-	1	-	1	-	2	3	1	1
Overall Correlation	3	2	1	1	1	-	1	1	-	-	-	3	3	1	1

23EE045	EMBEDDED SYSTEM FOR	L	T	P	С
	AUTOMOTIVE APPLICATIONS	2	0	2	3
COURSE	OBJECTIVES:				
	o expose the students to the fundamentals	and	bu	ildi	inσ
	f Electronic Engine Control systems.	01210			8
	o teach on sensor functional components f	or v	ehio	cles	_
	o discuss on programmable controllers for				
	nanagement systems.				
	o teach logics of automation & communica	atior	ı		
	echniques for vehicle communication.				
	o introduce the infotainment system devel	lopn	nen	t.	
UNIT I	INTRODUCTION TO AUTOMOTIVE			T	6
	SYSTEMS				
O	(Automotion tons (1		1		• _
7.45	of Automotive systems, fuel economy, a				
///	mits and vehicle performance; Electronic	cont	roi	Uni	lt–
open-sourc	SENSORS AND ACTUATORS FOR				6
UNIT II	AUTOMOTIVES	-			6
T.	ACTOMOTIVES			_	#0 60
Review of	automotive sensors-sensors interface to the	e EC	U,S	Sma	art
sensor and	actuators for automotive applications.				
UNIT III	VEHICLE MANAGEMENT SYSTEMS				6
Energy M	l anagement system -Adaptive cruise co	ntro	1 -	an	ti-
0,5	aking system - Safety and Collision Avoida				
UNIT IV	ONBOARD DIAGONSTICS AND				6
	COMMUNICATION				
OBD, Veh	icle communication protocols- Bluetooth	, CA	۸N,	LI	N,
FLEXRAY	and MOST.				
UNIT V	RECENT TRENDS				6
Navigation	n- Autonomous car- Role of IoT in Automo	tive	sys	ten	ns.
	TOTAL:	30 P	ERI	OI	S

PRACTICAL EXERCISES:

- 1. Laboratory exercise: Use MATLAB SIMULINK / equivalent simulation / open-source tools
 - a. Simulation study of automotive sensors and actuators components
 - b. Adaptive cruise control, Anti-Lock Braking System
 - c. CAN Connectivity in an Automotive Application using vehicle network toolbox
 - d. Interfacing a sensor used in a carwith a microcontroller.
 - e. Establishing connection between Bluetooth module and microcontroller.
- 2. Study of AUTOSAR
- 3. Study of Battery Management system for EV batteries.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the fundamentals of automotive systems, including electronic engine control units, fuel economy, and emission limits.
- CO2: Apply knowledge of automotive sensors and actuators, interfacing them with the Electronic Control Unit (ECU) for vehicle control and construct the simulation circuit.
- CO3: Analyze vehicle management systems such as energy management, adaptive cruise control, and anti-lock braking systems to enhance vehicle safety and performance using MATLAB.
- **CO4:** Examine onboard diagnostics (OBD) and various vehicle communication protocols like CAN, LIN, and Bluetooth for efficient automotive communication.
- CO5: Interpret the role of navigation systems, autonomous driving technologies, and IoT in modern automotive systems.
- CO6: Explain the infotainment systems integrating automation and communication techniques for enhanced user experience in vehicles.

Chilton's guide to Fuel Injection - Ford 2nd Edition, 2004. 4	TEX	Г ВООК	S:														
Marcel Decker, 2004, 1st Edition. 2 Jack Erjavec, JeffArias, "Alternate Fuel Technology-Electric, Hybrid& Fuel Cell Vehicles", Cengage, 2012, 2nd Edition. 3 Electronic Engine Control technology - Ronald K Jurger Chilton's guide to Fuel Injection - Ford 2nd Edition, 2004. 4 Automotive Electricals / Electronics System and Components, Tom Denton, 5th Edition, 2017 REFERENCES: 1 Uwe Kiencke, Lars Nielsen, "Automotive Control Systems For Engine, Driveline, and Vehicle", Springer; 1st Edition 2005. 2 Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 5 th Edition, 2014. 3 Automotive Hand Book, Robert Bosch, Bently Publishers 10th Edition, 2018. COs POs PSOs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 1 1 1 2 2 2 - 2 2 3 2 1 1 1 1 - 2 1 2 2 3 1 3 3 3 2 2 1 1 1 1 2 3 3 1 5 2 1 1 1 1 1 2 2 2 - 6 6 2 1 1 1 1 1 2 2 2 - 6 6 2 1 1 1 2 2 2 - 6 7 Sor	1	Ali Em	nedi	i, N	/leh	rde	del	ısar	ni,	Joh	n N	ΛМ	Iillei	r, "Y	Veh	icul	lar
2		Electric	po	wei	sy	ste	m-	land	d, S	ea,	Air	anc	l Sp	ace `	Veh	icle	es"
### Automotive Flectricals Flectronics For Engine, Driveline, and Vehicle", Springer; 1st Edition, 2005. Automotive Electricals Flectronics System S		Marcel	Dec	ckei	, 20	04,	1st	Ed	itio	n.							
Selectronic Engine Control technology - Ronald K Jurger Chilton's guide to Fuel Injection - Ford 2nd Edition, 2004.	2	Jack Erj	ave	ec, J	eff/	\ria	ıs, "	Alt	ern	ate	Fue	el Te	chn	olog	y-E	lect	ric
Chilton's guide to Fuel Injection - Ford 2nd Edition, 2004. 4		,Hybrid	l& 1	Fue	l Ce	11 V	⁷ ehi	cles	s", (Cen	gag	e ,20	12,	2nd	Edi	tior	۱.
4 Automotive Electricals / Electronics System and Components, Tom Denton, 5th Edition, 2017 REFERENCES: 1 Uwe Kiencke, Lars Nielsen, "Automotive Control Systems For Engine, Driveline, and Vehicle", Springer; 1st Edition 2005. 2 Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 5 th Edition, 2014. 3 Automotive Hand Book, Robert Bosch, Bently Publishers 10th Edition, 2018. POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 3 2 1 1 2 1 - - - 2 2 - - - 2 3 3 1 - - - - 2 3 1 - <td< th=""><th>3</th><th colspan="15">Electronic Engine Control technology - Ronald K Jurgen Chilton's guide to Fuel Injection - Ford 2nd Edition, 2004</th></td<>	3	Electronic Engine Control technology - Ronald K Jurgen Chilton's guide to Fuel Injection - Ford 2nd Edition, 2004															
Components, Tom Denton, 5th Edition, 2017 REFERENCES: 1		,															
REFERENCES: 1 Uwe Kiencke, Lars Nielsen, "Automotive Control Systems For Engine, Driveline, and Vehicle", Springer; 1st Edition 2005. 2 Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 5 th Edition, 2014. 3 Automotive Hand Book, Robert Bosch, Bently Publishers 10th Edition, 2018. POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 3 2 1 1 1 1 2 2 2 - 1 2 3 2 1 1 1 1 2 1 3 3 1 1 3 3 3 2 2 1 1 1 1 2 1 2 3 1 4 3 3 2 2 1 1 1 1 1 2 2 2 - 1 6 2 1 1 1 1 1 2 2 2 - 1	4	Automotive Electricals / Electronics System and															
1 Uwe Kiencke, Lars Nielsen, "Automotive Control Systems For Engine, Driveline, and Vehicle", Springer; 1st Edition 2005. 2 Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 5 th Edition, 2014. 3 Automotive Hand Book, Robert Bosch, Bently Publishers 10th Edition, 2018. POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 3 2 1 1 1 1 - 2 1 2 2 2 - 2 2 3 2 1 1 1 1 - 2 1 2 3 3 1 5 3 3 3 2 2 1 1 1 1 1 - 2 1 2 3 3 1 5 4 3 3 2 2 1 1 1 1 1 2 2 2 - 2 3 1 6 2 1 1 1 1 1 2 2 2 - 3 2 - 3		Components, Tom Denton, 5th Edition, 2017															
For Engine, Driveline, and Vehicle", Springer; 1st Edition 2005. 2	REFI	ERENCES:															
2005. 2 Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 5 th Edition, 2014. 3 Automotive Hand Book, Robert Bosch, Bently Publishers 10th Edition, 2018. COS POS PSOS PSOS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 1 1 2 2 - 1 2 3 2 1 1 1 1 - 2 1 3 3 1 1 3 3 3 2 2 1 1 1 1 1 2 3 1 1 4 3 3 2 2 1 1 1 1 1 2 2 2 - 1 5 2 1 1 1 1 1 2 2 2 - 1 6 2 1 1 1 1 1 2 2 2 - 1	1	Uwe Kiencke, Lars Nielsen, "Automotive Control Systems:															
2 Automotive Components, Robert Bosch Gmbh, 5 th Edition, 2014. 3 Automotive Hand Book, Robert Bosch, Bently Publishers 10th Edition, 2018. POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 3 2 1 1 2 1 - - - 2 2 - 3 3 3 2 2 1 1 1 - - - 2 3 1 4 3 3 2 2 1 1 1 - - 2 3 1 5 2 1 - - 1 1 1 - - 2 2 - 6 2 1 - - - - 2 2 -		For Engine, Driveline, and Vehicle", Springer; 1st Edition,															
Components, Robert Bosch Gmbh, 5 th Edition, 2014. 3 Automotive Hand Book, Robert Bosch, Bently Publishers 10th Edition, 2018. COS POS PSOS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 1 1 2 2 - 2 2 3 2 1 1 1 1 - 2 1 3 3 1 3 3 3 2 2 1 1 1 1 2 3 1 4 3 3 2 2 1 1 1 1 1 2 3 1 5 2 1 1 1 1 2 2 - 6 6 2 1 1 1 2 2 - 7		2005.															
3 Automotive Hand Book, Robert Bosch, Bently Publishers 10th Edition, 2018. POS PSOS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 1 1 2 2 - 1 2 3 2 1 1 1 1 - 2 1 3 3 1 1 3 3 3 2 2 1 1 1 1 1 2 3 1 1 4 3 3 2 2 1 1 1 1 1 2 3 1 1 5 2 1 1 1 1 1 2 2 2 - 1 6 2 1 1 1 2 2 - 1	2																
10th Edition, 2018. COS 1 2 3 4 5 6 7 8 9 10 11 12 1 2		ADDRESS - A CO -		- 21	1,0				10.						- 88		
COs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 1 - - - - - 2 2 - 2 3 2 1 1 - - - - 2 3 1 3 3 2 2 1 1 1 - - - 2 3 1 4 3 3 2 2 1 1 1 - - - 2 3 1 5 2 1 - - 1 1 - - - 2 2 - 6 2 1 - - - 1 - - - 2 2 -	3	3.7					ook	, R	obe	rt I	Boso	ch, E	Bentl	y Pı	ıbli	she	rs,
COs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 1 - - - - 1 - - - 2 2 - - - - 2 2 - - - - - 2 2 - - - - - - 2 3 3 1 - - - - - 2 3 1 - 4 3 3 2 2 1 1 1 1 - - - 2 3 1 - 5 2 1 - - - 1 1 1 - - - 2 2 - - 6 2 1 - - - - - - - - - - - - - - - - - - -	Į.	10th Ed	itio	n, 2	2018	3.			_		-			_			
1 2 1 -		COs	X	5	8		_							NO	_	_	
2 3 2 1 1 1 - 2 1 - - - 3 3 1 3 3 3 2 2 1 - 2 1 - - - 2 3 1 4 3 3 2 2 1 1 1 - - - 2 3 1 5 2 1 - - - 1 1 1 - - - 2 2 - 6 2 1 - - - - 2 2 - - - - 2 2 - -		VEE	تناثن	1,000	3	4	5	6								2	3
3 3 3 2 2 1 - 2 1 - - - 2 3 1 4 3 3 2 2 1 1 1 1 - - - 2 3 1 5 2 1 - - - 1 1 1 - - - 2 2 - 6 2 1 - - - - - 2 2 - -					-	-					_	<u>.</u>				-	1
4 3 3 2 2 1 1 1 - - - 2 3 1 5 2 1 - - - 1 1 1 - - - 2 2 - 6 2 1 - - - - 1 - - - 2 2 -											-	-	1				1
5 2 1 1 1 1 2 2 - 1 6 2 1 1 2 2 - 1											-	-	1				1
6 2 1 1 2 2 - 1			_	_	2	2				_	-	-	-				1
			2	1	•	-	-	-	-	1	-	-	-	2	2	-	1
Overall 3 2 1 1 1 1 1 - - - 3 3 1 1			rerall 3 2 1 1 1 1 1 - - - 3 3 1 1														

VERTICAL - 3 - GREEN ENERGY TECHNOLOGIES

23EE046	SOLAR ENERGY SYSTEMS	L	T	P	C
		2	0	2	3
COURSE	OBJECTIVES:				
	o study about solar cells and photovo				
	esign for standalone and grid connected a				
	o understand different applications of	pho	otov	olta	ic
UNIT I	ystem INTRODUCTION				-
UNITI	INTRODUCTION				6
Characteri	stics of sunlight - Low Cost and Hig	gh I	Effic	ien	су
Materials -	- Conversion Efficiency of Solar Cells. ser	micc	ndı	ıcto	rs
and P-N ju	unctions - behavior of solar cells - cell p	rope	ertie	s ar	nd
design - P	V Cell interconnection and module fabrica	ition	۱.		
UNIT II	STAND ALONE PHOTOVOLTAIC YS	TEN	I		6
Calcomation	and Common onto Polon so of systems as	A		La C	~
1000	s and Components - Balance of system co	_			
7	r AC Applications Standalone PV system	1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	storage systems – power conditioning and	100	_		
1 1	system components - Designing standalor	ie r v	v sy	sten	us
- sizing. UNIT III	GRID CONNECTED PHOTOVOLTAI		LO	GY	6
UNITIII	SYSTEMS	AUTO		4OU!	6
Schematics	s and Components - Balance of system C	Com	pon	ents	; -
Interface C	Components Introduction to Nano Grid, F	'V s	yste	ms	in
buildings -	- utility applications for photovoltaics - des	sign	issu	es f	or
central por	wer stations – safety – Economic aspect –s	tanc	lard	s ar	nd
guidelines	for PV systems, Efficiency and pe	erfor	maı	nce	-
Internation	nal PV programs.				
UNIT IV	PHOTOVOLTAIC WATER PUMPING	SYS	STE	M	6
	COMPONENTS				
System co	onfiguration - Water Pumps - Moto	ors	- F	ow	er
3	ng circuitry - Batteries - Array wiring an		oun	ting	<u> </u>
	oumping system design -Example of a dir			_	
system des				_	

UNIT V SOLAR APPLICATIONS

Space - Marine - Telecommunications - Photovoltaic powered transport - Solar Cars - Solar Furnaces - Solar Green Houses-Solar Refrigeration-Solar Drying of Agricultural.

TOTAL: 30 PERIODS

6

PRACTICAL EXERCISES:

- 1. Simulation on characteristics of Solar cell
- 2. Experiment on "Design of Standalone Photovoltaic system"
- 3. Simulation of Grid Connected Photovoltaic system
- 4. Simulation of PV fed Water Pumping system
- 5. Simulation of Solar PV Battery Powered Electric Vehicle
- 6. Experiment on Performance assessment of Grid connected and Standalone1kWpSolar Power System.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the fundamental principles of semiconductor materials and P-N junctions in solar cells.
- CO2: Experiment on the components and design principles involved in standalone PV systems.
- CO3: Develop the design considerations and safety standards for integrating PV systems using MATLAB.
- **CO4:** Illustrate the economic factors and efficiency metrics that influence the performance and adoption of PV systems.
- CO5: Apply the principles of system configuration to design a PV water pumping system and develop the simulation circuit.
- CO6: Summarize the various applications of photovoltaic technology.

TEXT BOOKS:

1 Stuart R.Wenham, Martin A.Green, Muriel E. Watt, Richard Corkish and Alistair Sproul, "Applied Photovoltaics", Third Edition, 2011, Earthscan, UK.

2	Solanki	C.S.,	"Solar	Photovoltaics:	Fundamentals,
	Technolo	gies an	d Applic	ations", PHI Lea	rning Pvt. Ltd.,
	2015.				

- 1 Eduardo Lorenzo G. Araujo, Solar electricity engineering of photovoltaic systems, Progensa,1994. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, 2005.
- 2 Solar & Wind Energy Technologies McNeils, Frenkel, Desai, Wiley Eastern, 1990.
- 3 S.P. Sukhatme, "Solar Energy", Tata McGraw Hill,1987.

COs						PC)s						P	SO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	ı	-	ı	1	1	1	1	1	2	ı	1
2	3	2	1	1	1	1	1	1		1	1	1	3	1	1
3 00 1	3	2	1	1	1	$^{\prime}$	1	1	ું	(P	3	1	1
4	2	1	6	-	3	K	-	1	-	-		-	2	1	1
5	3	2	1	1	1	Á	1	1	1		9	-	3	1	1
6	2	1	<i>)</i> -		_	1		1	1	_			2	1	1
Overall Correlation	3	2	1	1	101	L	G	1)F	TE	1	N <mark>1</mark> O	3	ďγ	1

23EE047	WIND ENERGY CONVERSION	L	T	P	C
	SYSTEM	3	0	0	3
COURSE OBJ	ECTIVES:				
• To learn	n the design and control principles of W	ind	tur	bin	e.
• To unde	erstand the concepts of fixed speed and	var	iab	le	
speed w	vind energy conversion systems.				
• To anal	yze the grid integration issues. Acquire	kno	owle	edg	je
on basic	power plant engineering.				
UNIT I IN	FRODUCTION				9
Components	of WECS-WECS schemes-Power obt	ain	ed	fro	m
=	momentum theory - Power coefficien				
_	ynamics of Wind turbine				
UNIT II WI	ND TURBINES				9
T T A T A T A T A T A T A T A T A T A T					
HAWT-VAW			-		
	or design considerations Tip speed r	100	-		
	profile-Power Regulation-yaw control			_	,le
100	ontrol-Schemes for maximum power ext	rac	tior		
UNIT III FIX	(ED SPEED SYSTEMS			GY	9
Generating Sy	stems- Constant speed constant frequen	ncy	sys	ster	ns
-Choice of Ger	nerators - Deciding factors-Synchronous	s G	ene	rato	r-
Squirrel Cage	Induction Generator- Model of Wind Sp	pee	d- N	lod	lel
wind turbine	rotor - Drive Train model- Generator	r m	ode	el f	or
Steady state as	nd Transient stability analysis.				
UNIT IV VA	RIABLE SPEED SYSTEMS				9
Need of varial	ole speed systems-Power-wind speed ch	ara	cteı	isti	cs
	peed constant frequency systems s				
	IG- PMSG -Variable speed generators				
	d variable frequency schemes.				
	AID CONNECTED SYSTEMS				9
Wind interco	nnection requirements, low-voltage ri	de	thr	ouş	ζh

frequency and voltage control, current practices and industry trends wind interconnection impact on steady-state and dynamic performance of the power system including modelling issue.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the fundamental components and operating principles of Wind Energy Conversion Systems.
- CO2: Interpret the design and operational principles of Horizontal-Axis (HAWT) and Vertical-Axis (VAWT) Wind Turbines.
- CO3: Explain the principles and models of generating systems used in wind energy.
- CO4: Summarize the need for variable speed systems in wind energy and explain the characteristics and modeling of variable speed generators.
- CO5: Explain the key requirements and practices for wind power interconnection.
- CO6: Summarize the impact of wind power interconnection on the steady-state and dynamic performance of power systems.

TEXT BOOKS:

- 1 L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990
- 2 S.N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford University Press, 2010.

- 1 Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, 2005.
- 2 E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge, 1976
- 3 N. Jenkins," Wind Energy Technology" John Wiley & Sons,1997
- 4 S.Heir "Grid Integration of WECS", Wiley 1998.

COs						I	POs	,					I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	1	-	1	-	-	1	1	2	-	1
2	2	1	-	-	-	-	-	1	-	-	-	-	2	-	1
3	2	1	-	-	-	1	-	1	-	-		-	2	-	1
4	2	1	-	-	-	-	-	1	-	-		-	2	-	1
5	2	1	-	-	-	1	-	1	-	-		-	2	-	1
6	2	1	-	-	-	-	-	1	-	-	1	1	2	-	1
Overall Correlation	2	1	-	-	-	1	-	1	-	-	1	1	2	-	1

23EE048	ENERGY STORAGE	L	T	P	С
	SYSTEMS	3	0	0	3
COURSE OB	JECTIVES:				
• To un	derstand the concepts and technolog	gies	use	ed i	in
variou	s multidisciplinary energy storage devi	ices			
• To un	derstand selection and sizing of a sui	itabl	le er	nerg	зу
storage	e device for a specific application.				
• To lea	arn the energy storage manageme	nt	for	gri	id
connec	cted power systems.				
UNIT I TH	ERMAL ENERGY STORAGE				9
Thermal Ener	gy - Principle - Benefits - Criteria for	Eva	aluat	tion	
	aracteristics - Sensible, Latent and C				
1	ge - Heating and Cooling Applications				
	ECTROCHEMICAL ENERGY STORA	GE			9
(OW	RDRS.	M		4	
	osition, Construction and Principle of				
	t <mark>terie</mark> s - Modern batteries - Flow batt	terie	es -	Hig	ζh
* 1 1 1 1 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	atteries; Fuel Cells - Operation, Types.	7		The same of	Talli
UNIT III EL	ECTROMAGNETIC ENERGY STORA	AGI	LO	GΥ	9
Energy Stora	ge in Capacitors - Supercapacitors -	-A Pı	rinci	ple	-
Charging and	Discharging Characteristics - Types	- E	quiv	ale	nt
Circuits; Supe	erconducting magnetic energy storage	- Pr	inci	ples	; -
Superconduct	ing coils - Cryogenic systems- Ene	ergy	tra	nsf	er
efficiency.					
UNIT IV MI	ECHANICAL ENERGY STORAGE				9
Flywheel stor	rage - Structure - System dynamics	- C	pera	atio	n;
Compressed a	air energy storage Principle - Function	n - '	Tech	nnic	al
	; Pumped hydro storage - Princip				
extraction syst	tem				
UNIT V EN	ERGY STORAGE MANAGEMENT				9
Techno-Econo	omic Analysis - Estimation of Energ	gy S	Stora	age	_
Dynamic Ener	gy Storage Management for dependable	le R	enev	vab	le

Electricity Generation - Secondary Battery Energy Storage Systems (BESS), Energy Storage Installations in the Power System - Grid Tied AC Microgrid Applications. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the principles and benefits of thermal energy storage. CO2: Summarize the composition, construction, and operating principles of various secondary batteries. CO3: Explain the principles, types, and characteristics of energy storage in capacitors and supercapacitors CO4: Interpret the principles and components of superconducting magnetic energy storage systems. CO5: Illustrate the principles, structure, and operation of various energy storage systems. CO6: Apply techno-economic analysis techniques to estimate energy storage needs. **TEXT BOOKS:** J. K. Kaldellis, Stand-alone and Hybrid Wind Energy Systems -Technology, Energy Storage and Applications, Woodhead Publishing Series in Energy, CRC Press, 2010 2 Rosario Carbone, Energy Storage in the Emerging Era of Smart Grids, 2011, InTech. **REFERENCES:** Frank S. Barnes & Jonah G. Levine, Large Energy storage 1 Systems Handbook, CRC Press, 2011. 2 Ziad Melhem, Electricity transmission, distribution and storage systems, Woodhead Publishing Series in Energy, 2013. H. P. Garg, S. C. Mullick, A. K. Bhargava, Solar Thermal Energy Storage, Springer, 1985.

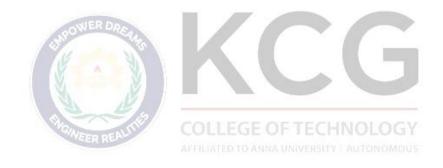
4	Artur Braun, Electrochemical Energy Systems-Foundations,
	Energy Storage and Conversion, De Gruyter, CPI Books,
	2018.

5	Robert A. Huggins, Energy Storage, Springer, 2010.
0	Robert 11. Traggins, Effergy Storage, Springer, 2010.

COs						PC)s						P	SO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	-	1	-	-	1	1	2	-	1
2	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
3	2	1	-	-	-	-	-	1	-	-	-	1	2	-	1
4	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
5	2	1	-	-	-	-	-	1	-	-	-	1	2	-	1
6	3	2	1	1	-	-	-	-	-	-	1	1	3	-	-
Overall Correlation	3	2	1	1	- 1	-	-	1	-	-	1	1	3	-	1

23EE049	DISTRIBUTED GENERATION	L	T	P	C
	AND MICROGRID	3	0	0	3
COURSE OBJ	ECTIVES:				
• To illu	ustrate the concept of distributed gener	atio	n		
• To an	alyse the impact of grid integration.				
• To stu	ady concept of Microgrid and its config	urat	ion		
UNIT I IN	TRODUCTION				9
Conventional	power generation: advantages and di	sadv	vant	tage	es,
Energy crises,	Nonconventional energy (NCE) resou	arces	s: re	evie	w
of Solar PV,	Wind Energy systems, Fuel Cells, mi	cro-	turl	oine	es,
biomass, and t	tidal source.				
UNIT II DI	STRIBUTED GENERATIONS (DG)				9
Concept of	distributed generations, topologies,	sele	ctic	n	of
sources, reg	ulatory standards/framework, Sta	nda	rds	f	or
interconnectin	g Distributed resources to electric po-	wer	sys	ten	ıs:
IEEE 1547. I	DG installation classes, security iss	sues	in	Г)G
implementation	ons. Energy storage elements: Batt	erie	s,	ultı	a-
capacitors, fly	wheels. Captive power plants.				
UNIT III IM	PACT OF GRID INTEGRATION	AUTO	NON	100	9
Requirements	for grid interconnection, limits on	op	erat	tior	ıal
parameters,: v	oltage, frequency, THD, response to gr	rid a	bno	orm	ıal
operating con-	ditions, islanding issues. Impact of grid	d in	tegi	atio	on
with NCE sou	rces on existing power system: reliabi	lity,	sta	bili	ty
and power qu	ality issues				
UNIT IV BA	SICS OF A MICROGRID				9
Concept and	definition of microgrids, microgrid	driv	vers	aı	nd
benefits, revie	ew of sources of microgrids, typical s	truc	ture	e ai	nd
configuration	of a microgrids, AC and DC microg	grid	s, P	ow	er

Electronics interfaces in DC and AC microgrids.


UNIT V **CONTROL AND OPERATION OF** 9 **MICROGRID** Modes of operation and control of microgrid: grid connected and islanded mode, Active and reactive power control, protection anti-islanding schemes: passive, active and communication-based techniques, microgrid communication infrastructure, Power quality issues in microgrids, regulatory smart standards, Microgrid economics, Introduction microgrids. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Summarize the different non-conventional energy sources CO2: Illustrate the different distributed generation systems. CO3: Outline the impact of grid integration issues. **CO4:** Explain the structure and working principle of micro grid. CO5: Analyze the control strategies in micro grid. CO6: Summarize the regulatory standards used in Micro grid operations. TEXT BOOKS: Gevork B. Gharehpetian, S. Mohammad Mousavi Aga, " 1 Distributed Generation Systems: Design, Operation and Grid Integration ", Elsevier, 2017. 2 S. Chowdhury, P. Crossley, "Microgrids and Active Distribution Networks", Institution of Engineering and Technology, 2009. **REFERENCES:** Amirnaser Yezdani, and Reza Iravani, "Voltage Source 1 Converters in Power Systems: Modelling, Control and Applications", IEEE John Wiley Publications, 2010.

High Power", CRC Press, Taylor & Francis, 2006.

Dorin Neacsu, "Power Switching Converters: Medium and

2

COs						I	POs						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	2	2	2	-	-	-	2	2	-	2
2	2	1	-	-	-	2	2	2	-	-	-	2	2	-	2
3	2	1	-	-	-	2	2	2	-	-	-	2	2	-	2
4	2	1	-	-	-	2	2	2	-	-	-	2	2	-	2
5	3	3	2	2	-	-	-	-	-	-	-	2	3	-	-
6	2	1	-	-	-	-	-	-	-	-	-	2	2	-	-
Overall Correlation	3	2	1	1	-	2	2	2	-	-	1	3	3	-	2

23EE050	GRID INTEGRATION	L	T	P	C
	CHALLENGES FOR RES	3	0	0	3

COURSE OBJECTIVES:

- To study about the present power Scenario
- To model a micro grid system
- To model power converter for grid interconnection
- To integrate wind energy conversion system with grid
- To simulate power converters like three phase inverters and DC-DC converters.

UNIT I PRESENT POWER SCENARIO IN INDIA

Introduction - Thermal Power Plant, Components of Thermal Power Plant, Major Thermal Power Plants in India- Gas-Based Power Generation - Nuclear Power Plants -Hydropower Generation - Pumped Storage Plants - Solar Power - Wind Energy - Power plants India.

UNIT II POWER GRIDS 9

Introduction -Electric Power, Background, The Construction of a Power Grid System, Basic Concepts of Power Grids -Load Models - Transformers in Electric Power Grids - Modelling a Microgrid System.

UNIT III MODELING OF CONVERTERS IN POWER GRID DISTRIBUTED GENERATION SYSTEMS

Introduction - Single-Phase DC/AC Inverters with Two Switches, Three-Phase DC/AC Inverters, Pulse Width Modulation Methods, The Triangular, The Identity Method, Analysis of DC/AC Three-Phase Inverters. Micro grid of Renewable Energy Systems-DC/DC Converters in Green Energy -Pulse Width Modulation - Sizing of an Inverter for Microgrid Operation, Sizing of a Rectifier for Microgrid Operation, The Sizing of DC/DC Converters for Microgrid.

UNI	Γ IV WIND ENERGY SYSTEM GRID	9							
	INTEGRATION								
Intro	duction- Significance of Electrical Power Quality in W	ind							
Powe	er System- Integration Issues in Grid-Connected W	ind							
Ener	gy- Effect of Power Quality Issues, Importance of Cust	om							
Powe	er Devices- Power Quality Point of View								
UNI	Γ V GRID INTER CONNECTION	9							
Grid	Code Requirements-Grid integration of WECS-G	rid							
Integ	ration of PV systems								
	TOTAL: 45 PERIC	DDS							
COU	RSE OUTCOMES:								
	After completion of the course, the students will be able t	o:							
CO1:	Summarize the present Power Scenario in India.								
CO2:	Illustrate the different concepts of Power Grid.	>							
CO3:	Develop a model for Power Converters in Distributed								
1	Generation Systems								
CO4:	Develop a model for Micro Grid in Distributed Generat	ion							
Ŷ	Systems	_							
CO5:	Explain the Power Quality issues in wind Integration.	Υ							
CO6:	Summarize the Power Quality issues in PV Integration.	35							
TEX	Γ BOOKS:								
1	Brian D'Andrade "The Power Grid", Academic Press,	1st							
	Edition, 2017.								
2	Yang Han, "Modeling and Control of Power Electro	nic							
		1st							
	Edition 2022.								
3	Siegfried Heier, "Grid Integration of Wind Energy: Onsh	ore							
	and Offshore Conversion Systems", John Wiley & Sons, I	٠td,							
	2014, 3rd Edition.								

REF	REFERENCES:																
1	Integrat	ion	of	Rer	new	abl	e Eı	nerg	3y S	Sou	rces	with	n Sm	nart	Gr	id,	
	M. Kat	hire	esh,	A.	. M	[aha	aboo	obS	uba	har	ii, a	nd	G.R	. K	ana	ga	
	chidambaresan, Scrivener & Wiley, 2021, 1st Edition.																
2	Design	of	sm	art	po	weı	· g1	id	ren	ewa	able	ene	rgy	sys	sten	ns,	
	Third Edition, Ali Keyhani, Wiley 2019.																
3	Wind Power Integration - Connection and System																
	Operational Aspects, Brendan Fox, 2014, IET, 2nd Edition.																
	CO -	POs												I	PSOs		
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	-	2	2	2	-	-	-	2	2	-	2	
	2	2	1	-	-	-	3	3	3	-	-	-	3	2	-	3	
	3	3	2	1	1	-	-	-	-	-	-	-	2	3	-	-	
	4	3	2	1	1	_	-	-		-	-	-	2	3	-	-	
	5 00W	2	1	-	-	-	-2		- ,	-		2	2	2	-	_	
	6	2	1	2	<u> </u>	_	6-1	-	-//	7-	-	-	2	2	-	ii-	
	verall relation	3	2	1	1	-	1	1	1		-	-	3	3		1	

COLLEGE OF TECHNOLOGY

23EE051	SMART GRIDS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the function of smart grid and the components used in it.
- To understand various technologies and control used in smart grid.

UNIT I INTRODUCTION TO SMART GRID 9

Evolution of Electric Grid, Need for Smart Grid, Difference between conventional &Smart Grid, Smart grid drivers, Benefits, Functions of smart grid components, Overview of the technologies required for the Smart Grid, National and International Initiatives in Smart Grid.

UNIT II SMART GRID TECHNOLOGIES 9

Technology Drivers, Smart energy resources: Renewable generation, Energy storage, Electric Vehicles, Microgrids, Smart substations: protection, monitoring and control, Transmission systems: EMS, FACTS and HVDC, Wide area monitoring, Distribution systems: DMS, Volt/VAR control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers. Distribution automation equipment.

UNIT III | SENSING, CONTROL AND AUTOMATION | 9 | TECHNOLOGIES

Smart metering, Smart meters: An overview of the hardware used, Communications infrastructure and protocols for smart metering, Advanced Metering Infrastructure (AMI), AMI Drivers and Benefits, AMIN needs in smart grid, AMI standards and security, Demand side integration.

UNIT I	COMMUNI THE SMAR		ECHNOLOG	IES FOR	9
Data co	ommunication-	Switching	techniques,	Communica	tion

channels, Layered architecture and protocols, Communication Technologies-Communications Requirements for the Smart Grid, Wireless Network Solutions, Communication Standards and Protocols, Standards for information exchange, Communications Challenges in the Smart Grid.

UNIT V HIGH PERFORMANCE COMPUTING AND CYBER SECURITY

9

Computational Challenges in a Smart Grid, Existing Functions Improved and New Functions Enabled by HPC, Cyber security in the Smart Grid- Definitions, Security Functions, Security Threats, Cyber security in the Smart Grid, Digital signatures, Cyber security standards.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the function of Smart Grid
- CO2: Summarize the various Smart Grid technologies
- CO3: Analyze the performance of Smart meters
- CO4: Develop communication technologies for Smart Grid.
- CO5: Illustrate the role of high performance computing in Smart Grid
- CO6: Summarize the need for Cybersecurity in Smart Grid

TEXT BOOKS:

- 1 Stuart Borlase "Smart Grid: Infrastructure, Technology and Solutions", CRC Press 2013.
- **2** Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley 2012.

- 1 James Momoh, "Smart Grid Fundamentals of Design and Analysis", Wiley, 2012
- 2 Tony Flick, Justin more house, "Securing the smart grid: Next generation power grid security", Elsevier, 2010

3	Daphne	M	Mah, Peter Hills, Victor O.K. Li, Richard Balme -														
	Smart C	Grid	Ap	pli	catio	ons	and	d D	evel	lopi	men	ts-Sp	oring	ger,	201	4.	
COs							I	POs						PSOs			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1		2	1	-	-	-	-	-	-	ı	-	-	1	2	ı	-	
2		2	1	1	-	ı	1	ı	1	1	-	1	1	2	1	1	
	3		3	2	2	1	1	ı	1	1	-	1	1	3	1	1	
	4	3	2	1	1	1	1	ı	1	1	-	1	1	3	1	1	
	5	2	1	1	-	1	1	ı	1	1	-	1	1	2	1	1	
6		2	1	1	-	1	1	ı	1	1	-	1	1	2	1	1	
Overall Correlation		3	2	1	1	-	1	-	1	-	-	-	1	3	-	1	

23EE052	HYBRID ENERGY TECHNOLOGY	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To provide knowledge about different types of hybrid energy systems.
- To analyze the various electrical Generators used for the Wind Energy Conversion Systems.
- To design the power converters used in SPV Systems.
- To analyze the various power converters used in hybrid energy systems and to understand the importance of standalone and grid-connected operation in Hybrid renewable energy systems.
- To analyze the performance of the various hybrid energy systems.

UNIT I INTRODUCTION TO HYBRID ENERGY 9 SYSTEMS 9

Hybrid Energy Systems - Need for Hybrid Energy Systems - Solar-Wind-Fuel Cell-Diesel, Wind Biomass-Diesel, Micro-Hydel-PV, Ocean and geyser energy - Classification of Hybrid Energy systems - Importance of Hybrid Energy systems - Advantages and Disadvantages - Environmental aspects of renewable energy - Impacts of renewable energy generation on the environment - Present Indian and international energy scenario of conventional and RE sources - Ocean energy, Hydel Energy - Wind Energy, Biomass energy, Hydrogen energy - Solar Photovoltaic (PV) and Fuel cells: Operating principles and characteristics.

UNIT II	ELECTRICAL MACHINES FOR WIND	9
	ENERGY CONVERSION SYSTEMS (WECS)	

Review of reference theory fundamentals –Construction, Principle of operation and analysis: Squirrel Cage Induction Generator (SCIG), Doubly Fed Induction Generator (DFIG) - Permanent Magnet Synchronous Generator (PMSG).

UNIT III POWER CONVERTERS AND ANALYSIS OF 9 SOLAR PV SYSTEMS Power Converters for SPV Systems - Line commutated converters (inversion-mode) - Boost and buckboost converters- selection of inverter, battery sizing, array sizing - Analysis of SPV Systems -Block diagram of the solar PV systems - Types of Solar PV systems: Stand-alone PV systems. UNIT IV ANALYSIS OF POWER CONVERTERS FOR 9 HYBRID ENERGY SYSTEMS Introduction to Power Converters - Stand-alone Converters - AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters - Bi-Directional Converters - Grid-Interactive Inverters - Matrix converter - Merits and Limitations. UNIT V | CASE STUDIES FOR HYBRID RENEWABLE **ENERGY SYSTEMS** Hybrid Systems - Range and type of Hybrid systems - Performance Analysis - Cost Analysis - Case studies of Diesel-PV, Wind-PV-Fuel-cell, Micro-hydel-PV, Biomass-Diesel-Fuel-cell systems. **TOTAL: 45 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the need, types, and environmental impact of various hybrid energy systems. CO2: Summarize the construction, operation, and performance of different electrical machines used in wind energy conversion systems. CO3: Analyze the power converters used for Solar Photovoltaic systems. CO4: Analyze different types of power converters used in hybrid energy systems. CO5: Identify the performance analysis of hybrid renewable energy systems through various case studies. **CO6:** Model the cost analysis of hybrid renewable energy systems

through various case studies.

TEX	Т ВООК	S:														
1	Bahmar		ohu	ri, '	'Hv	bri	d E	ner	gv '	Svs	tems	s", S	prin	ger	, Fi	rst
	Edition,			,	J				0)	-) -		, -	Г	0-	,	
2	S.M. Mı	ıye	en, '	'Wi	ind	Ene	ergy	, Cc	nve	ersi	on S	yste	ms",	Sp	ring	ger
	First Ed						0.				•			•		
3	Md. Ra	biu	l Isl	am	, M	d. 1	Rak	ibu	zza	ma	n Sh	ah,	Moh	nd I	Has	an
	Ali, "En	nerg	ging	Po	wei	Co	nve	erte	rs fo	or R	lenev	wabl	le Er	nerg	y aı	nd
	Electric	Vel	hicl	es",	CR	C P	res	s, Fi	irst	Edi	son,	202	1.			
REF	REFERENCES:															
1	3, 11 1 3, 1															
	Edition.															
2	S.N.Bhadra, D. Kastha, & S. Banerjee "Wind Electrical															
	Systems", Oxford University Press, 7th Impression, 2005.															
3	Rashid.M. H "Power electronics Hand book", Academic															
	press,4th Edition, 2018.															
4	Rai. G.D, "Non-conventional energy sources", Khanna															
	publishers, 6th Edition.															
5	Rai. G.I), "9	Sola	ır eı	nerg	gyι	ıtili	zati	on"	, K	hanı	na p	ublis	shei	s, 3	rd
	Edition,	. 198	87.	12												
6	Gray, L	. Jo	hns	on,	"V	Vinc	d er	nerg	gy s	syst	em"	, Pre	entic	e E	[all	of
	India, 2	nd i	Edit	tion	, 20	06.	LIAT	EDIT	3 AN	NA.U	NIVER	511Y	AUTO	3NO)	MOU	5
7	B.H.Kha	an	"N	Jon-	-cor	ıve	ntio	nal	F	Ene	rgy	SO	urce	s",	Ta	ata
	McGrav	v h	ill]	Pub	lish	ing	Co	omp	oan	y, N	Vew	Del	lhi, Z	201	7, 3	rd
	Edition.															
	COs						I	POs				1		I	PSO	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	1	-	1	-	-	-	1	2	-	1
	3	3	3	2	2	-	1	-	1	-	-	-	1	3	-	1
	4	3	3	2	2	-	1	-	1	-	-	-	1	3	-	1
	5	3	2	1	1	-	1	-	1	-	-	-	1	3	-	1
	6	3	2	1	1	-	1	-	1	-	-	-	1	3	-	1
	verall relation	3	2	1	1	-	1	-	1	_	_	-	1	3	_	1
Cor	relation				l					l						

VERTICAL - 4 POWER ENGINEERING

23EE053	UTILIZATION AND	L	T	P	C
	CONSERVATION OF	3	0	0	3
	ELECTRICAL ENERGY				

COURSE OBJECTIVES:

- To know various electric drives and traction motors with applications
- To introduce the energy saving concept by different ways of illumination
- To understand the different methods of electric heating and electric welding
- To know the conversion of solar and wind energies into electrical energy for different applications
- To study the domestic utilization of electrical energy.

UNIT I ELECTRIC DRIVES AND TRACTION 9

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services traction generator sets, traction motors, power transformers -characteristic features of traction motor - systems of railway electrification - electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear.

UNIT II ILLUMINATION 9

Introduction - definition, and meaning of terms used in illumination engineering- classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lamps - design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - energy saving lamps, LED

UNIT III | HEATING AND WELDING 9

Introduction - advantages of electric heating - modes of heat transfer - methods of electric heating - resistance heating - arc furnaces - induction heating - dielectric heating - electric welding

- types - resistance welding - arc welding - power supply for arc welding - radiation welding

UNIT IV ENERGY CONSERVATION AND ITS IMPORTANCE

Energy Conservation Act 2001 and its Features-Review of Industrial Energy Conservation-Energy conservation in electrical industries-Simulation study of energy conservation using power factor controller. (Three-phase circuit simulation with and without capacitor)

UNIT V DOMESTIC UTILIZATION OF ELECTRICALENERGY

House wiring - working principle of air conditioning system, Induction based appliances, Online and OFF line UPS, Batteries -Power quality aspects - nonlinear and domestic loads - Earthing system for Domestic, Industrial and Substation

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Choose suitable electric drives for different applications.
- CO2: Develop the illumination systems for energy saving.
- CO3: Make of use the electrical energy for heating and welding purposes
- CO4: Identify the effective usage of induction heating and dielectric heating for electrical applications
- CO5: Explain the need for energy conservation and simulation of three-phase power control
- CO6: Develop an electric connection for any domestic appliance like a refrigerator, or battery charging circuit for a specific household application

TEXT BOOKS:

1 N.V. Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age International Limited, 1994 & December 2017 Feb

- 2 J.B. Gupta, "Utilisation Electric power and Electric Traction", S.K. Kataria and sons, 2000 2012th Edition, 2013, January.
- **3** G.D. Rai," Non-Conventional Energy sources", Khanna Publications New Delhi, 1998
- 4 D.P. Kothari, K.C. Singal, Rakesh Ranjan, "Renewable Energy Sources and Emerging Technologies", PHI Learning Private Limited, 3rd Edition 2022
- 5 Industrial Energy Conservation, Volume I-II, S C Bhatia, Sarvesh Devraj, Energy conservation and Management by Akshay A pujara1st edition, June 2018.

REFERENCES:

- 1 R.K.Rajput, Utilisation of Electric Power, Laxmi publications 2nd Edition 2016.
- 2 H.Partab, Art and Science of Utilisation of Electrical Energy", Edition, Dhanpat Rai and Co., New Delhi-2004
- 3 C.L. Wadhwa, "Generation, Distribution and Utilisation of Electrical Energy", New Age International Pvt.Ltd., 3rd Edition, 2015 January.

COs	><	4	62			I	POs						PSOs			
COS	_R 1,	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	AFF	LIAI	10.11	1	IA.U	MIVER	511 Y	AUTO	3	WO'U	1	
2	3	2	1	1	-	1	-	1	-	-	-	-	3	-	1	
3	3	2	1	1	-	1	-	1	-	-	-	-	3	-	1	
4	3	2	1	1	-	1	-	1	-	-	-	-	3	-	1	
5	2	1	ı	-	-	1	-	1	-	-	-	-	2	-	1	
6	3	2	1	1	-	1	-	2	-	-	-	-	3	-	2	
Overall Correlation	3	2	1	1	-	1	-	2	-	-	ı	-	3	ı	2	

23EE054	HVDC TRANSMISSION	L	T	P	C
		3	0	0	3

- To understand the principles and types of HVDC system
- To provide knowledge about HVDC Converter and its analysis
- To discuss the various controls in HVDC converters
- To familiarize with the protection techniques in HVDC system

UNIT I INTRODUCTION

9

Development of HVDC technology, Advantages of HVDC Systems, HVDC System Costs, Overview and Organization of HVDC Systems, HVDC System Reliability, HVDC Characteristics and Economic Aspects, Planning for HVDC transmission, Modern trends in HVDC technology, HVDC Applications

UNIT II ANALYSIS OF HVDC CONVERTERS

9

Basic conversion principle, Selection of converter configuration, Commutation process, Rectifier and inverter operation, Analysis of Graetz circuit with and without overlap, Converter bridge characteristics

UNIT III | CONTROL OF HVDC CONVERTERS AND | SYSTEMS

9

Principles of DC link control, Converter control - characteristics, System control hierarchy, Firing angle control, Current and extinction angle control, Starting and stopping of DC link, Power control, Higher level controllers, HVDC Control functions.

UNIT IV REACTIVE POWER CONTROL AND HARMONICS

9

Reactive power requirements in steady state, Sources of reactive power, Static VAR systems, Generation of harmonics, Effect of increasing pulse number, Determination of resulting harmonic impedance, AC filters, DC side filters, Active power filters.

UNI	T V FAULT DEVELOPMENT AND PROTECTION	9
Conv	verter disturbances, AC system fault, DC line fault, Fa	ault
analy	rsis, Valve protection functions, Protective action of an HV	DC
syste	m, Protection by control actions, DC line protection, Fi	lter
prote	ection	
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able t	o:
CO1:	Interpret the development, characteristics and applicati of HVDC transmission	ons
CO2:	Summarize the various thyristor converters used in HV transmission.	DC
CO3:	Interpret the various control methodologies a characteristics of converters.	and
CO4:	Explain the various sources and requirements of react power	tive
CO5:	Develop the various concepts of harmonics and various fi	lter
CO6:	Summarize the Protection requirements, factors affect	ing
	power flow analysis in HVDC system	_
TEX	T BOOKS:	
1	Padiyar K.R., "HVDC power transmission system", N Age International(P)Ltd, NewDelhi, Second Edition, 2010	
2	Arrillaga, J., "High Voltage Direct Current Transmission	
_	Peter Pregrinus, London,1983	· ,
3	DraganJovcic and Khaled Ahmed, High Voltage Di	rect
	Current Transmission: Converters, Systems and DC Gr.	
	Wiley,	
	ERENCES:	
1	Kundur P., "Power System Stability and Control", McGra Hill,1993.	aw-
2	Colin Adamson and Hingorani N G, "High Voltage Dis Current Power Transmission", Garraway Limited, Lond 1960	
3	Edward Wilson Kimbark, "Direct Current Transmissic Vol.I, Wiley inter science, New York, London, Sydney,19	

4	Chan-Ki Kim, "HVDC TRANSMISSION Power Conversion
	Applications in Power Systems", John Wiley & Sons Pvt.
	Ltd., 2009

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	1	1	2	-	1	-	1	2	-	2	
2	2	1	-	-	-	1	1	-	-	1	-	1	2	-	-	
3	2	1	-	-	-	1	1	-	-	1	-	1	2	-	-	
4	2	1	-	-	-	1	1	1	-	1	-	1	2	-	1	
5	3	2	1	1	-	1	1	1	-	1	-	1	3	-	1	
6	2	1	-	-		1	1	1		1		1	2		1	
Overall Correlation	3	2	1	1	-	1	1	1	-	1	-	1	3	-	1	

23EE055	ENERGY MANAGEMENT AND	L	T	P	C
	AUDITING	3	0	0	3

- To study the concepts behind economic analysis and Load management
- To understand the basics of materials and energy balance
- To analyze the energy efficiency in thermal utilities
- To know the concept of compressed air system.
- To illustrate the concept of lighting systems and cogeneration

UNIT I GENERAL ASPECTS OF ENERGY MANAGEMENT AND ENERGY AUDIT

Commercial and Non-commercial energy - final energy consumption - energy conservation and its importance - Restructuring of the energy supply sector - electricity tariff - need and types of energy audit - Energy management/audit approach-understanding energy costs - energy audit instruments - Case study.

UNIT II MATERIAL AND ENERGY BALANCE 9

Methods for preparing process flow - material and energy balance diagrams - Energy policy purpose - location of energy management - roles and responsibilities of energy manager - employees training and planning- Financial Management: financial analysis techniques, simple payback period, return on investment, net present value, internal rate of return - Case Study.

UNIT III ENERGY EFFICIENCY IN THERMAL 9 UTILITIES

Introduction to fuels - properties of fuel oil, coal and gas - principles of combustion - combustion of oil, coal and gas - Boilers: Types, FBC boilers - Furnaces: Classification, general fuel economy measures in furnaces, excess air, heat distribution, temperature control, draft control, waste heat recovery.

UNIT IV ENERGY EFFICIENCY IN COMPRESSED AIR 9 SYSTEM 9

Compressed Air System: Types of air compressors -Compressed air system components - Refrigeration System: Vapour compression refrigeration cycle - refrigerants - coefficient of performance - Vapour absorption refrigeration system: working principle - types and comparison with vapour compression system - Diesel Generating system: Factors affecting selection - energy performance assessment of diesel conservation avenues.

UNIT V ENERGY EFFICIENCY IN ELECTRICAL UTILITIES FOUNDATION AND BUILDING COMPONENTS

Converter disturbances, AC system fault, DC line fault, Fault analysis, Valve protection functions, Protective action of an HVDC system, Protection by control actions, DC line protection, Filter protection.

TOTAL: 45 PERIODS

9

COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the fundamental concepts of energy management

- and energy audit

 CO2: Apply material and energy balance techniques to assess
- energy usage
- CO3: Develop the financial management and analysis techniques with a case study
- CO4: Summarize the energy efficiency measures in thermal utilities, including boilers and furnaces
- CO5: Explain the compressed air system and various refrigeration systems
- CO6: Identify energy efficiency measures in electrical utilities, including load management, power factor improvement, and efficient operation of motors and lighting systems

TEX	Т ВООК	S:														
1	Mehmet Kanoglu, Yunus A Cengel, "Energy Efficiency and Management for Engineers", McGraw-Hill Education, First															
	Manage	eme	nt f	for I	Eng	gine	ers'	', M	[cG	raw	-Hil	l Ed	ucat	ion	, Fi	rst
	Edition	, 20	20													
REF	FERENCES:															
1	Monce	f I	Crat	i, '	Ene	ergy	A	udi	t o	f B	uildi	ing	Syst	em	s: <i>A</i>	۱n
	Engineering Approach',. Third Edition, CRC Press, Dec.2020															
2	Sonal Desai, 'Handbook of Energy Audit', McGraw Hill															
	Education (India) Private Limited,2015															
3	Michael P.Deru, Jim Kelsey, 'Procedures for Commercial															
	Building Energy Audits', American Society of Heating,															
	Refrigerating and Air conditioning Engineers, 2011															
4	Thomas D.Eastop, 'Energy Efficiency: For Engineers and															
	Technologists',," Longman Scientific & Technical, 1990, 1st															
	Edition. ER DRE															
5	'Energy Managers and Energy Auditors Guidebook', Bureau															
	of Ener	gy I	Effic	cien	cy,	200	6.			A.			W.			
6	Larry C	.W	itte,	, Ph	ilip	S. S	Schr	nid	t, D	avi	dR.	Brov	vn, I	ndı	ıstr	ial
1	Energy	M	ana	iger	nen	t a	nd	U	tiliz	zatio	on',	Spr	inge	er	Berl	lin
	Heidelb	erg	, 19	88		CC					TE					
	COs					AFF	I	POs) AN	NA.U	NIVER	511Y	AUTO	I	PSO	s
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	1	3	-	-	3	1	2	-	3
	2	3	2	1	1	-	-	1	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	1	1	-	-	-	1	3	-	1
	4	2	1	-	-	-	-	1	1	-	-	-	1	2	-	1
	5	2	1	-	-	-	-	1	1	-	-	-	1	2	-	1
	6	3	2	1	1	-	-	1	1	-	-	1	1	3		1
O	verall	3	2	1	1			1	2			1	1	3		2
Cor	relation	3	_	1	T	_	_	1	_	_	_	1	1	3	_	_

23EE056	FLEXIBLE AC TRANSMISSION	L	T	P	C
	SYSTEMS	3	0	0	3

- To identify the current advancements in power systems.
- To study the performance of power systems with FACTS controllers
- To study FACTS controllers for load flow and dynamic analysis

UNIT I | INTRODUCTION

9

Real and reactive power control in electrical power transmission lines-loads & system compensation-Uncompensated transmission line-shunt and series compensation.

UNIT II | STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS

9

Voltage control by SVC-Advantages of slope in dynamic characteristics-Influence of SVC on system voltage-Design of SVC voltage regulator-TCR-FC-TCR-Modeling of SVC for power flow and fast transient stability - Applications: Enhancement of transient stability - Steady state power transfer - Enhancement of power system damping.

UNIT III HYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND APPLICATIONS

9

Operation of the TCSC-Different modes of operation–Modelling of TCSC, Variability reactance model– Modelling for Power Flow and stability studies. Applications: Improvement of the system stability limit–Enhancement of system damping.

UNIT IV VOLTAGE SOURCE CONVERTER BASED FACTS | 9 | CONTROLLERS

Static Synchronous Compensator (STATCOM)-Principle of operation-V-I Characteristics. Applications: Steady state power transfer-enhancement of transient stability-prevention of voltage instability. SSSC-operation of SSSC and the control of power flow-

mode	elling of SSSC in load flow and transient stability studies-	-
Dyna	amic voltage restorer (DVR).	
UNI	T V ADVANCED FACTS CONTROLLERS 9	9
Inter	line DVR(IDVR) - Unified Power flow controller (UPFC) -	-
Inter	line power flow controller (IPFC) - Unified Power quality	7
cond	itioner (UPQC)- Control coordination using genetic	2
algor	rithms.	
	TOTAL: 45 PERIOD	S
COU	JRSE OUTCOMES:	
	After completion of the course, the students will be able to:	
CO1:	Apply real and reactive power control strategies in electrical	Ĺ
	transmission lines	
CO2:	Identify the design and modelling of SVC and its applications	3
	in enhancing system stability	
CO3:	Model power flow and stability studies for the operation and	l
· V	different modes of TCSC	
CO4:	Explain the operation, V-I characteristics, and applications of	f
3	STATCOM	
CO5:	Model SSSC and DVR operations in load flow and transient	t
	stability AFFILIATED TO ANNA UNIVERSITY! AUTONOMOUS	
	Summarize the various advanced FACTS controllers.	
	T BOOKS:	
1	R. Mohan Mathur, Rajiv K. Varma, "Thyristor-Based Facts	
	Controllers for Electrical Transmission Systems", IEEE press	3
	and John Wiley & Sons, Inc,2002	
2	Narain G. Hingorani, "Understanding FACTS-Concepts and	
	Technology of Flexible AC Transmission Systems", Standard	l
	Publishers Distributors, Delhi-110006,2011.	
3	E Miller, Power Electronics in power systems, John Wiley and	l
	sons.	

REFERENCES:

- 1 K.R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Limited, Publishers, New Delhi, 2008
- **2** A.T. John, "Flexible A.C. Transmission Systems", Institution of Electrical and Electronic Engineers (IEEE), 1999.

COs							POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	-	-	-	1	-	-	-	1	3	-	1	
2	3	2	1	1	-	-	ı	1	-	ı	-	-	3	ı	1	
3	3	2	1	1	ı	ı	ı	1	1	ı	1	1	3	ı	1	
4	2	1	ı	-	ı	ı	ı	1	1	ı	1	1	2	ı	1	
5	3	2	1	1	ı	ı	ı	1	1	ı	1	1	3	ı	1	
6	2	1	ı	-	J	1		1	- 1	1	1	1	2	1	1	
Overall Correlation	3	2	1	1	-	-		1			-	1	3	1	1	

COLLEGE OF TECHNOLOGY

23EE057	POWER SYSTEM TRANSIENTS	L	T	P	C
		3	0	0	3

- To study the generation of switching transients and their control using circuit theoretical concept.
- To study the mechanism of lighting strokes and the production of lighting surges.
- To study the propagation, reflection and refraction of travelling waves
- To study the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.

UNIT I INTRODUCTION AND SURVEY

9

Sources of different types of transients - causes for transients-RL circuit transient with sine wave excitation - double frequency transients - basic transforms of the RLC circuit transients - study of transients in system planning - Importance of grounding.

UNIT II SWITCHING TRANSIENTS

,

Basic concept of switching transients - resistance switching and equivalent circuit for interrupting the resistor current - load switching and equivalent circuit - waveforms for transient voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit - capacitance switching with a restrike, with multiple restrikes - ferro resonance.

UNIT III LIGHTNING TRANSIENTS

9

Theories of cloud formation - mechanism of lightning discharges and characteristics of lightning strokes - model for lightning stroke - factors contributing to good line design - protection using ground wires - tower footing resistance - Interaction between lightning and power system.

UNIT IV TRAVELING WAVES ON TRANSMISSION 9 LINE COMPUTATION OF TRANSIENTS Computation of transients - transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept - step response - Bewely's lattice diagram - standing waves and natural frequencies - reflection and refraction of travelling waves. Computation of overvoltage using EMTP. UNIT V TRANSIENTS IN INTEGRATED POWER 9 **SYSTEM** The short line and kilometric fault - distribution of voltages in a power system - Line dropping and load rejection - voltage transients on closing and reclosing lines - overvoltage induced by faults -switching surges on integrated system Qualitative application of EMTP for transient computation. **TOTAL: 45 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to: **CO1:** Explain the principles of transients and its concepts CO2: Explain the different types of switching transients and the way to draw the necessary equivalent circuit. CO3: Summarize the underlying mechanisms of current suppression and current chopping **CO4:** Explain the concepts behind lighting and the way to protect the same. CO5: Develop and compute the transient behavior in transmission line. CO6: Explain the behavior of the circuit during switching and to

TEXT BOOKS:

learn the simulation tool.

- Allan Greenwood, 'Electrical Transients in Power Systems', Wiley Inter Science, New York, 2nd Edition, 1991
 - 2 Pritindra Chowdhari, "Electromagnetic transients in Power System", John Wiley and Sons Inc., Second Edition, 2009.

- 1 M.S.Naidu and V.Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, Fifth Edition, 2013
- R.D. Begamudre, 'Extra High Voltage AC Transmission Engineering', Wiley Eastern Limited, 1986.

COs						I	Os						P	SO	S
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	2	1	-	-	-	3	3	-	1
2	2	1	-	-	-	-	2	1	1	,	-	3	3	-	1
3	2	1	-	-	-	-	2	1	1	,	-	3	3	-	1
4	2	1	-	-	-	-	2	1	1	,	-	3	3	-	1
5	3	2	1	1	-	-	2	1	1	,	-	3	3	-	1
6	2	1	-	-	-	-	2	1	1	,	-	3	3	-	1
Overall Correlation	3	2	1	1	1		2	1			1	3	3		1

23EE058	HIGH VOLTAGE ENGINEERING	L	T	P	С
		3	0	0	3

- Various types of over voltages in power system and protection methods.
- Generation of over voltages in laboratories.
- Measurement of over voltages
- Nature of Breakdown mechanism in solid, liquid and gaseous dielectrics
- Testing of power apparatus and insulation coordination

UNIT I OVER VOLTAGES IN ELECTRICAL POWER 9 SYSTEMS

Causes of over voltages and its effects on power system – Lightning, switching surges and temporary over voltages – Reflection and Refraction of Travelling waves- protection against over voltages.

UNIT II DIELECTRIC BREAKDOWN

9

Properties of Dielectric materials - Gaseous breakdown in uniform and non-uniform fields - Corona discharges - Vacuum breakdown - Conduction and breakdown in pure and commercial liquids, Maintenance of oil Quality - Breakdown mechanisms in solid and composite dielectrics- Applications of insulating materials in electrical equipment.

UNIT III GENERATION AND MEASUREMENTS OF HIGH VOLTAGES AND HIGH CURRENTS 9

Generation of High DC, AC, impulse voltages and currents - Analysis of DC/AC and Impulse generator circuits - Tripping and control of impulse generators, Measurement of High voltages and High currents - High Resistance with series ammeter - Dividers - Resistance, Capacitance and Mixed dividers -Peak Voltmeter, Generating Voltmeters, Electrostatic Voltmeters - Sphere Gaps, High current shunts-Digital techniques in high voltage measurement.

UNIT IV HIGH VOLTAGE TESTING & INSULATION 9 COORDINATION High voltage testing of electrical power apparatus- International and Indian standards - Power frequency, impulse voltage and DC testing of Insulators, circuit breakers, bushing, isolators and transformers - Insulation Coordination. UNIT V | APPLICATION IN INDUSTRY 9 applications-Introduction electrostatic electrostatic precipitation, separation, painting /coating, spraying, imaging, printing, Transport of materials - manufacturing of sand paper -Smoke particle detector - Electrostatic spinning, pumping, propulsion - Ozone generation - Biomedical applications. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain the principles of transients and its concepts CO2: Explain the different types of switching transients and the way to draw the necessary equivalent circuit. CO3: Summarize the underlying mechanisms of current suppression and current chopping CO4: Explain the concepts behind lighting and the way to protect the same. **CO5:** Develop the transient behavior of transmission line CO6: Explain the industrial applications of high voltage in industry **TEXT BOOKS:** M.S.Naidu and V. Kamaraju, 'High Voltage Engineering', 1 Tata McGraw Hill, Fifth Edition, 2013 E. Kuffel and W.S. Zaengl, J.Kuffel, 'High 2 voltage Engineering fundamentals', Newnes Second Edition,

Elsevier, New Delhi, 2005

REFI	ERENCE	S:														
1	L.L.Alst	on,	Hi	igh	Vo	ltag	ge 🗆	Гесl	nno	log	y, C	xfor	d U	niv	ersi	ity
	Press, F	irst	Ind	lian	Ed	itio	n 20	006								
2	C.L.Wa	dhv	va,	Н	igh	v	olta	age	E	ngi	neer	ing,	N	ew	A	ge
	Internat	ion	al P	ubl	ish	ers,	Fot	ırth	Ed	litio	n,20	20				
3	Mazen	Abo	del	- S	alar	n, I	Tus	seir	ı A	nis,	Ah	dab	A-N	lors	hec	ły,
	Roshda	y F	Rad	war	1, I	Hig	h V	/olt	age	Eı	ngin	eerii	ng -	- T	heo	ry
	&Praction	ce, S	Seco	ond	Ed	itio	n, T	ayl	or &	k Fr	anci	is G1	oup	, 20	19	
	COs						I	POs						I	PSO	s
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	1	1	1	-	1	-	1	2	-	1
	2	2	1	-	-	-	1	1	1	-	1	-	1	2	-	1
	3	2	1	ı	-	-	1	1	1	-	1	-	1	2	-	1
	4	2	1	-	-	_	-	1	1	A	1	-	1	2	1	1
	5 pow	3	2	1	1	-	-2	1	1	4	1	P	1	3	4	1
	6	2	1	0	\ <u>-</u>			1	1	7	1		1	2		1
_	verall relation	3	2	1	}	-	1	1	1	0	1		1	3		1

COLLEGE OF TECHNOLOGY

23EE059	POWER QUALITY	L	T	P	C
		3	0	0	3

- To learn the basic definitions in Power Quality
- To study the power quality issues in Single Phase and Three Phase Systems
- To understand the principles of Power System Harmonics
- To know the way to use DSTATCOM for Harmonic Mitigation
- To learn the concepts related with Series Compensation

UNIT I INTRODUCTION

9

Introduction – Characterization of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non-linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards

UNIT II ANALYSIS OF SINGLE PHASE AND THREE PHASE SYSTEM

Single phase linear and non-linear loads – single phase sinusoidal, non-sinusoidal source –supplying linear and nonlinear loads – three phase balanced system – three phase unbalanced system – three phase unbalanced and distorted source supplying non-linear loads – concept of power factor – three phase- three wire – three phase - four wire system

UNIT III MITIGATION OF POWER SYSTEM 9 HARMONICS

Introduction - Principle of Harmonic Filters - Series-Tuned Filters - Double Band-Pass Filters - damped Filters - Detuned Filters - Active Filters - Power Converters - Harmonic Filter Design - Tuned Filter - Second-Order Damped Filter - Impedance Plots for

Filter Ban	ks - Impedance Plots for a Three-Branch 33 kV filter	
UNIT IV	LOAD COMPENSATION USING DSTATCOM	9
Compens	ating single - phase loads - Ideal three phase sh	unt
compensa	tor structure - generating reference currents us	sing
instantane	eous PQ theory - Instantaneous symmetr	rical
componer	nts theory -Generating reference currents when	the
source is	unbalanced -Realization and control of DSTATCO	М -
DSTATCO	DM in Voltage control mode	
UNIT V	SERIES COMPENSATION OF POWER	9
	DISTRIBUTION SYSTEM	
Rectifier s	supported DVR - DC Capacitor supported DVR - D	VR
Structure	- Voltage Restoration -Series Active Filter - Uni	fied
Power Qu	ality Conditioner	>
1000		
18:27	TOTAL: 45 PERIO	ODS
1 1/0	E <mark>VELOP</mark> MENT ACTIVITIES	
1 1/0		
(Group Se	E <mark>VELOP</mark> MENT ACTIVITIES	
(Group Se	E <mark>VELOPMENT ACTIVITIES</mark> eminar/Mini Project/Assignment/Content Preparati	ion
(Group Set / Quiz/ S	EVELOPMENT ACTIVITIES eminar/Mini Project/Assignment/Content Preparation of the content of the	ion
(Group Set / Quiz/ S	EVELOPMENT ACTIVITIES eminar/Mini Project/Assignment/Content Preparation or project/Assignment/Assignment/Content Preparation or project/Assignment/Content Preparation or prepa	ion
(Group Set / Quiz/ Set 1.	EVELOPMENT ACTIVITIES eminar/Mini Project/Assignment/Content Preparation curprise Test / Solving GATE questions/ etc) Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI	ion
(Group Set / Quiz/ Set 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	EVELOPMENT ACTIVITIES eminar/Mini Project/Assignment/Content Preparativerprise Test / Solving GATE questions/ etc) Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI Load via simulation	ion
(Group Set / Quiz/ Set 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	eminar/Mini Project/Assignment/Content Preparation of the Project/As	ion
(Group Set / Quiz/ Set 1.	eminar/Mini Project/Assignment/Content Preparations are Test / Solving GATE questions/ etc) Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI load via simulation Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters) with R and RI	ion
(Group Set / Quiz/ Set 1.	eminar/Mini Project/Assignment/Content Preparation of the Project/Assignment/Content Preparation of Test / Solving GATE questions/ etc) Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RL oad via simulation Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RL oad via simulation	ion
(Group Set / Quiz/ Set / Quiz/ Set / Quiz/ Set /	eminar/Mini Project/Assignment/Content Preparation of the Project/Assignment/Content Preparation of Test / Solving GATE questions/ etc) Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI to ad via simulation Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI to ad via simulation Harmonic analysis of three phase power converters	ion
(Group Set / Quiz/ Set / Quiz/ Set / Quiz/ Set /	eminar/Mini Project/Assignment/Content Preparationar/Mini Project/Assignment/Content Preparationar/Mini Project/Assignment/Content Preparationar/Mini Project/Assignment/Content Preparationary and Full Garmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters) with R and RI (Semi converters and Full Converters)	ion
(Group Set / Quiz/ Set / Quiz/ Set / Quiz/ Set /	eminar/Mini Project/Assignment/Content Preparation of the Project/Assignment/Content Preparation of Test / Solving GATE questions/ etc) Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI to ad via simulation Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI to ad via simulation Harmonic analysis of three phase power converters (Semi converters and Full Converters) with R and RI to ad via simulation	ion
(Group Set / Quiz/ Set / Quiz/ Set / Quiz/ Set / Quiz/ Set /	eminar/Mini Project/Assignment/Content Preparationar/Mini Project/Assignment/Content Preparationar/Mini Project/Assignment/Content Preparationar/Mini Project/Assignment/Content Preparationary Test / Solving GATE questions/ etc) Harmonic analysis of single-phase power converters (Semi converters and Full Converters) with R and RI coad via simulation Harmonic analysis of three phase power converters (Semi converters and Full Converters) with R and RI coad via simulation Harmonic analysis of three phase power converters (Semi converters and Full Converters) with R and RI coad via simulation Harmonic analysis of single-phase inverters with R and RI coad via simulation	ion

List of Open-Source Software/ Learning website:

- 1. http://nptel.iitm.ac.in/courses.php
- 2. https://old.amu.ac.in/emp/studym/2442.pdf
- 3. https://electricalacademia.com/electric-power
- 4. https://www.intechopen.com/books/6214
- 5. https://www.cde.com/resources/technical-papers/Mitigation-of-Harmonics.pdf
- 6. https://www.academia.edu/43237017/Use_Series_ Compensation_in_Distribution_Networks33_KV

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize the various definitions of power quality for power quality issues
- CO2: Interpret the concepts related with single phase / three phase linear and non-linear loads
- CO3: Explain the three-phase balanced and unbalanced system supplying non-linear loads
- CO4: Solve problems related with mitigation of Power System Harmonics
- CO5: Illustrate the use of DSTATCOM for load compensation
- CO6: Demonstrate the role of DVR, SAFs and UPQC in power distribution systems

TEXT BOOKS:

- 1 Arindam Ghosh and Gerad Ledwich "Power Quality Enhancement Using Custom Power Devices", Kluwer Academic Publishers, First Edition,2002
- **2** G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, Second Edition, 2011.

REF	ERENCE	S:									•	•				
1	R.C.Dug	gga	n "	Ele	ctri	c P	owe	er S	Syst	ems	s Qı	ıalit	y",	Tata	a N	1C
	Graw H	ill I	Pub	lish	ers	, Th	ird	Edi	tion	, 2 0	12					
2	Arrillga	"P	owe	er S	yst	em	Ha	rmo	nic	s",	Johr	ı Wi	ely a	and	Son	ns,
	2003 2n	d E	diti	on.												
3	Derek .	A.P	aice	e "I	Pow	er	Ele	ctro	nic	C	onve	erter	На	rmo	onic	s"
	IEEE Pr	ess,	. 199	95, 1	Wil	ey -	- IE	EE	Pre	ss1	999,	18th	Edi	tior	ı	
	60						I	POs						I	PSO	s
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	1	1	3	-	1	-	1	2	-	3
	2	2	1	-	-	-	1	1	1	-	1	-	1	2	-	1
	3	2	1	-	-	-	1	1	1	-	1	-	1	2	-	1
	4	3	2	1	1	-	-	1	1	-	1	-	1	3	-	1
	5	2	1	-	-	-	-	1	1		1	1	1	2	-	1
	6 00W	2	1.	1	-		-2	1	1		1		1	2	4	1
	verall relation	3	2	1	1	-	1	1	1	L	1	-	1	3	J	1

COLLEGE OF TECHNOLOGY

23EE060	RESTRUCTURED POWER	L	T	P	C
	MARKET	3	0	0	3

- Describe various types of deregulated markets in power systems
- Describe the technical and non-technical issues in the deregulated power industry
- Classify different market mechanisms and summarize the role of various entities in the market
- Analyze the energy and ancillary services management in the deregulated power industry
- Understand the restructuring framework US and Indian power sector

UNIT I INTRODUCTION

9

Reasons for restructuring - Understanding the restructuring process - objectives of deregulation of various power systems across the world - Consumer behavior - Supplier behavior - Market equilibrium - Short-run and Long-run costs - Various costs of production. The Philosophy of Market Models: Market models based on contractual arrangements - Market architecture.

UNIT II TRANSMISSION CONGESTION MANAGEMENT

9

Importance of congestion management in deregulated environment - Classification of congestion management methods - Calculation of ATC - Non-market methods - Market-based methods -Nodal pricing - Inter-zonal Intra-zonal congestion management - Price area congestion management - Capacity alleviation method.

UNIT III LOCATIONAL MARGINAL PRICES(LMP) AND FINANCIAL TRANSMISSION RIGHTS

9

Fundamentals of locational marginal pricing - Lossless DCOPF model for LMP calculation - Loss compensated DCOPF model for

LMP calculation - ACOPF model for LMP calculation - Risk Hedging Functionality Of Financial Transmission Rights - FTR issuance process - Treatment of revenue shortfall - Secondary trading of FTRs - Flow Gate rights - FTR and market power.

UNIT IV ANCILLARY SERVICE MANAGEMENT AND PRICING OF TRANSMISSION NETWORK

9

Types of ancillary services - Load-generation balancing related services - Voltage control and reactive power support services - Black start capability service - Mandatory provision of ancillary services - Markets for ancillary services - Co-optimization of energy and reserve services - International comparison. Pricing of transmission network: wheeling - principles of transmission pricing - transmission pricing methods - Marginal transmission pricing paradigm - Composite pricing paradigm - loss allocation methods.

UNIT V MARKET EVOLUTION

9

US markets: PJM market - The Nordic power market - Reforms in Indian power sector: Framework of the Indian power sector - Reform initiatives - availability based tariff (ABT) - The Electricity Act 2012 - Open Access issues - Power exchange

TOTAL: 45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project / Assignment / Content Preparation / Quiz/ Surprise Test / etc)

- 1. Analysis of ATC calculations using any one of the relevant software tools.
- 2. DCOPF-based LMP calculations using any one of the relevant software tools.
- 3. ACOPF-based LMP calculations using any one of the relevant software tools.
- 4. Analysis of social welfare maximization with different objectives.
- 5. Analysis of ABT components.

List of Open Source Software/Learning websites:

1. S.A. Khaparde, A.R. Abhyankar, "Restructured Power Systems", NPTEL Course, https://nptel.ac.in/courses/108101005/.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the reasons for restructuring in the power market and describe the process of deregulation in various power systems globally
- CO2: Identify consumer and supplier behavior in the context of a restructured power market
- CO3: Explain the significance of transmission congestion management in a deregulated environment and various congestion management methods
- CO4: Apply the fundamentals of locational marginal pricing (LMP) to calculate prices using DCOPF and ACOPF models
- CO5: Explain the management of ancillary services and the pricing of transmission networks using different pricing methods
- CO6: Utilize knowledge of market evolution to assess and analyze the frameworks and reform initiatives in the US, Nordic, and Indian power markets

TEXT BOOKS:

- Mohammad Shahidehpour, Muwaffaq Alomoush, "Restructured electrical power systems: operation, trading and volatility" Marcel Dekker Pub., 2001, 1st Edition
- 2 Kankar Bhattacharya, MathH.J.Boolen, and Jaap E.Daadler, "Operation of restructured power systems", Kluwer Academic Pub.,2001, 1st Edition

REFERENCES:

- 1 Sally Hunt, "Making competition work in electricity", JohnWilley and Sons Inc. 2002
 - 2 Steven Stoft, Power System Economics: Designing Markets for Electricity", Wiley-IEEE Press, 2002
 - 3 Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2016, 3rd Edition

COs						1	POs	1					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	1	1	1	-	1	-	-	2	-	1	
2	3	2	1	1	-	1	1	1	-	1	-	-	3	-	1	
3	2	1	-	-	-	1	1	1	-	1	-	-	2	-	1	
4	3	2	1	1	-	1	1	1	-	-	-	-	3	-	1	
5	2	1	-	-	-	1	1	1	-	-	-	-	2	-	1	
6	3	2	1	1	-	1	1	1					3	-	1	
Overall Correlation	3	2	1	1	-	1	1	1	-	-	-	-	3	-	1	

VERTICAL - 5 - DIVERSIFIED COURSES

23EE061	VLSI DESIGN	L	T	P	C
		3	0	0	3
COURSE	DBJECTIVES:				
• T	o explain the basic concepts of CMOS ar	nd			
	o introduce the IC fabrication methods				
	o introduce the Reconfigurable Processo				
	o introduce the basics of analog VLSI o	desig	gn a	nd i	ts
	nportance.			1	1
	o learn about the programming of F	rog	ramı	nab	le
	evice using Hardware description. CMOS BASICS				9
UNITI	INIOS BASICS				9
MOSFET :	Scaling - CMOS logic design- Dyna	mic	CN	10S	-
Transmissi	on Gates- BiCMOS.				
UNIT II I	C FABRICATION	- 2			9
CMOCICI	abuigational privall tryin tub Cal	D	oior	Des	100
17 (10)	abrications: n well, p well, twin tub, SoI	- De	esigi	ı Ku	ies
and Layou			<u></u>		
UNITIII	ROGRAMABLE LOGIC DEVICES				9
PAL, PLA,	CPLD architecture and application	-IN(OL()G'	A
UNIT IV	ECONFIGURABLE PROCESSOR	YIAU	TONG	MOL	9
FPGA- A1	chitecture, FPGA based application	dev	zeloj	ome	nt-
Introduction	n to FPAA.				
UNIT V I	IDL PROGRAMMING				9
X7 ·1 III		1		1 1.	,
-	DL- Overview - structural and behavi				-
-	esign examples- Carry Look ahead add	ers,	ALU	J, Sr	uft
Registers.					
	TOTA	L: 4	5 PE	RIO	DS
COURSE	OUTCOMES:				
After	completion of the course, the students v	vill ł	e ab	le to	o :
CO1: Expla	in the operation of CMOS circuits and M	IOSI	FET	scali	ing
	rate the CMOS IC fabrication process and	d lay	out	desi	ign
rules	•				

- CO3: Compare the architecture and applications of programmable logic devices such as PAL, PLA, and CPLD
- CO4: Develop FPGA-based applications and understand its architecture.
- CO5: Interpret the importance of analog VLSI design in modern systems.
- CO6: Analyse basic digital circuits using Verilog HDL for various operations like adders and ALU.

TEXT BOOKS:

- 1 Frank D. Petruzella, "Programmable Logic Controllers", 5th Edition, McGraw- Hill, New York, 2019.
- 2 Stuart Boyer A, "SCADA: Supervisory control and data Acquisition", Fourth Edition, ISA- The Instrumentation, Systems, and Automation Society,2010.
- Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Second Edition, Feb 2003, Prentice Hall of India.
- 4 M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997.

REFERENCES:

- 1 Bolton. W, "Programmble Logic Controllers", Elsevier Newnes, 6th Edition 2015.
- 2 S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002.
- 3 Sneh Saurabh, "Introduction to VLSI Design flow", Cambridge University Press.


COs						I	POs						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	1	1	1	2	2	1	-	-	2	1	2
2	2	1	-	-	1	1	1	2	2	1	1	-	2	1	2
3	3	3	2	2	1	1	1	2	2	1	1	2	3	1	2
4	3	2	1	1	1	1	1	2	2	1	1	2	3	1	2
5	2	1	-	-	1	1		-	2	1	1	2	2	1	-
6	3	3	2	2	1	1	1	2	2	1	1	2	3	1	2
Overall Correlation	3	2	1	1	1	1	1	2	2	1	1	1	3	1	2

23EE062	PLC PROGRAMMING	L	T	P	С
		3	0	0	3
COURSE OBJ	ECTIVES:				
• To kn	ow about the basics of PLC and Auton	natio	n		
• To un	derstand the importance of Automatio	n			
• To ex	plore various types and manufactures	of Pl	LCs		
• To int	roduce types of programming languag	ges o	f PI	_C	
and so	ome exercise few programs.				
UNIT I IN	TRODUCTION				9
Programmable	e Logic Controller (PLC)- Block diag	ram	of	PL	C-
Programming	languages of PLC Basic instruction se	ets- I	Desi	ign	of
alarm and inte	erlocks- Networking of PLC- Overview	v of	saf	ety	of
PLC with cas	e studies- Process Safety Automatic	n: I	Leve	els	of
process safety	through use of PLCs- IEC 61131-3	3 Sta	and	ard	-
Application of	international standards in process safe	ety c	ont	rol.	
UNIT II IEC	C 61131-3				9
Rails- Rungs-	Relay Logic- Latch switch- Timer	s- (Cou	nte	rs-
Boolean log	ics- Math Instructions- Data 1	man	ipu	lati	on
Instructions- I	Requirement of communication netwo	rks	for	PL	C,
PLC to PC Co	ommunication to computer- FBD equi	vale	nt t	o L	L-
FBD Programi	ning- IL- SFC-ST.				
UNIT III SC	ADA				9
Elements of SC	CADA system- History of SCADA, Rem	ote	Ter	mir	nal
Unit- Discrete	e control- Analog control, Master Te	rmiı	nal	Un	it-
Operator inter	face.				
	ART AND FIELD BUS				9
Introduction-	Evolution of signal standar	ds-	I	IAI	RT
communicatio	n protocol- communication mod	des-	F	ΙΑΙ	RT
networks- HA	RT commands- HART and OSI mode	el- F	ield	l bı	1S-

Architecture- Basic requirements of field Bus standard- Field bus

Topo	logy- Interoperability- Interchangeability.	
UNIT	T V PLC PROGRAMMING	9
Exerc	tise in Programming Languages from IEC 61131-3: Train	ffic
Light	: Control- Two way- Four way - Water Level Contr	ol-
Auto	matic Material Sorting System- Automatic Bottle Filli	ing
	m, Code Converters- DC motor Control- Alarm Circuit.	
	TOTAL: 45 PERIC	DS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able to	o:
CO1:	Explain the fundamental concepts and block diagram of P	LC
	systems.	
CO2:	Illustrate the programming languages of PLC and their ba	sic
	instruction sets.	
CO3:	Analyze the application of the IEC 61131-3 standard in P	LC
	programming.	
CO4:	Compare the elements and functionalities of SCAI	DΑ
	systems in industrial automation.	
CO5:	Develop the communication protocols like HART and Fig	eld
	Bus in industrial environments.	Y
CO6:	Apply PLC programs for practical applications such	as
	traffic light control and automatic systems.	
TEXT	F BOOKS:	
1	Frank D. Petruzella, "Programmable Logic Controllers",	5th
	Edition, McGraw-Hill, New York, 2019.	
2	Stuart Boyer A, "SCADA: Supervisory control and d	
	Acquisition", Fourth Edition, ISA- The Instrumentation	on,
3	Systems, and Automation Society, 2010.	go.1
3	Egyptian Company for the Development of Techni Education (ECDTE), PLC Kit Manual: ECDTE 100	
	Laboratory Manual, 2018.	J.1
4	CHUNGPA, "User's Manual: Universal PLC Traini	ing
	System CPS-3580U", English ver1, 2020.	
REFE	ERENCES:	
1	Bolton. W, "Programmble Logic Controllers", Elsev	ier

	Newnes, 6th Edition 2015.															
2	Handbo	ok,	P.	L. C	C. "F	rac	tica	ıl G	uid	e to	Pro	grar	nma	ble	Log	gic
	Control	Controllers." Automation Direct. com.														
3	Mano, M. Morris. Digital logic and computer design.															
	Pearson Education India, 2017.															
	COs	POs PSOs														
· ·	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	1	ı	1	-	1	-	-	2	ı	1
	2	2	1	-	-	1	1	ı	1	-	1	-	1	2	1	1
	3	3	3	2	2	1	1	-	1	-	1	-	2	3	1	1
	4	3	3	2	2	1	1	ı	1	-	1	-	2	3	1	1
	5	3	2	1	1	1	1	ı	1	-	1	-	2	3	1	1
	6	3	2	1	1	-	1	-	1	-	1	-	2	3	-	1
_	verall relation	3	3	2	2	1	1	4	1	-1	1	1	2	3	1	1

COLLEGE OF TECHNOLOGY
AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

23EE063	WEARABLE ELECTRONICS	L	T	P	C						
		3	0	0	3						
COURSE	E OBJECTIVES:										
To know the hardware requirement of wearable systems											

- To understand the communication and security aspects in the wearable devices
- To know the applications of wearable devices in the field of medicine.

UNIT I	INTRODUCTION TO WEARABLE SYSTEMS	9
	AND SENSORS	

Wearable Systems- Introduction, Need for Wearable Systems, Drawbacks of Conventional Systems for Wearable Monitoring, Applications of Wearable Systems, Types of Wearable Systems, Components of wearable Systems. Sensors for wearable systems-Inertia movement sensors, Respiration activity sensor, Impedance plethysmography, Wearable ground reaction force sensor

UNITI SIGNAL PROCESSING AND ENERGY 9 HARVESTING FOR WEARABLE DEVICES

Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles

UNIT III WIRELESS HEALTH SYSTEMS 9

Need for wireless monitoring, Definition of Body area network, BAN and Healthcare, Technical Challenges- System security and reliability, BAN Architecture Introduction, Wireless communication Techniques.

UNIT IV	SMART TEXTILE	9
Introducti	on to smart textile- Passive smart textile, active sn	nart

textile. Fabrication Techniques- Conductive Fibers, Treated Conductive Fibers, Conductive Fabrics, Conductive Inks. Case study smart fabric for monitoring biological parameters - ECG, respiration.

UNIT V | APPLICATIONS OF WEARABLE SYSTEMS

9

Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the components and applications of wearable systems.
- CO2: Illustrate the various sensors used in wearable systems for health monitoring.
- CO3: Analyze signal processing techniques and energy harvesting methods for wearable devices.
- CO4: Compare the wireless communication techniques used in body area networks BAN) for healthcare systems.
- CO5: Develop the fabrication techniques used in smart textiles for monitoring biological parameters.
- CO6: Apply wearable systems in medical diagnostics and patient monitoring applications.

TEXT BOOKS:

- 1 Annalisa Bonfiglo and Danilo De Rossi, Wearable Monitoring Systems, Springer, 2011
 - 2 Zhang and Yuan-Ting, Wearable Medical Sensors and Systems, Springer, 2013
 - 3 Edward Sazonov and Micheal R Neuman, Wearable Sensors: Fundamentals, Implementation and Applications, Elsevier, 2014
 - 4 Mehmet R. Yuce and Jamil Y.Khan, Wireless Body Area Networks Technology, Implementation applications, Pan Stanford Publishing Pte .Ltd, Singapore, 2012.

REFERENCES:

- 1 Sandeep K.S, Gupta, Tridib Mukherjee and Krishna Kumar Venkatasubramanian, Body Area Networks Safety, Security, and Sustainability, Cambridge University Press, 2013.
- 2 Guang-Zhong Yang, Body Sensor Networks, Springer, 2006.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	-	-	-	-	1	-	-	2	-	1	
2	2	1	-	-	1	1	1	1	-	1	-	-	2	1	1	
3	3	3	2	2	1	1	1	2	-	1	-	2	3	1	2	
4	3	3	2	2	1	1	1	1	-	1	-	2	3	1	1	
5	3	2	1	1	1	1	1	2	-	1	-	2	3	1	2	
6	3	2	1	1	-	1	1	2	-	1	-	2	3	-	2	
Overall Correlation	3	3	2	2	1	1	1	1	_	1		2	3	1	2	
Correlation	SAL,	YE.	1			- 24		1	9			10		þ		

COLLEGE OF TECHNOLOGY

	C									
	3									
COURSE OBJECTIVES:										
To introduce the Building Blocks of an embedded Syst	tem									
and Software Tools										
To emphasize the role of Input/output interfacing with	h									
Bus Communication protocol.										
To illustrate the ISR and scheduling for the multitaskii	ng									
process.										
To explain the basics of a Real-time operating system										
To analyze the applications based on embedded design										
approaches										
UNIT I INTRODUCTION TO EMBEDDED SYSTEMS	9									
Internal and the Freeholds of Control of the Freeholds	- 1									
Introduction to Embedded Systems -Structural units in Embedd	ea									
processor, selection of processor & memory devices- DMA	Ē.									
Memory management methods- Timer and Counting devices, Re	eal									
Time Clock, In-circuit emulator, Target Hardware Debugging.	Р.									
UNIT II EMBEDDED NETWORKING	9									
Embedded Networking: Introduction, I/O Device Ports & Buse	2S-									
Serial Bus communication protocols RS232 standard - RS485										
CAN Bus- Serial Peripheral Interface (SPI) - Inter- Integrat										
Circuits (I2C).										
UNIT III INTERRUPTS THE SERVICE MECHANISM	9									
AND DEVICE DRIVER										
Programmed-I/O busy-wait approach without interrupt servi										
mechanism-ISR concept-interrupt sources – multiple interrupts										
context and periods for context switching, interrupt latency as	nd									
deadline - Introduction to Device Drivers.										
UNIT IV RTOS-BASED EMBEDDED SYSTEM DESIGN	9									
Introduction to basic concepts of RTOS- Task, process & thread	ds,									
interrupt routines in RTOS, Multiprocessing and Multitaskir	ıg,									

	emptive and non-preemptive scheduling, Task
comr	munication- shared memory, message passing- Inter process
Com	munication- Introduction to process synchronization using
sema	phores.
UNI	T V EMBEDDED SYSTEM APPLICATION AND 9
	DEVELOPMENT
Emb	edded Product Development Life Cycle - Case Study:
	sion Agriculture- Autonomous car.
1 1601	TOTAL: 45 PERIODS
COL	IRSE OUTCOMES:
COC	After completion of the course, the students will be able to:
CO1.	<u> </u>
COI:	Explain the fundamental building blocks of embedded
	systems and selection criteria for processors and memory
602	devices.
CO2:	Illustrate the interfacing of input/output devices and bus
3	communication protocols in embedded systems.
CO3:	Analyze the interrupt service mechanism and its role in
	multitasking and real-time systems.
CO4:	Examine the pre-emptive and non-pre-emptive scheduling
	in RTOS-based embedded systems.
CO5:	Develop the use of task communication techniques in real-
	time operating systems.
CO6:	Construct embedded design approaches to real-world
	applications such as precision agriculture and autonomous
	vehicles.
TEX	Γ BOOKS:
1	Peckol, "Embedded system Design", John Wiley & Sons, 2010
2	Lyla B Das," Embedded Systems-An Integrated Approach",
	Pearson, 2013
3	Shibu. K.V, "Introduction to Embedded Systems", 2e, Mc
	graw Hill, 2017.
L	1 -

REF	ERENCE	S:														
1	Raj Kan	nal,	'Er	nbe	dde	ed S	Syst	em-	Arc	hite	ectu	re, P	rogi	ram	mir	ng,
	Design'	, M	c G	raw	Hi	11, 2	:013									
2	C.R. Sa	rma	ı, "I	Eml	oed	ded	Sy	stei	ns :	Eng	inee	ring	ŗ", U	Jniv	ers	ity
	Press (In	ndia	a) P	vt.	Ltd	, 20	13.									
3	Tammy	N	oer	gaa	rd,	"F	mb	edc	led	Sy	sten	ns A	Arch	itec	tur	e",
	Elsevier, 2006.															
4	Han-Way Huang, "Embedded system Design Using C8051",															
	Cengage Learning, 2009.															
5	Rajib M	Rajib Mall "Real-Time systems Theory and Practice" Pearson														
	Education, 2007.															
	COs						1	POs	,			1	PSC)s		
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	1	ď	1	1	- 8	2	1	1
	2 POW	2	1	-	-	1	1	1	1	3	1	1	4	2	1	1
	3	3	3	2	2	1	1	1	1	-	1	1	2	3	1	1
	4	3	3	2	2	1	1	1	1	4	1	1	2	3	1	1
	5	3	2	1	1	1	1	1	1		1	1	2	3	1	1
	6	3	2	1	1	1	1	1	1	1	1	1	2	3	1	1
	verall relation	3	2	1	1	1	1	1	1 _N	UAU	1 1 ER	CH sily	2	3	1	1

23EE065	NEURAL NETWORK AND FUZZY	L	T	P	C
	SYSTEMS FOR ELECTRICAL	3	0	0	3
	ENGINEERS				
COURSE	DBJECTIVES:				
•	Basics of artificial neural network.				
•	Concepts of modelling and control of r	neur	al a	nd	
	fuzzy control schemes.				
•	Features of hybrid control schemes.				
UNIT I	INTRODUCTION TO NEURAL NETWO	ORE	S		9
P 1	1.6				
Fundament	tals Concepts, Basic Models, Important Te	ermi	nol	ogi	es,
McCulloch	- Pitts Neuron, Linear Separability, He	bb 1	Net	woı	rk,
Perceptron,	, Adaline, Madaline - Architecture, al	gori	thm	ı aı	nd
Simple App	olications.				
UNIT II	NEURAL NETWORKS BASED ON PAT	TEI	RN		9
	ASSOCIATION AND COMPETITION				
- N.					1
Training Al	gorithms for Pattern Association - Hebb r	ule a	and	De	lta
rule, Heter	o-associative and Auto- associative Net,	Bid	irec	tior	nal
Associative	Memory - Architecture, Algorithm	and	l S	imp	ole
Application	ns., Backpropagation - Architecture, Al	gori	thm	ı aı	nd
Application	ns. Unsupervised Learning - Kohonen Sel	lf-O	rgaı	nisi	ng
Maps, ART	1 and ART2 and Counter Propagation.				
UNIT III	FUZZY LOGIC				9

UNIT III FUZZY LOGIC

9

Introduction, Classical and Fuzzy Sets: Properties and Operations, Crisp and Fuzzy Relations - Cardinality, Properties and Operations, Composition, Tolerance and Equivalence Relations, Simple Problems.

UNIT IV MEMBERSHIP FUNCTIONS

9

Features of membership function, Standard forms and Boundaries, fuzzification, membership value assignments, Fuzzy to Crisp Conversions, Lambda Cuts for fuzzy sets and relations, Defuzzification methods.

UNIT V APPLICATIONS OF NEURAL NETWORKS 9 AND FUZZY LOGIC Applications of Neural Networks: Pattern Recognition - Image compression - Communication - Control systems - Applications of Fuzzy Logic: Fuzzy Process Control - Fuzzy Optimization - Fuzzy Logic Controllers. Autonomous car. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the fundamental concepts and models of artificial neural networks. CO2: Illustrate the working of Hebb networks, Perceptron, and other basic neural architectures. CO3: Analyze pattern association techniques and training algorithms for neural networks. CO4: Examine the operations of fuzzy sets and crisp relations in fuzzy logic systems. CO5: Model the use of membership functions and fuzzification techniques in fuzzy systems. CO6: Apply neural network and fuzzy logic principles to realworld applications such as control systems and pattern recognition. **TEXT BOOKS:** 1 Sivanandam S N, Sumathi S, Deepa S N, "Introduction to Fuzzy Logic using MATLAB", Springer-Verlag, Berlin Heidelberg, 2010. Sivanandam S N, Sumathi S, Deepa S N, "Introduction to 2 Neural Networks using MATLAB 6.0", Tata McGraw-Hill, New Delhi, 2014 Sivanandam SN, Deepa SN, "Principles of Soft Computing", 3 Wiley India (P) Ltd, New Delhi, 2011.

REF	ERENCE	S:														
1	Laurene	e F	aus	ett	, "	Fur	ıdaı	ner	ıtals	S 01	f No	eura	1 N	etw	ork	s",
	Pearson	Ed	luca	tio	n In	dia	, Ne	ew l	Dell	hi, 2	2008					
2	Timothy	Timothy Ross , "Fuzzy Logic with Engineering														
	Applications", Mc Graw-Hill, Singapore, 2010.															
3	Zimmer	Zimmermann H J , "Fuzzy Set Theory and its Applications",														
	Allied Publisher, New Delhi, 2013.															
	COs	POs													PSC	s
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	1	-	1	-	1	2	1	1
	2	2	1	-	-	1	-	-	1	-	1	-	2	2	1	1
	3	3	3	2	2	1	1	-	1	-	1	-	2	3	1	1
	4	3	3	2	2	1	1	-	1	-	1	-	2	3	1	1
	5	3	2	1	1	1	1	4	1	- 1	1	1	2	3	1	1
	6 DOW	3	2	1	1	1	1		1		1	4	2	3	1	1
	verall relation	3	2	1	1	1	1		1		1		2	3	1	1

COLLEGE OF TECHNOLOGY

23EE066	IoT FOR POWER SYSTEMS	L	T	P	C						
		3	0	0	3						
COURSE OBJ	ECTIVES:										
• To l	know about the basics of PLC and Auto	mat	ion								
 Το ι 	understand the importance of Automat	ion									
 Το ε 	explore various types and manufacture	s of	PLC	Cs.							
• To i	ntroduce types of programming langu	ages	of i	PLC	-						
and	some exercise few programs.										
UNIT I BA	SICS OF IoT				9						
Evolution of 1	Internet of Things - Enabling Techno	ologi	ies	- Io	ъΤ						
		oTV									
Alternative Io	Γ models - Simplified IoT Architecture	and	Co	re Io	Тс						
Functional Sta	ck Fog, Edge and Cloud in IoT - Fund	ctior	al b	oloc	ks						
of an IoT eco	osystem - Sensors, Actuators, Smart	Obj	ects	s ar	nd						
Connecting Smart Objects.											
UNIT II IoT	PROTOCOLS	L			9						
IoT Access Ted	chnologies: Physical and MAC layers,	topo	log	y ar	nd						
Security of IEE	E802.15.4,802.15.4g, 802.15.4e, 1901.2a,	802.	11a	h ar	nd						
LoRaWAN - N	Network Layer: IP versions, Constraine	d N	ode	s aı	nd						
Constrained N	Tetworks – Optimizing IP for IoT: From	6LoV	NP	٩N	to						
6Lo, Routing o	over Low Power and Lossy Networks -	- Ap	plic	catio	on						
Transport Met	thods: Supervisory Control and Data	Acqı	aisi	tion	ı –						
* *	ayer Protocols: CoAP and MQTT.										
UNIT III DE	SIGN AND DEVELOPMENT				9						
Design Metl	nodology - Embedded computir	ng	log	ic	-						
Microcontrolle	er, System on Chips – IoT system buil	ding	, blo	ocks	s -						
Arduino - Bo	ard details, IDE programming - Ra	spbe	erry	Pi	_						
Interfaces and Raspberry Pi with Python Programming.											
UNIT IV DA	TA ANALYTICS AND SUPPORTIN	G			9						
SE	RVICES										
Structured Vs	Unstructured Data and Data in Motic	n V	s D	ata	in						
Rest - Role of	Machine Learning -No SQL Databas	es -	На	do	эр						

Ecosystem - Apache Kafka, Apache Spark - Edge Streaming Analytics and Network Analytics - Xively Cloud for IoT, Python Web Application Framework - Django - AWS for IoT - System Management with NETCONFYANG.

UNIT V | CASE STUDIES/INDUSTRIAL APPLICATIONS

Cisco IoT system - IBM Watson IoT platform - Manufacturing - Converged Plantwide Ethernet Model (CPwE) - Power Utility Industry - Grid Blocks Reference Model - Smart and Connected Cities: Layered architecture, Smart Lighting, Smart Parking Architecture and Smart Traffic Control.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basics and evolution of IoT and its enabling technologies.
- CO2: Illustrate IoT architectures and the role of fog, edge, and cloud in IoT systems.
- CO3: Analyze the IoT protocols and their application in constrained networks.
- **CO4:** Construct IoT design methodology using microcontrollers and Raspberry Pi.
- CO5: Apply data analytics tools like Apache Kafka and AWS in IoT systems for real-time data processing.
- **CO6:** Summarize the industrial applications of IoT in power utility and smart city systems.

TEXT BOOKS:

- David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, — IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017.
- 2 Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2 nd Edition, O'Reilly Media, 2011.

- 3 David Boyle, "From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence", Elsevier, 2014.
- 4 Kamal, R.,"Internet of Things Architecture and Design Principles," 1st Edition, Mcgraw Hill,2017.

REFERENCES:

- 1 Arshdeep Bahga, Vijay Madisetti, —Internet of Things A hands-on approach, Universities Press, 2015
- Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things Key applications and Protocols, Wiley, 2012 (for Unit 2).
- 3 Jan Ho" ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand.
- Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Things I, Springer, 2011.

COs		1	0	0		/I	POs	- /	7		, -]		I	PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1,	17) /	1	-	1	1	1	-	-	1	2	1	1	
2	2	1	5	/-	1	-	1	1	1	1	-	1	2	1	1	
3 CINE	3	3	2	2	1) LI	1	2	1	1	G	1	3	1	2	
4	3	2	1	1	1	UA1	1	2	1	1	SHY	1	3	1	2	
5	3	2	1	1	1	-	1	2	1	1	-	1	3	1	2	
6	2	1	-	-	1	-	1	1	1	-	-	1	2	1	1	
Overall Correlation	3	2	1	1	1	-	1	2	1	1	-	1	3	1	2	