


## **REGULATIONS - 2023**

## CURRICULUM AND SYLLABI

(2023-2024)

# B.E. ELECTRONICS AND COMMUNICATION ENGINEERING



KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

#### VISION OF KCG

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

#### MISSION OF KCG

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

# VISION OF ELECTRONICS AND COMMUNICATION ENGINEERING

To become a center of excellence of global significance in Electronics and Communication engineering and producing competent professionals committed to nation building.

# MISSION OF ELECTRONICS AND COMMUNICATION ENGINEERING

Provide quality education in the field of computer science and engineering & related domains

- Impart strong knowledge in the field of Electronics and communication engineering through innovative teaching and learning process
- Establish laboratories equipped with modern state of art technology resources to facilitate research and consultancy
- Enhance the knowledge and skills of the faculty to incorporate the latest advancements
- Facilitate Industrial collaboration in socially responsive research activities

# PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

#### The graduates will:

| PEO 1 | Have a successful career as technically competent, highly skilled professionals in Electronics and communication engineering and its related fields |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| PEO 2 | Demonstrate technical competence to provide solutions for real time Electronics and Communication engineering problems                              |
| PEO 3 | Adopt technological challenges through skill upgradation in the relevant areas                                                                      |
| PEO 4 | Exhibit professionalism and ethical attitude in their work                                                                                          |

## **PROGRAM OUTCOMES (POs)**

Engineering graduates will be able to:

| PO 01 | Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 02 | Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. |

| PO 03 | Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 04 | Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                            |
| PO 05 | Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.                                          |
| PO 06 | Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                |
| PO 07 | Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                          |
| PO 08 | Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                   |

| PO 09 | Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 10 | Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                                                |
| PO 12 | Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.                                                                                                                     |

## PROGRAM SPECIFIC OUTCOMES (PSOs)

| PSO 01 | Apply the knowledge of Basic sciences, Electronics and Communication Engineering fundamentals and specialization for solving complex problems in Electronics and Communication systems. |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 02 | Design suitable electronic circuits and communication systems using modern tools such as PSPICE, MATLAB / Simulink, Assemblers, Cadence and NS2.                                        |
| PSO 03 | Practice the ethics of their profession with a sense of social responsibility                                                                                                           |

#### **INDEX**

| Sl.No | Description                                           | Page No. |
|-------|-------------------------------------------------------|----------|
| 1     | Curriculum                                            | 1        |
| 2     | I Semester Syllabus                                   | 14       |
| 3     | II Semester Syllabus                                  | 41       |
| 4     | III Semester Syllabus                                 | 72       |
| 5     | IV Semester Syllabus                                  | 95       |
| 6     | V Semester Syllabus                                   | 116      |
| 7     | VI Semester Syllabus                                  | 134      |
| 8     | VII Semester Syllabus                                 | 154      |
| 9     | VIII Semester Syllabus                                | 167      |
| 10    | Vertical 1 : Semiconductor Chip<br>Design And Testing | 170      |
| 11    | Vertical 2 : Sensor Technologies<br>And IoT           | 188      |
| 12    | Vertical 3 : High Speed<br>Communications             | 205      |
| 13    | Vertical 4 : Networks And Cyber<br>Security           | 223      |
| 14    | Vertical 5 : Bio Medical<br>Technologies              | 240      |
| 14    | Vertical 6 : Signal And Image<br>Processing           | 258      |

# KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

#### **REGULATIONS 2023**

## BE -ELECTRONICS AND COMMUNICATION ENGINEERING

## CHOICE BASED CREDIT SYSTEM CURRICULA FOR SEMESTERS I TO VIII

#### SEMESTER-I

| Sl.<br>No. | Course<br>Code         | Course Title                                                                   | Category | Periods<br>Per Week |        | Per Week Contact |              | Credits |
|------------|------------------------|--------------------------------------------------------------------------------|----------|---------------------|--------|------------------|--------------|---------|
|            | 23IP101                | Induction<br>Programme                                                         |          | -<br>-              | T<br>- | -<br>-           | Periods<br>- | -       |
|            |                        | TH                                                                             | HEORY    |                     |        |                  |              |         |
| 1          | 23HS101                | Essential<br>Communication                                                     | HSMC     | 3                   | 0      | 0                | 3            | 3       |
| 2          | 23MA1 <mark>0</mark> 1 | Matrices and<br>Calculus                                                       | BSC      | 3                   | 0      | 0                | 3            | 3       |
| 3          | 23CS101                | Programming in C                                                               | ESC      | 3                   | 0      | 0                | 3            | 3       |
| 4          | 23HS102                | Heritage of Tamils                                                             | HSMC     | 1                   | 0      | 0                | 1            | 1       |
|            | ONE                    | THEORY AN                                                                      | D PRAC   | TIC                 | ΑI     | S                | INOLO        | GY      |
| 5          | 23PH111                | Engineering<br>Physics                                                         | BSC      | 3                   | 0      | 2                | Y I AUTONOM  | 4       |
| 6          | 23CY111                | Engineering<br>Chemistry                                                       | BSC      | 3                   | 0      | 2                | 5            | 4       |
|            |                        | PRAG                                                                           | CTICALS  |                     |        |                  |              |         |
| 7          | 23CS121                | C Programming<br>Laboratory                                                    | ESC      | 0                   | 0      | 4                | 4            | 2       |
| 8          | 23HS121                | Communication<br>Skills Laboratory                                             | HSMC     | 0                   | 0      | 2                | 2            | 1       |
| 9          | 23HS122                | General Clubs /<br>Technical Clubs /<br>NCC / NSS /<br>Extension<br>Activities | HSMC     | 0                   | 0      | 2                | 2            | 1*      |
|            | -                      | TOTAL                                                                          |          | 16                  | 0      | 12               | 28           | 21      |

<sup>\*</sup> The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

#### SEMESTER -II

| S1.<br>No. | Course<br>code      | Course Title                                           | Category |    | rio<br>Pei<br>Vee | ſ  |         | Credits |  |  |
|------------|---------------------|--------------------------------------------------------|----------|----|-------------------|----|---------|---------|--|--|
|            |                     |                                                        |          | L  | T                 | P  | Periods |         |  |  |
|            | THEORY              |                                                        |          |    |                   |    |         |         |  |  |
| 1          | 23HS201/<br>23HS202 | Professional<br>English/ Foreign<br>language           | HSMC     | 3  | 0                 | 0  | 3       | 3       |  |  |
| 2          | 23MA203             | Statistics and<br>Numerical<br>Methods                 | BSC      | 3  | 1                 | 0  | 4       | 4       |  |  |
| 3          | 23PH203             | Physics for<br>Electronics<br>Engineering              | BSC      | 3  | 0                 | 0  | 3       | 3       |  |  |
| 4          | 23EC201             | Circuit Analysis                                       | PCC      | 3  | 1                 | 0  | 4       | 4       |  |  |
| 5          | 23HS203             | Tamils and<br>Technology                               | HSMC     | 1  | 0                 | 0  | 1       | 1       |  |  |
|            | GINER               | THEORY AND                                             | PRACTI   | CA | LS                | CH | NOLO    | GY      |  |  |
| 6          | 23EE284             | Basic Electrical and<br>Instrumentation<br>Engineering | ESC      | 2  | 0                 | 2  | AUTONO/ | 3       |  |  |
| 7          | 23ME211             | Engineering<br>Graphics                                | ESC      | 3  | 0                 | 2  | 5       | 4       |  |  |
|            |                     | PRAC                                                   | ΓICALS   |    |                   |    |         |         |  |  |
| 8          | 23ME221             | Engineering<br>Practices Laboratory                    | ESC      | 0  | 0                 | 4  | 4       | 2       |  |  |
| 9          | 23EC221             | Circuits Analysis<br>Laboratory                        | PCC      | 0  | 0                 | 4  | 4       | 2       |  |  |
| 10         | 23HS221             | Soft Skills                                            | EEC      | 0  | 0                 | 2  | 2       | 1*      |  |  |
|            |                     | TOTAL                                                  |          | 18 | 2                 | 14 | 34      | 26      |  |  |

<sup>\*</sup> The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

#### SEMESTER- III

| S1.<br>No. | Course code | Course Title                         | Category | W N | rio<br>Per<br>/ee | k  | Total<br>Contact<br>Periods | Credits |  |
|------------|-------------|--------------------------------------|----------|-----|-------------------|----|-----------------------------|---------|--|
|            |             |                                      |          | L   | T                 | P  |                             |         |  |
|            | T           | THE                                  | ORY      | ı   |                   |    |                             |         |  |
| 1          | 23MA301     | Linear Algebra                       | BSC      | 3   | 1                 | 0  | 4                           | 4       |  |
| 2          | 23EC301     | Electronic Circuits                  | PCC      | 3   | 0                 | 0  | 3                           | 3       |  |
| 3          | 23EC302     | Control Systems                      | PCC      | 3   | 0                 | 0  | 3                           | 3       |  |
| 4          | 23HS301     | Universal Human<br>Values and Ethics | HSMC     | 3   | 0                 | 0  | 3                           | 3       |  |
|            | WOW.        | THEORY AND                           | PRACTIC  | AL  | S                 | 1  |                             |         |  |
| 5          | 23EC311     | Digital Systems<br>Design            | PCC      | 3   | 0                 | 2  | 5                           | 4       |  |
| 6          | 23EC312     | Signals and Systems                  | PCC      | 3   | 0                 | 2  | 5                           | 4       |  |
|            | PRACTICALS  |                                      |          |     |                   |    |                             |         |  |
| 7          | 23EC321     | Electronic Circuits  Laboratory      | PCC      | 0   | 0                 | 4  | 4                           | 2       |  |
| 8          | 23ES391     | Presentation Skills                  | EEC      | 0   | 0                 | 2  | 2                           | 1*      |  |
| * 701      | 1           | TOTAL                                |          | 18  | 1                 | 10 | 29                          | 23      |  |

<sup>\*</sup> The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

#### **SEMESTER-IV**

| S1. Course |         | C Titl                                     |          | Periods<br>Per Week |          |         | Total              | G 111   |  |  |
|------------|---------|--------------------------------------------|----------|---------------------|----------|---------|--------------------|---------|--|--|
| No.        | code    | Course Title                               | Category | Per<br>L            | vve<br>T | ek<br>P | Contact<br>Periods | Credits |  |  |
|            | THEORY  |                                            |          |                     |          |         |                    |         |  |  |
| 1          | 23MA402 | Probability and<br>Random Processes        | BSC      | 3                   | 1        | 0       | 4                  | 4       |  |  |
| 2          | 23EC401 | Electromagnetic<br>Fields                  | PCC      | 3                   | 1        | 0       | 4                  | 4       |  |  |
| 3          | 23EC402 | Communication<br>Systems                   | PCC      | 3                   | 0        | 0       | 3                  | 3       |  |  |
| 4          | 23EC403 | Linear Integrated<br>Circuits              | PCC      | 3                   | 0        | 0       | 3                  | 3       |  |  |
| 5          | OWE     | Department Elective 1                      | DEC      | 3                   | 0        | 0       | 3                  | 3       |  |  |
|            | 17      | THEORY AN                                  | D PRACT  | ICA                 | LS       |         |                    |         |  |  |
| 6          | 23EC411 | Microprocessors<br>and<br>Microcontrollers | PCC      | 3                   | 0        | 2       | 5                  | 4       |  |  |
|            | 19      | PRAC                                       | CTICALS  | c To                | -        | JEKE    | 01061              | 7       |  |  |
| 7          | 23EC421 | Communication<br>Systems<br>Laboratory     | PCC      | 0                   | 0        | 4       | 4                  | 2       |  |  |
| 8          | 23EC422 | Linear Integrated<br>Circuits Lab          | PCC      | 0                   | 0        | 4       | 4                  | 2       |  |  |
| 9          | 23ES491 | Aptitude and<br>Logical<br>Reasoning - 1   | EEC      | 0                   | 0        | 2       | 2                  | 1*      |  |  |
|            |         | TOTAL                                      |          | 18                  | 2        | 12      | 32                 | 25      |  |  |

<sup>\*</sup> The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

#### **SEMESTER-V**

| S1.<br>No. | Course<br>Code | Course Title                                                   | Category | ]   | rio<br>Per<br>/ee |    | Total<br>Contact<br>Periods | Credits |  |  |  |
|------------|----------------|----------------------------------------------------------------|----------|-----|-------------------|----|-----------------------------|---------|--|--|--|
|            | THEORY         |                                                                |          |     |                   |    |                             |         |  |  |  |
| 1          | 23RE501        | Research<br>Methodology and<br>Intellectual Property<br>Rights | ESC      | 2   | 0                 | 0  | 2                           | 2       |  |  |  |
| 2          | 23EC501        | Transmission lines and RF Systems                              | PCC      | 3   | 1                 | 0  | 4                           | 4       |  |  |  |
| 3          |                | Department<br>Elective – 1                                     | DEC      | 3   | 0                 | 0  | 3                           | 3       |  |  |  |
| 4          | dinowe.        | Open Elective - 1<br>(Emerging<br>Technology)                  | OEC      | 3   | 0                 | 0  | 3                           | 3       |  |  |  |
|            |                | THEORY AND                                                     | PRACTI   | CAI | LS                |    |                             |         |  |  |  |
| 5          | 23EC511        | Digital Signal<br>Processing                                   | PCC      | 3   | 0                 | 2  | 5                           | 4       |  |  |  |
| 6          | 23EC512        | Networks and<br>Security                                       | PCC      | 3   | 0                 | 2  | 5<br>AUTONO                 | 4       |  |  |  |
|            |                | PRACT                                                          | ΓICALS   |     | •                 |    |                             | •       |  |  |  |
| 7          | 23EC521        | Mini Project                                                   | EEC      | 0   | 0                 | 4  | 4                           | 2       |  |  |  |
| 8          | 23ES591        | Aptitude and<br>Logical<br>Reasoning - 2                       | EEC      | 0   | 0                 | 2  | 2                           | 1*      |  |  |  |
|            | TOTAL          |                                                                |          |     |                   | 10 | 28                          | 22      |  |  |  |

<sup>\*</sup> The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

#### **SEMESTER VI**

| S1.<br>No. | Course<br>Code | Course Title                                          | Category |     | erio<br>er We | -  | Total<br>Contact<br>Periods | credits |
|------------|----------------|-------------------------------------------------------|----------|-----|---------------|----|-----------------------------|---------|
|            |                | T                                                     | HEORY    |     |               |    |                             |         |
| 1          | 23EC601        | Antenna and<br>Wave Propagation                       | PCC      | 3   | 0             | 0  | 3                           | 3       |
| 2          | 23EC602        | VLSI and Chip<br>Design                               | PCC      | 3   | 0             | 0  | 3                           | 3       |
| 3          |                | Department<br>Elective – 2                            | DEC      | 3   | 0             | 0  | 3                           | 3       |
| 4          |                | Department<br>Elective – 3                            | DEC      | 3   | 0             | 0  | 3                           | 3       |
| 5          |                | Open Elective - 2<br>(Management /<br>Safety Courses) | OEC      | 3   | 0             | 0  | 3                           | 3       |
|            | WOOD           | THEORY A                                              | ND PRAC  | CTI | CAL           | S  |                             |         |
| 6          | 23CE611        | Environmental Science and Engineering                 | ESC      | 3   | 0             | 2  | 5                           | 4       |
| A          | 18             | PRA                                                   | CTICALS  | S   |               |    |                             |         |
| 7          | 23EC621        | VLSI Laboratory                                       | PCC      | 0   | 0             | 4  | HIV4 LC                     | G\2     |
| 8          | 23EC622        | Project Work - APPR<br>Phase 1                        | EEC      | 0   | 0             | 4  | 4                           | 2       |
| 9          | 23EC623        | Technical<br>Training                                 | EEC      | 0   | 0             | 2  | 2                           | 1       |
| 10         | 23ES624        | Technical<br>Seminar - 1                              | ESC      | 0   | 0             | 2  | 2                           | 1       |
|            |                | TOTAL                                                 |          | 18  | 0             | 14 | 32                          | 25      |

#### **SEMESTER -VII**

| S1. | Course   |                   | Cate   | pei   |     |      | Total              |               |  |  |
|-----|----------|-------------------|--------|-------|-----|------|--------------------|---------------|--|--|
| No. | Code     | Course Title      | Gory   |       |     |      | Contact<br>Periods | Credits       |  |  |
|     |          |                   |        | L     | T   | P    | renous             |               |  |  |
|     | THEORY   |                   |        |       |     |      |                    |               |  |  |
|     |          | Open Elective - 3 |        |       |     |      |                    |               |  |  |
| 1   |          | (Management       | OEC    | 3     | 0   | 0    | 3                  | 3             |  |  |
|     |          | Courses)          |        |       |     |      |                    |               |  |  |
| 2   |          | Department        | DEC    | 3     | 0   | 0    | 3                  | 3             |  |  |
|     |          | Elective – 4      | DEC    | 3     | U   | U    | 3                  | 3             |  |  |
| 3   |          | Department        | DEC    | 3     | 0   | 0    | 3                  | 3             |  |  |
| 3   |          | Elective – 5      | DEC    | 3     | U   | U    | 3                  | 3             |  |  |
|     |          | Optical           |        |       |     |      |                    |               |  |  |
| 4   | 23EC701  | Communication and | PCC    | 3     | 0   | 0    | 3                  | 3             |  |  |
|     |          | Networks          |        |       |     |      |                    |               |  |  |
| 5   | 23EC702  | Comprehension     | EEC    | 2     | 0   | 0    | 2                  | 2             |  |  |
|     | (3)      | PRAC              | TICALS | 7     |     |      |                    |               |  |  |
|     | A U      | Advanced          | DCC    |       |     |      |                    | 100           |  |  |
| 6   | 23EC721  | Communication     | PCC    | 0     | 0   | 4    | 4                  | 2             |  |  |
| 1   | 2510721  | Laboratory        |        | U     | U   | 1    | 1                  |               |  |  |
| _   | 001-6700 | Project Work –    | FEC    | 0     | 0   |      |                    | - 0           |  |  |
| 7   | 23EC722  | Phase 2           | EEC    | 0     | 0   | 6    | M610               | $\subseteq 3$ |  |  |
| 0   | 23EC723  | Technical         | ESC    | A UNI | VER | SITY | AUTONO!            | 40U5<br>2     |  |  |
| 8   | 23EC/23  | Seminar – 2       | ESC    | 0     | 0   | 4    | 4                  |               |  |  |
|     | TOTAL    |                   |        |       |     | 14   | 28                 | 21            |  |  |

#### **SEMESTER -VIII**

| S1.<br>No. | Course<br>code      | Course Title                                    | Category | ] | rio<br>Pen<br>Vee<br>T | •  | Total<br>Contact<br>Periods |    |
|------------|---------------------|-------------------------------------------------|----------|---|------------------------|----|-----------------------------|----|
|            | PRACTICALS          |                                                 |          |   |                        |    |                             |    |
| 1          | 23EC821/<br>23EC822 | Capstone Project /<br>Internship cum<br>project | EEC      | 0 | 0                      | 20 | 20                          | 10 |
|            | TOTAL               |                                                 |          |   |                        | 20 | 20                          | 10 |

**TOTALCREDITS: 173** 

#### **DEPARTMENT ELECTIVE COURSES: VERTICALS**

VERTICAL 1: SEMICONDUCTOR CHIP DESIGN AND TESTING

| S1.<br>No. | Course<br>Code | Course Title                                  | Category | Periods<br>Per<br>Week |   |   | Total<br>Contact<br>periods | Credits |
|------------|----------------|-----------------------------------------------|----------|------------------------|---|---|-----------------------------|---------|
|            |                |                                               |          | L                      | T | P | perious                     |         |
| 1          | 23EC031        | Advanced Digital<br>System Design             | DEC      | 3                      | 0 | 0 | 3                           | 3       |
| 2          | 23EC032        | Analog IC<br>Design                           | DEC      | 2                      | 0 | 2 | 3                           | 3       |
| 3          | 23EC033        | Low Power IC<br>Design                        | DEC      | 2                      | 0 | 2 | 3                           | 3       |
| 4          | 23EC034        | VLSI Testing and<br>Design For<br>Testability | DEC      | 2                      | 0 | 2 | 3                           | 3       |
| 5          | 23EC035        | Physical Design                               | DEC      | 3                      | 0 | 0 | 3                           | 3       |
| 6          | 23EC036        | Mixed Signal IC<br>Design and<br>Testing      | DEC      | 3                      | 0 | 0 | 3                           | 3       |

#### **VERTICAL 2: SENSOR TECHNOLOGIES AND IOT**

| Sl.<br>No. | Course<br>Code | Course Title                          | Category | Pe | Periods Per Week L T P |   | Total<br>Contact<br>periods | Credits |
|------------|----------------|---------------------------------------|----------|----|------------------------|---|-----------------------------|---------|
| 1          | 23EC037        | Embedded<br>Systems and IOT<br>Design | DEC      | 2  | 0                      | 2 | 3                           | 3       |
| 2          | 23EC038        | IoT Based System<br>Design            | DEC      | 3  | 0                      | 0 | 3                           | 3       |
| 3          | 23EC039        | Wireless Sensor<br>Network Design     | DEC      | 3  | 0                      | 0 | 3                           | 3       |
| 4          | 23EC040        | Industrial IoT<br>and Industry 4.0    | DEC      | 2  | 0                      | 2 | 3                           | 3       |
| 5          | 23EC041        | MEMS Design                           | DEC      | 3  | 0                      | 0 | 3                           | 3       |
| 6          | 23EC042        | Fundamentals of Nano electronics      | DEC      | 3  | 0                      | 0 | 3                           | 3       |

**VERTICAL 3: HIGH SPEED COMMUNICATIONS** 

| Sl.<br>No. | Course<br>Code | Course Title                       | Category |   | Periods<br>Per<br>Week |   | Total<br>Contact<br>periods | Credits |
|------------|----------------|------------------------------------|----------|---|------------------------|---|-----------------------------|---------|
|            |                |                                    |          | L | T                      | P | perious                     |         |
| 1          | 23EC043        | Wireless<br>Communication          | DEC      | 3 | 0                      | 0 | 3                           | 3       |
| 2          | 23EC044        | Microwave<br>Communication         | DEC      | 3 | 0                      | 0 | 3                           | 3       |
| 3          | 23EC045        | Satellite<br>Communication         | DEC      | 3 | 0                      | 0 | 3                           | 3       |
| 4          | 23EC046        | Radar<br>Technologies              | DEC      | 3 | 0                      | 0 | 3                           | 3       |
| 5          | 23EC047        | 4G/5G<br>Communication<br>Networks | DEC      | 2 | 0                      | 2 | 3                           | 3       |
| 6          | 23EC048        | Wireless Broadband Communication   | DEC      | 3 | 0                      | 0 | 3                           | 3       |

#### **VERTICAL 4: NETWORKS AND CYBER SECURITY**

| S1.<br>No. | Course<br>Code | Course Title                                         | Category | )F | Periods Per Week L T P |   | Total<br>Contact<br>periods | Credits |
|------------|----------------|------------------------------------------------------|----------|----|------------------------|---|-----------------------------|---------|
| 1          | 23EC049        | Network<br>Essentials                                | DEC      | 2  | 0                      | 2 | 3                           | 3       |
| 2          | 23EC050        | Network<br>Engineering                               | DEC      | 2  | 0                      | 2 | 3                           | 3       |
| 3          | 23EC051        | Switching,<br>Routing, And<br>Wireless<br>Essentials | DEC      | 2  | 0                      | 2 | 3                           | 3       |
| 4          | 23EC052        | Enterprise Networking, Security, and Automation      | DEC      | 2  | 0                      | 2 | 3                           | 3       |
| 5          | 23EC053        | Network Design                                       | DEC      | 3  | 0                      | 0 | 3                           | 3       |
| 6          | 23EC054        | Cyber Security<br>Essentials                         | DEC      | 3  | 0                      | 0 | 3                           | 3       |

#### **VERTICAL 5: BIO MEDICAL TECHNOLOGIES**

| S1.<br>No. | Course<br>Code | Course Title                                    | Category | V | rioc<br>Per<br>Veel | <b>«</b> | Total<br>Contact<br>periods | Credits |
|------------|----------------|-------------------------------------------------|----------|---|---------------------|----------|-----------------------------|---------|
|            |                |                                                 |          | L | T                   | P        | Perrous                     |         |
| 1          | 23EC055        | Wearable Devices                                | DEC      | 3 | 0                   | 0        | 3                           | 3       |
| 2          | 23EC056        | Human Assist<br>Devices                         | DEC      | 3 | 0                   | 0        | 3                           | 3       |
| 3          | 23EC057        | Therapeutic<br>Equipment                        | DEC      | 3 | 0                   | 0        | 3                           | 3       |
| 4          | 23EC058        | Medical Imaging<br>Systems                      | DEC      | 3 | 0                   | 0        | 3                           | 3       |
| 5          | 23EC059        | Brain Computer<br>Interface and<br>Applications | DEC      | 3 | 0                   | 0        | 3                           | 3       |
| 6          | 23EC060        | Body Area<br>Networks                           | DEC      | 3 | 0                   | 0        | 3                           | 3       |

#### **VERTICAL 6: SIGNAL AND IMAGE PROCESSING**

| Sl.<br>No. | Course<br>Code | Course Title                             | Category | V | rioc<br>Per<br>Veel | \$11° | Total<br>Contact<br>periods | 3 |
|------------|----------------|------------------------------------------|----------|---|---------------------|-------|-----------------------------|---|
|            |                |                                          |          | L | T                   | P     | r                           |   |
| 1          | 23EC061        | Advanced<br>Digital<br>Signal Processing | DEC      | 3 | 0                   | 0     | 3                           | 3 |
| 2          | 23EC062        | Image Processing                         | DEC      | 3 | 0                   | 0     | 3                           | 3 |
| 3          | 23EC063        | Speech Processing                        | DEC      | 3 | 0                   | 0     | 3                           | 3 |
| 4          | 23EC064        | Software Defined<br>Radio                | DEC      | 2 | 0                   | 2     | 3                           | 3 |
| 5          | 23EC065        | DSP Architecture<br>and<br>Programming   | DEC      | 2 | 0                   | 2     | 3                           | 3 |
| 6          | 23EC066        | Computer Vision                          | DEC      | 2 | 0                   | 2     | 3                           | 3 |

#### **OPEN ELECTIVE - EMERGING TECHNOLOGIES**

| S1.<br>No. | Course<br>Code | Course Title                                              | Category | Periods Per Week L T P |         |   | Total<br>Contact<br>periods | Credits |
|------------|----------------|-----------------------------------------------------------|----------|------------------------|---------|---|-----------------------------|---------|
| 1          | 23OAD971       | Artificial Intelligence and Machine Learning Fundamentals | OEC      | 3                      | 0       | 0 | 3                           | 3       |
| 2          | 23OAS971       | Space<br>Engineering                                      | OEC      | 3                      | 0       | 0 | 3                           | 3       |
| 3          | 23OCS971       | Augmented<br>Reality and<br>Virtual Reality               | OEC      | 3                      | 0       | 0 | 3                           | 3       |
| 4          | 23OEE971       | Renewable<br>Energy<br>Technologies                       | OEC      | 3                      | 0       | 0 | 3                           | 3       |
| 5          | 23OEE972       | Integrated Energy Planning for Sustainable Development    | OEC      | 3                      | 0<br>TE | 0 | 3<br>MOLO                   | 3       |
| 6          | 23OMA971       | Resource<br>Management<br>Techniques                      | OEC      | 3                      | 0       | 0 | 3                           | 3       |
| 7          | 23OMA972       | Graph Theory                                              | OEC      | 3                      | 0       | 0 | 3                           | 3       |
| 8          | 23OMT971       | Foundation of Robotics                                    | OEC      | 3                      | 0       | 0 | 3                           | 3       |

#### **OPEN ELECTIVE - MANAGEMENT COURSES**

| Sl.<br>No. | Course<br>Code | Course Title                                         | Category | ] | Periods<br>Per<br>Week |   | Per Total |   | Credits |
|------------|----------------|------------------------------------------------------|----------|---|------------------------|---|-----------|---|---------|
|            |                |                                                      |          | L | T                      | P | remous    |   |         |
| 1          | 23OMG971       | Total Quality<br>Management                          | OEC      | 3 | 0                      | 0 | 3         | 3 |         |
| 2          | 23OMG972       | Engineering<br>Economics and<br>Financial Accounting | OEC      | 3 | 0                      | 0 | 3         | 3 |         |
| 3          |                | Engineering<br>Management and<br>Law                 | OEC      | 3 | 0                      | 0 | 3         | 3 |         |
| 4          | 23OMG974       | Knowledge<br><mark>M</mark> anagement                | OEC      | 3 | 0                      | 0 | 3         | 3 |         |
| 5          | 23OMG975       | Industrial<br>Management                             | OEC      | 3 | 0                      | 0 | 3         | 3 |         |
| 6          | 23OMG976       | Entrepreneurship and Business Opportunities          | OEC      | 3 | 0                      | 0 | OLOG      | 3 |         |
| 7          | 23OMG977       | Modern Business<br>Administration and<br>Financing   | OEC      | 3 | 0                      | 0 | 3         | 3 |         |
| 8          | 23OMG978       | Essentials of<br>Management                          | OEC      | 3 | 0                      | 0 | 3         | 3 |         |

#### **OPEN ELECTIVE - SAFETY RELATED COURSES**

| Sl.<br>No. | Course<br>Code | Course Title        | Category | Peri<br>Pe<br>We |   | r<br>e <b>k</b> | Total<br>Contact<br>Periods |   |
|------------|----------------|---------------------|----------|------------------|---|-----------------|-----------------------------|---|
| 1          | 230AU981       | Automotive Safety   | OEC      | 3                | 0 | 0               | 3                           | 3 |
| 2          | 23OCE981       | Disaster Management | OEC      | 3                | 0 | 0               | 3                           | 3 |
| 3          | 23OME981       | Industrial Safety   | OEC      | 3                | 0 | 0               | 3                           | 3 |

#### **SEMESTER-WISE CREDIT DISTRIBUTION**

| SEMESTER      | HSMC | BSC | ESC      | PCC     | DEC       | OEC | EEC      | Total |
|---------------|------|-----|----------|---------|-----------|-----|----------|-------|
| Semester I    | 5    | 11  | 5        |         | ,         |     |          | 21    |
| Semester II   | 4    | 7   | 9        | 6       |           |     |          | 26    |
| Semester III  | 3    | 4   |          | 16      |           |     |          | 23    |
| Semester IV   |      | 4   | OLLE     | 18      | 3         | HNO | DLOG     | 25    |
| Semester V    | Her  | A   | FILI2TED | TO 12 A | UNING RSI | 3   | TO 12 MO | 22    |
| Semester VI   |      |     | 5        | 8       | 6         | 3   | 3        | 25    |
| Semester VII  |      |     | 2        | 5       | 6         | 3   | 5        | 21    |
| Semester VIII |      |     |          |         |           |     | 10       | 10    |
| Total         | 12   | 26  | 23       | 65      | 18        | 9   | 20       | 173   |

#### SEMESTER -I

| 23IP101 | INDUCTION PROGRAMME | L | T | P | C |
|---------|---------------------|---|---|---|---|
|         |                     | 1 | 1 | 1 | 0 |

#### **COURSE OBJECTIVES:**

- This is a mandatory 2 weeks Programme to be conducted as soon as the students enter the institution.
   Normal classes start only after the induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character

 Hence, the purpose of this Programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature

#### • Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

#### • Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

#### Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

#### Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

#### Value Based Communication

This module will focus on improving the communication skills of students

#### **Lectures by Alumni**

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

#### Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

#### Familiarization to Dept/Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities

#### Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests / assessments during this Programme.

#### **REFERENCES:**

Guide to Induction program from AICTE

| 23HS101 | ESSENTIAL COMMUNICATION | L | T | P | C |
|---------|-------------------------|---|---|---|---|
|         |                         | 3 | 0 | 0 | 3 |

#### **COURSE OBJECTIVES:**

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

#### UNIT I FORMATION OF SENTENCES

.

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing- framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development-Parts of Speech, Wh- Questions, yes or no questions, direct and indirect questions. Vocabulary development- prefixes- suffixes-articles – countable and uncountable nouns

#### UNIT II NARRATION AND DESCRIPTION

9

Reading - Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development - Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing - Write short narrative paragraphs, biographies of friends/relatives - writing- topic sentence- main ideas- free

writing, short narrative descriptions using some suggested vocabulary and structures.

#### UNIT III COMPARING AND CONTRASTING

9

Reading- short texts and long texts -understanding different types of text structures, -coherence-jumbled sentences. Language development- degrees of comparison, concord- Vocabulary development - single word substitutes- discourse markers- use of reference words Writing - comparative and contrast paragraphs writing- topic sentence- main idea, free writing, compare and contrast using some suggested vocabulary and structures.

#### UNIT IV | SOCIAL MEDIA COMMUNICATION

9

Reading- Reading blogs, social media reviews, posts, comments, process description, Language development - relative clause, Vocabulary development- social media terms-words, abbreviations and acronyms Writing- -e-mail writing-conventions of personal email, descriptions for simple processes, critical online reviews, blog, website posts, commenting to posts.

#### UNIT V ESSAY WRITING MATER TO ARRA UNIVERSITY AUTONOM

9

Reading- Close reading non-technical longer texts Language development - modal verbs, phrasal verbs- Vocabulary development - collocation. Writing- Writing short essays-brainstorming - developing an outline- identifying main and subordinate ideas.

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

CO1: Summarize simple, level-appropriate texts of around 300 words recognizing main ideas and specific details.

| CO2: | Demons                                                                                                         | stra  | te tl | he t  | ınd  | erst  | anc  | ling | of         | mo   | re co     | mpl           | ex    |      |       |     |
|------|----------------------------------------------------------------------------------------------------------------|-------|-------|-------|------|-------|------|------|------------|------|-----------|---------------|-------|------|-------|-----|
|      | gramma                                                                                                         | atica | al st | ruc   | ture | es a  | nd   | dict | ion        | wh   | ile r     | eadi          | ng a  | nd   |       |     |
|      | writing.                                                                                                       |       |       |       |      |       |      |      |            |      |           |               |       |      |       |     |
| CO3: | Use app                                                                                                        | orop  | oria  | te e  | xpr  | essi  | ons  | to   | des        | crib | e, co     | mpa           | are a | nd   |       |     |
|      | contrast                                                                                                       | t pe  | ople  | e, th | ing  | S, S  | itua | atio | ns e       | tc., | in w      | ritir         | ıg.   |      |       |     |
| CO4: | Establis                                                                                                       |       |       |       |      |       |      |      |            |      |           |               |       | oug  | h     |     |
|      | emails.                                                                                                        |       |       |       |      |       |      |      |            |      |           | -             |       |      |       |     |
| CO5: | Determ                                                                                                         | ine   | the   | lan   | gua  | ge 1  | use  | app  | orop       | oria | te fo     | r di          | fere  | nt s | oci   | al  |
|      | media platforms.                                                                                               |       |       |       |      |       |      |      |            |      |           |               |       |      |       |     |
| CO6: | Use app                                                                                                        | orop  | oria  | te e  | xpr  | essi  | ons  | for  | naı        | rrat | ive o     | desc          | ripti | ons  | and   | d   |
|      | process descriptions.                                                                                          |       |       |       |      |       |      |      |            |      |           |               |       |      |       |     |
| TEX  | T BOOKS:                                                                                                       |       |       |       |      |       |      |      |            |      |           |               |       |      |       |     |
| 1    | Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange                                                    |       |       |       |      |       |      |      |            |      |           |               |       |      |       |     |
|      | Level 2. Cambridge University Press and Assessment Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange |       |       |       |      |       |      |      |            |      |           |               |       |      |       |     |
| 2    | Susan I                                                                                                        | roc   | ctor  | , Jac | k C  | . Ri  | cha  | ırds | , Joi      | natl | nan l     | Hull          | . Int | ercl | nan   | ge  |
|      | Level 3. Cambridge University Press and Assessment                                                             |       |       |       |      |       |      |      |            |      |           |               |       |      |       |     |
| REF  | ERENCE                                                                                                         | S:    |       | Λ     | 1    | ľ     |      | 6    |            |      |           |               |       |      |       |     |
| 1    | Dutt P. Kiranmai and Rajeevan Geeta. Basic Communication                                                       |       |       |       |      |       |      |      |            |      |           |               |       |      |       |     |
| 9    | Skills, F                                                                                                      | our   | ndat  | tion  | Во   | oks:  | : 20 | 13   |            |      |           |               |       |      | -     |     |
| 2    | Means,l                                                                                                        |       |       |       |      |       |      |      | _          |      | ALLE VIEW | C 4 T 4 T 4 T |       |      |       |     |
|      | Commu                                                                                                          | ınic  | atic  | n fo  | or C | Colle | eges | s. C | eng        | age  | Lea       | rnin          | g,L   | JSA  | : 20  | 007 |
|      | COs                                                                                                            |       |       |       |      |       | I    | POs  |            |      |           |               |       | F    | SC    | s   |
|      |                                                                                                                | 1     | 2     | 3     | 4    | 5     | 6    | 7    | 8          | 9    | 10        | 11            | 12    | 1    | 2     | 3   |
|      | 1                                                                                                              | -     | -     | -     | -    | -     | 1    | 1    | -          | 2    | 3         | -             | 2     | -    | -     | -   |
|      | 2                                                                                                              | -     | -     | -     | -    | -     | -    | -    | -          | 2    | 3         | -             | 2     | -    | -     | -   |
|      | 3                                                                                                              | -     | -     | -     | -    | -     | 1    | 1    | -          | 2    | 3         | -             | 2     | -    | -     | -   |
|      | 4                                                                                                              |       |       |       |      |       |      |      | -          | -    | 3         | -             | 2     | -    | -     | -   |
|      | 5                                                                                                              | 1     | 1     | -     | 3    | 3     | -    | 2    | -          | -    | -         |               |       |      |       |     |
|      | 6                                                                                                              | -     | -     | -     | -    | -     | 1    | 1    | -          | 3    | 3         | -             | 2     | -    | -     | -   |
|      | verall                                                                                                         | _     | _     | _     | _    | _     | 1    | 1    | _          | 3    | 3         | _             | 2     | _    | _     | _   |
|      | relation<br>mmende                                                                                             | d b-  | , D.  | n A   | of C | 142   | ios  | 20   | 07-2       | വാദ  |           |               |       |      |       |     |
| Keco |                                                                                                                |       |       |       | or S | iud   | 162  |      | 07-2<br>AC |      |           | Date          | ,     | 09-0 | 19.2  | 023 |
| l    | Approved                                                                                                       |       |       |       |      |       |      |      | AC         | TAT  |           | vait          | -     | ひターし | , y-Z | 023 |

| 23MA101 | MATRICES AND CALCULUS | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         |                       | 3 | 0 | 0 | 3 |

#### **COURSE OBJECTIVES:**

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

#### UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications: Stretching of an elastic membrane.

#### UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

#### UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

#### UNIT IV | INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques of

Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

#### UNIT V MULTIPLE INTEGRALS

9

Double integrals - Change of order of integration - Double integrals in polar coordinates - Area enclosed by plane curves - Triple integrals - Volume of solids - Change of variables in double and triple integrals.

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2: Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3: Find the derivative of functions of several variables
- **CO4:** Examine the application of partial derivatives
- **CO5:** Compute integrals by different techniques of Integration.
- CO6: Apply the concept of integration to compute multiple integrals.

#### TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- **2** James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

#### **REFERENCES:**

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2 Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016

- Bali. N., Goyal. M. and Watkins. C., —Advanced Engineering Mathematics, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- Narayanan. S. and Manicavachagom Pillai.T. K., —Calculus" 4 Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.

|                                            |   |   |   |   |   | I | Os | ,  |   |    |    |    | I | PSO |   |
|--------------------------------------------|---|---|---|---|---|---|----|----|---|----|----|----|---|-----|---|
| COs                                        | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9 | 10 | 11 | 12 | 1 | 2   | 3 |
| 1                                          | 3 | 2 | 1 | 1 | - | - | -  | -  | - | -  | -  | 1  | 3 | -   | - |
| 2                                          | 3 | 2 | 1 | 1 | - | - | -  | -  | - | -  | -  | 1  | 3 | -   | - |
| 3                                          | 3 | 2 | 1 | 1 | - | - | -  | -  | - | -  | -  | 1  | 3 | 1   | - |
| 4                                          | 3 | 2 | 1 | 1 | - | - | •  | -  | - | -  | -  | 1  | 3 | 1   | - |
| 5                                          | 3 | 2 | 1 | 1 | - | - | -  | -  | - | -  | -  | 1  | 3 | 1   | - |
| 6                                          | 3 | 2 | 1 | 1 | - | - | 1  | 1  | N |    | 1  | 1  | 3 | 1   | - |
| Overall<br>Correlation                     | 3 | 2 | 1 | 1 | - | 1 | -  | -/ | 7 | -  |    | 1  | 3 | 1   | - |
| Recommended by Board of Studies 02-08-2023 |   |   |   |   |   |   |    |    |   |    |    |    |   |     |   |

1st ACM Approved Date 09-09-2023



| 23CS101 | PROGRAMMING IN C | L | T | P | C |
|---------|------------------|---|---|---|---|
|         |                  | 3 | 0 | 0 | 3 |

#### **COURSE OBJECTIVES:**

- To understand the basic constructs of C Language.
- To develop C Programs using basic programming constructs.
- To develop C programs using arrays and strings.
- To develop modular applications in C using functions and pointers.
- To develop applications in C using structures and Unions.
- To understand file handling in C.

### UNIT I BASICS OF C PROGRAMMING 9

Introduction to programming paradigms - Applications of C Language - Structure of C program - C programming: Data Types

- Constants Enumeration Constants Keywords Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements - Decision making statements
- Switch statement Looping statements Preprocessor directives
- Compilation process.

#### UNIT II ARRAYS AND STRINGS

5

Introduction to Arrays: Declaration, Initialization – One dimensional array – Two dimensional arrays - String operations: length, compare, concatenate, copy – Selection sort, linear and binary search.

#### UNIT III | FUNCTIONS AND POINTERS

9

Modular programming - Function prototype, function definition, function call, Built-in functions (string functions, math functions) - Recursion, Binary Search using recursive functions - Pointers - Pointer operators - Pointer arithmetic - Arrays and pointers - Array of pointers - Parameter passing: Pass by value, Pass by reference.

| UNI    | T IV STRUCTURES AND UNION                                    | 9    |
|--------|--------------------------------------------------------------|------|
| Struc  | ture - Nested structures - Pointer and Structures - Array    | y of |
| struc  | tures - Self-referential structures - Dynamic mem            | ory  |
| alloc  | ation - Singly linked list - typedef - Union - Storage clas  | sses |
| and \  | Visibility.                                                  |      |
| UNI    | T V FILE PROCESSING                                          | 9    |
| Files- | - Types of file processing: Sequential access, Random Acc    | ess- |
|        | ential access file- Random access file- Command              |      |
| argu   | ments.                                                       |      |
|        | TOTAL: 45 PERIO                                              | DDS  |
| COU    | URSE OUTCOMES:                                               |      |
|        | After completion of the course, the students will be able    | to:  |
| CO1:   | Describe the basic constructs of C Programming Language      | ge.  |
| CO2:   | Develop simple applications using C basic constructs.        |      |
| CO3:   | Construct and Implement applications using Arrays            | and  |
| 1      | Strings.                                                     |      |
| CO4:   | Develop and Implement applications using Functions pointers. | and  |
| CO5:   | Construct applications using structures and Unions.          | V.   |
|        | Demonstrate File handling concepts and Command               | line |
|        | arguments.                                                   | 03   |
| TEX    | T BOOKS:                                                     |      |
| 1      | Reema Thareja, "Programming in C", Oxford Univer             | sity |
|        | press, Second Edition, 2016.                                 |      |
| 2      | Kernighan B.W and Ritchie D.M, "The C Programm               | ing  |
|        | language", Second Edition, Pearson Education, 2015.          |      |
| REFI   | ERENCES:                                                     |      |
| 1      | Paul Deitel and Harvey Deitel, "C How to program with        | ı an |
|        | introduction to C++", Eighth Edition, Pear                   | son  |
|        | Education,2018.                                              |      |
| 2      | Yashwant Kanetkar, "Let us C", seventeenth Edition, l        | 3PB  |
|        | Publications, 2020.                                          |      |
| 3      | Anita Goel and Ajay Mittal, "Computer Fundamentals           | and  |

|      | progran                                                                                                                                              | nmi                                                 | ng | in (  | Z",] | Firs | t Ec | litic            | n, l | Pear | rson | Edu  | ıcati | on,  | 201  | 3.   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----|-------|------|------|------|------------------|------|------|------|------|-------|------|------|------|
| 4    | Byron                                                                                                                                                | S.                                                  | Go | tfrie | ed,  | "S   | cha  | umʻ              | s (  | out  | line | of   | The   | eory | aı   | nd   |
|      | Problem                                                                                                                                              | ıs                                                  | of | Р     | rog  | ran  | nmi  | ng               | W    | ith  | C    | ",   | McC   | Grav | w-H  | [ill |
|      | Educati                                                                                                                                              | Education,1996.                                     |    |       |      |      |      |                  |      |      |      |      |       |      |      |      |
| 5    | PradipDey, ManasGhosh, "Computer Fundamentals and                                                                                                    |                                                     |    |       |      |      |      |                  |      |      |      |      |       |      |      |      |
|      | Progran                                                                                                                                              | Programming in C" Second Edition, Oxford University |    |       |      |      |      |                  |      |      |      |      |       |      |      |      |
|      | Press, 20                                                                                                                                            | Press, 2013.                                        |    |       |      |      |      |                  |      |      |      |      |       |      |      |      |
|      | COs POs                                                                                                                                              |                                                     |    |       |      |      |      |                  |      |      |      |      |       | I    | PSO  | s    |
| '    | COS                                                                                                                                                  | 1                                                   | 2  | 3     | 4    | 5    | 6    | 7                | 8    | 9    | 10   | 11   | 12    | 1    | 2    | 3    |
|      | 1 2 1 - 1 -                                                                                                                                          |                                                     |    |       | -    | ı    | -    | 1                | 1    | 1    | 1    | 3    | 1     | -    |      |      |
|      | 2                                                                                                                                                    | 3                                                   | 2  | 1     | 1    | 1    | -    | 1                | -    | 1    | 1    | 1    | 1     | 3    | 1    | -    |
|      | 3                                                                                                                                                    | 3                                                   | 2  | 1     | 1    | 1    | -    | 1                | -    | 1    | 1    | 1    | 1     | 3    | 1    | -    |
|      | 4                                                                                                                                                    | 3                                                   | 2  | 1     | 1    | 1    | -    | 1                | -    | 1    | 1    | 1    | 1     | 3    | 1    | -    |
|      | 5                                                                                                                                                    | 3                                                   | 2  | 1     | 1    | 1    | -    | 1                | -    | 1    | 1    | 1    | 1     | 3    | 1    | -    |
|      | 6 00W                                                                                                                                                | 2                                                   | 1  | 1/2   | -    | 1    | 7    |                  | -7   | 1    | 1    | 1    | 1     | 3    | 1    | -    |
|      | Overall orrelation         3         2         1         1         1         -         -         1         1         1         3         1         - |                                                     |    |       |      |      |      |                  |      |      |      |      |       |      |      |      |
| Reco | mmende                                                                                                                                               | d by                                                | Во | ard   | of S | tud  | lies | 28-              | 07-2 | 023  |      |      | 1     |      | Tier |      |
|      | Approved                                                                                                                                             |                                                     |    |       |      |      |      | 1st ACM Date 09- |      |      |      | 09-2 | 2023  |      |      |      |

| 23HS102 | HERITAGE OF TAMILS | L | T | P | C |
|---------|--------------------|---|---|---|---|
|         |                    | 1 | 0 | 0 | 1 |

#### **COURSE OBJECTIVES:**

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil Nadu.

#### UNIT I LANGUAGE AND LITERATURE 3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism & Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

# UNIT II HERITAGE - ROCK ART PAINTINGS TO 3 MODERN ART - SCULPTURE

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

| UNIT III   | FOL | K AND MAR   | ΓIAL A | RTS    |         |     | 3    |
|------------|-----|-------------|--------|--------|---------|-----|------|
| Therukootl | hu, | Karagattam, | Villu  | Pattu, | Kaniyan | Koo | thu, |

Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance – Sports and Games of Tamils.

# UNIT IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature – Aram Concept of Tamils – Education and Literacy during Sangam Age – Ancient Cities and Ports of Sangam Age – Export and Import during Sangam Age – Overseas Conquest of Cholas

# UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine - Inscriptions & Manuscripts - Print History of Tamil Books.

#### **TOTAL: 15 PERIODS**

### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Explain the evolution of Tamil language and literature, focusing on its cultural, ethical, and secular themes.
- CO2: Outline the making of musical instruments related to Tamil heritage.
- CO3: Discuss the sports and games of Tamils
- **CO4:** Explain the education and literacy during Sangam age.
- CO5: Express the importance and contribution of Tamils to Indian Freedom Struggle
- CO6: Outline the print history of books in Tamil Nadu

#### **TEXT BOOKS:**

1 தமிழக வரலாறு–மக்களும் பண்பாடும்–கே.கேபிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).

கணினித்தமிழ் – முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்). **REFERENCES:** கீழடி- வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு) பொருனை- ஆற்றங்கரை **நாகரிகம்** (**தொல்லியல்** துறை வெளியீடு) POs **PSOs** COs \_ Overall

1st ACM

Recommended by Board of Studies 28-07-2023

Approved

Correlation

COLLEGE OF TECHNOLOGY

Date

09-09-2023

| 23PH111 | ENGINEERING PHYSICS | L | T | P | C |
|---------|---------------------|---|---|---|---|
|         |                     | 3 | 0 | 2 | 4 |

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

# UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses- factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule – torque –rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

# UNIT II | ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

| UNIT III   | OPTICS AND LASERS                                       | 9    |
|------------|---------------------------------------------------------|------|
| Reflection | and refraction of light waves - total internal reflecti | on – |

types of optical fiber, Numerical Aperture and acceptance angle - interference -Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

### UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

# UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

#### **TOTAL: 45 PERIODS**

# PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating
- 6. Airwedge- Determination of thickness of a thinsheet / wire

- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
  - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

#### **TOTAL: 30 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Determine the mechanical properties of materials.
- CO2: Apply the principles of electromagnetic waves to real world system.
- CO3: Determine the thickness of thin wire and the characteristic parameter of an optical fiber.
- CO4: Apply the principles of lasers to real world application.
- CO5: Organize the quantum mechanical properties of particles and waves.
- **CO6:** Utilize the quantum mechanical principles towards the formation of energy bands.

#### **TEXT BOOKS:**

- 1 D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", McGraw Hill Education (Indian Edition), 2017.
- 2 Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", McGraw-Hill (Indian Edition), 2017.

| REFI                    | ERENCE                                                       | S:                            |      |      |       |      |            |      |      |            |              |          |      |       |                  |      |
|-------------------------|--------------------------------------------------------------|-------------------------------|------|------|-------|------|------------|------|------|------------|--------------|----------|------|-------|------------------|------|
| 1                       | R.Wolfs                                                      | son                           | ," E | Esse | ntia  | al U | niv        | ers  | ity  | Phy        | sics         | ", V     | olur | ne î  | 1 &              | 2.   |
|                         | Pearson                                                      | Ed                            | uca  | tio  | n (Iı | ndia | ın E       | dit  | ion) | , 20       | 09.          |          |      |       |                  |      |
| 2                       | Paul A                                                       | . T                           | iple | r, ' | 'Ph   | ysic | : <b>-</b> | Vo   | lum  | ne 1       | &            | 2",      | CBS  | 5, (I | Indi             | an   |
|                         | Edition)                                                     | Edition), 2004.               |      |      |       |      |            |      |      |            |              |          |      |       |                  |      |
| 3                       | K.Thya                                                       | gar                           | ajar | n aı | nd    | A.C  | Gha        | tak, | "La  | sers       | s: F         | unda     | ame  | ntal  | s a              | nd   |
|                         | Applications," Laxmi Publications, (Indian Edition), 2019.   |                               |      |      |       |      |            |      |      |            |              |          |      |       |                  |      |
| 4                       | D.Halliday, R.Resnick and J.Walker, "Principles of Physics", |                               |      |      |       |      |            |      |      |            |              |          |      |       |                  |      |
|                         | Wiley (I                                                     | Wiley (Indian Edition), 2015. |      |      |       |      |            |      |      |            |              |          |      |       |                  |      |
| 5                       | N.Garcia, A.Damask and S.Schwarz, "Physics for Computer      |                               |      |      |       |      |            |      |      |            |              |          |      |       |                  |      |
|                         | Science Students", Springer Verlag, 2016.                    |                               |      |      |       |      |            |      |      |            |              |          |      |       |                  |      |
|                         | COs                                                          |                               |      |      |       |      | I          | POs  |      |            |              |          |      | I     | PSO              | s    |
| '                       | COS                                                          | 1                             | 2    | 3    | 4     | 5    | 6          | 7    | 8    | 9          | 10           | 11       | 12   | 1     | 2                | 3    |
|                         | 1                                                            | 3                             | 2    | 1    | 1     | _    | -          | J    | 1    | -          | _            | 1,       | 1    | 3     | 1                | 1    |
|                         | 2 DOW                                                        | 3                             | 2    | 1    | 1     | -    | 7          | 7    | -/   | 9          |              | <b>P</b> | 1    | 3     |                  | 1    |
| 8                       | 3                                                            | 3                             | 2    | 1    | 1     | -    |            | 2    | -(   | <b>Y</b> - | -            | -        | 1    | 3     | -                | -    |
| ľ                       | 4                                                            | 3                             | 2    | /1   | 1     | - "  | -          | 9    | - 1  | P          | . <b>-</b> 2 | 1        | 1    | 3     | -                | -    |
| 1                       | 5                                                            | 3                             | 2    | 1    | 1     | -    | -          |      | 1    | 1          | _            | 1        | 1    | 3     | 1                | -    |
|                         | 6                                                            | 3                             | 2    | 1    | 1     | -    | -          | -    | -    | -          | ÷            | e i i    | 1    | 3     | ).               | 1    |
| Overall 3 2 1 1         |                                                              |                               |      |      |       |      |            |      | JE.  | OF.        | IE           | UH.      | ATT  | 3     | 9                |      |
| Correlation Correlation |                                                              |                               |      |      |       |      |            |      | ) AN | 107.17     | MIAE         | alT I    | (4)  | J     | A <del>O</del> U | _    |
| Reco                    | mmende                                                       |                               |      |      | of S  | Stud | ies        |      |      |            |              |          |      |       |                  |      |
|                         | Approved                                                     |                               |      |      |       |      |            |      | AC   | M          |              | Date     | ?    | 09-   | 09-2             | 2023 |

| 23CY111 | ENGINEERING CHEMISTRY | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         |                       | 3 | 0 | 1 | 4 |

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

# UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

# UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical

vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

#### UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO<sub>2</sub> system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

# UNIT IV FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO<sub>2</sub> emission and carbon sequestration, Green Hydrogen.

### UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid battery and lithium-ion battery; Electric vehicles – working

principles; Fuel cells: H<sub>2</sub>-O<sub>2</sub> fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

**TOTAL: 45 PERIODS** 

#### LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO<sub>2</sub>/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2: Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3: Estimate the knowledge of phase rule and composites for material selection requirements
- CO4: Choose a suitable fuel for engineering processes and applications
- CO5: Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6: Explain the different types of batteries, fuel cells and working principles of Electric vehicles

| TEX   | Т ВООК                                                                                                                                                                                                                                       | S:                                                                                                                                                                                                   |            |      |      |      |      |       |      |       |       |     |       |      |          |      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|------|------|-------|------|-------|-------|-----|-------|------|----------|------|
| 1     | P. C. Jar<br>Edition,<br>Delhi, 2                                                                                                                                                                                                            | in <i>a</i><br>Dl                                                                                                                                                                                    | han        | pat  | Ra   | i P  | ubl  | ishi  | ng   | Co    | mpa   | ny  | (P) 1 | Ltd, | No       | ew   |
| 2     | Sivasar<br>Publish                                                                                                                                                                                                                           |                                                                                                                                                                                                      |            |      |      |      |      |       |      |       |       |     | Mc(   | Grav | w-F      | Iill |
| 3     | Publish<br>Enginee<br>44 <sup>th</sup> Edi                                                                                                                                                                                                   | S.S. Dara, "A Text book of Engineering Chemistry", S. Chand<br>Publishing, 12th Edition, 2018.Grewal.B.S., "Higher<br>Engineering Mathematics", Khanna Publishers, New Delhi,<br>44th Edition, 2018. |            |      |      |      |      |       |      |       |       |     |       |      |          |      |
| REF   | ERENCE                                                                                                                                                                                                                                       | S:                                                                                                                                                                                                   |            |      |      |      |      |       |      |       |       |     |       |      |          |      |
| 1     | B. S. M<br>Murday<br>Univers<br>Science,                                                                                                                                                                                                     | itie                                                                                                                                                                                                 | Гех<br>s Р | t bo | ook  | of   | nar  | osc   | ien  | ce a  | and   | nan | otecl | hno  | log      | y",  |
| 2     | O.G. P                                                                                                                                                                                                                                       | alaı                                                                                                                                                                                                 | nna        |      |      |      |      |       |      |       |       |     |       |      | T        | Iill |
| 3     | Friedric                                                                                                                                                                                                                                     | Education (India) Private Limited, 2nd Edition, 2017.  Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014New Delhi, 2018.                                  |            |      |      |      |      |       |      |       |       |     |       |      |          |      |
| 5     | ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019  O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science |                                                                                                                                                                                                      |            |      |      |      |      |       |      |       |       |     |       |      |          |      |
|       | Busines                                                                                                                                                                                                                                      | s M                                                                                                                                                                                                  | edi        | a, N | lew  | Yo   |      |       |      | 11110 | n, 20 | 013 |       | Т    | 200      | \    |
|       | COs                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                    | 2          | 3    | 4    | 5    | 6    | POs 7 | 8    | 9     | 10    | 11  | 12    | 1    | PSC<br>2 | 3    |
|       | 1                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                    | 1          | _    | _    | _    | -    | 2     | _    | _     | _     | -   | 1     | 2    | _        | _    |
|       | 2                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                    | 1          | -    | -    | -    | -    | 2     | -    | -     | -     | -   | 1     | 2    | -        | -    |
|       | 3                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                    | 1          | -    | -    | -    | -    | 2     | -    | -     | -     | -   | 1     | 2    | -        | -    |
|       | 4                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                    | 2          | 1    | 1    | -    | -    | 3     | -    | -     | -     | -   | 2     | 3    | -        | -    |
|       | 5 3 2 1 1                                                                                                                                                                                                                                    |                                                                                                                                                                                                      |            |      |      |      |      | 3     | -    | 1     | -     | -   | 2     | 3    | -        | -    |
|       | 6 2 1                                                                                                                                                                                                                                        |                                                                                                                                                                                                      |            |      |      |      |      | 2     | -    | -     | -     | -   | 1     | 2    | -        | -    |
|       | verall<br>relation                                                                                                                                                                                                                           | 3                                                                                                                                                                                                    | 2          | 1    | 1    | -    | _    | 3     | -    | -     | -     | _   | 2     | 3    | _        | -    |
| Reco  | mmended                                                                                                                                                                                                                                      | l by                                                                                                                                                                                                 | Bo         | ard  | of S | Stud | lies | 28-   | 07-2 | 2023  |       |     |       |      |          |      |
| IXCCO |                                                                                                                                                                                                                                              |                                                                                                                                                                                                      | ove        |      |      |      |      |       |      |       |       |     |       |      |          |      |

| 23CS121 | C PROGRAMMING | L | T | P | C |
|---------|---------------|---|---|---|---|
|         | LABORATORY    | 0 | 0 | 4 | 2 |

- To familiarize with C programming constructs.
- To develop programs in C using basic constructs.
- To develop programs in C using arrays.
- To develop applications in C using strings, pointers, functions.
- To develop applications in C using structures.
- To develop applications in C using file processing.

#### PRACTICALS:

- 1. I/O statements, operators, expressions.
- 2. Decision-making constructs: if-else, goto, switch-case, break-continue.
- 3. Loops: for, while, do-while.
- 4. Arrays: 1D and 2D, multi-dimensional arrays, traversal.
- 5. Strings: operations.
- 6. Functions: call, return, passing parameters by (value, reference), passing arrays to function.
- 7. Recursion.
- 8. Pointers: Pointers to functions, Arrays, Strings, Pointers to Pointers, Array of Pointers.
- 9. Structures: Nested Structures, Pointers to Structures, Arrays of Structures and Unions.
- 10. Files: reading and writing, File pointers, file operations, random access, processor directives.

**TOTAL: 60 PERIODS** 

# LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS:

**HARDWARE:** Standalone desktops – 30 No's

**SOFTWARE:** : C / C++ / Equivalent Compiler

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

CO1: Demonstrate knowledge on C programming constructs.

| CO2:                                                    | Develop                        | pr | ogr  | am   | s in | Cι   | ısin | g b  | asic         | COI        | nstru | ıcts. |       |            |    |   |  |  |  |
|---------------------------------------------------------|--------------------------------|----|------|------|------|------|------|------|--------------|------------|-------|-------|-------|------------|----|---|--|--|--|
| CO3:                                                    | Develop                        | pr | ogr  | am   | s in | Cι   | ısin | g a  | rray         | rs aı      | nd s  | tring | gs    |            |    |   |  |  |  |
| CO4:                                                    | Develop                        | ap | plio | cati | ons  | in ( | C us | sing | g fu         | ncti       | ons   | and   | poir  | nter       | s. |   |  |  |  |
| CO5:                                                    | Develop                        | ap | plio | cati | ons  | in ( | C us | sing | g str        | uct        | ures  | and   | l uni | on.        |    |   |  |  |  |
| CO6:                                                    | Develop                        | ap | plio | cati | ons  | in ( | C us | sing | g file       | e pr       | oces  | ssing | ζ.    |            |    |   |  |  |  |
|                                                         | POs PSOs                       |    |      |      |      |      |      |      |              |            |       |       |       |            |    |   |  |  |  |
|                                                         | LUS                            | 1  | 2    | 3    | 4    | 5    | 6    | 7    | 8            | 9          | 10    | 11    | 12    | 1          | 2  | 3 |  |  |  |
|                                                         | 1                              | 2  | 1    | -    | -    | 1    | 1    | -    | 1            | -          | 2     | -     | 1     | 2          | 1  | 1 |  |  |  |
|                                                         | 2                              | 3  | 2    | 1    | 1    | 3    | 1    | -    | 1            | -          | 2     | -     | 1     | 3          | 3  | 1 |  |  |  |
|                                                         | 3                              | 3  | 2    | 1    | 1    | 3    | 1    | -    | 1            | -          | 2     | -     | 1     | 3          | 3  | 1 |  |  |  |
|                                                         | 4                              | 3  | 2    | 1    | 1    | 3    | 1    | -    | 1            | -          | 2     | -     | 1     | 3          | 3  | 1 |  |  |  |
|                                                         | 5                              | 3  | 2    | 1    | 1    | 3    | 1    | -    | 1            | -          | 2     | -     | 1     | 3          | 3  | 1 |  |  |  |
|                                                         | 6 3 2 1 1 3 1                  |    |      |      |      |      |      | -    | 1            | -          | 2     | -     | 1     | 3          | 3  | 1 |  |  |  |
| O                                                       | verall                         | 2  | 2    | 1    | 1    | 2    | 1    |      | _1           |            | ·     |       | 1     | 3          | 3  | 1 |  |  |  |
| Correlation   3   2   1   1   3   1   -   1   -   2   - |                                |    |      |      |      |      |      |      |              | <b></b>    |       | 3     | 3     | 1          |    |   |  |  |  |
| Reco                                                    | Recommended by Board of Studie |    |      |      |      |      |      |      |              | 28-07-2023 |       |       |       |            |    |   |  |  |  |
| 1                                                       | Approved                       |    |      |      |      |      |      |      | 1st ACM Date |            |       |       |       | 09-09-2023 |    |   |  |  |  |



| 23HS121                     | COMMUNICATION SKILLS                     | L     | T    | P    | C        |  |  |  |  |  |  |  |
|-----------------------------|------------------------------------------|-------|------|------|----------|--|--|--|--|--|--|--|
|                             | LABORATORY                               | 0     | 0    | 2    | 1        |  |  |  |  |  |  |  |
| COURSE OBJ                  | ECTIVES:                                 |       |      |      |          |  |  |  |  |  |  |  |
| • To enab                   | ole the students to comprehend the mai   | n id  | ea a | nd   |          |  |  |  |  |  |  |  |
| specific                    | information of the listening passage     |       |      |      |          |  |  |  |  |  |  |  |
| <ul> <li>To help</li> </ul> | students express themselves clearly, a   | nd    |      |      |          |  |  |  |  |  |  |  |
|                             | nicate effectively with others.          |       |      |      |          |  |  |  |  |  |  |  |
|                             | oduce authentic language use and conte   |       | •    |      |          |  |  |  |  |  |  |  |
| vocabu                      | lary that might not be encountered in to | extb  | ook  | s.   |          |  |  |  |  |  |  |  |
| Exercise:1                  | Listening to conversations set in every  | day   | soc  | ial  |          |  |  |  |  |  |  |  |
|                             | context and complete gap-filling exerc   | ise   |      |      |          |  |  |  |  |  |  |  |
| Exercise: 2                 | Listening to a monologue in everyday     | SOC   | ial  |      |          |  |  |  |  |  |  |  |
|                             | context. Diagram labelling and MCQ       |       |      |      |          |  |  |  |  |  |  |  |
| Exercise: 3                 | Listening to a group conversation in a   | cade  | emi  | 2    |          |  |  |  |  |  |  |  |
| INOME                       | setting and answer MCQ                   |       |      | 4    |          |  |  |  |  |  |  |  |
| Exercise: 4                 | Listening to a lecture and answer MC     | Q or  | gaj  | )    | ľ        |  |  |  |  |  |  |  |
|                             | filling                                  | A.    |      |      |          |  |  |  |  |  |  |  |
| Exercise: 5                 | Listening to Ted Talks, podcasts, docu   | ımeı  | ntar | ies  | -        |  |  |  |  |  |  |  |
|                             | discussion                               |       |      | CV   | 60<br>67 |  |  |  |  |  |  |  |
| Exercise: 6                 | Listening to a lecture and reading a te  | xt o  | n th | e    |          |  |  |  |  |  |  |  |
|                             | same subject- compare and contrast       |       |      |      |          |  |  |  |  |  |  |  |
| Exercise: 7                 | Speaking Introducing oneself             |       |      |      |          |  |  |  |  |  |  |  |
| Exercise: 8                 | Answering questions based on the int     | rodı  | acti | on   |          |  |  |  |  |  |  |  |
| Exercise: 9                 | Speaking on a given prompt for 2 min     | ıs.   |      |      |          |  |  |  |  |  |  |  |
| Exercise: 10                | Answering questions based on the top     | oic s | pok  | en   |          |  |  |  |  |  |  |  |
| Exercise: 11                | Role play- Engaging in conversation      |       |      |      |          |  |  |  |  |  |  |  |
| Exercise: 12                | Engaging in Podcast Discussion           |       |      |      |          |  |  |  |  |  |  |  |
|                             | TOTAL:                                   | 25 I  | PER  | IO   | DS       |  |  |  |  |  |  |  |
| COURSE OU                   | TCOMES:                                  |       |      |      |          |  |  |  |  |  |  |  |
| After con                   | mpletion of the course, the students wil | l be  | abl  | e to | :        |  |  |  |  |  |  |  |
|                             |                                          |       |      |      |          |  |  |  |  |  |  |  |

CO1: Demonstrate fluency in speaking in variety of situations

CO2: Express their knowledge by talking continuously for more than two minutes on a topic

| CO3: | Develop            | act                                                  | ive     | list  | enii  | ng f | or r | nor  | e m  | ean  | ingf  | ul ir | itera  | ctic | ns   |      |  |
|------|--------------------|------------------------------------------------------|---------|-------|-------|------|------|------|------|------|-------|-------|--------|------|------|------|--|
|      | and con            | vers                                                 | satio   | ons   |       |      |      |      |      |      |       |       |        |      |      |      |  |
| CO4: | Use a fu           | full range of structures naturally and appropriately |         |       |       |      |      |      |      |      |       |       |        |      |      |      |  |
| CO5: | Identify           | the                                                  | spe     | cifi  | c in  | fori | mat  | ion  | in o | con  | versa | atior | ıs, ir | ıter | viev | ws,  |  |
|      | talks and          | l lectures                                           |         |       |       |      |      |      |      |      |       |       |        |      |      |      |  |
| CO6: | Develop            | the                                                  | ab      | ility | to    | con  | npa  | re a | nd   | ana  | lyse  | diff  | eren   | t fo | rms  | s of |  |
|      | informat           | tion                                                 | , id    | enti  | ifyiı | ng k | ey   | sim  | ilar | itie | s and | d dif | fere   | nce  | s.   |      |  |
|      | 20-                | POs                                                  |         |       |       |      |      |      |      |      |       |       | PSOs   |      |      |      |  |
| ,    | COs                | 1                                                    | 2       | 3     | 4     | 5    | 6    | 7    | 8    | 9    | 10    | 11    | 12     | 1    | 2    | 3    |  |
|      | 1                  | -                                                    | -       | -     | -     | -    | 1    | 1    | -    | 2    | 3     | -     | 2      | -    | -    | -    |  |
|      | 2                  | 1                                                    | -       | -     | -     | -    | -    | -    | -    | 2    | 3     | -     | 2      | -    | -    | -    |  |
|      | 3                  | 1                                                    | -       | -     | -     | -    | 1    | 1    | -    | 2    | 3     | -     | 2      | -    | -    | -    |  |
|      | 4                  | -                                                    | -       | -     | -     | -    | -    | -    | -    | -    | 3     | -     | 2      | -    | -    | -    |  |
|      | 5                  | 1                                                    | -       | -     | -     | _    | 1    | 1_   | -    | 3    | 3     | 1     | 2      | -    | -    | -    |  |
|      | 6 .ow              | ER L                                                 | $2^{2}$ | 1     | -     | -    | 1    | 1    | -7   | 2    | 3     | -     | 6      | -    | 4    | -    |  |
|      | verall<br>relation | 1                                                    | -       | 3     | \-    | -    | 1    | 1    | -(   | 3    | 3     | _     | 2      | J    | -    | -    |  |

Approved

1st ACM

Date

09-09-2023

#### **SEMESTER - II**

| 23HS201 | PROFESSIONAL ENGLISH | L | T | P | C |
|---------|----------------------|---|---|---|---|
|         |                      | 3 | 0 | 0 | 3 |

### **COURSE OBJECTIVES:**

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays.
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

# UNIT I WORKPLACE COMMUNICATION

9

Reading – Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing – Writing emails –emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development– Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary - One-word substitutes; Abbreviations & Acronyms as used in technical contexts and social media.

### UNIT II EXPRESSING CAUSE AND EFFECT

9

Reading - Reading longer technical texts- Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development- Active, Passive and Impersonal Passive Voice transformations, Infinitive and Gerunds Vocabulary - Synonyms- contextual meaning of

words, Same word acting as different parts of speech, causal expressions.

# UNIT III | PROVIDING SOLUTIONS TO PROBLEMS

9

Reading - Case Studies, editorials, news reports etc. Writing - Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional sentences Vocabulary - Compound Words, discourse markers.

#### UNIT IV | INTERPRETATION OF GRAPHICS

9

Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. Language development-Possessive & Relative pronouns, numerical adjectives Vocabulary Homonyms and Homophones, sequence words.

# UNIT V REPORT WRITING AND RESUME WRITING

9

Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing
- CO3: Use appropriate expressions to describe process and product, compare and contrast data, analyze problems, provide solutions and prove an argument in writing

ability to communicate **CO4:** Establish the effectively in professional environment through emails and reports CO5: Determine the language use appropriate for different social media platforms used for digital marketing CO6: Convert skills to assets and position themselves in job market through their own professional narratives TEXT BOOKS: 1 V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha Priyadharshini, Veena Selvam, English for Science & Technology I, Cambridge University Press and Assessment V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 2 Priyadharshini, Veena Selvam, English for Science & Technology II, Cambridge University Press and Assessment **REFERENCES:** Business Correspondence and Report Writing by Prof. R.C. 1 Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi. Developing Communication Skills by Krishna Mohan, Meera 2 Bannerji- Macmillan India Ltd. 1990, Delhi. **POs PSOs** COs 2 5 6 9 12 2 1 3 4 8 10 11 1 2 2 3 1 1 1 2 2 3 2 3 1 2 3 2 4 2 3 2 2 3 2 5 1 6 2 3 3 **Overall** 2 3 3 1 1

28-07-2023

1st ACM

Date

09-09-2023

Correlation

Recommended by Board of Studies

Approved

| 23MA203 | STATISTICS AND NUMERICAL | L | T | P | C |
|---------|--------------------------|---|---|---|---|
|         | METHODS                  | 3 | 1 | 0 | 4 |

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

# UNIT I TESTING OF HYPOTHESIS 9+3

Sampling distributions – Standard error-Large sample test for single mean, proportion, difference of means -Small sample Tests-T Test for single mean and difference of means-F test for equality of variance – Chi square test for single variance- Independence of attribute-Goodness of fit (Binomial Distribution, Poisson Distribution).

# UNIT II DESIGN OF EXPERIMENTS

9+3

One way and two way classifications - Completely randomized design - Randomized block design - Latin square design.

# UNIT III | SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

9+3

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method - Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss

| Seide | el - Eigenvalues of a square matrix by Power method       |        |
|-------|-----------------------------------------------------------|--------|
| UNI   | Γ IV INTERPOLATION, NUMERICAL                             | 9+3    |
|       | DIFFERENTIATION AND NUMERICAL                             |        |
|       | INTEGRATION                                               |        |
| Inter | polation - Newton's forward and backward differ           | rence  |
| inter | polation -Lagrange's and Newton's divided differ          | rence  |
| inter | polations Approximation of derivative using interpol      | ation  |
| poly  | nomials - Numerical single integration and double t       | ısing  |
| Trap  | ezoidal and Simpson's 1/3 rules.                          |        |
| UNI   | T V NUMERICAL SOLUTION OF ORDINARY                        | 9+3    |
|       | DIFFERENTIAL EQUATIONS                                    |        |
| Singl | le step methods: Taylor's series method - Euler's meth    | nod -  |
| Mod   | ified Euler's method - Fourth order Runge- Kutta metho    | d for  |
| solvi | ng first order differential equations - Multi step metl   | nods:  |
| Miln  | e's and Adam's Bashforth method.                          |        |
|       | TOTAL: 60 PER                                             | IODS   |
| COU   | RSE OUTCOMES:                                             |        |
|       | After completion of the course, the students will be able | e to:  |
| CO1:  | Examine the given data for large and small san            |        |
|       | problems.                                                 | GY     |
| CO2:  | Examine the problems involving design of experiments      | 005    |
| CO3:  | Find the numerical solutions for nonlinear (algebra       | ic or  |
|       | transcendental) equations, large system of linear equa    | tions  |
|       | and Eigen value problem of a matrix, when analy           | ytical |
|       | methods fail to give solution.                            |        |
| CO4:  | Determine the intermediate values of the experimental     | data,  |
|       | using Newton's forward, backward, divided difference      | e and  |
|       | Lagrange's methods.                                       |        |
| CO5:  | Find the solutions for the problems involving nume        | erical |
|       | differentiation and integration.                          |        |
| CO6:  | Solve numerically, ordinary differential equations whi    | ch is  |
|       | used to solve different kinds of problems occurring       | ıg in  |
|       | engineering and technology.                               |        |

| TEX | Г ВООК             |                |      |      |       |      |        |      |          |       |        |        |       |       |          |      |
|-----|--------------------|----------------|------|------|-------|------|--------|------|----------|-------|--------|--------|-------|-------|----------|------|
| 1   | Grewal             |                |      |      |       |      |        | -    |          |       |        |        |       |       |          |      |
|     | Engine             | erin           | ıg a | nd   | Scie  | ence | e ", : | 10tl | n Eo     | ditio | on, I  | (har   | nna l | Pub   | lish     | ers, |
|     | New D              |                |      |      |       |      |        |      |          |       |        |        |       |       |          |      |
| 2   | Johnson            | ı, R           | .A., | , M  | illeı | r, I | and    | Fr   | eun      | ıd J. | ., "N  | Iille: | r an  | d Fi  | reur     | ıd's |
|     | Probab             | ility          | an   | d S  | tati  | stic | s fo   | r Eı | ngiı     | nee   | rs", I | Pear   | son   | Εdι   | ıcati    | on,  |
|     | Asia, 8t           | h E            | diti | ion, | 202   | 15.  |        |      |          |       |        |        |       |       |          |      |
| REF | ERENCE             | S:             |      |      |       |      |        |      |          |       |        |        |       |       |          |      |
| 1   | P. Siva            | ran            | na l | Kris | shna  | аΣ   | )as    | "A   | Te       | ext   | Bool   | k of   | Sta   | tisti | ics a    | and  |
|     | Numer              | ical           | Μe   | etho | ds'   | ' Vi | ji's   | Aca  | ade      | my    |        |        |       |       |          |      |
| 2   | Burden             | , R            | .L.  | an   | d F   | air  | es,    | J.D  | . "      | Nu    | meri   | ical   | Ana   | alys  | is"      | 9th  |
|     | Edition            | , Ce           | eng  | age  | Lea   | arni | ing,   | 20   | 16.      |       |        |        |       |       |          |      |
| 3   | Devore             | J.L            |      | Pro  | bab   | ilit | y ar   | nd S | Stat     | istic | cs fo  | r Er   | ngin  | eeri  | ng a     | and  |
|     | the Scie           | ence           | es", | C€   | enga  | age  | Le     | arn  | ing      | , N   | ew :   | Dell   | ni, 8 | th I  | Editi    | on,  |
|     | 2014               | 2014 OWER DREA |      |      |       |      |        |      |          |       |        |        |       |       |          |      |
| 4   | Gerald             | .C.I           | F. \ | and  | d     | Wh   | eat    | ley. | P.C      | ).    | "Ap    | plie   | ed    | Nu    | mer      | ical |
|     | Analys             | is" ]          | Pea  | rso  | n E   | duc  | atio   | on,  | Asi      | a, N  | Jew    | Del    | hi, 7 | th I  | Editi    | on,  |
| 1   | 2007               |                |      |      |       |      |        | 4    |          | -     |        | 3      | 4     |       | -        |      |
|     | POS PSOS           |                |      |      |       |      |        |      |          |       |        |        |       |       |          |      |
| '   | COs                | 1              | 2    | 3    | 4     | 5    | 6      | 7    | 8        | 9     | 10     | 11     | 12    | 1     | 2        | 3    |
|     | 1                  | 3              | 2    | 1    | 1     | AF   | ILIA   | 10   | OV       | INA.  | UNIVE  | 8511   | 1     | 3     | OMO      | 15   |
|     | 2                  | 3              | 2    | 1    | 1     | -    | -      | -    | -        | -     | -      | -      | 1     | 3     | -        | -    |
|     | 3                  | 3              | 2    | 1    | 1     | -    | -      | -    | -        | -     | -      | -      | 1     | 3     | -        | -    |
|     | 4                  | 3              | 2    | 1    | 1     | -    | -      | -    | -        | -     | -      | -      | 1     | 3     | -        | -    |
|     | 5                  | 3              | 2    | 1    | 1     | -    | -      | -    | -        | -     | -      | -      | 1     | 3     | -        | -    |
|     | 6                  | 3              | 2    | 1    | 1     | -    | -      | -    | -        | -     | -      | -      | 1     | 3     | -        | -    |
| O   | verall             | 3              | 2    | 1    | 1     |      |        |      |          |       |        |        | 1     | 2     |          |      |
| 1   | relation           | 3              | _    | 1    | 1     | _    | _      | _    | <b>-</b> | -     | -      | _      | 1     | 3     | <b>-</b> | -    |
| Cor | relation           |                |      |      |       |      |        |      |          |       |        |        |       |       |          |      |
|     | mmended<br>Approve |                |      |      |       |      | lies   |      | -07-2    | 2023  | 3      |        |       |       | -09-2    |      |

| 23PH203 | PHYSICS FOR ELECTRONICS | L | T | P | C |
|---------|-------------------------|---|---|---|---|
|         | ENGINEERING             | 3 | 0 | 0 | 3 |

- To make the students to understand the basics of crystallography and its importance in studying materials properties.
- To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials.
- To instil knowledge on physics of semiconductors, determination of charge carriers and device applications.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications.
- To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications.

### UNIT I CRYSTALLOGRAPHY

9

Crystal structures: Crystal lattice – basis - unit cell and lattice parameters – crystal systems and Bravais lattices – Structure and packing fractions of SC, BCC, FCC, diamond cubic, NaCL, ZnS structures – crystal planes, directions and Miller indices – distance between successive planes – linear and planar densities – crystalline and noncrystalline materials –Example use of Miller indices: wafer surface orientation – wafer flats and notches – pattern alignment - imperfections in crystals.

# UNIT II | ELECTRICAL AND MAGNETIC PROPERTIES | 9 OF MATERIALS

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Quantum free electron theory :Tunneling - degenerate states - Fermi- Dirac statistics - Density of energy states - Electron in periodic potential - Magnetic materials: Dia, para and ferromagnetic effects - paramagnetism in the conduction electrons in metals - exchange interaction and ferromagnetism - quantum interference devices - GMR devices.

# UNIT III | SEMICONDUCTORS AND TRANSPORT | PHYSICS

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – Carrier transport in Semiconductors: Drift, mobility and diffusion – Hall effect and devices – Ohmic contacts – Schottky diode.

### UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption, loss and gain. Optical processes in quantum wells – Optoelectronic devices: light detectors and solar cells – light emitting diode – laser diode – optical processes in organic semiconductor devices – excitonic state.

# UNIT V NANO DEVICES

9

Density of states for solids - Significance between Fermi energy and volume of the material - Quantum confinement - Quantum structures - Density of states for quantum wells, wires and dots - Band gap of nanomaterials -Tunneling - Single electron phenomena - Single electron Transistor - Carbon nanotubes: Properties and applications - Spintronic devices and applications - Optics in quantum structures - quantum well laser.

#### **TOTAL: 45 PERIODS**

### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Apply the basics of crystallography and its importance in studying materials properties.
- CO2: Build the electrical properties of materials including free electron theory.
- CO3: Apply the knowledge of magnetic properties of materials in data storage.
- CO4: Compute carrier concentration in intrinsic and extrinsic semiconductor.
- CO5: Establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications.

|      |                |                                                                                                                    |        |      |      |      | 4.         |       |       |         |       |       |        |      |              |       |
|------|----------------|--------------------------------------------------------------------------------------------------------------------|--------|------|------|------|------------|-------|-------|---------|-------|-------|--------|------|--------------|-------|
| CO6: | Develop        |                                                                                                                    |        |      | ,    | _    |            |       |       |         |       |       |        | -    | inti         | ım    |
|      | confine        |                                                                                                                    | nt a   | nd e | ensi | urir | ıg n       | anc   | de    | vice    | e app | olica | tion   | s.   |              |       |
| TEX  | Г ВООК         |                                                                                                                    |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
| 1    | S.O. Ka        | -                                                                                                                  |        |      | -    |      |            |       |       |         |       |       |        | d D  | evi)         | ces,  |
|      | McGrav         |                                                                                                                    |        |      |      |      | _          |       |       |         |       |       |        |      |              |       |
| 2    | R.F.Pier       | ret.                                                                                                               | . Se   | emi  | con  | duc  | tor        | De    | vic   | e F     | und   | ame   | ntal   | s. F | <b>'</b> ear | son   |
|      | (Indian        |                                                                                                                    |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
| 3    | G.W.Ha         |                                                                                                                    |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
|      | Educati        |                                                                                                                    | •      |      |      |      |            | ,     |       |         |       |       |        |      |              |       |
|      | Mahaja         |                                                                                                                    |        |      |      |      |            |       |       |         | ts o  | f M   | oder   | n F  | hys          | sics, |
|      | McGrav         |                                                                                                                    | Iill ( | (Inc | lian | Ed   | itio       | n), : | 201   | 7.      |       |       |        |      |              |       |
| REFI | ERENCE         |                                                                                                                    |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
| 1    | Laszlo         |                                                                                                                    | •      |      |      |      |            |       |       | -       |       |       |        |      |              |       |
|      | Electrica      |                                                                                                                    | -      | erti | es o | of N | 1ate       | erial | ls, C | Oxfo    | ord I | Jniv  | r. Pre | ess  | (Inc         | lian  |
|      | ,              | Edition) 2015.                                                                                                     |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
| 2    |                | asprit Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Education (Indian Edition), 2019. |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
|      |                |                                                                                                                    |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
| 3    | Charles        |                                                                                                                    |        | Inti | rod  | ucti | on t       | to S  | olid  | Sta     | ite P | hysi  | cs, V  | Vile | y Ir         | ıdia  |
| į.   | Edition, 2019. |                                                                                                                    |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
| 4    | 76/0           | Mark Fox, Optical Properties of Solids, Oxford Univ.Press,                                                         |        |      |      |      |            |       |       |         |       |       |        |      |              |       |
| 1    | 2001.          |                                                                                                                    | 1      | 1/   | //   |      |            |       |       |         |       |       |        |      |              |       |
| 5    | N.Gersh        |                                                                                                                    |        |      |      |      | -          |       |       | Info    | orma  | atio  | n Te   | echi | nolo         | ogy.  |
|      | Cambri         | dge                                                                                                                | Ur     | iive | rsit | y P  |            |       |       |         |       |       |        |      |              |       |
|      | COs            |                                                                                                                    |        |      |      | MEE  | 1          | POs   |       | 1101.37 | HIVE  |       | 0.00   |      | PSC          | s     |
| `    |                | 1                                                                                                                  | 2      | 3    | 4    | 5    | 6          | 7     | 8     | 9       | 10    | 11    | 12     | 1    | 2            | 3     |
|      | 1              | 3                                                                                                                  | 2      | 1    | 1    | -    | -          | -     | -     | -       | -     | -     | 1      | 3    | -            | -     |
|      | 2              | 3                                                                                                                  | 2      | 1    | 1    | -    | -          | -     | -     | •       | •     | -     | 1      | 3    | -            | -     |
|      | 3              | 3                                                                                                                  | 2      | 1    | 1    | -    | -          | -     | -     | -       | -     | -     | 1      | 3    | -            | -     |
|      | 4              | 3                                                                                                                  | 2      | 1    | 1    | -    | -          | -     | -     | -       | -     | -     | 1      | 3    | -            | -     |
|      | 5              | 3                                                                                                                  | 2      | 1    | 1    | -    | -          | -     | -     | -       | -     | -     | 1      | 3    | -            | -     |
|      | 6              | 3                                                                                                                  | 2      | 1    | 1    | -    | -          | -     | -     | -       | -     | -     | 1      | 3    | -            | -     |
|      | verall         | 3                                                                                                                  | 2      | 1    | 1    | _    | _          |       |       |         | _     | _     | 1      | 3    | _            | _     |
|      | relation       |                                                                                                                    |        |      |      |      | Ĺ <u>.</u> |       |       |         |       |       | 1      |      |              |       |
| Reco | mmende         |                                                                                                                    |        |      |      |      | lies       |       | 07-2  |         |       |       |        | 1    |              |       |
|      | Approve        | ed b                                                                                                               | y A    | cad  | emi  | c    |            | 1st   | AC    | M       |       | Date  | e      | 09-  | 09-2         | 2023  |

| 23EC201 | CIRCUIT ANALYSIS | L | T | P | C |
|---------|------------------|---|---|---|---|
|         |                  | 3 | 1 | 0 | 4 |

- To make students capable of analyzing any given network
- To get knowledge about the various network Theorems.
- To familiarize themselves with network parameters and Transient Response.
- To know the about resonance circuits.
- To understand the various Network Topologies.

# UNIT I NETWORK THEOREMS FOR DC CIRCUITS 12

Review of Current Electricity and basic Kirchoff's Laws-Star-Delta Transformation - Mesh Analysis-Nodal Analysis - Superposition Theorem-Thevenin Theorem, Norton Theorem

# UNIT II NETWORK PARAMETERS 12

Open circuit impedance (Z) parameters - short circuit admittance (Y) parameters - transmission (ABCD)parameters and inverse transmission parameters -Hybrid (h) parameters and inverse hybrid parameters -Conversion between parameters - interconnection of two-port networks.

# UNIT III TRANSIENT RESPONSE 12

Transients: First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogeneous, problem solving using R-L-C elements with DC excitation and AC excitation. Solutions using Laplace transform method.

# UNIT IV RESONANCE CIRCUITS 12

Sinusoidal Steady – State analysis, Characteristics of Sinusoids, The Complex Forcing Function, The Phasor, Phasor relationship for R, L, and C, impedance and Admittance-Instantaneous Power, Average Power, apparent Power and Power Factor, Complex Power.

#### UNIT V NETWORK TOPOLOGY 12 Graph of a network -Concept of tree, co-tree link, chord, forest, coforest; Planar and non-planar graph; Incidence matrix, tie set matrix, cut set matrix; Fundamental cut set and tie set schedule; Introduction to equation formulation graphically; Duality of network. **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply KVL and KCL Theorems to simplify the DC Circuits. CO2: Identify how to validate the network theorems in DC circuits **CO3:** Illustrate the various parameters of two port networks. **CO4:** Construct the transient response for the RLC Circuits. CO5: Identify the nature of R, L, C circuits under Steady State Condition CO6: Summarize the various network topologies TEXT BOOKS: Hayt W.H Kemmerly J.E. and Durbin S.M., "Engineering 1 Circuit Analysis" 6th Edition Tatta McGraw-Hill Publishing Company Ltd.,2008. **Fundamentals** 2 Alexander, Charles K. of electric circuits / Charles K. Alexander, Matthew N. O. Sadiku. -4th ed. p. cm **REFERENCES:** Valkenberg V., "Network Analysis", 3rd Edition., Pretentice 1 Hall International Edition 2007. Mahmood 2 Ioseph Edminister and Nahvi, Electric Circuits, Tata McGraw Hill Publishing Company, Schaum's Ouline Series, Fourth Edition New Delhi 2003. Network Analysis and Synthesis , Ravish R Singh , MC Graw 3 Hill Education (india) PVt Ltd

StevenM.Durbin(2007), Engineering Circuit Analysis, 7 th

EllsworthKemmerly,

HartHayt, Jack

William

edition, McGraw-

4

| COs                    |                                            |                          |   |   |   | I | POs |   |   |    |    |    | PSOs |            |   |  |  |
|------------------------|--------------------------------------------|--------------------------|---|---|---|---|-----|---|---|----|----|----|------|------------|---|--|--|
| COs                    | 1                                          | 2                        | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 1    | 2          | 3 |  |  |
| 1                      | 3                                          | 2                        | 1 | 1 | 1 | - | -   | - | - | 1  | -  | -  | 3    | 1          | - |  |  |
| 2                      | 3                                          | 2                        | 1 | 1 | 1 | - | ı   | ı | ı | 1  | -  | -  | 3    | 1          | - |  |  |
| 3                      | 2                                          | 1                        | ı | ı | 1 | - | ı   | ı | ı | 1  | -  | -  | 2    | 1          | - |  |  |
| 4                      | 3                                          | 2                        | 1 | 1 | 1 | - | -   | - | - | 1  | -  | -  | 3    | 1          | - |  |  |
| 5                      | 3                                          | 2                        | 1 | 1 | 1 | - | -   | - | - | 1  | -  | -  | 3    | 1          | - |  |  |
| 6                      | 2                                          | 1                        | - | - | - | - | -   | - | - | 1  | -  | -  | 2    | -          | - |  |  |
| Overall<br>Correlation | 3                                          | 2                        | 1 | 1 | 1 | - | -   | - | - | 1  | -  | -  | 3    | 1          | - |  |  |
| Recommended            | Recommended by Board of Studies 28-07-2023 |                          |   |   |   |   |     |   |   |    |    |    |      |            |   |  |  |
| Approve                | ed b                                       | by Academic 1st ACM Date |   |   |   |   |     |   |   |    |    |    |      | 09-09-2023 |   |  |  |



| 23HS203 | TAMILS AND TECHNOLOGY | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         |                       | 1 | 0 | 0 | 1 |

- To summarize the weaving industry and ceramic technology during Sangam Age
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola, Pallava and Pandya period
- To Explain about the water bodies of Sangam age and relate it to the agricultural usage
- To Outline to students the agriculture and irrigation technology during the Chola Period
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software

# Weaving Industry during Sangam Age - Ceramic technology - Black and Red Ware Potteries (BRW) - Graffiti on Potteries.

# UNIT II DESIGN AND CONSTRUCTION 3 TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

# UNIT III MANUFACTURING TECHNOLOGY 3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

# UNIT IV | AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use -Agriculture and Agro Processing - Knowledge of Sea - Fisheries -Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING UNIT V 3 Development of Scientific Tamil -Tamil computing Digitalization of Tamil Books -Development of Tamil Software -Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize the weaving industry and ceramic technology during Sangam Age CO2: Explain the design and construction of houses during Sangam Age CO3: Explain the sculptures and temples of Chola, Pallava and Pandya period. **CO4:** Explain about the water bodies of Sangam age and relate it to the agricultural usage CO5: Outline the agriculture and irrigation technology during the Chola Period. CO6: Interpret and explain the digitalization of tamil books and development of Tamil software **TEXT BOOKS:** Dr.K.K.Pillay ,"Social Life of Tamils", A joint publication of 1 TNTB & ESC and RMRL

| REFI | ERENCE             | S:   |      |                                         |      |      |      |                 |       |      |       |       |       |      |       |      |
|------|--------------------|------|------|-----------------------------------------|------|------|------|-----------------|-------|------|-------|-------|-------|------|-------|------|
| 1    | Dr.S.Sir           | ngai | rave | elu                                     | ,"So | ocia | 1 Li | fe o            | of tl | ne 🗆 | [ami  | ils - | The   | Cla  | assio | cal  |
|      | Period"            | , F  | ubl  | ish                                     | ed   | by:  | In   | teri            | nati  | ona  | l In  | stitu | ıte   | of   | Tan   | nil  |
|      | Studies            |      |      |                                         |      |      |      |                 |       |      |       |       |       |      |       |      |
| 2    | Dr.S.V.S           | Sub  | ataı | mar                                     | niar | 1    | ,    | Dı              | r.K.  | D.   | T     | hiru  | navı  | ıkk  | aras  | su,  |
|      | "Histor            | ical | F    | Ieri                                    | tag  | e (  | of   | the             | : Т   | am   | ils", | Pι    | ublis | shec | i k   | oy:  |
|      | Internat           | tion | al I | nsti                                    | tut  | e of | Tai  | mil             | Stu   | die  | S     |       |       |      |       |      |
|      | CO-                |      |      |                                         |      |      | I    | POs             |       |      |       |       |       | I    | PSO   | s    |
| (    | COs                | 1    | 2    | 3                                       | 4    | 5    | 6    | 7               | 8     | 9    | 10    | 11    | 12    | 1    | 2     | 3    |
|      | 1                  | -    | -    | -                                       | -    | -    | 1    | 1               | 1     | -    | -     | -     | -     | -    | -     | -    |
|      | 2                  | -    | ı    | -                                       | -    | -    | 1    | 1               | 1     | -    | -     | -     | -     | -    | -     | -    |
|      | 3                  | -    | ı    | -                                       | -    | -    | 1    | 1               | 1     | -    | -     | -     | -     | -    | -     | -    |
|      | 4                  | -    | ı    | -                                       | -    | -    | 1    | 1               | 1     | -    | -     | -     | -     | -    | -     | -    |
|      | 5                  | -    | -    | -                                       | -    | ч    | 1    | 1_              | 1     | -    | 1     | -     | - 5   | _    | -     | -    |
|      | 6 .ow              | 22 b | 8    | -                                       | -    | -    | 1    | 1               | 1     | -    | _     | 2     | 1     | -    | -     | -    |
|      | verall<br>relation | Ā    | 11   | \$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \-   | -    | 1    | 1               | 1     | ŀ    | -     | -     | E     | -11  | -     | -    |
| Reco | mmende             | d by | Во   | ard                                     | of S | tud  | lies | 28-             | 07-2  | 023  |       | 7     | 1     |      | 1     |      |
| 1    | Approve            | ed b | y A  | cad                                     | emi  | С    |      | 1 <sup>st</sup> | AC    | M    |       | Date  |       | 09-  | 09-2  | 2023 |

| 23EE284        | BASIC ELECTRICAL &                                    | L     | T     |      | C   |
|----------------|-------------------------------------------------------|-------|-------|------|-----|
|                | INSTRUMENTATION                                       | 2     | 0     | 2    | 3   |
|                | ENGINEERING                                           |       |       |      |     |
| COURSE OB      | -                                                     |       |       |      |     |
| -              | rt knowledge in types, construction and               | wor   | kin   | g of |     |
| transfo        |                                                       |       |       |      |     |
| *              | rt knowledge in types, construction and               | wor   | kin   | g of |     |
| DC ma          | chines                                                |       |       |      |     |
| • To impa      | rt knowledge in types, construction and               | wor   | kin   | g of |     |
| AC rota        | ating machines                                        |       |       |      |     |
| • To intr      | oduce the functional elements and w                   | vork  | ing   | of   |     |
| measur         | ring instruments.                                     |       |       |      |     |
| • To intro     | oduce the basics of power system and                  | pro   | tect  | ion  | Į.  |
| scheme         | es                                                    |       |       |      |     |
| UNIT I TF      | RANSFORMER                                            | 9     |       |      | 6   |
| Introduction   | - Ideal and Practical Transformer - Phas              | sor ( | diag  | grai | n-  |
|                | y <mark>stem – Equivalent circuit- Testing-</mark> Ef |       |       |      |     |
| Voltage Regu   | lation                                                |       |       |      |     |
| UNIT II DO     | C MACHINES                                            | IOI   | _0    | G)   | 6   |
| Introduction   | - Constructional Features- Motor an                   | d C   | ene   | erat | or  |
| mode - EMF     | and Torque equation - Circuit Model -                 | - Ме  | etho  | ods  | of  |
| Excitation- Cl | haracteristics - Starting and Speed Cont              | trol  | -Ste  | epp  | er  |
| Motors         |                                                       |       |       |      |     |
| UNIT III A     | C ROTATING MACHINES                                   |       |       |      | 6   |
| Principle of   | operation of three-phase induction                    | n n   | noto  | ors  | _   |
| Construction   | -Types - Equivalent circuit, Speed Cor                | ntro  | ۱ - 5 | Sing | gle |
| phase Induct   | ion motors -Construction- Types-starti                | ng 1  | net   | hoc  | ls. |
| Alternator: V  | Working principle-Equation of indu                    | ced   | EN    | ЛF   | _   |
| Voltage regul  | ation.                                                |       |       |      |     |
|                |                                                       |       |       |      |     |

56

Functional elements of an instrument, Standards and calibration, Operating Principle, types - Moving Coil and Moving Iron meters,

UNIT IV MEASUREMENTS AND INSTRUMENTATION

Instrument Transformers-CT and PT, DSO- Block diagram- Data acquisition.

# UNIT V BASICS OF POWER SYSTEMS

6

Power system structure -Generation, Transmission and distribution, Various voltage levels, Earthing - methods of earthing, protective devices- switch fuse unit- Miniature circuit breaker - safety precautions and First Aid

Total: 30 PERIODS

#### LAB COMPONENT

- 1. Load test on single phase Transformer.
- 2. Load test on DC shunt Generator
- 3. Load test on DC Motor.
- 4. Load test on single phase induction Motor.
- 5. Measurement of Amplitude, Frequency, Time and Phase measurement using DSO
- 6. Study on Earthing Device.

Total: 30 + 30 = 60 Periods

| 11   | V V                                                           |
|------|---------------------------------------------------------------|
| COU  | RSE OUTCOMES:                                                 |
| - 1  | After completion of the course, the students will be able to: |
| CO1: | Explain the efficiency and voltage regulation of a            |
|      | transformer and verify its characteristics AUTONOMOUS         |
| CO2: | Apply the principles of EMF, torque equations, and speed      |
|      | control methods explain the characteristics of DC machines.   |
| CO3: | Apply the working principle of AC induction motors in real    |
|      | time applications.                                            |
| CO4: | Develop the EMF equation of an alternator and explain its     |
|      | working principles.                                           |
| CO5: | Explain the types and operating principle of measuring        |
|      | instruments.                                                  |
| CO6: | Summarize the basic power system structure and protection     |
|      | schemes                                                       |

| TEX  | Г ВООК                          | S:                         |                                 |                       |                       |      |                       |       |      |      |        |                      |       |                                 |              |        |
|------|---------------------------------|----------------------------|---------------------------------|-----------------------|-----------------------|------|-----------------------|-------|------|------|--------|----------------------|-------|---------------------------------|--------------|--------|
| 1    | Kothari                         | DI                         | an                              | d I.]                 | Na                    | gra  | th,                   | "Ba   | sic  | Elec | ctrica | al an                | d El  | ecti                            | roni         | ics    |
|      | Engine                          | erir                       | ıg",                            | Sec                   | ond                   | Ed   | itio                  | n, N  | /lcG | rav  | v Hil  | 1 Ed                 | ucat  | ion                             | , 20         | 20     |
| 2    | S. K,                           | Bh                         | atta                            | cha                   | rya,                  | , "  | Bas                   | ic    | Ele  | ctri | cal    | and                  | El    | ectı                            | roni         | ics    |
|      | Engine                          | erir                       | ıg",                            | Sec                   | ond                   | Ed   | itio                  | n, F  | ear  | son  | Edu    | ıcati                | on,   | 201                             | 7.           |        |
| 3    | A.K. Sa                         | wh                         | iney                            | , P1                  | une                   | et S | aw                    | hne   | y '  | 4 C  | ours   | se in                | Ele   | ectri                           | cal          | &      |
|      | Electro                         | nic                        | Me                              | asuı                  | rem                   | ent  | s &                   | Ins   | tru  | mei  | ntati  | on',                 | Dha   | npa                             | at R         | Rai    |
|      | and Co                          |                            |                                 |                       |                       |      |                       |       |      |      |        |                      |       |                                 |              |        |
| 4    | C.L. W                          |                            |                                 |                       |                       |      |                       |       |      |      |        |                      |       |                                 |              | of     |
|      | Electric                        |                            | Ener                            | 'gy"                  | , N                   | ew.  | Age                   | e Int | tern | atio | onal   | pvt.                 | ltd., | 200                             | 3            |        |
|      | ERENCE                          |                            |                                 |                       |                       |      |                       |       |      |      |        |                      |       |                                 |              |        |
| 1    | Kothari                         |                            |                                 |                       | -                     | _    |                       |       |      |      |        |                      | Engi  | nee                             | ring         | y",    |
|      | Fourth                          |                            |                                 |                       |                       |      |                       |       |      |      |        |                      |       |                                 |              |        |
| 2    | Mahmo                           |                            |                                 |                       |                       |      |                       | - 4   | 7    | -    |        | le.                  |       |                                 | lect         | ric    |
|      | Circuits                        |                            | 7000                            | PRO                   |                       |      | -                     |       |      |      |        |                      | -     |                                 | 4            |        |
| 3    | H.S. Ka                         |                            |                                 |                       | onic                  | : In | stru                  | ıme   | nta  | tion | í, Tá  | ata N                | ЛсG   | raw                             | <b>7-</b> Hi | ill,   |
|      | New D                           | elhi                       | ı <b>, 2</b> 0                  | 10                    |                       |      |                       |       | \    | •    |        |                      | 1     |                                 | 200          | _      |
| (    | COs                             | 1                          | 1                               |                       | //                    |      | ŀ                     | Os    | 100  |      |        |                      |       |                                 | SO           | S      |
|      |                                 |                            |                                 |                       |                       |      | -                     |       | 0    | Λ    | 10     | 11                   | 10    |                                 |              | - 0    |
| 1    | 1 (07)                          | 1                          | 2                               | 3                     | 4                     | 5    | 6                     | 7     | 8    | 9    | 10     | 11                   | 12    | 1                               | 2            | 3      |
|      | 1 C/VEI                         | 2                          | 1.1                             |                       | -                     | CC   | ĻL                    | 7     | 8    | 9    | ŢE     | CHI                  | 12    | 1 2                             | G١           |        |
|      | 2                               | 3                          | 1 2                             | 1                     | -<br>1                | AFF  | 1                     | 7     | 8    | _    | 10     | 11<br>C <u>I</u> -II | -     | 1<br>2<br>3                     |              | -<br>- |
|      | 3                               | 3 3                        | 1<br>2<br>2                     | 1<br>1                | -<br>1<br>1           | AFFI | ĻL                    | EC    | 8    | _    | ŢE     | CHI                  | -     | 1<br>2<br>3<br>3                | GY<br>100    |        |
|      | 2<br>3<br>4                     | 2<br>3<br>3<br>3           | 1<br>2<br>2<br>2                | 1                     | -<br>1                | CC   | 1                     | EC    | IE I | _    | ŢE     | CHI                  | -     | 1<br>2<br>3<br>3<br>3           | GY<br>IOU    | -      |
|      | 3                               | 2<br>3<br>3<br>3<br>2      | 1<br>2<br>2<br>2<br>1           | -<br>1<br>1<br>1      | -<br>1<br>1           | AFFI | 1<br>1<br>-           | EC    | 8    | _    | ŢE     | CHI                  | -     | 1<br>2<br>3<br>3<br>3<br>2      | GY<br>100    |        |
| O-   | 2<br>3<br>4<br>5                | 2<br>3<br>3<br>2<br>2      | 1<br>2<br>2<br>2<br>1           | -<br>1<br>1<br>1      | -<br>1<br>1           | CC   | 1                     | EC    | IE I | _    | ŢE     | CHI                  | -     | 1<br>2<br>3<br>3<br>3<br>2<br>2 | GY<br>IOU    | -      |
|      | 2<br>3<br>4<br>5<br>6           | 2<br>3<br>3<br>3<br>2      | 1<br>2<br>2<br>2<br>1           | -<br>1<br>1<br>1      | -<br>1<br>1           | CC   | 1<br>1<br>-           | EC    | IE I | _    | ŢE     | CHI                  | -     | 1<br>2<br>3<br>3<br>3<br>2      | GY<br>IOU    | -      |
| Corı | 2<br>3<br>4<br>5<br>6<br>verall | 2<br>3<br>3<br>2<br>2<br>3 | 1<br>2<br>2<br>2<br>1<br>1<br>2 | 1<br>1<br>1<br>-<br>- | -<br>1<br>1<br>-<br>- |      | 1<br>1<br>-<br>-<br>1 | E     |      | 1    | ŢE     | CHI                  | -     | 1<br>2<br>3<br>3<br>3<br>2<br>2 | GY<br>IOU    | -      |

| 23ME211 | ENGINEERING GRAPHICS | L | T | P | C |
|---------|----------------------|---|---|---|---|
|         |                      | 3 | 0 | 2 | 4 |

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

# UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

#### LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

| UNIT II | PROJECTION OF POINTS, LINES AND | 9+6 |
|---------|---------------------------------|-----|
|         | PLANE SURFACE                   |     |

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method. Projection of planes (hexagonal and pentagonal planes

only) inclined to both the principal planes by rotating object method.

#### LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

# UNIT III PROJECTION OF SOLIDS AND FREE HAND 9+6 SKETCHING

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

#### LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

| UNIT IV | PROJECTION OF SECTIONED SOLIDS AND | 9+6 |
|---------|------------------------------------|-----|
|         | DEVELOPMENT OF SURFACES            |     |

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

#### LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section plane inclined to the horizontal plane

# UNIT V ISOMETRIC PROJECTION 9+6

Principles of isometric projection - Isometric scale - Isometric view - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions.

#### LIST OF EXERCISES:

- 1. Drawing Isometric view and projection of simple solids.
- 2. Drawing three dimensional modeling of isometric projection of combination of solids.

#### **TOTAL: 75 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Construct the conic curves, involutes and cycloids.
- CO2: Develop and Sketch the orthographic projections of points, lines and plane surfaces.
- CO3: Develop and Sketch the orthographic projections of simple solids.
- CO4: Construct the projections of sectioned solids and development of the lateral surfaces of solids.
- CO5: Develop and Sketch the isometric sections of solids.
- CO6: Develop and Sketch the orthographic projection 2D and 3D objects using Auto CAD.

#### **TEXT BOOKS:**

- 1 Bhatt N.D. and Panchal V.M., —Engineering Drawingl, Charotar Publishing House, 53rd Edition, 2019.
- 2 Basant Agarwal and Agarwal C.M.,—Engineering Drawingl, McGraw Hill, 2nd Edition, 2019

#### **REFERENCES:**

- 1 Natrajan K.V., —A Text Book of Engineering Graphicsl, Dhanalakshmi Publishers, Chennai, 2018.
- 2 Gopalakrishna K.R., —Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition, 2017.

| 3   | Luzzader, Warren.J. and Duff, John M., -Fundamentals of      |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
|-----|--------------------------------------------------------------|------------------|-----------------------|-----------------------|-----------------------|---------------------------------|---|-----------------------|----------------------------|------|----------------------------|------------------|-----------------------|----------------------------|----------------------------|---------|
|     | Engineering Drawing with an introduction to Interactive      |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
|     | Computer Graphics for Design and Production, Eastern         |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
|     | Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
|     | 2005.                                                        |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
| 4   | Parthasarathy N. S. and Vela Murali, —Engineering            |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
|     | Graphics, Oxford University, Press, New Delhi, 2015. 5.      |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
|     | Shah M.B., and Rana B.C., —Engineering Drawing, Pearson      |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
|     | Education India, 2nd Edition, 2009.                          |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
| 5   | Venugopal K. and Prabhu Raja V., —Engineering Graphics",     |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
|     | New Age International (P) Limited, 2008.                     |                  |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
| L   |                                                              | POs PSOs         |                       |                       |                       |                                 |   |                       |                            |      |                            |                  |                       |                            |                            |         |
| l . | <b>CO</b>                                                    |                  |                       |                       |                       |                                 |   |                       |                            | ۷, ۷ | 000.                       |                  |                       |                            | PSC                        | )s      |
| •   | COs                                                          | 1                | 2                     | 3                     | 4                     | 5                               |   |                       |                            | 9    | 10                         | 11               | 12                    | 1                          | PSC<br>2                   | )s<br>3 |
| •   | COs 1                                                        | <b>1</b> 3       | <b>2</b>              | <b>3</b>              | <b>4</b> 1            |                                 | I | POs                   |                            | ı    |                            | <b>11</b> 2      | <b>12</b> 2           |                            |                            |         |
|     |                                                              | _                |                       | _                     | _                     | 5                               | I | POs                   | 8                          | ı    | 10                         |                  |                       | 1                          | 2                          |         |
|     | 1                                                            | 3                | 2                     | 1                     | 1                     | <b>5</b> 2                      | I | POs                   | 8                          | ı    | <b>10</b> 3                | 2                | 2                     | 1 2                        | <b>2</b>                   |         |
|     | 1<br>2                                                       | 3                | 2                     | 1                     | 1                     | 5<br>2<br>2                     | I | POs                   | 8<br>1<br>1                | 9 -  | <b>10</b> 3 3              | 2                | 2                     | 1<br>2<br>2                | 2<br>2<br>2                |         |
|     | 1 2 3                                                        | 3 3              | 2 2 2                 | 1<br>1<br>1           | 1<br>1<br>1           | 5<br>2<br>2<br>2                | I | POs                   | 8<br>1<br>1<br>1           | 9 -  | 10<br>3<br>3<br>3          | 2 2 2            | 2 2 2                 | 1<br>2<br>2<br>2           | 2<br>2<br>2<br>2           |         |
|     | 1<br>2<br>3                                                  | 3<br>3<br>3<br>3 | 2<br>2<br>2<br>2      | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 5<br>2<br>2<br>2<br>2           | I | POs                   | 8<br>1<br>1<br>1           | 9 -  | 3<br>3<br>3<br>3           | 2<br>2<br>2<br>2 | 2<br>2<br>2<br>2      | 1<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      |         |
|     | 1<br>2<br>3<br>4<br>5                                        | 3<br>3<br>3<br>3 | 2<br>2<br>2<br>2<br>2 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1 | 5<br>2<br>2<br>2<br>2<br>2<br>2 | I | 7<br>-<br>-<br>-<br>- | 8<br>1<br>1<br>1<br>1<br>1 | 9    | 3<br>3<br>3<br>3<br>3<br>3 | 2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 1<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 |         |

| Correlation                     |  | .00 |  |  |  | 1.50,000 | 1,500. |      |      |   | 200000 |   |    | 15.002.00 |      |   |
|---------------------------------|--|-----|--|--|--|----------|--------|------|------|---|--------|---|----|-----------|------|---|
| Recommended by Board of Studies |  |     |  |  |  |          |        | 07-2 | 2023 | } |        |   |    |           |      |   |
| Approved by Academic            |  |     |  |  |  |          |        | AC   | M    |   | Date   | • | 09 | -09-2     | 2023 | I |

| 23ME221 | ENGINEERING PRACTICES | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         | LABORATORY            | 0 | 0 | 4 | 2 |

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work;
   Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment; Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

### **GROUP A (CIVIL and MECHANICAL)**

# PART I CIVIL ENGINEERING PRACTICES 15

#### PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

#### **WOOD WORK**

- a) Sawing
- b) Planning
- c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

#### WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture
- b) Study of common industrial trusses using models.

# PART II MECHANICAL ENGINEERING PRACTICES 15

#### WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

#### **BASIC MACHINING PRACTICE**

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

#### SHEET METAL WORK

- a) Forming and Bending
- b) Making of a square Tray

#### MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

#### FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.

| Pi       | paration.                                          |       |
|----------|----------------------------------------------------|-------|
|          | TOTAL: 30 PERI                                     | ODS   |
|          | GROUP B (ELECTRICAL & ELECTRONICS)                 |       |
| PART III | ELECTRICAL ENGINEERING PRACTICES                   | 15    |
| 1 Dog    | idential Hausa vivining using Crystahaa Fusa India | 24040 |

- 1. Residential House wiring using Switches, Fuse, Indicators, Lamp and Energy Meter.
- 2. Staircase Wiring.

- Fluorescent Lamp Wiring with Introduction to CFL and LED Types.
- 4. Measurement of Energy using Single Phase Energy Meter.
- 5. Study of Iron Box Wiring and Assembly
- **6.** Study of Fan Regulator Electronic Type

# PART IV | ELECTRONICS ENGINEERING PRACTICES | 15

- 1. Study of Electronic components and equipment Resistors, Colour coding measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering simple electronic circuits and checking continuity.
- 5. Study the elements of smart phone
- 6. Study of LED TV (Block diagram

| COU  | RSE OUTCOMES:                                                            |
|------|--------------------------------------------------------------------------|
| 3    | After completion of the course, the students will be able to:            |
| CO1: | Plan the pipeline layout for common household plumbing work.             |
| CO2: | Make use of welding equipment and carpentry tool for making joints.      |
| CO3: | Demonstrate on centrifugal pump, air conditioner and foundry operations. |
| CO4: | Demonstrate the electrical wiring connections for                        |
|      | household applications and study the working of iron box                 |
|      | and fan regulator.                                                       |
| CO5: | Identify the basic electronic components and explain the                 |
|      | gates and soldering methods.                                             |
| CO6: | Examine the performance and operation of CRO, LED TV                     |
|      | and Smart phone.                                                         |

| COs                              |      |    |     |      |      | I    | POs | ,    |      |    |    |      | ] | PSC                                | s |
|----------------------------------|------|----|-----|------|------|------|-----|------|------|----|----|------|---|------------------------------------|---|
| COs                              | 1    | 2  | 3   | 4    | 5    | 6    | 7   | 8    | 9    | 10 | 11 | 12   | 1 | PSO:<br>1<br>1<br>1<br>1<br>1<br>1 | 3 |
| 1                                | 3    | 2  | 1   | 1    | 1    | 1    | 1   | -    | -    | 2  | 2  | 2    | 2 | 1                                  | - |
| 2                                | 3    | 2  | 1   | 1    | 1    | 1    | 1   | •    | -    | 2  | 2  | 2    | 2 | 1                                  | - |
| 3                                | 3    | 2  | 1   | 1    | 1    | 1    | 1   | •    | -    | 2  | 2  | 2    | 2 | 1                                  | - |
| 4                                | 3    | 2  | 1   | 1    | 1    | 1    | 1   | -    | -    | 2  | 2  | 2    | 2 | 1                                  | - |
| 5                                | 3    | 2  | 1   | 1    | 1    | 1    | 1   | -    | -    | 2  | 2  | 2    | 2 | 1                                  | - |
| 6                                | 3    | 2  | 1   | 1    | 1    | 1    | 1   | -    | -    | 2  | 2  | 2    | 2 | 1                                  | - |
| Overall                          | 3    | 2  | 1   | 1    | 1    | 1    | 1   |      |      | 2  | 2  | 2    | 2 | 1                                  |   |
| Correlation                      | •    | ۷  | 1   | 1    | 1    | 1    | 1   | 1    | -    | 2  | 4  | 2    | ۷ | 1                                  | - |
| Recommended                      | l by | Во | ard | of S | Stud | lies | 26- | 07-2 | 2023 |    |    |      |   |                                    |   |
| Approved 1st ACM Date 09-09-2023 |      |    |     |      |      |      |     |      |      |    |    | 2023 |   |                                    |   |



| 23EC | 2221                             | CIRCUIT ANALYSIS                                   | L     | T       | P            | C  |  |  |  |  |  |  |  |
|------|----------------------------------|----------------------------------------------------|-------|---------|--------------|----|--|--|--|--|--|--|--|
|      |                                  | LABORATORY                                         | 0     | 0       | 4            | 2  |  |  |  |  |  |  |  |
| COU  | RSE OBJ                          | ECTIVES:                                           |       |         |              |    |  |  |  |  |  |  |  |
| •    | To gain                          | hands- on experience in Thevenin &                 | : No  | rto     | n            |    |  |  |  |  |  |  |  |
|      | theoren                          | n, KVL & KCL, and Superposition Th                 | eor   | ems     | s.           |    |  |  |  |  |  |  |  |
| •    | To und                           | erstand the working of RL, RC and I                | RLC   | cir     | cuit         | S  |  |  |  |  |  |  |  |
| PRAC | CTICALS                          |                                                    |       |         |              |    |  |  |  |  |  |  |  |
| 1.   | To Veri                          | fy Kirchoff 's Voltage Law (KVL).                  |       |         |              |    |  |  |  |  |  |  |  |
| 2.   | To Veri                          | fy Kirchoff 's current Law (KCL).                  |       |         |              |    |  |  |  |  |  |  |  |
| 3.   | To Veri                          | fy Thevenin 's Theorem for Resistive               | Net   | woı     | rk.          |    |  |  |  |  |  |  |  |
| 4.   | To Veri                          | To Verify Norton 's Theorem for Resistive Network. |       |         |              |    |  |  |  |  |  |  |  |
| 5.   | To Veri                          | fy Superposition theorem for Resistiv              | e Ne  | etw     | ork          | •  |  |  |  |  |  |  |  |
| 6.   | Determ                           | Determination of Z-Parameters of given Two Port    |       |         |              |    |  |  |  |  |  |  |  |
|      | Network.                         |                                                    |       |         |              |    |  |  |  |  |  |  |  |
| 7.   | Determ                           | ination of ABCD Parameters of giver                | ı Tw  | o F     | ort          |    |  |  |  |  |  |  |  |
|      | Networ                           | k.                                                 |       | 1       |              |    |  |  |  |  |  |  |  |
| 8.   | Determ                           | <mark>inat</mark> ion of H- Parameters of given Tw | o Po  | ort     |              |    |  |  |  |  |  |  |  |
|      | Networ                           | 1 15 All -                                         |       |         |              |    |  |  |  |  |  |  |  |
| 9.   | THE PLANT OF THE PERSON NAMED IN | nt Response of a RL Circuit.                       |       |         | GΥ           |    |  |  |  |  |  |  |  |
| 10   | ). Transie                       | nt Response of a RC Circuit.                       | AUTO  | NON     | 40U          |    |  |  |  |  |  |  |  |
|      |                                  | TOTAL:                                             |       | PER     | OI           | DS |  |  |  |  |  |  |  |
|      |                                  | Y REQUIREMENT FOR BATCH OF                         | 30    |         |              |    |  |  |  |  |  |  |  |
|      | DENTS:                           | FCOMES.                                            |       |         |              |    |  |  |  |  |  |  |  |
| COU  |                                  | realistics of the course the students will         | 11 ha | a b l   | o <b>t</b> o |    |  |  |  |  |  |  |  |
| CO1. |                                  | npletion of the course, the students wil           |       |         |              |    |  |  |  |  |  |  |  |
|      |                                  | ircuit to verify the Kirchoff 's Voltage l         |       |         |              |    |  |  |  |  |  |  |  |
| CO2: | circuit.                         | irchoff's current Law (KCL) to verify t            | ne g  | ive     | n            |    |  |  |  |  |  |  |  |
| CO2. |                                  | at a singuit to require the theorems for the       | a a1a | مباد ا  | : 1          |    |  |  |  |  |  |  |  |
| CU3: | circuits                         | ct a circuit to verify the theorems for th         | e eie | ctr     | ical         |    |  |  |  |  |  |  |  |
| CO4: |                                  | inequit to require the true mout material a        | 040   | 2 o t : | 240          |    |  |  |  |  |  |  |  |
| CU4: | build a c                        | ircuit to verify the two port network po           | aran  | nete    | ers          |    |  |  |  |  |  |  |  |

CO5: Construct an Electric Circuit to test the RC Condition

for the electrical circuit.

| CO6: | Constru                                                    | ıct a                                      | ın E  | lec              | tric        | Cir         | cuit             | to               | test                       | the              | RL               | Con              | ditio            | on               |                  |                       |
|------|------------------------------------------------------------|--------------------------------------------|-------|------------------|-------------|-------------|------------------|------------------|----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------------|
| TEX  | Г ВООК                                                     | :                                          |       |                  |             |             |                  |                  |                            |                  |                  |                  |                  |                  |                  |                       |
| 1    | Netwo                                                      | rk /                                       | \na   | lysi             | s ar        | nd S        | Synt             | hes              | is b                       | y U              | .A.F             | atel             | 6th              | Edi              | tior             | ١,                    |
|      | Mahaja                                                     | n Pı                                       | abli  | shi              | ng I        | Ιου         | ıse.             |                  |                            |                  |                  |                  |                  |                  |                  |                       |
| REFI | ERENCE                                                     | :                                          |       |                  |             |             |                  |                  |                            |                  |                  |                  |                  |                  |                  |                       |
| 1    | Circuit Theory (Analysis and Synthesis) By A. Chakrabarti, |                                            |       |                  |             |             |                  |                  |                            |                  |                  |                  |                  |                  |                  |                       |
|      | Dhanpa                                                     | Dhanpat Rai & Company. Network Analysis by |       |                  |             |             |                  |                  |                            |                  |                  |                  |                  |                  |                  |                       |
|      | M.E.Va                                                     | M.E.Vanvalkenburg, PHI Publication         |       |                  |             |             |                  |                  |                            |                  |                  |                  |                  |                  |                  |                       |
|      | 30                                                         |                                            |       |                  |             |             | I                | POs              |                            |                  |                  |                  |                  | I                | PSO              | s                     |
| (    | COs                                                        | 1                                          | 2     | 3                | 4           | 5           | 6                | 7                | _                          | _                | 40               |                  |                  |                  | _                |                       |
|      |                                                            | _                                          | _     | _                |             | _           |                  | /                | 8                          | 9                | 10               | 11               | 12               | 1                | 2                | 3                     |
|      | 1                                                          | 3                                          | 2     | 1                | 1           | 1           | -                | -                | -                          | 2                | 10               | -                | 12<br>-          | 3                | 1                | <u>-</u>              |
|      | 1 2                                                        | _                                          | 2     |                  | 1           | 1           | -                | -                | -<br>-                     | _                |                  | -<br>-           | 12<br>-<br>-     | _                | _                | -<br>-                |
|      |                                                            | 3                                          | _     | 1                | _           |             | -<br>-           | -<br>-           | -<br>-<br>-                | 2                | 1                | -<br>-<br>-      | -<br>-<br>-      | 3                | 1                | 3<br>-<br>-           |
|      | 2                                                          | 3                                          | 2     | 1                | 1           | 1           | -<br>-<br>-      | -<br>-<br>-      | -<br>-<br>-                | 2 2              | 1 1              | -<br>-<br>-<br>- | -<br>-<br>-      | 3                | 1                | 3<br>-<br>-<br>-      |
|      | 2                                                          | 3 3 3                                      | 2     | 1<br>1<br>1      | 1           | 1           | -<br>-<br>-      |                  | 8<br>-<br>-<br>-<br>-      | 2 2 2            | 1<br>1<br>1      | -<br>-<br>-<br>- | -<br>-<br>-<br>- | 3 3 2            | 1<br>1<br>1      | 3<br>-<br>-<br>-<br>- |
|      | 2 3 4                                                      | 3<br>3<br>3<br>3                           | 2 2 2 | 1<br>1<br>1<br>1 | 1<br>1<br>1 | 1<br>1<br>1 | -<br>-<br>-<br>- | -<br>-<br>-<br>- | 8<br>-<br>-<br>-<br>-<br>- | 2<br>2<br>2<br>2 | 1<br>1<br>1<br>1 |                  | -<br>-<br>-<br>- | 3<br>3<br>2<br>3 | 1<br>1<br>1<br>1 | 3<br>-<br>-<br>-<br>- |

Correlation

Recommended by Board of Studies 28-07-2023

Approved by Academic

ACCULATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

09-09-2023

1st ACM

| 23HS221 | SOFT SKILLS | L | T | P | С |
|---------|-------------|---|---|---|---|
|         |             | 0 | 0 | 2 | 1 |

- To help learners improve their interpersonal skills and critical thinking
- To familiarize learners with the attributes of a leader to enhance team performance
- To prepare students to face job interviews
- To help learners to know the importance of ethics in work place

#### UNIT I INTERPERSONAL COMMUNICATION

6

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

#### UNIT II TEAM WORK AND LEADERSHIP

6

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

# UNIT III TIME MANAGEMENT AND STRESS MANAGEMENT

•

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self- awareness and regulation.

# UNIT IV CRITICAL THINKING AND WORK ETHICS

6

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance, attitude, character, organizational skills, productivity, respect.

| UNI   | Γ V   INTERVIEW SKILLS AND RESUME                         | 6     |
|-------|-----------------------------------------------------------|-------|
|       | BUILDING TECHNIQUES                                       |       |
| Teler | bhonic interview, online interviews, f2f interviews, FAQ  | soft  |
|       | s interview questions, drafting error-free CVs/ Resumes   |       |
|       | er Letters, selecting the ideal format for resume, con    |       |
|       | ing along with sequencing, art of representing o          |       |
|       | fications and most relevant work history, video resu      |       |
|       | site resume.                                              | -,    |
|       | TOTAL: 30 PERI                                            | ODS   |
| COU   | IRSE OUTCOMES:                                            |       |
|       | After completion of the course, the students will be able | to:   |
| CO1:  | Express their thoughts, opinions and ideas confidently t  | o     |
|       | one or more people in spoken form                         |       |
| CO2:  | Develop evolving competences required for professiona     | 1     |
|       | success                                                   |       |
| CO3:  | Demonstrate knowledge and skills in a group as team p.    | layer |
|       | and leader                                                |       |
| CO4:  | Compose a comprehensive resume reflecting qualification   | ons,  |
|       | exposure and achievements                                 | Y     |
| CO5:  | Exhibit knowledge and skills confidently during job       | yus.  |
|       | interviews                                                |       |
| CO6:  | Demonstrate ethical and professional behaviour at         |       |
|       | workplace in all situations                               |       |
| TEX   | T BOOKS:                                                  |       |
| 1     | Soft Skills: Key to Success in Workplace and Life         | by    |
|       | Meenakshi Raman & Shalini Upadhyay. Cengage               |       |
| REFI  | ERENCES:                                                  |       |
| 1     | English for Job Seekers (Language and Soft Skills for th  |       |
|       | Aspiring) by Geetha Rajeevan, C.L.N. Prakash ) Cambi      | idge  |
|       | University Press pvt, Ltd.                                |       |
| 2     | Business Benchmark by Norman Whitby. Cambridge            |       |
|       | University Press pvt, Ltd                                 |       |

| COs                                        |   |     |    |   |   | I    | POs | ,    |     |     |    |    | I | PSC | s |
|--------------------------------------------|---|-----|----|---|---|------|-----|------|-----|-----|----|----|---|-----|---|
| COs                                        | 1 | 2   | 3  | 4 | 5 | 6    | 7   | 8    | 9   | 10  | 11 | 12 | 1 | 2   | 3 |
| 1                                          | - | -   | -  | - | - | -    | -   | -    | 2   | 2   | -  | -  | - | -   | - |
| 2                                          | - | -   | -  | - | - | 2    | 2   | 2    | 3   | 3   | 2  | 2  | - | -   | 2 |
| 3                                          | - | -   | -  | - | - | -    | -   | -    | 3   | 3   | -  | -  | - | -   | - |
| 4                                          | - | -   | -  | - | - | -    | -   | -    | 3   | 3   | -  | -  | - | -   | - |
| 5                                          | - | -   | -  | - | - | -    | -   | -    | 3   | 3   | -  | -  | - | -   | - |
| 6                                          | - | -   | -  | - | - | -    | -   | 3    | 3   | 3   | -  | -  | - | -   | 3 |
| Overall<br>Correlation                     | - | -   | -  | - | - | 2    | 2   | 2    | 3   | 3   | 2  | 2  | - | -   | 2 |
| Recommended by Board of Studies 28-07-2023 |   |     |    |   |   |      |     |      |     |     |    |    |   |     |   |
| Approve                                    |   | 1st | AC | M |   | Date | )   | 09-0 | 9-2 | 023 |    |    |   |     |   |



### SEMESTER -III

| 23MA301       | LINEAR ALGEBRA                            | L      | T     | P     | С     |
|---------------|-------------------------------------------|--------|-------|-------|-------|
|               |                                           | 3      | 1     | 0     | 4     |
| COURSE OB     | JECTIVES:                                 |        |       |       |       |
| To test       | the consistency and solve system of li    | near   | equ   | ıatio | ons   |
| • To fine     | d the basis and dimension of vector sp    | oace   |       |       |       |
|               | tain the matrix of linear transform       | natio  | n a   | nd    | its   |
| 0             | values and eigenvectors                   |        |       |       |       |
|               | d orthonormal basis of inner product      | -      |       |       |       |
|               | d eigenvalues of a matrix using numer     | ical t | ech   | niq   | ues   |
|               | erform matrix decomposition.              |        |       |       |       |
|               | TRICES AND SYSTEM OF LINEAR               | 2      |       | 9     | 9+3   |
| ~~~           | UATIONS                                   |        |       |       |       |
|               | Row echelon form - Rank - Syst            |        |       |       |       |
| equations - 0 | Consistency - Gauss elimination me        | etho   | d -   | Ga    | uss   |
|               | od - Gauss Seidel Method                  | -4     |       | -     |       |
|               | CTOR SPACES                               |        |       |       | 9+3   |
|               | <mark>es -</mark> Subspace - Linear indep |        |       |       | ind   |
|               | – Linear Span - Basis and dimensi         | on -   | · M   | axir  | nal   |
|               | ependent Subsets.                         |        |       |       |       |
| 4/35          | NEAR TRANSFORMATION                       | 111    | )L(   |       | 9+3   |
|               | ormation - Rank space and null spa        |        |       |       |       |
|               | ension theorem - Matrix representa        |        |       |       |       |
|               | on - Eigenvalues and eigenvector          |        |       |       |       |
|               | on – Invertibility and Isomorphisms       | - Du   | ıal S |       |       |
|               | NER PRODUCT SPACES                        |        |       |       | 9+3   |
|               | act and norms - Properties -              |        |       |       |       |
|               | vectors - Gram Schmidt ortho              |        |       |       |       |
|               | joint of Linear operator - Normal ar      |        |       |       |       |
| -             | Unitary and orthogonal operator           | rs     | and   | tr    | ieir  |
| Matrices      |                                           |        | ,     |       | 2 . 2 |
|               | GENVALUE PROBLEMS AND MATECOMPOSITION     | (KI)   |       |       | 9+3   |
|               | Problems - Power method, Jacobi ro        | tatic  | n n   | neth  | nod   |
| - Singular    | value decomposition - QR deco             | omp    | osi   | tion  | _     |
| 0             | Inverse - Least square solution           | 1      |       |       |       |
|               | TOTAL                                     | : 60   | PEI   | RIO   | DS    |

| COL  | RSE OU                                                          | ITC                                                   | ON  | ЛES | 3.   |      |      |                 |      |      |       |        |            |      |       |      |
|------|-----------------------------------------------------------------|-------------------------------------------------------|-----|-----|------|------|------|-----------------|------|------|-------|--------|------------|------|-------|------|
| -    | After co                                                        |                                                       |     |     |      | he o | 2011 | rse             | the  | stı  | ıder  | its w  | 7i11 h     | e al | ale t | 0.   |
| CO1· | Solve t                                                         |                                                       |     |     |      |      |      |                 |      |      |       | ILS VI | 111 6      | c a  | oic t | 0.   |
|      | Find th                                                         |                                                       |     |     |      |      |      |                 |      |      |       | sna    | 7 <u>0</u> |      |       |      |
|      | Find 1                                                          |                                                       |     |     |      |      |      |                 |      |      |       | _      |            | a.   | nd    | its  |
| CO3. | eigenva                                                         |                                                       |     |     |      |      |      |                 |      | паі  | 13101 | ıııa   | uon        | a    | iid   | 113  |
| CO4· | Find or                                                         |                                                       |     |     |      |      |      |                 |      | nrc  | d110  | t en   | ace        |      |       |      |
|      | Find ei                                                         |                                                       |     |     |      |      |      |                 |      | _    |       |        |            | -ch  | niaı  | 168  |
|      |                                                                 |                                                       |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
|      | : Find Matrix Decomposition using different techniques T BOOKS: |                                                       |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
|      | 1 Friedberg A.H, Insel A.J. and Spence L, "Linear Algebra",     |                                                       |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
| •    | Prentice Hall of India, New Delhi, 2004.                        |                                                       |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
| 2    |                                                                 | Faires J.D. and Burden R., "Numerical Methods",       |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
| _    |                                                                 | Brooks/Cole (Thomson Publications), New Delhi, 2002.  |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
| REFI | REFERENCES:                                                     |                                                       |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
| 1    |                                                                 | Kumaresan S, "Linear Algebra - A geometric approach", |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
|      |                                                                 | Prentice Hall of India, New Delhi, Reprint, 2010.     |     |     |      |      |      |                 |      |      |       |        |            |      |       |      |
| 2    | P.S.Das                                                         |                                                       |     |     |      |      | _    |                 |      |      | _     |        |            |      | atio  | ns,  |
| 1    | New D                                                           |                                                       |     |     |      |      |      |                 |      | W    |       |        |            |      |       |      |
| 3    | Richard                                                         |                                                       |     |     |      | Mat  | trix | Or              | era  | atio | ns",  | Sch    | aun        | n's  | outl  | ine  |
| 1    | series,                                                         |                                                       |     |     |      |      |      | •               |      |      |       |        |            |      |       |      |
|      |                                                                 |                                                       | 1   | 8   |      | 0    | οιI  | POs             | ra E |      |       | 201    | HMZ        | NI / | PSC   | )s   |
| •    | COs                                                             | 1                                                     | 2   | 3   | 4    | 5    | 6    | 7               | 8    | 9    | 10    | 11     | 12         | 1    | 2     | 3    |
|      | 1                                                               | 3                                                     | 2   | 1   | 1    | -    | -    | -               | -    | -    | -     | -      | 1          | 3    | -     | -    |
|      | 2                                                               | 3                                                     | 2   | 1   | 1    | -    | -    | -               | -    | -    | -     | -      | 1          | 3    | ı     | -    |
|      | 3                                                               | 3                                                     | 2   | 1   | 1    | -    | -    | -               | -    | -    | -     | -      | 1          | 3    | -     | -    |
|      | 4                                                               | 3                                                     | 2   | 1   | 1    | -    | -    | -               | -    | -    | -     | -      | 1          | 3    | -     | -    |
|      | 5                                                               | 3                                                     | 2   | 1   | 1    | -    | -    | -               | -    | -    | -     | -      | 1          | 3    | -     | -    |
|      | 6                                                               | 3                                                     | 2   | 1   | 1    | -    | -    | ı               | ı    | -    | ı     | ı      | 1          | 3    | ı     | ı    |
| O    | verall                                                          | 3                                                     | 2   | 1   | 1    |      |      | _               |      |      |       |        | 1          | 3    |       |      |
|      | relation                                                        |                                                       |     |     |      | _    | _    | _               | _    | _    | _     | _      | 1          | 3    | _     | _    |
| Reco | mmende                                                          |                                                       |     |     | of S | Stuc | lies |                 |      |      |       |        | 1          |      |       |      |
|      | A                                                               | ppr                                                   | ove | d   |      |      |      | 2 <sup>no</sup> | 1 A( | CM   |       | Date   | 9          | 25   | -05-2 | 2024 |

| 23EC301                                                                                                                                                           | ELECTRONIC CIRCUITS                                                                                                                                                                      | L             | T           | P         | C       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-----------|---------|--|--|--|--|--|--|
|                                                                                                                                                                   |                                                                                                                                                                                          | 3             | 0           | 0         | 3       |  |  |  |  |  |  |
| <b>COURSE OBJ</b>                                                                                                                                                 | ECTIVES:                                                                                                                                                                                 |               |             |           |         |  |  |  |  |  |  |
| and cii<br>helps t<br>digital                                                                                                                                     | e a comprehensive exposure to all type<br>recuits constructed with discrete compo-<br>to develop a strong basis for building<br>integrated circuits<br>alyze the frequency response of s | oner<br>g lin | nts.<br>ear | Thi<br>an | is<br>d |  |  |  |  |  |  |
| <ul> <li>To design and analyze single stage and multistage amplifier circuits</li> <li>To study about feedback amplifiers &amp; oscillators principles</li> </ul> |                                                                                                                                                                                          |               |             |           |         |  |  |  |  |  |  |
|                                                                                                                                                                   | ARACTERISTICS OF SEMICONDU                                                                                                                                                               | CTO           | ORS         | 3         | 9       |  |  |  |  |  |  |
| DE                                                                                                                                                                | VICES                                                                                                                                                                                    |               |             |           |         |  |  |  |  |  |  |
| PN junction di                                                                                                                                                    | iode, Zener diode, BJT - Construction,                                                                                                                                                   | wor           | kin         | g aı      | nd      |  |  |  |  |  |  |
| characteristics                                                                                                                                                   | of CE, CB and CC configurations-                                                                                                                                                         | liffu         | sion        | ı aı      | nd      |  |  |  |  |  |  |
| transition ca                                                                                                                                                     | pacitance, FinFET, MOSFET, UJT                                                                                                                                                           | 25            | tru         | ctu       | re,     |  |  |  |  |  |  |
| operation and                                                                                                                                                     | V-I characteristics, - Rectifiers - Half W                                                                                                                                               | /ave          | an          | d Fı      | all     |  |  |  |  |  |  |
| Wave Rectifier                                                                                                                                                    | r, Zener as regulator.                                                                                                                                                                   |               |             |           |         |  |  |  |  |  |  |
| UNIT II BJT                                                                                                                                                       | T AND FINFET AMPLIFIERS                                                                                                                                                                  | AUTE          | NO          | 40V       | 9       |  |  |  |  |  |  |
| Load line, ope                                                                                                                                                    | erating point, biasing methods for BJT                                                                                                                                                   | - fi          | xed         | bia       | as,     |  |  |  |  |  |  |
| voltage divide                                                                                                                                                    | er bias, collector to base bias, collector                                                                                                                                               | or to         | eı eı       | nitt      | er      |  |  |  |  |  |  |
| feedback bias,                                                                                                                                                    | emitter feedback bias - Biasing method                                                                                                                                                   | ds fo         | r Fi        | nFl       | ΞT      |  |  |  |  |  |  |
| - BJT small si                                                                                                                                                    | ignal model - Analysis of CE, CB, CC                                                                                                                                                     | am            | plif        | iers      | · –     |  |  |  |  |  |  |
| FINFET small                                                                                                                                                      | signal model.                                                                                                                                                                            |               |             |           |         |  |  |  |  |  |  |
| UNIT III FR                                                                                                                                                       | EQUENCY RESPONSE OF AMPLIFI                                                                                                                                                              | ERS           |             |           | 9       |  |  |  |  |  |  |
| Gain and freq                                                                                                                                                     | juency response – BJT, FINFET - Hig                                                                                                                                                      | gh f          | req         | ıen       | су      |  |  |  |  |  |  |
| analysis. Bias                                                                                                                                                    | s compensation circuits: Diode co                                                                                                                                                        | omp           | ens         | atic      | n,      |  |  |  |  |  |  |
| thermistor con                                                                                                                                                    | npensation and sensistor compensatior                                                                                                                                                    | ı             |             |           |         |  |  |  |  |  |  |
| UNIT IV MU                                                                                                                                                        | JLTISTAGE AMPLIFIERS & TUNED<br>IPLIFIERS                                                                                                                                                |               |             |           | 9       |  |  |  |  |  |  |
| Cascade Amp                                                                                                                                                       | olifier, Cascode amplifier, Differential                                                                                                                                                 | an            | ıpli        | fier      | _       |  |  |  |  |  |  |

Common mode and Difference mode analysis – FinFET input stages – Tuned amplifiers : Single tuned amplifier, Double tuned Amplifier, Stagger – Gain and frequency response – Neutralization methods.

# UNIT V POWER AMPLIFIERS AND DC/DC 9 CONVERTERS

Power amplifiers- class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB Power amplifier using FET -DC/DC convertors - Buck, Boost, Buck-Boost analysis and design

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Analyse the behaviour of semiconductor devices.
- CO2: Examine various transistor biasing and analyse the small signal model of amplifiers
- CO3: Analyse the gain and high frequency response of amplifiers
- CO4: Interpret the design and analysis of multistage amplifier and tuned amplifier circuits.
- CO5: Summarise the various power amplifiers
- CO6: Explain the various DC/DC converters

#### **TEXT BOOKS:**

- 1 Donald.A. Neamen, "Electronic Circuit Analysis and Design", Tata McGraw Hill, 3rd Edition, 2010.
- Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson Education / PHI, 2008.

#### **REFERENCES:**

- 1 David A. Bell, "Electronic Devices and Circuits", Oxford Higher Education press, 5th Edition, 2010.
- 2 D.Schilling and C.Belove, "Electronic Circuits", McGraw Hill, 3rd Edition, 1989
- 3 Muhammad H.Rashid, "Power Electronics", Pearson Education / PHI, 2004.
- 4 Adel .S. Sedra, Kenneth C. Smith, "Micro Electronic Circuits", Oxford University Press, 7 th Edition, 2014.

| COs                    |      |     |     |      |      | I   | POs |      |      |    |      |    | I          | PSO | s |
|------------------------|------|-----|-----|------|------|-----|-----|------|------|----|------|----|------------|-----|---|
| COs                    | 1    | 2   | 3   | 4    | 5    | 6   | 7   | 8    | 9    | 10 | 11   | 12 | 1          | 2   | 3 |
| 1                      | 3    | 3   | 2   | 2    | 1    | 1   | 1   | 1    | -    | 1  | 1    | 1  | 2          | 1   | 1 |
| 2                      | 3    | 3   | 2   | 2    | 1    | 1   | ı   | 1    | -    | 1  | 1    | 1  | 2          | 1   | 1 |
| 3                      | 3    | 3   | 2   | 2    | 1    | 1   | ı   | 1    | -    | 1  | 1    | 1  | 2          | 1   | 1 |
| 4                      | 2    | 1   | -   | ı    | 1    | 1   | 1   | 1    | -    | 1  | 1    | 1  | 2          | 1   | 1 |
| 5                      | 2    | 1   | -   | -    | 1    | 1   | -   | 1    | -    | 1  | 1    | 1  | 2          | 1   | 1 |
| 6                      | 2    | 1   | -   | -    | 1    | 1   | -   | 1    | -    | 1  | 1    | 1  | 3          | 1   | 1 |
| Overall<br>Correlation | 3    | 2   | 1   | 1    | 1    | 1   | ı   | 1    | -    | 2  | 2    | 2  | 3          | 1   | 1 |
| Recommende             | d by | Во  | ard | of S | Stud | ies | 01- | 04-2 | 2024 |    |      |    |            |     |   |
| Approve                | ed b | y A | cad | emi  | С    |     | 2nd | 1 A( | CM   |    | Date | 5  | 25-05-2024 |     |   |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T            | P    | C               |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-----------------|--|--|--|--|--|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0            | 0    | 3               |  |  |  |  |  |
| COURSE OBJECTIVES:                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |  |  |  |  |  |
| To introduce the components and representation                                                                                                                                                                                                                                                                                                                                                                                                    | n of         |      |                 |  |  |  |  |  |
| control systems                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |      |                 |  |  |  |  |  |
| <ul> <li>To learn methods of analyzing time response of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                | syst         | em   | s               |  |  |  |  |  |
| To understand various techniques to analyze free                                                                                                                                                                                                                                                                                                                                                                                                  | -            |      |                 |  |  |  |  |  |
| response of systems.                                                                                                                                                                                                                                                                                                                                                                                                                              | •            | ,    |                 |  |  |  |  |  |
| <ul> <li>To learn the concept of stability analysis in cont.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           | ol           |      |                 |  |  |  |  |  |
| systems                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |                 |  |  |  |  |  |
| <ul> <li>To study different approaches for state variable</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | anal         | ysi  | s               |  |  |  |  |  |
| UNIT I SYSTEM COMPONENTS AND THEIR                                                                                                                                                                                                                                                                                                                                                                                                                |              |      | 9               |  |  |  |  |  |
| REPRESENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |      |                 |  |  |  |  |  |
| T. 1 C. 1 10 T. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                   | 01           |      |                 |  |  |  |  |  |
| Introduction to Control System, Terminology and Basic                                                                                                                                                                                                                                                                                                                                                                                             |              | 70   |                 |  |  |  |  |  |
| Feed forward and Feedback control theory, Elect                                                                                                                                                                                                                                                                                                                                                                                                   | 100          |      | ris .           |  |  |  |  |  |
| Mechanical transfer Function Models, Block diagram                                                                                                                                                                                                                                                                                                                                                                                                | ı M          | ode  | ls.             |  |  |  |  |  |
| Signal flow graphs, Multivariable control system.                                                                                                                                                                                                                                                                                                                                                                                                 |              |      | - 1             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |      | ļ,              |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                    |              |      | 9               |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                    | nano         | Te e | 9               |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS  Transient response, Steady state response, Perform                                                                                                                                                                                                                                                                                                                                                                |              |      | 9<br>of         |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS  Transient response, Steady state response, Performstandard first order and second order systems, Zeroes,                                                                                                                                                                                                                                                                                                          | Pole         | s aı | 9<br>of         |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS  Transient response, Steady state response, Performstandard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI                                                                                                                                                                                                                                                        | Pole         | s aı | 9<br>of         |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS  Transient response, Steady state response, Performstandard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI systems.                                                                                                                                                                                                                                               | Pole         | s aı | 9<br>of         |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS  Transient response, Steady state response, Performstandard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI systems.                                                                                                                                                                                                                                               | Pole         | s aı | of<br>nd<br>rol |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS  Transient response, Steady state response, Performstandard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI systems.  UNIT III FREQUENCY RESPONSE AND SYSTEM ANALYSIS                                                                                                                                                                                              | Pole<br>D co | s ai | 9 of and col    |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS  Transient response, Steady state response, Performstandard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI systems.  UNIT III FREQUENCY RESPONSE AND SYSTEM ANALYSIS  Closed loop frequency response, Performance specifications.                                                                                                                                 | Pole<br>D co | s an | 9 of nd rol     |  |  |  |  |  |
| UNIT II TIME RESPONSE ANALYSIS  Transient response, Steady state response, Performstandard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI systems.  UNIT III FREQUENCY RESPONSE AND SYSTEM ANALYSIS  Closed loop frequency response, Performance specific frequency domain, Frequency response of standard second                                                                                | Pole D co    | s an | 9 of and col    |  |  |  |  |  |
| Transient response, Steady state response, Performstandard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI systems.  UNIT III FREQUENCY RESPONSE AND SYSTEM ANALYSIS  Closed loop frequency response, Performance specific frequency domain, Frequency response of standard second system, Bode plot, Polar plot, Cascade lead compensation                                                       | Pole D co    | s an | 9 of and col    |  |  |  |  |  |
| Transient response, Steady state response, Performance standard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI systems.  UNIT III FREQUENCY RESPONSE AND SYSTEM ANALYSIS  Closed loop frequency response, Performance specific frequency domain, Frequency response of standard second system, Bode plot, Polar plot, Cascade lead compensation lag compensation, Cascade lead-lag compensation. | Pole D co    | s an | 9 of nd col     |  |  |  |  |  |
| Transient response, Steady state response, Performstandard first order and second order systems, Zeroes, Type of system, Analytical design - PD, PI and PI systems.  UNIT III FREQUENCY RESPONSE AND SYSTEM ANALYSIS  Closed loop frequency response, Performance specific frequency domain, Frequency response of standard second system, Bode plot, Polar plot, Cascade lead compensation                                                       | Pole D co    | s an | 9 of and col    |  |  |  |  |  |

stability, Root locus concept,

Concept of stability – Bounded Input and Bounded Output, Routh

stability criterion, Relative

|       |        | s for sketching root locus, Nyquist stability criterion.                                       |      |
|-------|--------|------------------------------------------------------------------------------------------------|------|
| UNI   | ΓV     | CONTROL SYSTEM ANALYSIS USING STATE                                                            | 9    |
|       |        | VARIABLE METHODS.                                                                              |      |
| State | varia  | able representation, Conversion of state variable mod                                          | lels |
| to tr | ansfe  | r functions, Conversion of transfer functions to st                                            | tate |
| varia | ble    | models, Solution of state equations, Concepts                                                  | of   |
| Cont  | rollab | oility and Observability, Stability of linear system                                           | ms,  |
| Equi  | valen  | ce between transfer function and state varia                                                   | ble  |
| repre | esenta | tions, State variable analysis of digital control system                                       | n.   |
|       |        | TOTAL: 45 PERIO                                                                                | DDS  |
| COU   |        | OUTCOMES:                                                                                      |      |
|       |        | r completion of the course, the students will be able t                                        |      |
| CO1:  | _      | ain the basic elements of control systems and the                                              |      |
|       | mod    | elling using block diagram reduction and signal fl                                             | .ow  |
|       | grap   |                                                                                                | _    |
| CO2:  | T. 5/  | ly time domain analysis for first and second or                                                | der  |
|       | syste  |                                                                                                |      |
|       |        | elop compensation techniques in frequency domain.                                              | -    |
|       | 700    | ze Bode plot and Polar plot in control system analysi                                          |      |
| CO5:  |        | ly Routh criteria, Root locus method and Nyqu                                                  | uist |
| 001   |        | ility criterion for stability analysis.                                                        |      |
| CO6:  | _      | ain state variable analysis method using state sp                                              | ace  |
|       | -      | esentation.                                                                                    |      |
|       | ГВО    |                                                                                                | 7 .  |
| 1     |        | opal, —Control System - Principles and Design, T                                               | ata  |
| 2     |        | Graw Hill, 4th Edition, 2012.                                                                  | اء ء |
| 2     |        | grath and M.Gopal, —Control System Engineering Ago International Publishers, 5th Edition, 2007 | ng∥, |
| DECI  |        | Age International Publishers, 5th Edition, 2007.                                               |      |
| 1     |        |                                                                                                | ш    |
| 1     | 2012   | gata, _Modern Control Engineering ', 5th edition, P                                            | 111, |
| 2     |        |                                                                                                | on   |
| _     |        | Bhattacharya, Control System Engineering, 3rd Editi<br>Son, 2013                               | OII, |
|       | rear   | son, 2013.                                                                                     |      |

| 3    | Benjamin.C. Kuo, —Automatic control systems, Prentice Hall |                                                  |     |     |      |      |     |     |      |              |   |      | all |     |      |      |
|------|------------------------------------------------------------|--------------------------------------------------|-----|-----|------|------|-----|-----|------|--------------|---|------|-----|-----|------|------|
|      | of India, 7th Edition,1995.                                |                                                  |     |     |      |      |     |     |      |              |   |      |     |     |      |      |
| 4    | A.Nago                                                     | A.Nagoor Kani - Control Systems Engineering, CBS |     |     |      |      |     |     |      |              |   |      |     |     |      |      |
|      | Publishers & Distributors, 2021                            |                                                  |     |     |      |      |     |     |      |              |   |      |     |     |      |      |
|      | POs PSOs PSOs                                              |                                                  |     |     |      |      |     |     |      |              |   |      |     |     |      |      |
| `    | COS                                                        | COs 1 2 3 4 5 6 7 8 9 10 11 12 1                 |     |     |      |      |     |     |      |              |   |      |     | 1   | 2    | 3    |
|      | 1 2 1 2 2 2 3                                              |                                                  |     |     |      |      |     |     |      |              |   | 3    | 3   | -   |      |      |
|      | 2                                                          | 3                                                | 2   | 1   | 1    | 2    | 3   | -   | -    | -            | - | 2    | 2   | 3   | 3    | -    |
|      | 3                                                          | 3                                                | 2   | 1   | 1    | 2    | 2   | -   | -    | -            | - | 2    | 3   | 3   | 2    | -    |
|      | 4                                                          | 3                                                | 2   | 1   | 1    | 2    | 2   | -   | -    | -            | - | 2    | 3   | 3   | 2    | -    |
|      | 5                                                          | 3                                                | 2   | 1   | 1    | 2    | 2   | -   | -    | -            | - | 2    | 2   | 3   | 3    | -    |
|      | 6                                                          | 2                                                | 1   | 1   | -    | 2    | 3   | 1   | ı    | ı            | 1 | 2    | 3   | 2   | 2    | -    |
| O    | verall 3 2 1 1 2 3 2 3                                     |                                                  |     |     |      |      |     |     |      |              |   | 3    | 3   |     |      |      |
| Cor  | relation                                                   | 3                                                |     | 1   | 1    | _    | 3   |     |      |              | 1 |      | 3   | 3   | 3    | _    |
| Reco | mmende                                                     | d by                                             | Bo  | ard | of S | Stud | ies | 01- | 04-2 | 2024         |   |      |     |     | -    |      |
|      | Approve                                                    | ed b                                             | v A | cad | emi  | c    | A   | 2nd | A(   | $\mathbf{M}$ |   | Date | K   | 25- | 05-2 | 2024 |



# COLLEGE OF TECHNOLOGY

| 23HS301 | UNIVERSAL HUMAN VALUES | L | T | P | C |
|---------|------------------------|---|---|---|---|
|         | AND ETHICS             | 3 | 0 | 0 | 3 |

- Development of a holistic perspective based on selfexploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.
- Strengthening of self-reflection.
- Development of commitment and courage to act.

| UNIT I | COURSE INTRODUCTION | 9 |
|--------|---------------------|---|
|        |                     |   |

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration - Continuous Happiness and Prosperity- A look at basic Human Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority -Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

|         | · · · · · · · · · · · · · · · · · · · |   |
|---------|---------------------------------------|---|
| UNIT II | UNDERSTANDING HARMONY IN THE          | 9 |
|         | HUMAN BEING                           |   |

Harmony in Myself- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body'- Sukh and Suvidha- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

# UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Harmony in Human-Human Relationship -Understanding Harmony in the family – the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust(Vishwas) and Respect as the foundational values of relationship -Understanding the meaning of Vishwas; Difference between intention and competence -Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family)-Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order- from family to world family.

#### UNIT IV ENGINEERING ETHICS

9

9

Senses of <u>\_Engineering</u> Ethics, - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

#### UNIT V | SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination-Moral Leadership -Code of Conduct - Corporate Social Responsibility.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

CO1: Understand the need of value education.

**CO2:** Comprehend the difference between self and body.

CO3: Understand the need to exist as an unit of Family and society. CO4: Understand Harmony at all levels. **CO5:** Apply the values acquired in the professional front. CO6: Identify appropriate technologies for ecofriendly production systems. **TEXT BOOKS:** Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010 3. Mike W. Martin and Roland Schinzinger, -Ethics in 2 Engineering, Tata McGraw Hill, New Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, 3 -Engineering Ethicsl, Prentice Hall of India, New Delhi, 2004 REFERENCES: Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya 1 Prakashan, Amarkantak, 1999. Human Values, A.N. Tripathi, New Age Intl. Publishers, 2 New Delhi, 2004. The Story of Stuff (Book). 3 The Story of My Experiments with Truth - by Mohandas 4 Karamchand Gandhi AICTE Model Curriculum Humanities, Social Science and Management Courses (UG Engineering & Technology) 169 | Page . Small is Beautiful - E. F Schumacher. 6 Slow is Beautiful - Cecile Andrews. 7 Economy of Permanence - J C Kumarappa 8. Bharat Mein Angreji Raj - Pandit Sunderlal. Rediscovering India - by Dharampal. 8 Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi. 9 India Wins Freedom - Maulana Abdul Kalam Azad. 10 Vivekananda - Romain Rolland (English) 13. Gandhi -11 Romain Rolland (English).

| 12   | Charles B. Fleddermann, —Engineering EthicsI, Pearson |                      |        |          |                 |      |       |      |      |                        |       |      |      |      |      |      |
|------|-------------------------------------------------------|----------------------|--------|----------|-----------------|------|-------|------|------|------------------------|-------|------|------|------|------|------|
|      | Prentice                                              | На                   | ıll, I | Nev      | v Je            | rsey | y, 2  | 004  |      |                        |       |      |      |      |      |      |
| 13   | Charles                                               | E. I                 | Har    | ris,     | Mi              | cha  | el S  | . Pr | itch | ard                    | and   | Mic  | chae | 1 J. |      |      |
|      | Rabins, —Engineering Ethics - Concepts and CasesI,    |                      |        |          |                 |      |       |      |      |                        |       |      |      |      |      |      |
|      | Cengag                                                | e Le                 | earr   | ning     | <b>5, 2</b> 0   | 09.  |       |      |      |                        |       |      |      |      |      |      |
| WEB  | SOURC                                                 | CES                  | ;      |          |                 |      |       |      |      |                        |       |      |      |      |      |      |
| 1    | www.oi                                                | nlin                 | eetl   | hics     | or <sub>§</sub> | 5    |       |      |      |                        |       |      |      |      |      |      |
| 2    | www.ns                                                | www.nspe.org         |        |          |                 |      |       |      |      |                        |       |      |      |      |      |      |
| 3    | www.g                                                 | www.globalethics.org |        |          |                 |      |       |      |      |                        |       |      |      |      |      |      |
|      | POs                                                   |                      |        |          |                 |      |       |      |      |                        |       |      | I    | PSC  | s    |      |
| '    | COS                                                   | 1                    | 2      | 3        | 4               | 5    | 6     | 7    | 8    | 9                      | 10    | 11   | 12   | 1    | 2    | 3    |
|      | 1                                                     | -                    | -      | -        | -               | -    | 3     | 3    | 3    | 3                      | 3     | -    | -    | -    | -    | 3    |
|      | 2                                                     | -                    | -      | -        | -               | -    | 3     | 3    | 3    | 3                      | 3     | -    | -    | -    | -    | 3    |
|      | 3                                                     | ı                    | ı      | -        | 1               | П    | 3     | 3    | 3    | 3                      | 3     | 1    | - 5  | -    | 1    | 3    |
|      | 4 .ow                                                 | 1 <u>2</u> L         | RE.    | 1        | 1               | -    | 3     | 3    | 3    | 3                      | 3     | 2    | 4    | -    | 7    | 3    |
|      | 5                                                     | -                    | -      | D.       | - 1             | - 1  | 3     | 3    | 3    | 3                      | 3     | -    | _    | -    | -    | 3    |
|      | 6                                                     | 4                    | -7     | <u> </u> | 1               | - 9  | 3     | 3    | 3    | 3                      | 3     | -    | [-]  | -    | -    | 3    |
|      | verall<br>relation                                    | - 7                  |        | 1        | 1               | _    | 3     | 3    | 3    | 3                      | 3     | -    | -    | -    | -    | 3    |
| Reco | mmende                                                | l by                 | Во     | ard      | of S            | tud  | lies  | 01-  | 04-2 | 2024                   | TE    | CH   | NO   | LO   | G)   |      |
|      | Approve                                               | d b                  | y A    | cad      | emi             | CAFF | ILIAT | 2nd  | 1 A( | $\mathbf{C}\mathbf{M}$ | NIVER | Date | AUT  | 25-  | 05-2 | 2024 |

| 23EC311 | DIGITAL SYSTEM DESIGN | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         |                       | 3 | 0 | 2 | 4 |

- To present the fundamentals of digital circuits and simplification methods
- To practice the design of various combinational digital circuits using logic gates
- To bring out the analysis and design procedures for synchronous and asynchronous Sequential circuits
- To learn integrated circuit families.
- To introduce semiconductor memories and related technology

# UNIT I BASIC CONCEPTS

9

Review of number systems - Representation - Conversions, Review of Boolean algebra - Theorems, Sum of Product and Product of Sum Simplification, Canonical forms min term and max term, Simplification of Boolean expressions - Karnaugh map, Completely and Incompletely specified functions, Implementation of Boolean expressions using Universal gates, Tabulation methods.

## UNIT II COMBINATIONAL LOGIC CIRCUITS

.

Problem formulation and design of combinational circuits - Code-Converters, Half and Full Adders, Binary Parallel Adder - Carry look ahead Adder, BCD Adder, Magnitude Comparator, Decoder, Encoder, Priority Encoder, Mux/De-mux, Case study: Parity Generator/Checker, Seven Segment display decoder

#### UNIT III | SYNCHRONOUS SEQUENTIAL CIRCUITS

9

Latches, Flip flops – SR, JK, T, D, Master/Slave FF, Triggering of FF, Analysis and design of clocked sequential circuits – Design – Moore/Mealy models, state minimization, state assignment, lock – out condition circuit implementation – Counters, Ripple Counters, Ring Counters, Shift registers, Universal Shift Register.

| UNI   | ΓΙ      | ASYNCHRONOUS SEQUENTIAL CIRCUITS                                    | 9     |
|-------|---------|---------------------------------------------------------------------|-------|
| Stabl | e and   | Unstable states, output specifications, cycles and ra               | ces,  |
|       |         | ction, race free assignments, Hazards, Essential Haza               |       |
|       |         | ntal and Pulse mode sequential circuits, Design                     |       |
|       |         | ee circuits.                                                        |       |
| UNI   | Г۷      | LOGIC FAMILIES AND PROGRAMMABLE                                     | 9     |
|       |         | LOGIC DEVICES                                                       |       |
|       |         |                                                                     |       |
|       |         | ilies- Propagation Delay, Fan - In and Fan - Out - N                |       |
| Marg  | gin - F | RTL, TTL, ECL, CMOS - Comparison of Logic famili                    | es -  |
| Impl  | emen    | tation of combinational logic/ sequential logic des                 | sign  |
| using | g stan  | dard ICs, PROM, PLA and PAL, basic memory, st                       | atic  |
| ROM   | I,PRO   | M,EPROM,EEPROM EAPROM.                                              |       |
|       |         | TOTAL: 45 PERIO                                                     | ODS   |
| PRA   | CTIC    | AL EXERCISES : 30 PERIODS                                           |       |
| 1     | . De    | sign of adders and subtractors & code converters us                 | ing   |
| 3     | KN      | Map                                                                 |       |
| 2     | . De    | s <mark>ign of Multiplexers &amp; Demultiplexers using K Map</mark> |       |
| 3     | . De    | sign of Encoders and Decoders.                                      |       |
| 4     | . De    | sign of Magnitude Comparators using IC 7483 and g                   | gates |
| 5     | . De    | sign and implementation of counters using flip-flop                 | S     |
| 6     | . De    | sign and implementation of shift registers.                         | 2077  |
|       |         | TOTAL: 45 +30 =75 PERIO                                             | ODS   |
| COU   | RSE     | OUTCOMES:                                                           |       |
|       | After   | completion of the course, the students will be able                 | to:   |
| CO1:  | Inter   | pret number system conversions and fundamental                      | s of  |
|       |         | als systems.                                                        |       |
| CO2:  |         | e use of Karnaugh map and Quine Mc-cluskey met                      | hod   |
|       |         | ninimizing Boolean equations                                        |       |
| CO3:  |         | ze logic gates and karnaugh map to design                           | and   |
|       |         | ement combinational circuits                                        |       |
| CO4:  |         | struct synchronous sequential circuits using                        | the   |
| COF   |         | epts of flipflops                                                   | 1     |
| CO5:  | lllus   | trate the design of asynchronous sequential circuits                | and   |

hazards

| CO6     | Explain                                                  | va    | rio  | us   | me    | moı   | ry ( | dev  | ices  | aı   | nd o  | digit | al i  | nteg | grat         | ed  |
|---------|----------------------------------------------------------|-------|------|------|-------|-------|------|------|-------|------|-------|-------|-------|------|--------------|-----|
|         | circuits                                                 |       |      |      |       |       | ,    |      |       |      |       | O     |       |      | ,            |     |
| TEX     | Т ВООК                                                   | S:    |      |      |       |       |      |      |       |      |       |       |       |      |              |     |
| 1       | M. Mor                                                   | rris  | Ma   | no   | and   | d N   | 1ich | ael  | D.    | Cil  | etti, | 'Di   | gital | De   | esig         | n′, |
|         | Pearsor                                                  | ı, 5t | h E  | diti | on,   | 201   | 3.(L | Jnit | - I   | - V) | ).    |       |       |      |              |     |
| 2       | John M                                                   | Ya    | rbro | oug  | h,-I  | Digi  | tal  | Log  | gic 1 | App  | olica | tions | s and | d D  | esig         | gn, |
|         | Thomso                                                   | on L  | ear  | nin  | g,20  | 001.  |      |      |       |      |       |       |       |      |              |     |
| REF     | ERENCE                                                   | S:    |      |      |       |       |      |      |       |      |       |       |       |      |              |     |
| 1       | Charles                                                  | Н.    | Ro   | th,  | Jr,   | 'Fu   | nda  | me   | ntal  | s o  | f Lo  | gic 1 | Desi  | gn', | , Jai        | co  |
|         | Books,                                                   |       |      |      |       |       |      |      |       |      |       | _     |       |      |              |     |
| 2       | William I. Fletcher, "An Engineering Approach to Digital |       |      |      |       |       |      |      |       |      |       |       |       |      |              |     |
|         | Design'                                                  | ', Pr | ent  | ice- | На    | 11 o  | f In | dia, | . 198 | 80.  |       |       |       |      |              |     |
| 3       | Floyd                                                    | T.L   | ٠, " | Dig  | gital | F     | und  | lam  | ent   | als" | , C   | harl  | es I  | Ξ. ] | Mer          | ril |
|         | publish                                                  | ing   | con  | npa  | ny,   | 198   | 2.   |      |       |      |       |       |       |      |              |     |
| 4       | John. F.                                                 | W     | ake  | rly, | "D    | igita | al D | esi  | gn ]  | Prir | ncipl | es a  | nd F  | rac  | tice         | s", |
|         | Pearson                                                  | ı Ed  | luca | tio  | n, 4  | th E  | diti | ion, | 200   | 07.  |       | 37/2  |       |      |              |     |
|         | CON                                                      | A     | 1    | M    | 1     | 9     |      | POs  | - 1   | A    |       |       | I     | I    | PSC          | s   |
|         | COs                                                      | 1     | 2    | 3    | 4     | 5     | 6    | 7    | 8     | 9    | 10    | 11    | 12    | 1    | 2            | 3   |
|         | 1                                                        | 2     | 1    | 4    | /-    | 1     | -    | -    | -     | -    | 1     | -     | -     | 2    | 1            | -   |
|         | 2 C <sub>NE</sub>                                        | 3     | 2    | 1    | 1     | 1     | ) El | ΕC   | ΞE    | QF   | 1     | CH    | NO    | 3    | 1            | _   |
|         | 3                                                        | 3     | 2    | 1    | 1     | 2     | LIAT | EQ.T | DAN   | 2    | NI1E  | SITY  | AUTO  | 3    | 2            | -   |
|         | 4                                                        | 3     | 2    | 1    | 1     | 2     | -    | -    | -     | 2    | 1     | ı     | -     | 3    | 2            | -   |
|         | 5                                                        | 2     | 1    | -    | -     | 1     | -    | -    | -     | 2    | 1     | ı     | -     | 2    | 1            | -   |
|         | 6                                                        | 2     | 1    | -    | -     | 1     | -    | -    | -     | -    | 1     | ı     | -     | 2    | 1            | -   |
| _       | verall                                                   | 3     | 2    | 1    | 1     | 2     |      |      |       | 1    | 1     | _     |       | 3    | 2            |     |
| Cor     | relation                                                 | 3     | -    | 1    | 1     | _     | -    | -    | -     | *    | 1     | _     | _     | 3    | _            | -   |
| <b></b> |                                                          |       |      |      |       |       |      |      |       |      | l     |       |       |      |              |     |
| Reco    | ommende<br>Approve                                       |       |      |      |       |       | lies |      | 04-2  |      |       | Date  | 1     |      | d <b>A</b> ( |     |

| 23EC312 | SIGNALS AND SYSTEMS | L | T | P | C |
|---------|---------------------|---|---|---|---|
|         |                     | 3 | 0 | 2 | 4 |

- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

# UNIT I CLASSIFICATION OF SIGNALS AND 9 SYSTEMS

Standard signals- Step, Ramp, Impulse, Real and complex exponentials and Sinusoids- Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems – Linear & Nonlinear, Time-variant & Time-invariant, Causal & Non-causal, Stable & Unstable-Static and Dynamic System.

# UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier Transform - Properties-Linearity-Time Shifting-Time reversal -Time Scaling-Differentiation-Convolution- Parseval's Theorem- Inverse Fourier Transform-Laplace Transform -Basic Properties- Linearity-Time Shifting-Time reversal -Time Scaling-Differentiation-Convolution -Initial value theorem-Final Value Theorem-Inverse Laplace Transform.

# UNIT III LINEAR TIME INVARIANT CONTINUOUS 9 TIME SYSTEMS

Fourier and Laplace transforms in analysis of CT systems-Impulse response and step response (without initial conditions) - Convolution integrals- Differential Equation- Realization of CT systems-Direct Form-I, Direct Form-II Cascade and Parallel forms.

| UNIT IV                                                       | ANALYSIS OF DISCRETE TIME SIGNALS                 | 9     |  |  |  |  |  |
|---------------------------------------------------------------|---------------------------------------------------|-------|--|--|--|--|--|
| Fourier Transform of discrete time signals (DTFT)- Properties |                                                   |       |  |  |  |  |  |
|                                                               | Transform - Unilateral & Bilateral Z transform    |       |  |  |  |  |  |
| Properties                                                    | -Inverse Z transform: Power series expansion - Le | ong   |  |  |  |  |  |
| Division n                                                    | nethod-Partial fraction method-Convolution method |       |  |  |  |  |  |
| UNIT V                                                        | LINEAR TIME INVARIANT-DISCRETE TIME               | 9     |  |  |  |  |  |
|                                                               | SYSTEMS                                           |       |  |  |  |  |  |
| Discrete F                                                    | ourier Transform and Z Transform in analysis of   | DT    |  |  |  |  |  |
| systems -                                                     | Impulse response and step response (without in    | itial |  |  |  |  |  |
| conditions                                                    | s)-Difference Equations-Convolution sum-Graph     | ical  |  |  |  |  |  |
| and Matri                                                     | x method- Realization of DT systems-Direct Form-I | and   |  |  |  |  |  |
| Direct For                                                    | m-II Cascade and Parallel forms.                  |       |  |  |  |  |  |
|                                                               | TOTAL : 45 PERIODS                                |       |  |  |  |  |  |
| DD A CTIC                                                     | AL EVDEDIMENTE, AS DEDICIDE                       |       |  |  |  |  |  |

# PRACTICAL EXPERIMENTS: 30 PERIODS MATLAB / EQUIVALENT SOFTWARE PACKAGE BASED IMPLEMENTATION

- 1. Introduction to MATLAB
- 2. Generation of basic continuous time signal
- 3. Generation of basic Discrete time signal
- 4. Linear Convolution on Discrete Time Signals
- 5. Operation on Signals
- 6. Linearity, Causality and Stability of the system
- Convolution on Continuous Time Signals using Laplace Transform
- 8. Sampling Theorem
- 9. Convolution on Discrete Time Signals using Z Transform

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Analyze the given signals and perform various operations on it.
- CO2: Identify the types of signals and systems based on various factors.
- CO3: Apply Laplace transform and Fourier transform to Continuous time signals.

CO4: Apply Laplace transform and Fourier transform Continuous time systems. CO5: Utilise DTFT and Z- transform for Discrete time signals CO6: Solve the Discrete time systems using DTFT and Z Transform **TEXT BOOKS:** Oppenheim, Willsky and Hamid, "Signals and Systems", 2nd Edition, Pearson Education, New Delhi, 2015.(Units I -Simon Haykin, Barry Van Veen, "Signals and Systems", 2nd Edition, Wiley, 2002 **REFERENCES:** B. P. Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford, 2009. M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB", McGraw- Hill Education, 2018. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007. POs **PSOs COs** Overall Correlation Recommended by Board of Studies 01-04-2024 2nd ACM Approved by Academic Date 25-05-2024

| 23EC321                                              | ELECTRONIC CIRCUITS | L | T | P | C |  |  |  |  |  |
|------------------------------------------------------|---------------------|---|---|---|---|--|--|--|--|--|
|                                                      | LABORATORY          | 0 | 0 | 4 | 2 |  |  |  |  |  |
| COURSE OBJECTIVES:                                   |                     |   |   |   |   |  |  |  |  |  |
| To Design & Implement characteristics of PN Junction |                     |   |   |   |   |  |  |  |  |  |

- diode and Zener diode.
- To design rectifiers using filters.
- To Design & Implement characteristics of amplifier.

#### LIST OF EXPERIMENTS:

- 1. Characteristics of PN Junction Diode and Zener diode.
- 2. Design Full Wave Rectifier with Filters.
- 3. Design of Zener diode Regulator.
- 4. Design of Common Emitter Transistor and plot inputoutput Characteristics.
- 5. MOSFET Drain current and Transfer Characteristics.
- 6. Design and determine Frequency response of CE and CS amplifiers.
- 7. Design and determine Frequency response of CB and CC amplifiers.
- 8. Design and determine Frequency response of Cascode **Amplifier**
- 9. CMRR measurement of Differential Amplifier

| 10.  | Mini Project                                                  |
|------|---------------------------------------------------------------|
|      | TOTAL: 45 PERIODS                                             |
| COU  | RSE OUTCOMES:                                                 |
|      | After completion of the course, the students will be able to: |
| CO1: | Experiment with the characteristics of PN Junction Diode      |
|      | and Zener diode.                                              |
| CO2: | Develop and Design the BJT and MOSFET amplifiers.             |
| CO3: | Analyze the operations of Rectifiers and Filters.             |
| CO4: | Construct the frequency response of BJT and MOSFET            |
|      | amplifiers.                                                   |
| CO5: | Develop the operation of Multistage Amplifiers & Power        |
|      | amplifiers.                                                   |
| CO6: | Analyze the operations of Oscillators                         |

| COs                  |      |    |     |      |      | I   | POs                      |      |     |    |            |    | PSOs |   |   |  |
|----------------------|------|----|-----|------|------|-----|--------------------------|------|-----|----|------------|----|------|---|---|--|
| COs                  | 1    | 2  | 3   | 4    | 5    | 6   | 7                        | 8    | 9   | 10 | 11         | 12 | 1    | 2 | 3 |  |
| 1                    | 3    | 2  | 1   | 1    | 2    | 1   | -                        | -    | 2   | 1  | -          | 1  | 2    | 1 | - |  |
| 2                    | 3    | 2  | 1   | 1    | 2    | 1   | ı                        | ı    | 2   | 1  | 1          | 1  | 2    | 1 | - |  |
| 3                    | 3    | 3  | 2   | 2    | 1    | 1   | ı                        | ı    | 2   | 1  | 1          | 1  | 2    | 1 | - |  |
| 4                    | 3    | 2  | 1   | 1    | 3    | 1   | 1                        | 1    | 2   | 1  | -          | 1  | 2    | 1 | - |  |
| 5                    | 3    | 2  | 1   | 1    | 2    | 1   | 1                        | 1    | 2   | 1  | -          | 1  | 2    | 1 | - |  |
| 6                    | 3    | 3  | 2   | 2    | 2    | 1   | -                        | -    | 2   | 1  | -          | 1  | 2    | 1 | - |  |
| Overall              |      |    |     |      |      |     |                          |      |     |    |            |    |      |   |   |  |
| Correlation          | 3    | 3  | 2   | 2    | 2    | 1   | -                        | -    | 2   | 1  | -          | 1  | 2    | 1 | - |  |
| Recommended          | d by | Во | ard | of S | itud | ies | 01-                      | 04-2 | 024 |    |            |    |      |   |   |  |
| Approved by Academic |      |    |     |      |      |     | 2 <sup>nd</sup> ACM Date |      |     | ?  | 25-05-2024 |    |      |   |   |  |



| 23ES391 | PRESENTATION SKILLS | L | T | P | C  |
|---------|---------------------|---|---|---|----|
|         |                     | 0 | 0 | 2 | 1* |

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

# UNIT I BRAINSTORMING AND OUTLINING

6

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

# UNIT II STRUCTURING THE PRESENTATION

6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

## UNIT III | DELIVERY TECHNIQUES

6

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language-eye contact, gestures, movement on stage.

### UNIT IV USE OF TECHNOLOGICAL AIDS

6

Use of presentation software like MS Power Point, Google Slides etc, incorporating images, graphs, charts and videos, using interactive tools like quizzes and polls, using remote presentation tools like zoom, MS Teams, WebEx for screen sharing, virtual whiteboards and chat functionalities, incorporating AR/VR for more immersive presentations.

#### UNIT V HANDLING QUESTIONS AND FEEDBACK

6

Audience engagement through questions, PAR (Point, Answer, Redirect) strategy for structuring responses to questions. Understanding feedback process - Receiving, interpreting and evaluating constructively, active listening techniques for processing feedback, responding to feedback- acknowledging, clarifying and appreciating, Dealing with challenging feedback.

#### **TOTAL: 30 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Construct ideas for presentation through mind mapping techniques
- CO2: Organize ideas and structure the presentation with captivating introduction, body paragraphs illustrated with examples and reasons and compelling conclusion
- CO3: Apply vocal variety and body language techniques to enhance delivery
- CO4: Prepare engaging presentations by integrating multimedia elements
- CO5: Demonstrate proficiency in delivering presentations in remote platforms utilizing various technological tools and strategies to engage audience in Virtual environments
- CO6: Exhibit active listening skills by responding to questions with clarity and confidence and incorporating constructive feedback for professional development

#### **TEXT BOOKS:**

- 1 Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.
- **2** Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

#### **REFERENCES:**

1 Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

| COs                    |      |      |     |      |    | I    | POs | ,    |      |    |    |    | <b>PSOs</b> |   |   |  |
|------------------------|------|------|-----|------|----|------|-----|------|------|----|----|----|-------------|---|---|--|
| COs                    | 1    | 2    | 3   | 4    | 5  | 6    | 7   | 8    | 9    | 10 | 11 | 12 | 1           | 2 | 3 |  |
| 1                      | 2    | 2    | 1   | 1    | -  | -    | -   | 1    | 1    | 1  | -  | 1  | 2           | 2 | 1 |  |
| 2                      | 2    | 2    | 1   | 1    | -  | -    | -   | 1    | 1    | 1  | -  | 1  | 2           | 2 | 1 |  |
| 3                      | 2    | 2    | 1   | 1    | -  | -    | -   | 1    | 1    | 1  | -  | 1  | 2           | 2 | 1 |  |
| 4                      | 2    | 2    | 1   | 1    | -  | -    | -   | 1    | 1    | 1  | -  | 1  | 2           | 2 | 1 |  |
| 5 ow                   | 2    | 2    | 1   | 1    | -  | - 8  | 4   | 1    | 1    | 1  |    | 1  | 2           | 2 | 1 |  |
| 6                      | 2    | 2    | 1   | 1    | -  | A    | 1   | 1    | 1    | 1  | -  | 1  | 2           | 2 | 1 |  |
| Overall<br>Correlation | 2    | 2    | 1   | 1    | -  | 4    | 1   | 1    | 1    | 1  |    | 1  | 2           | 2 | 1 |  |
| Pacammanda             | 4 hr | , Ro | and | of C | 24 | liac | Ω1  | 04.2 | 0024 |    |    |    |             |   |   |  |

Recommended by Board of Studies 01-04-2024

Approved by Academic 2nd ACM Date 25-05-2024

#### SEMESTER -IV

| 23MA402 | PROBABILITY AND RANDOM | L | T | P | С |
|---------|------------------------|---|---|---|---|
|         | PROCESSES              | 3 | 1 | 0 | 4 |

#### **COURSE OBJECTIVES:**

- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the basic concepts of probability, one and two dimensional random variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in IT fields.
- To understand the concept of correlation and spectral densities.
- To understand the significance of linear systems with random inputs.

# UNIT I PROBABILITY AND RANDOM VARIABLES 9+3

Probability — Axioms of probability — Conditional probability — Baye's theorem — Discrete and continuous random variables — Moments — Moment generating functions — Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

# UNIT II TWO - DIMENSIONAL RANDOM 9+3 VARIABLES

Joint distributions — Marginal and conditional distributions — Covariance — Correlation and linear regression — Transformation of random variables — Central limit theorem (for independent and identically distributed random variables).

# UNIT III RANDOM PROCESSES

9+3

Classification — Stationary process — Markov process — Markov chain — Poisson process — Random telegraph process.

## UNIT IV | CORRELATION AND SPECTRAL DENSITIES | 9+3

Auto correlation functions — Cross correlation functions — Properties — Power spectral density — Cross spectral density — Properties

| UNI   | TV LINEAR SYSTEMS WITH RANDOM INPUTS 9+3                      |
|-------|---------------------------------------------------------------|
| Linea | ar time invariant system — System transfer function — Linear  |
| syste | ems with random inputs - Auto correlation and cross           |
| corre | elation functions of input and output.                        |
|       | TOTAL: 60 PERIODS                                             |
| COU   | RSE OUTCOMES:                                                 |
|       | After completion of the course, the students will be able to: |
| CO1:  | Apply the fundamental knowledge of the concepts of            |
|       | probability and one dimensional random variables              |
| CO2:  | Apply standard probability distributions which can describe   |
|       | real life phenomenon.                                         |
| CO3:  | Apply the basic concepts of two dimensional random            |
|       | variables in engineering applications.                        |
| CO4:  | Apply the concepts of random processes in real life           |
|       | situations                                                    |
|       | Solve problems in correlation and spectral densities          |
| CO6:  | Examine the linear systems with random inputs                 |
| TEX   | T BOOKS:                                                      |
| 1     | Ibe, O.C.," Fundamentals of Applied Probability and           |
|       | Random Processes ", 1st Indian Reprint, Elsevier, 2007.       |
| 2     | Peebles, P.Z., "Probability, Random Variables and Random      |
|       | Signal Principles ", Tata McGraw Hill, 4th Edition, New       |
|       | Delhi, 2002.                                                  |
| 3     | Probability and Random Processes by P.Sivaramakrishna         |
|       | Das and C.Vijayakumari                                        |
|       | ERENCES:                                                      |
| 1     | Hwei Hsu, "Schaum's Outline of Theory and Problems of         |
|       | Probability, Random Variables and Random Processes ",         |
|       | Tata McGraw Hill Edition, New Delhi, 2004.                    |
| 2     | Miller. S.L. and Childers. D.G., "Probability and Random      |
|       | Processes with Applications to Signal Processing and          |
|       | Communications ", Academic Press, 2004.                       |

| 3 | Stark. H. and Woods. J.W., "Probability and Random          |
|---|-------------------------------------------------------------|
|   | Processes with Applications to Signal Processing ", Pearson |
|   | Education, Asia, 3rd Edition, 2002.                         |

| COs                    |      |      |   |      |    | I  | POs | ,  |     |    |    |    | PSOs |   |   |  |
|------------------------|------|------|---|------|----|----|-----|----|-----|----|----|----|------|---|---|--|
| COs                    | 1    | 2    | 3 | 4    | 5  | 6  | 7   | 8  | 9   | 10 | 11 | 12 | 1    | 2 | 3 |  |
| 1                      | 3    | 2    | 1 | 1    | -  | -  | -   | -  | -   | -  | -  | 1  | 3    | - | - |  |
| 2                      | 3    | 2    | 1 | 1    | -  | -  | -   | -  | -   | -  | -  | 1  | 3    | - | - |  |
| 3                      | 3    | 2    | 1 | 1    | -  | -  | -   | -  | -   | -  | -  | 1  | 3    | - | - |  |
| 4                      | 3    | 2    | 1 | 1    | -  | -  | -   | -  | -   | -  | -  | 1  | 3    | - | - |  |
| 5                      | 3    | 2    | 1 | 1    | -  | -  | -   | -  | -   | -  | -  | 1  | 3    | - | - |  |
| 6                      | 3    | 2    | 1 | 1    | -  | -  | -   | -  | -   | -  | -  | 1  | 3    | - | - |  |
| Overall<br>Correlation | 3    | 2    | 1 | 1    | -  | -  | -   | -  | -   | -  | -  | 1  | 3    | - | - |  |
| Dagammandag            | 1 h- | . D. | 4 | ~£ ( | 24 | 1: | 01  | 04 | 202 | 1  |    |    |      |   |   |  |

Recommended by Board of Studies 01-04-2024

Approved by Academic 2nd ACM Date 25-05-2024





| 23EC401 | ELECTROMAGNETIC FIELDS | L | T | P | С |
|---------|------------------------|---|---|---|---|
|         |                        | 3 | 1 | 0 | 4 |

- To study the basic laws, concepts and proofs related to Electromagnetic Fields
- To impart knowledge on the basics of static electric field and the associated laws
- To impart knowledge on the basics of static magnetic field and the associated laws
- To give insight into coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- To study the significance of time varying EM waves propagating in different media

# UNIT I INTRODUCTION

12

Electromagnetic model, Units and constants, Review of vector algebra, Rectangular, cylindrical and spherical coordinate systems, Line, surface and volume integrals, Gradient of a scalar field, Divergence of a vector field, Divergence theorem, Curl of a vector field, Stoke's theorem

# UNIT II ELECTROSTATICS

12

Electric field, Coulomb's law, Gauss's law and applications, Electric potential, Electric flux density and dielectric constant, Boundary conditions, Capacitance – Parallel and cylindrical, Electrostatic energy.

# UNIT III | MAGNETOSTATICS

12

Lorentz force equation, Ampere's law, Biot-Savart law and applications, Magnetic field intensity and idea of relative permeability, Calculation of magnetic field intensity for various current distributions, Boundary conditions, Inductance and inductors.

## UNIT IV | MAXWELL'S EQUATIONS AND WAVE 12 **EQUATIONS** Faraday's law, Displacement current and Maxwell-Ampere law, Maxwell's equations, Wave equations and solutions, Observing the Phenomenon of wave propagation with the aid of Maxwell's equations. UNIT V **EM WAVE CHARACTERISTICS** 12 Uniform Plane Waves - Definitions, Relation between E & H, Wave Propagation in Lossless Media, Wave Propagation in Good Conductors and Good Dielectrics, Reflection and Refraction of Plane Waves - Normal Incidences for both Perfect Conductor and Perfect Dielectrics, Poynting Theorem. **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the fundamentals of vector, coordinate system to electromagnetic concepts CO2: Make use of the significance of electrostatics in solving electric components of a field CO3: Analyze the concept of Magneto Static field in material space and to understand the applications of solenoid and toroid **CO4:** Examine the characteristics of electric and magnetic fields at the boundary of two dissimilar media CO5: Demonstrate Faraday's laws and Ampere's laws to understand the significance of Maxwell's equations and time varying fields **CO6:** Make use of the phenomena of wave propagation in different media to estimate power flow at interfaces **TEXT BOOKS:** D.K. Cheng, Field and wave electromagnetics, 2nd ed., 1 Pearson (India), 2002 M.N.O.Sadiku S.V. 2 Kulkarni, of and Principles

electromagnetics, 6th ed., Oxford(Asian Edition), 2015

| REFERENCES:  1 Edward C. Jordan & Keith G. Balmain, Electromagnetic |                                                                                                                 |      |                 |      |      |     |     |       |      |     |      |         |      |      |        |      |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-----|-----|-------|------|-----|------|---------|------|------|--------|------|
| 1                                                                   | Edward C. Jordan & Keith G. Balmain, Electromagnetic waves and Radiating Systems, Second Edition, Prentice-Hall |      |                 |      |      |     |     |       |      |     |      |         |      |      |        |      |
|                                                                     | waves a                                                                                                         | and  | Rac             | diat | ing  | Sys | ten | ns, S | Seco | nd  | Edit | ion,    | Prei | ntic | e-H    | all  |
|                                                                     | Electrical Engineering Series, 2012.                                                                            |      |                 |      |      |     |     |       |      |     |      |         |      |      |        |      |
| 2                                                                   | W.H. Hayt and J.A. Buck, Engineering electromagnetics, 7th                                                      |      |                 |      |      |     |     |       |      |     |      |         |      |      |        |      |
|                                                                     | ed., McGraw-Hill (India), 2006                                                                                  |      |                 |      |      |     |     |       |      |     |      |         |      |      |        |      |
| 3                                                                   | B.M. Notaros, Electromagnetics, Pearson: New Jersey, 2011                                                       |      |                 |      |      |     |     |       |      |     |      |         |      |      |        |      |
|                                                                     | POs PSOs                                                                                                        |      |                 |      |      |     |     |       |      |     |      |         |      |      |        |      |
| •                                                                   | COs                                                                                                             | 1    | 2               | 3    | 4    | 5   | 6   | 7     | 8    | 9   | 10   | 11      | 12   | 1    | 2      | 3    |
|                                                                     | 1                                                                                                               | 2    | 1               | -    | -    | -   | -   | -     | -    | -   | 1    | -       | 1    | 2    | -      | -    |
|                                                                     | 2                                                                                                               | 3    | 2               | 1    | 1    | -   | -   | -     | -    | -   | -    | -       | 1    | 3    | -      | ı    |
|                                                                     | 3                                                                                                               | 3    | 2               | 1    | 1    | -   | -   | -     | -    | -   | 1    | -       | 1    | 3    | -      | -    |
|                                                                     | 4                                                                                                               | 2    | 1               | -    | -    | -   | -   | -     | -    | -   | -    | -       | 1    | 2    | -      | -    |
|                                                                     | 5                                                                                                               | 2    | 1               | -    | -    | -   | -   | 5_    | 1    | -   | _    | -       | 1    | 2    | 1      | -    |
|                                                                     | 6 .00W                                                                                                          | 2    | 1               | 1    | -    | -   | 2   |       | -7   |     | -    | <u></u> | 1    | 2    | -      | 1    |
|                                                                     | verall 3 2 1 1 - 1 1 1 3                                                                                        |      |                 |      |      |     |     |       |      |     |      |         |      |      |        |      |
| Reco                                                                | mmende                                                                                                          | d by | <mark>во</mark> | ard  | of S | tud | ies | 01-   | 04-2 | 024 |      |         |      |      | Tolar. |      |
| ¥                                                                   | Approve                                                                                                         | ed b | y A             | cad  | emi  | c   |     | 2nd   | AC   | CM  |      | Date    |      | 25-  | 05-2   | 2024 |

| 23EC402           | COMMUNICATION SYSTEMS | L | T | P | С |
|-------------------|-----------------------|---|---|---|---|
|                   |                       | 3 | 0 | 0 | 3 |
| <b>COURSE OBJ</b> | ECTIVES:              |   |   |   |   |

- To introduce analog Modulation Schemes
- To impart knowledge in random process
- To study various Digital techniques
- To introduce the importance of sampling & quantization
- To impart knowledge in demodulation techniques
- To enhance the class room teaching using smart connectivity instruments

# UNIT I AMPLITUDE & ANGLE MODULATION 9

Review of signals and systems, Time and Frequency domain representation of signals, Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations. SSB Generation – Filter and Phase Shift Methods, VSB Generation – Filter Method, Hilbert Transform, Pre-envelope & complex envelope, Angle Modulation, Representation of FM and PM signals, Spectral characteristics of angle modulated signals. Super heterodyne Receiver.

# UNIT II RANDOM PROCESS & SAMPLING 9

Review of random process. Gaussian and white noise characteristics, Noise in amplitude modulation systems, Noise in Frequency modulation systems. Pre-emphasis and Deemphasis, Threshold effect in angle modulation. Low pass sampling – Aliasing- Signal Reconstruction-Quantization - Uniform & non-uniform quantization - quantization noise - Nyquist criterion-Logarithmic Companding –PAM, PPM, PWM, PCM – TDM, FDM

# UNIT III DIGITAL TECHNIQUES 9

Pulse modulation Differential pulse code modulation. Delta modulation, Noise considerations in PCM,, Digital Multiplexers, Channel coding theorem - Linear Block codes - Hamming codes - Cyclic codes - Convolutional codes - Viterbi Decoder

# UNIT IV DIGITAL MODULATION SCHEME

Geometric Representation of signals - Generation, detection, IQ representation, PSD & BER of Coherent BPSK, BFSK, & QPSK - QAM - Carrier Synchronization - Structure of Non-coherent Receivers Synchronization and Carrier Recovery for Digital modulation, Spectrum Analysis - Occupied bandwidth - Adjacent channel power, Principle of DPSK

# UNIT V DEMODULATION TECHNIQUES

9

Elements of Detection Theory, Optimum detection of signals in noise, Coherent communication with waveforms- Probability of Error evaluations. Baseband Pulse Transmission- Inter symbol Interference, Optimum demodulation of digital signals over bandlimited channels.

### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Apply concepts of Amplitude modulation system and calculate the power.
- CO2: Apply Fundamental principles of frequency and phase modulation to calculate the modulation index for different signals.
- CO3: Summarize the properties of random process, noise characterization and to introduce Analog to Digital Modulation.
- CO4: Explain pulse modulation and examine channel coding considering the trade-offs between error correction capabilities and bandwidth utilization
- CO5: Explain various digital modulation schemes
- CO6: Summarize the demodulation of digital signals

#### TEXT BOOKS:

- 1 Simon Haykins," Communication Systems", Wiley, 5th Edition, 2009.(Unit I V)
- **2** B.P.Lathi, "Modern Digital and Analog Communication Systems", 4th Edition, Oxford University Press, 2011.

| REFI | ERENCE                                                                                              | S:    |       |       |      |      |               |      |      |            |       |       |       |      |      |     |
|------|-----------------------------------------------------------------------------------------------------|-------|-------|-------|------|------|---------------|------|------|------------|-------|-------|-------|------|------|-----|
| 1    | Wayne                                                                                               | r T   | oma   | asi,  | Ele  | ectr | onio          | с С  | om   | mu         | nica  | tion  | Sys   | ten  | ı, 5 | ith |
|      | Edition                                                                                             | , Pe  | ars   | on I  | Edu  | cati | on,           | 200  | 8.   |            |       |       |       |      |      |     |
| 2    | D.Rood                                                                                              | ly, J | .Co   | ole   | n, E | lect | ron           | ic ( | Com  | ımu        | ınica | tion  | s, 4t | h e  | diti | on  |
|      | PHI 200                                                                                             | )6    |       |       |      |      |               |      |      |            |       |       |       |      |      |     |
| 3    | A.Papo                                                                                              | ulis  | s, "I | rol   | oabi | lity | , Ra          | and  | om   | vaı        | iabl  | es a  | nd S  | Stoc | has  | tic |
|      | Process                                                                                             | es"   | , M   | cGr   | aw   | Hil  | l, 3r         | d e  | diti | on,        | 1991  |       |       |      |      |     |
| 4    | B.Sklar,                                                                                            | , "   | Dig   | ital  |      | Com  | mu            | ınic | atio | ns         | Fu    | ndar  | nent  | tals | aı   | nd  |
|      | B.Sklar, "Digital Communications Fundamentals and Applications", 2nd Edition Pearson Education 2007 |       |       |       |      |      |               |      |      |            |       |       |       |      |      |     |
| 5    | НРН                                                                                                 | su,   | Scł   | nau   | m (  | Out  | line          | Se   | ries | s -        | "An   | alog  | an    | dΓ   | )igi | tal |
|      | H P Hsu, Schaum Outline Series - "Analog and Digital Communications" TMH 2006                       |       |       |       |      |      |               |      |      |            |       |       |       |      |      |     |
| 6    | Couch.L., "Modern Communication Systems", Pearson, 2001                                             |       |       |       |      |      |               |      |      |            |       |       |       |      |      |     |
|      | COs                                                                                                 |       |       |       |      |      | I             | POs  |      |            |       |       |       | I    | PSC  | )s  |
| `    | LUS                                                                                                 | 1     | 2     | 3     | 4    | 5    | 6             | 7    | 8    | 9          | 10    | 11    | 12    | 1    | 2    | 3   |
|      | 1 POW                                                                                               | 3     | 2     | 1     | 1    | -    | 2             | 7    | -/   | -          | 3     | P-    | 3     | 3    | 400  | -   |
|      | 2                                                                                                   | 3     | 2     | 1     | 1    | -    | 2             | 1    | -1   | <b>Y</b> - | 3     | -     | 3     | 3    | -    | ř-  |
|      | 3                                                                                                   | 2     | 1     | A     | 1    | -    | 2             | 1    | -    | 4          | 2     | 1     | 2     | 2    | ٦,   | -   |
|      | 4                                                                                                   | 3     | 3     | 2     | 2    |      | -             |      |      | 7          | 3     | 1     | /     | 3    |      | -   |
| Ÿ    | 5                                                                                                   | 2     | 1     |       | /-   | -    | -             | 1    | -    | -          | 2     | -     | 2     | 2    | 1    | -   |
|      | 6 GINE                                                                                              | 2     | 1     | Milde | -    | 0    | <i>!</i> L.I. | 1    | E    | U)         | 2     | J     | 2     | 2    | 5    | -   |
| O    | verall                                                                                              | 3     | 3     | 1     | 1    | AFE  | 1             | 1    | PANI | IA U       | 3     | 511 Y | 2     | 3    | AOU  |     |
|      | relation                                                                                            |       |       |       | _    | _    |               |      | _    | _          |       | _     |       | ,    | _    | _   |
| Reco | mmende                                                                                              |       |       |       |      |      | ies           |      | 04-2 |            |       | Date  | 1     |      |      |     |
|      | Approve                                                                                             | งสห   | - Λ   | 1     | ~:   | _    |               |      | 1 A( |            |       |       |       |      |      | 024 |

| 23EC403      | LINEAR INTEGRATED CIRCUITS                   | L     | T    | P    | C   |
|--------------|----------------------------------------------|-------|------|------|-----|
|              |                                              | 3     | 0    | 0    | 3   |
| COURSEC      | OBJECTIVES:                                  |       |      |      |     |
| •            | To introduce the basic building blocks       | s of  | lir  | ıear | •   |
|              | integrated circuits                          |       |      |      |     |
| •            | To learn the linear and non-linear appl      | licat | ions | s of | f   |
|              | operational amplifiers                       |       |      |      |     |
| •            | To introduce the theory and applications     | s of  | ana  | alog | ,   |
|              | multipliers and PLL                          |       |      |      |     |
| •            | To learn the theory of ADC and DAC           |       |      |      |     |
|              | To introduce the concepts of waveform        | gen   | era  | tion | l . |
|              | and introduce some special function ICs      |       |      |      |     |
| UNIT I       | BASICS OF OPERATIONAL AMPLIFIE               | RS    |      |      | 9   |
| Current mi   | rror and current sources, Current sources    | ces   | as a | acti | ve  |
| loads Basic  | information about op-amps - Ideal            | Op    | era  | tior | ıal |
| Amplifier -  | General operational amplifier stages -       | and   | in   | terr | ıal |
| 1 (1)        | rams of IC 741, DC and AC performance ch     |       |      |      |     |
| slew rate, 0 | Open and closed loop configurations - A      | dva   | ntag | ges  | of  |
| negative fe  | edback - Voltage / Current, Series, Shi      | unt   | feed | dba  | ck  |
| Amplifiers.  | SER REAL                                     |       |      |      |     |
| UNIT II      | APPLICATIONS OF OPERATIONAL                  |       |      |      | 9   |
|              | AMPLIFIERS                                   |       |      |      |     |
| Sign Chan    | ger, Scale Changer, Phase Shift Circu        | uits, | Vo   | olta | ge  |
|              | V-to-I and I-to-V converters, adder,         |       |      |      | _   |
| Instrument   | ation amplifier, Integrator, Differentiator, | Log   | gari | thm  | nic |
| amplifier,   | Antilogarithmic amplifier, Comparato         | ors,  | Sc   | hm   | itt |

LINEAR INTECRATED CIRCUITS I T P C

22EC402

UNIT III | ANALOG MULTIPLIER AND PLL

band-pass Butterworth filters

9

Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell - analog multiplier ICs and their applications, Operation of the basic PLL, Closed loop analysis, Voltage

trigger, Precision rectifier, peak detector, Low-pass, high-pass and

controlled oscillator, Monolithic PLL IC 565, application of PLL for AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing and clock synchronization.

# UNIT IV ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS

9

Analog and Digital Data Conversions, D/A converter – specifications - weighted resistor type, R-2R Ladder type – Sample and hold circuit - A/D Converters – specifications - Flash type - Successive Approximation type - Single Slope type – Dual Slope type - Over- sampling A/D Converters- Sigma –Delta Converters.

# UNIT V WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS

Sine-wave generators – RC and LC oscillators, Multivibrators – Astable and Monostable, ICL8038 function generator, Timer IC 555 – Astable and Monostable operation, IC Voltage regulators – Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator – Optocouplers and IC optocouplers.

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain various circuits to form basic blocks of operational amplifier.
- CO2: Build linear and non-linear applications of operational amplifier.
- CO3: Utilise multipliers and PLL for various applications.
- **CO4:** Experiment with ADC and DAC using operational amplifier.
- CO5: Illustrate various waveforms using operational amplifier circuits.
- **CO6:** Identify the applications of various special function ICs.

#### **TEXT BOOKS:**

D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd.,2018, Fifth Edition. (Unit I – V.

| 2   | Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 4th Edition, Tata Mc Graw-Hill, |                            |                            |                            |                            |                            |             |                       |                                                                                             |      |                            |                   |                       |                       |                       |      |
|-----|---------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------|-----------------------|---------------------------------------------------------------------------------------------|------|----------------------------|-------------------|-----------------------|-----------------------|-----------------------|------|
|     | Analog                                                                                                              | Inte                       | egra                       | ited                       | l Ci                       | rcui                       | ts",        | 4th                   | Ed                                                                                          | itio | n, Ta                      | ata N             | Лc G                  | iraw                  | <i>у-</i> Н           | ill, |
|     | 2016 (U                                                                                                             | nit i                      | I – V                      | <i>V</i> )                 |                            |                            |             |                       |                                                                                             |      |                            |                   |                       |                       |                       |      |
| REF | ERENCE                                                                                                              | S:                         |                            |                            |                            |                            |             |                       |                                                                                             |      |                            |                   |                       |                       |                       |      |
| 1   | Ramaka                                                                                                              | nt                         | A.                         | Gay                        | yak                        | wac                        | 1, "        | OP.                   | -AN                                                                                         | ЛР   | and                        | Lin               | ear                   | ICs                   | ", 4                  | lth  |
|     | Edition                                                                                                             | Pre                        | enti                       | ce I                       | Hall                       | / I                        | Pear        | sor                   | Ed                                                                                          | luca | ation                      | , 201             | 15.                   |                       |                       |      |
| 2   | Robert                                                                                                              | F.                         | Cou                        | ıghl                       | lin,                       | Fı                         | ede         | ericl                 | <b>(</b> ]                                                                                  | F.D  | risco                      | 11,               | "Op                   | era                   | tion                  | nal  |
|     | Robert F.Coughlin, Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth Edition,    |                            |                            |                            |                            |                            |             |                       |                                                                                             |      |                            |                   |                       |                       |                       |      |
|     | PHI, 20                                                                                                             | 01.                        |                            |                            |                            |                            |             |                       |                                                                                             |      |                            |                   |                       |                       |                       |      |
| 3   | S.Saliva                                                                                                            | har                        | nan                        | &                          | : 1                        | I.S.                       | K           | anc                   | har                                                                                         | na   | Bha                        | ıskaı             | ran,                  | "I                    | Line                  | ear  |
|     | Integrat                                                                                                            | ed                         | Circ                       | cuit                       | s",                        | TM                         | H,2         | nd                    | Edi                                                                                         | tior | ı, 4tl                     | n Re              | prin                  | t, 20                 | )16.                  |      |
|     | CO-                                                                                                                 |                            |                            |                            |                            |                            | I           | POs                   |                                                                                             |      |                            |                   |                       | ŀ                     | PSC                   | s    |
| '   | COs                                                                                                                 | -                          | _                          | -                          |                            |                            |             |                       |                                                                                             |      |                            |                   |                       |                       |                       |      |
|     |                                                                                                                     | 1                          | 2                          | 3                          | 4                          | 5                          | 6           | 7                     | 8                                                                                           | 9    | 10                         | 11                | 12                    | 1                     | 2                     | 3    |
|     | 1                                                                                                                   | 2                          | 1                          | <u>-</u>                   | <b>4</b>                   | <b>5</b>                   | 6<br>-      | 7                     | 8                                                                                           | 9    | 10                         | 11<br>-           | <b>12</b> 2           | <b>1</b> 2            | <b>2</b> 3            | 3    |
|     | 1<br>2 00W                                                                                                          | _                          |                            | 3<br>-<br>1                | <b>4</b> - 1               | _                          | 6<br>-<br>- | 7                     | 8 -                                                                                         | 9 -  | 10<br>-<br>2               | 11                |                       |                       |                       | -    |
|     | -                                                                                                                   | 2                          | 1                          | -                          | -                          | 3                          | -           | 7 -                   | 8<br>-<br>-<br>-                                                                            | 9    | -                          | 11<br>-<br>-      | 2                     | 2                     | 3                     | -    |
|     | 2 00W                                                                                                               | 2                          | 1 2                        | - 1                        | -<br>1                     | 3                          | -           | 7                     | 8                                                                                           | 9    | 2                          | 11<br>-<br>-<br>- | 2                     | 2                     | 3                     | -    |
|     | 2                                                                                                                   | 2 3 3                      | 1 2 2                      | 1                          | -<br>1<br>1                | 3                          | -           | 7                     | 8<br>-<br>-<br>-<br>-                                                                       | 9    | 2 2                        | 11 -              | 2<br>3<br>3           | 2 3 3                 | 3                     | -    |
|     | 2 3 4                                                                                                               | 2<br>3<br>3<br>3           | 1<br>2<br>2<br>2           | 1                          | -<br>1<br>1                | 3 3 -                      | -           | 7                     | 8                                                                                           | 9    | 2 2                        | 11 -              | 2<br>3<br>3<br>3      | 2<br>3<br>3<br>3      | 3 -                   | -    |
| 0   | 2<br>3<br>4<br>5                                                                                                    | 2<br>3<br>3<br>3<br>2<br>3 | 1<br>2<br>2<br>2<br>1<br>2 | -<br>1<br>1<br>1<br>-<br>1 | -<br>1<br>1<br>1<br>-      | 3<br>3<br>-<br>-<br>3      | -           | 7<br>-<br>-<br>-<br>- | -<br>-<br>-                                                                                 | 1    | 2<br>2<br>2<br>2           | 11<br>-<br>-      | 2<br>3<br>3<br>2<br>3 | 2<br>3<br>3<br>2<br>3 | 3 3 -                 | -    |
| _   | 2<br>3<br>4<br>5<br>6                                                                                               | 2<br>3<br>3<br>3<br>2      | 1<br>2<br>2<br>2<br>1      | -<br>1<br>1<br>1           | -<br>1<br>1<br>1           | 3 3 -                      | -           | 7 1 1 1 E 5 10        | -<br>-<br>-                                                                                 | 9    | 2<br>2<br>2<br>2           | 11<br>            | 2<br>3<br>3<br>3<br>2 | 2<br>3<br>3<br>3<br>2 | 3<br>3<br>-<br>-<br>3 | -    |
| Cor | 2<br>3<br>4<br>5<br>6<br>everall                                                                                    | 2<br>3<br>3<br>3<br>2<br>3 | 1<br>2<br>2<br>2<br>1<br>2 | -<br>1<br>1<br>1<br>-<br>1 | -<br>1<br>1<br>1<br>-<br>1 | 3<br>3<br>-<br>-<br>3<br>- | -           | -<br>-<br>ECTO        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1    | 2<br>2<br>2<br>2<br>-<br>1 | 11<br>            | 2<br>3<br>3<br>2<br>3 | 2<br>3<br>3<br>2<br>3 | 3 3 -                 | -    |

| 23EC411          | MICROPROCESSORS AND                       | L      | T      | P     | C   |
|------------------|-------------------------------------------|--------|--------|-------|-----|
|                  | MICROCONTROLLERS                          | 3      | 0      | 2     | 4   |
| COURSE OB        | JECTIVES:                                 |        |        |       |     |
| • Learn          | n the architecture and features           | of     | f      | 808   | 6   |
| micro            | oprocessor.                               |        |        |       |     |
| _                | ain the Bus structure and mu              | ltipı  | OCE    | esso  | r   |
|                  | guration of 8086                          |        |        |       |     |
|                  | ribe the architecture of ARM and Co       | ORT    | ΈX     | M     | 3   |
| _                | essors                                    |        |        |       |     |
|                  | n the architecture of STM 32L15XXX AR     | M C    | OR     | TE    | X   |
| ,                | M4 microcontroller                        |        |        |       |     |
| UNIT I TH        | HE 8086 MICROPROCESSOR                    |        |        |       | 9   |
| Introduction     | to 8086 - Microprocessor architecture -   | Ad     | dre    | essii | ng  |
| modes - Inst     | ruction set and assembler directives      | - A    | ∖ss∈   | emb   | oly |
| language prog    | gramming- Stacks - Procedures - Macros    | s – I1 | nter   | rup   | ots |
| and interrupt    | service routines - Byte and String Mani   | pula   | atio   | n.    |     |
| UNIT II 80       | 86 SYSTEM BUS STRUCTURE                   |        |        |       | 9   |
| 8086 signals -   | - Basic configurations - System bus tim   | ing    | -Sv    | ste   | m   |
| 100 d pt 7700 pt | 8086 - IO programming -System Bus         |        |        |       |     |
|                  | or configurations – Coprocessor, Closely  |        |        |       |     |
| loosely Coup     | led configurations                        |        |        |       |     |
| UNIT III M       | ICROCONTROLLER                            |        |        |       | 9   |
| Architecture     | of 8051 - Special Function Registers (SFI | Rs) -  | - Ti   | me    | rs, |
|                  | nterrupts - I/O Pins Ports and Circuits   | ,      |        |       |     |
| _                | ssing modes - Assembly language pr        |        |        |       |     |
|                  | nory and Stepper Motor Interface          | Ü      |        |       | 0   |
|                  | VERVIEW OF ARM AND CORTEX-M               | 3      |        |       | 9   |
| ARM Archit       | ecture – Versions, Instruction Set D      | eve    | lopi   | mei   | nt, |
|                  | d Instruction Set Architecture, Cortex    |        | -      |       |     |
|                  | nk Register, Program Counter, Specia      |        |        |       |     |
|                  |                                           |        | $\sim$ |       |     |

Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions, CORTEX M3 – Implementation Overview: Pipeline, Block Diagram- Exceptions and Interrupts

# UNIT V ARMCORTEX M3/M4 MICROCONTROLLER AND DEBUGGING TOOLS

STM32L15XXX ARM CORTEX M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control, STM32L15XXX Peripherals: GPIOs, Debugging Tools: Software and Hardware tools like Cross Assembler Compiler, Debugger, Simulator, In – Circuit Emulator(ICE), Logic Analyser.

**TOTAL: 45 PERIODS** 

#### PRACTICAL EXERCISES:

- 1. Arithmetic and logical operations using 8086
- 2. String manipulations / sorting
- 3. Stepper motor interface using 8086
- 4. 8255 parallel peripheral interface using 8086
- 5. Arithmetic operations using 8051
- 6. USART interface using 8051
- 7. Program to turn on LEDs on Port B on STM32L- Discovery by configuring GPIO
- 8. Transmit a string "Programming with ARM Cortex" to PC by configuring the registers of USART2. Use polling method

#### TOTAL:30 PERIODS

# COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the features, architecture, addressing modes and instruction sets of 8086 Microprocessor for programming.
- CO2: Analyse 8086 system bus structure and multiprocessor configurations for Interfacing.
- CO3: Interpret the features, architecture, addressing modes, instruction sets and interfacing of 8051 microcontroller
- CO4: Explain the architecture and operation mode of ARM/CORTEX M3 Processor

| COS  | Make u                                                                                               | 60.0 | of ir     | otri | ıcti | 010  | ote | 2120 | d ni         | nol  | inin   | r of | COI      | 2TE      | Y N      | //3 |
|------|------------------------------------------------------------------------------------------------------|------|-----------|------|------|------|-----|------|--------------|------|--------|------|----------|----------|----------|-----|
| CO3. | Process                                                                                              |      |           |      |      |      |     | an   | а рі         | per  | 111111 | 5 01 | COI      | XIL      | ./\ T    | VIJ |
| COG  |                                                                                                      |      | -         | _    |      |      | _   | .1 . | J . 1        |      |        | 4001 | ام ما    | · ·      | T1 1     | 22  |
| CO6: | Apply                                                                                                |      |           |      |      |      |     |      |              |      |        | tooi | is o     | 1 5      | 1 1V1    | .32 |
|      | CORTE                                                                                                |      | /14 r     | nıcr | 'oco | ntro | эне | r ın | sım          | ıula | itor   |      |          |          |          |     |
|      | BOOK                                                                                                 |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| 1    | Nagoor                                                                                               |      |           |      |      | _    |     |      | rs           | a    | nd     | Mi   | icroc    | conf     | rol      | ler |
|      | Interfac                                                                                             |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| 2    | Joseph Yiu, The Definitive Guide to the ARM CORTEX                                                   |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
|      | M3/M4, Second Edition, Elsevier, 2010.                                                               |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| REFE | ERENCES:                                                                                             |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| 1    | Doughlas V. Hall, "Microprocessors and Interfacing,                                                  |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
|      | Programming and Hardware:,TMH, 2012                                                                  |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| 2    | Yu-Cheng Liu, Glenn A.Gibson, "Microcomputer Systems:                                                |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
|      | The 8086 / 8088 Family - Architecture, Programming and                                               |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| 3    | Moham                                                                                                | ed   | DRE.      | Ali  |      | Ma   | zid | i,   | Ja           | nic  | e      | Gil  | lispi    | ieM      | azi      | di, |
|      | Mohamed Ali Mazidi, Janice GillispieMazidi,<br>RolinMcKinlay, "The 8051 Microcontroller and Embedded |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| ì    | Systems: Using                                                                                       |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| 4    | Andrew N Sloss, Dominic Symes, Chris Wright, ARM                                                     |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
| 1    | System                                                                                               |      |           |      |      |      |     |      |              |      |        |      | _        |          |          |     |
|      | Softwar                                                                                              |      | TAL       | 34   |      | CC   | )LL | E(   |              | OF   | TE     | CHI  |          | LO       | G)       |     |
| 5    | Krishna                                                                                              | ıkaı | nt, "     | Mic  | cror | oroc | ess | ors  | anc          | l M  | icro   | cont | rolle    | rs"      | , PI     | II, |
|      | 2011                                                                                                 |      | ,         |      | 1    |      |     |      |              |      |        |      |          |          | ,        | ,   |
|      |                                                                                                      |      |           |      |      |      | I   | POs  |              |      |        |      |          | ]        | PSC      | )s  |
|      | COs                                                                                                  | 1    | 2         | 3    | 4    | 5    | 6   | 7    | 8            | 9    | 10     | 11   | 12       |          | 2        | 3   |
|      | 1                                                                                                    | 3    | 2         | 1    | 1    | 1    | 1   | _    | _            | 1    | 1      | _    | 1        | 3        | 1        | _   |
|      | 2                                                                                                    | 3    | 3         | 2    | 2    | 1    | 1   | _    | _            | 1    | 1      | _    | 2        | 3        | 1        | _   |
|      | 3                                                                                                    | 2    | 1         | _    | _    | 1    | 1   | _    | _            | 1    | 1      | 1    | 2        | 2        | 1        | 1   |
|      | 4                                                                                                    | 2    | 1         | _    | _    | 1    | 1   | 1    | _            | 1    | 1      | 1    | 1        | 2        | 1        | 1   |
|      | 5                                                                                                    | 3    | 2         | 1    | 1    | 1    | _   | _    | _            | 1    | 1      | _    | 3        | 3        | 1        | _   |
|      | 6                                                                                                    | 3    | 2         | 1    | 1    | 1    | 1   | 1    | _            | 1    | 1      | _    | 3        | 3        | 1        | _   |
| O    | verall                                                                                               |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
|      | relation   3   2   1   1   1   1   -   1   1   1   2   3   1   1                                     |      |           |      |      |      |     |      |              |      |        |      |          |          |          |     |
|      | mmende                                                                                               | d by | <b>Во</b> | ard  | of S | tud  | ies | 01-  | 0 <b>4-2</b> | 024  |        |      | <u> </u> | <u> </u> | <u> </u> |     |
|      | Approve                                                                                              |      |           |      |      |      |     |      | AC           |      |        | Date | ,        | 25-      | 05-2     | 024 |

| 23EC421   | COMMUNICATION SYSTEMS                    | L     | T   | P    | C   |
|-----------|------------------------------------------|-------|-----|------|-----|
|           | LABORATORY                               | 0     | 0   | 4    | 2   |
| COURSE OB | JECTIVES:                                |       |     | [    |     |
| • To      | study the AM & FM Modulation and I       | Demo  | odu | lati | on. |
| • To      | learn and realize the effects of samplin | ıg an | d T | DΝ   | 1.  |

- To understand the PCM & Digital Modulation.
- To Simulate Digital Modulation Schemes.
- To Implement Equalization Algorithms and Error Control Coding Schemes.

#### LIST OF EXPERIMENTS:

- 1. AM- Modulator and Demodulator
- FM Modulator and Demodulator
- 3. Pre-Emphasis and De-Emphasis.
- 4. Signal sampling and TDM.
- 5. Pulse Code Modulation and Demodulation.
- 6. Pulse Amplitude Modulation and Demodulation.
- 7. Pulse Position Modulation and Demodulation and Pulse Width Modulation and Demodulation.
- 8. Digital Modulation ASK, PSK, FSK.
- 9. Delta Modulation and Demodulation.
- 10. Simulation of ASK, FSK, and BPSK Generation and Detection Schemes.
- 11. Simulation of DPSK, QPSK and QAM Generation and Detection Schemes.

# **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Analyse Amplitude and Frequency modulation techniques. CO2: Apply sampling to implement Time Division Multiplexing. CO3: Make use of pulse modulation techniques to perform PCM and PAM. CO4: Analyse digital modulation schemes. **CO5:** Design and simulate Digital Modulation schemes. **CO6:** Apply linear block codes to improve noise performance.

| COs                    |      |                                |     |      |   | I | Os              |    |    |    |      |    | I   | PSC  | )s   |
|------------------------|------|--------------------------------|-----|------|---|---|-----------------|----|----|----|------|----|-----|------|------|
| COs                    | 1    | 2                              | 3   | 4    | 5 | 6 | 7               | 8  | 9  | 10 | 11   | 12 | 1   | 2    | 3    |
| 1                      | 3    | 3                              | 2   | 2    | - | 3 | -               | -  | -  | 1  | 1    | 1  | 3   | -    | -    |
| 2                      | 3    | 2                              | 1   | 1    | - | 2 | ı               | ı  | -  | 1  | 1    | 1  | 3   | -    | -    |
| 3                      | 3    | 2                              | 1   | 1    | - | 2 | -               | -  | -  | 1  | 1    | 1  | 3   | -    | -    |
| 4                      | 3    | 3                              | 2   | 2    | - | 3 | -               | -  | -  | 1  | 1    | 1  | 3   | -    | -    |
| 5                      | 3    | 3                              | 2   | 2    | 3 | 2 | -               | -  | -  | 1  | 1    | 1  | 3   | 3    | -    |
| 6                      | 3    | 2                              | 1   | 1    | 3 | 2 | -               | -  | -  | 1  | 1    | 1  | 3   | 3    | -    |
| Overall<br>Correlation | 3    | 3                              | 2   | 2    | 1 | 3 | ı               | -  | -  | 1  | 1    | 1  | 3   | 1    | -    |
| Recommende             | d by | by Board of Studies 01-04-2024 |     |      |   |   |                 |    |    |    |      |    |     |      |      |
| Approve                | ed b | y A                            | cad | emio | c |   | 2 <sup>nd</sup> | AC | CM |    | Date |    | 25- | 05-2 | 2024 |



| 23EC422 | LINEAR INTEGRATED CIRCUITS | L | T | P | C |
|---------|----------------------------|---|---|---|---|
|         | LABORATORY                 | 0 | 0 | 4 | 2 |

#### **COURSE OBJECTIVES:**

- To gain hands on experience in designing electronic circuits
- To learn simulation software used in circuit design
- To learn the fundamental principles of amplifier circuits
- To differentiate feedback amplifiers and oscillators.
- To differentiate the operation of various multivibrators.

#### LIST OF EXPERIMENTS:

#### DESIGN AND ANALYSIS OF THE FOLLOWING CIRCUITS

- Inverting / Non Inverting Amplifier
- 2. RC Phase shift oscillator and Wien Bridge Oscillator
- 3. Schmitt Trigger
- 4. RC Integrator and Differentiator circuits using Op-Amp
- 5. Design Comparator using LM348
- 6. Active low-pass, High pass & Band pass filters
- PLL Characteristics and its use as frequency multiplier, clock synchronization
- 8. R-2R ladder type D-A converter using Op-Amp

# SIMULATION USING SPICE (Using Transistor):

- 1.Inverting / Non -Inverting Amplifier
- 2. Differentiator/ Integrator
- 3. Low Pass Filter
- 4. Schmitt Trigger circuit with Predictable hysteresis
- 5. Wien Bridge Oscillator

# Components and Accessories:

Transistors, Resistors, Capacitors, Inductors, diodes, Zener Diodes, Bread Boards, Transformers.

SPICE Circuit Simulation Software: (any public domain or commercial software)

**Note:** Op-Amps uA741, LM 301, LM311, LM 324, LM317, LM723, LM 348, 7805, 7812, 2N3524, 2N3525,

2N3391, AD 633, LM 555, LM 565 may be used.

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Analyse various types of feedback amplifiers.
- **CO2:** Develop oscillators and wave-shaping circuits.
- **CO3:** Analyse Multivibrator circuits using op-amps.
- **CO4:** Construct various D-A converters using op-amps.
- **CO5:** Examine various filters using op-amps.

CO6: Make use of PSPICE to design and simulate various integrated circuits.

| COs                    |   | 31 | (0) |   |     |     | POs    |   | 7    |       |     |       | I | PSC  | s |
|------------------------|---|----|-----|---|-----|-----|--------|---|------|-------|-----|-------|---|------|---|
| COS                    | 1 | 2  | 3   | 4 | 5   | 6   | 7      | 8 | 9    | 10    | 11  | 12    | 1 | 2    | 3 |
| 1                      | 3 | 3  | 2   | 2 | _   | -   | 7      | - | 1    | _     | _   | -     | 2 | 1000 | - |
| 2                      | 3 | 2  | 1   | 1 | -   | -   |        | - | -    | -     | -ī- | -     | 3 | -    | - |
| 3 SINE                 | 3 | 3  | 2   | 2 | 7   | γĻL | Ē      | E | 7.   | I,E   | -17 | NO    | 2 | 3    | _ |
| 4                      | 3 | 2  | 1   | 1 | WEE |     | 233.13 |   | IA U | VIVER | SHY | AULIS | 3 | NOU  | - |
| 5                      | 3 | 3  | 2   | 2 | -   | 1   | -      | 1 | -    | 1     | -   | -     | 2 | -    | - |
| 6                      | 3 | 2  | 1   | 1 | 3   | ı   | -      | ı | -    | -     | -   | -     | 3 | 3    | - |
| Overall<br>Correlation | 3 | 3  | 2   | 2 | 1   | -   | -      | - | -    | -     | -   | -     | 3 | 1    | 1 |

Recommended by Board of Studies 01-04-2024

Approved by Academic 2<sup>nd</sup> ACM Date 25-05-2024

| 23ES  | 491                            | APTITUDE AND LOGICAL                     | L              | T    | P     | C     |
|-------|--------------------------------|------------------------------------------|----------------|------|-------|-------|
|       |                                | REASONING -1                             | 0              | 0    | 2     | 1     |
| COU   | RSE OB                         | JECTIVES:                                |                |      |       |       |
| •     |                                | rove the problem solving and logical t   | hinki          | ing  | abil  | ity   |
|       | of the s                       | tudents.                                 |                |      |       |       |
| •     | _                              | ıaint student with frequently asked qu   |                |      |       |       |
|       |                                | s in quantitative aptitude and logical 1 | easo           | nin  | g.    |       |
| UNI   |                                |                                          |                |      |       | 4     |
|       |                                | M, HCF, Averages, Ratio & Proportion     | on, N          | lixt | ures  | 3 &   |
|       | gation.                        |                                          |                |      |       |       |
| UNI   |                                |                                          |                |      |       | 4     |
|       |                                | Time and work, Pipes and Cistern, cod    | ing a          | nd   |       |       |
|       | ding.                          |                                          |                |      |       |       |
| UNI   |                                |                                          |                |      |       | 4     |
|       |                                | Pistance, Train, Boats and Streams, Ana  | alogy          |      |       |       |
| UNI   |                                |                                          |                |      |       | 4     |
|       | ACCOUNT OF THE PERSON NAMED IN | tation (BAR,PIE,LINE), Seating arrang    | emer           | ıt.  | 4     |       |
| UNI   | / Accessor / / /               | 5                                        |                |      |       | 4     |
|       |                                | st and Compound Interest, Profit loss    | and I          | Disc | our   | ıt,   |
| Partr | nership.                       |                                          |                |      |       | M.    |
|       | 1 1 1 1 1                      | TOTAL                                    | <b>_:</b> 20 ] | PER  | RIO   | DS    |
| COU   |                                | TCOMES:                                  |                |      |       | 10    |
| 601   |                                | mpletion of the course, the students w   |                |      |       |       |
| CO1:  | -                              | and solve complex problems, and          | fost           | er   | criti | cal   |
| 600   |                                | g and logical reasoning skills.          |                | 1    | 1     |       |
| CO2:  |                                | undamental mathematical problems,        |                | l ei | nhai  | nce   |
| 602   |                                | mputational skills and numerical abili   | _              |      |       |       |
| CO3:  |                                | strategies for tackling a variety of     |                |      |       |       |
|       |                                | courage the use of multiple approa       | acnes          | to   | so    | ive   |
| CO4:  | •                              | ns efficiently.                          | 1.1            | - C- | 1.    |       |
| CU4:  |                                | e and solve different data analysis pro  |                |      |       | ıne   |
| COF   |                                | ance, and interpret data analysis for a  |                |      | _     | 1     |
| CU5:  |                                | information from graphs, and solve q     |                |      |       |       |
|       |                                | nematical operations such as ratios, pro | port           | ions | s, pa | ISIC  |
| COG   | )                              | and statistical estimation.              |                | 1.   | 2021  | or al |
| CO0:  | -                              | uestions in a fraction of a minute       | using          | s sr | iort  | cut   |
|       | method                         | S                                        |                |      |       |       |

## **TEXT BOOK:**

- 1 Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.
- 2 Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand Publishing.

### **REFERENCES:**

1 Agarwal, R.S. "A Modern Approach to Verbal & Non-Verbal Reasoning." 2nd ed., S. Chand Publishing

| Cos         |      |                          |     |      |     | I   | Os         |            |   |    |    |    | PSOs |   |   |  |
|-------------|------|--------------------------|-----|------|-----|-----|------------|------------|---|----|----|----|------|---|---|--|
| Cos         | 1    | 2                        | 3   | 4    | 5   | 6   | 7          | 8          | 9 | 10 | 11 | 12 | 1    | 2 | 3 |  |
| 1           | 3    | 3                        | 2   | -    | 1   | 2   | 1          | 1          | 2 | 1  | 2  | 3  | 1    | - | 3 |  |
| 2           | 2    | 3                        | 3   | -    | -   | 2   | -          | 1          | 3 | 2  | 2  | 3  | 2    | 1 | 3 |  |
| 3           | 3    | 3                        | 3   | -    | -   | 2   | -          | 1          | 2 | 2  | 2  | 3  | 2    | - | 3 |  |
| 4           | 2    | 3                        | 2   | 3    | 1   | 2   | 1          | 2          | 3 | 3  | 2  | 3  | 1    | 2 | 3 |  |
| 5           | 3    | 2                        | 2   | -    | 1   | 3   | -          | 2          | 2 | 3  | 3  | 3  | 3    | 1 | 3 |  |
| 6           | 3    | 3                        | 3   | 3    | 2   | 3   | 1          | 3          | 3 | 2  | 3  | 3  | 3    | 1 | 3 |  |
| Overall     | E37  | Š                        | ×   |      |     | Α.  |            | - 4        |   |    |    |    |      | 1 |   |  |
| Correlation | 3    | 3                        | 3   | 1    | 1   | 3   | 1          | 2          | 3 | 3  | 3  | 3  | 2    | 1 | 3 |  |
| Recommende  | d by | <sup>7</sup> Bo          | ard | of S | tud | ies | 08-04-2024 |            |   |    |    |    |      |   |   |  |
| A           |      | 2 <sup>nd</sup> ACM Date |     |      |     |     |            | 25-05-2024 |   |    |    |    |      |   |   |  |

COLLEGE OF TECHNOLOGY

## **SEMESTER-V**

| 00DEE04          | DECEARCH METHODOLOGY                       | -      | T    | ъ     | -    |
|------------------|--------------------------------------------|--------|------|-------|------|
| 23RE501          | RESEARCH METHODOLOGY                       | L      | T    | P     | C    |
|                  | AND INTELLECTUAL PROPERTY RIGHTS           | 2      | 0    | 0     | 2    |
| COURSE OB        |                                            |        |      |       |      |
|                  | ovide an overview on selection of resear   | rch 1  | orol | olen  |      |
|                  | on the Literature review                   | ı cıı  |      | 7101  |      |
| To enh           | nance knowledge on the Data collection     | anc    | l Aı | nalv  | zsis |
|                  | line the importance of ethical principle   |        |      |       |      |
|                  | ed in Research work and IPR                |        |      |       |      |
|                  | TRODUCTION TO RESEARCH                     |        |      |       | 6    |
| FO               | RMULATION                                  |        |      |       |      |
| 3.5              | 1 11 0                                     | 1      |      | 1 1   |      |
|                  | research problem, Sources of resear        |        | _    | Diam. |      |
|                  | research problem, and selecting a research |        | _    |       |      |
| / Dames / / / /  | objectives of research problem. D          |        |      |       |      |
|                  | he research problem - Necessity of         |        |      | _     |      |
|                  | portance of literature review in defining  | gap    | rob  | lem   | ì    |
| UNIT II LIT      | TERATURE REVIEW                            |        |      |       | -6   |
| Literature rev   | riew - Primary and secondary source        |        |      | 71014 | V/C  |
|                  | ographs-patents – web as a source – s      |        |      |       |      |
|                  | l literature review - Identifying gap      |        |      | _     |      |
|                  | ew - Development of working hypothe        |        | cas  | 110   | ,111 |
|                  | ATA ANALYSIS                               | 515    |      |       | 6    |
|                  | ATA ANAL 1919                              |        |      |       | 6    |
| Execution of the | ne research - Data Processing and Analy    | sis!   | stra | tegi  | ies  |
|                  | sis with Statistical Packages - Genera     |        |      |       |      |
| Interpretation   |                                            |        |      |       |      |
| UNIT IV RE       | PORT, THESIS PAPER, AND RESEA              | RC     | Н    |       | 6    |
| PR               | OPASAL WRITING                             |        |      |       |      |
| Structure and    | components of scientific reports - Typ     | es o   | f re | por   | t –  |
| Technical repo   | orts and thesis - Significance - Differer  | ıt ste | eps  | in t  | he   |
| nronoration      | Layout, structure and Language of typ      | ical   | ren  | orte  | s –  |

Illustrations and tables - Bibliography, types of referencing, citations- index and footnotes, how to write report- Paper Developing,- Plagiarism- Research Proposal- Format of research proposal- a presentation - assessment by a review committee

# UNIT V INTELLECTUAL PROPERTY AND PATENT RIGHTS

6

Ethical principles- Plagiarism, Nature of Intellectual Property - Patents, Designs, Trade and Copyright- patent search, Process of Patenting and Development: technological research, innovation, patenting, and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of Patent Rights – Scope of Patent Rights, Geographical Indications

TOTAL: 30 PERIODS

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Analyze the literature to identify the research gap in the given area of research.
- CO2: Identify and formulate the research Problem
- CO3: Analyze and synthesize the data using research methods and knowledge to provide scientific interpretation and conclusion.
- CO4: Prepare research reports and proposals by properly synthesizing, arranging the research documents to provide comprehensive technical and scientific report
- CO5: Conduct patent database search in various countries for the research problem identified.
- CO6: Apply ethical principles in research and reporting to promote healthy scientific practice

#### **TEXT BOOKS:**

1 Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An Introduction to Research Methodology, RBSA Publishers.

| 2    | Kothar                                              | i (                                                        | , B  | 19       | 90           | Res  | sear              | ch    | Me           | tho   | dolo   | ov.   | Met     | hod         | s a1     | nd   |
|------|-----------------------------------------------------|------------------------------------------------------------|------|----------|--------------|------|-------------------|-------|--------------|-------|--------|-------|---------|-------------|----------|------|
| _    | Techni                                              |                                                            |      |          |              |      |                   |       |              |       |        | ·-    | IVIC t. | riou        | .5 a     | iiu  |
| 3    | Sinha,                                              | _                                                          |      |          | `            | _    |                   |       |              |       |        |       | Moth    | 204         | 2100     | ***  |
| 3    | Ess Ess                                             |                                                            |      |          |              |      |                   |       |              | 2. IX | esea   | ICHT  | vieu    | iou         | 3108     | 3y,  |
|      |                                                     |                                                            |      |          |              |      |                   |       |              | 1 1   | £ (1   | 1     | .1      |             |          | •    |
| 4    | Trochi                                              |                                                            |      |          |              |      |                   |       |              |       |        |       |         | e co        | onci     | ıse  |
|      | knowle                                              |                                                            |      |          |              |      |                   |       |              |       |        |       |         |             |          |      |
| 5    | Wadeh                                               |                                                            |      |          |              |      |                   |       | _            |       | -      |       |         |             |          |      |
|      | Copy r                                              | Copy right designs and Geographical indications. Universal |      |          |              |      |                   |       |              |       |        |       |         |             |          |      |
|      | Law Publishing                                      |                                                            |      |          |              |      |                   |       |              |       |        |       |         |             |          |      |
| REF  | ERENCES:                                            |                                                            |      |          |              |      |                   |       |              |       |        |       |         |             |          |      |
| 1    | Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. |                                                            |      |          |              |      |                   |       |              |       |        |       |         |             |          |      |
|      | Researc                                             |                                                            |      |          |              |      |                   |       |              |       |        |       |         |             |          |      |
| 2    | Carlos,                                             |                                                            |      |          |              |      |                   |       |              |       |        |       |         |             |          |      |
|      | and dev                                             |                                                            | •    | _        |              |      |                   |       | RII          | 'S a  | gree   | mer   | ıt an   | d p         | olic     | y    |
| 3    | options<br>Coley, S                                 |                                                            |      |          |              |      |                   |       | Λ            | 100   | 0 "D   | 24042 | 2021    | <b>TA</b> 7 | Lin      | ~!!  |
| 3    | Sage Pu                                             |                                                            |      |          |              | шю   | erg,              | C     | Α.,          | 199   | U, F   | горс  | Sai     | VVI         | ıııış    | 5,   |
| 4    | Day, R.                                             |                                                            |      | _        | _            | to V | Nri               | te a  | nd           | Puh   | lish   | a Sc  | ient    | ific        |          |      |
| -    | Paper, C                                            |                                                            |      |          |              |      |                   |       |              |       | 11011  |       | 10111   |             |          |      |
| 5    | Fink, A.                                            |                                                            |      |          | _            |      |                   | _     |              |       | itera  | ture  | Rev     | riew        | 7S:      | -    |
|      | From th                                             | e Ir                                                       | nter | net      | to I         | Pap  | er. S             | Sag   | e Pı         | ıbli  | catio  | ons   | NO      | LO          | G)       |      |
| 6    | Leedy, 1                                            | P.D                                                        | . an | d C      | )rm          | rod  | , J.E             | E., 2 | 004          | Pra   | ectica | al Re | esear   | rch:        | MOU      | 14   |
|      | Plannin                                             | _                                                          |      |          | _            |      |                   |       |              |       |        |       |         |             |          |      |
| 7    | Satarka                                             |                                                            |      |          |              |      | lect              | ual   | pro          | pe    | rty r  | ights | s and   | d cc        | ру       |      |
|      | right. E                                            | 55 I                                                       | 'ub  | lıca     | tıor         | ıs.  |                   | 20.   |              |       |        |       |         |             | 200      |      |
| (    | COs                                                 | 1                                                          | 2    | 3        | 4            | 5    | 6                 | POs 7 | 8            | 9     | 10     | 11    | 12      | 1           | PSC<br>2 | 3    |
|      | 1                                                   | 3                                                          | 2    | 1        | 1            | 1    | -                 | _     | 1            | 1     | 2      | -     | 1       | 3           | 2        | 1    |
|      | 2                                                   | 3                                                          | 2    | 1        | 1            | 1    | _                 | _     | 1            | 1     | 2      | _     | 1       | 3           | 2        | 1    |
|      | 3                                                   | 3                                                          | 2    | 1        | 1            | 1    | -                 | -     | 1            | 1     | 2      | -     | 1       | 3           | 2        | 1    |
|      | 4                                                   | 3                                                          | 2    | 1        | 1            | 1    | -                 | -     | 1            | 1     | 2      | -     | 1       | 3           | 2        | 1    |
|      | 5                                                   | 3                                                          | 2    | 1        | 1            | 1    | -                 | -     | 1            | 1     | 2      | -     | 1       | 3           | 2        | 1    |
|      | 6                                                   | 2                                                          | 2    | 1        | 1            | 1    | -                 | -     | 1            | 1     | 2      | -     | 1       | 3           | 2        | 1    |
|      | verall                                              | 3                                                          | 2    | 1        | 1            | 1    | _                 | _     | 1            | 1     | 2      | _     | 1       | 3           | 2        | 1    |
|      | relation<br>mmended                                 |                                                            |      |          |              |      | lica <sup>l</sup> | 04    |              |       |        |       |         |             |          |      |
| Keco | Approve                                             |                                                            |      |          |              |      | nes               |       | 11-2<br>1 AC |       |        | Date  |         | 30-         | 11-7     | 2024 |
| 1    | TAPPIONE                                            |                                                            | J    | $\Gamma$ | -1 <b>VI</b> |      | Date              | -     | 50-          | ±±-2  | -041   |       |         |             |          |      |

| 23EC501    | TRANSMISSION LINES AND RF               | L     | T    | P  | C   |
|------------|-----------------------------------------|-------|------|----|-----|
|            | SYSTEMS                                 | 3     | 1    | 0  | 4   |
| COURSE OBJ | ECTIVES:                                |       |      |    |     |
|            | oduce the various types of transmission | n lin | es a | nd | its |
| charact    | eristics                                |       |      |    |     |

- To give a thorough understanding about high-frequency line, power and impedance measurements.
- To impart technical knowledge in impedance matching using Smith chart
- To introduce passive filters and basic knowledge of active RF components
- To get acquainted with RF system transceiver design

| UNIT I | TRANSMISSION LINE THEORY | 12 |
|--------|--------------------------|----|
|        |                          |    |

The general theory of Transmission lines - the transmission line general solution - Wavelength, velocity of propagation -Waveform distortion - the distortion-less line - Loading and different methods of loading - Line not terminated in Z0 -Reflection coefficient - calculation of current, voltage, power delivered and efficiency of transmission - Input and transfer impedance - Open and short circuited lines

#### UNIT II HIGH FREQUENCY TRANSMISSION LINES 12

Transmission line equations at radio frequencies - Line of Zero dissipation - Voltage and current on the dissipation-less line, Standing Waves, Nodes, Standing Wave Ratio - Input impedance of the dissipation-less line - Open and short circuited lines - Power and impedance measurement on lines -Reflection losses - Measurement of VSWR and wavelength

### UNIT III | IMPEDANCE MATCHING IN HIGH 12 FREQUENCY LINES

Impedance matching: Quarter wave, Half wave and Eighth wave transformer - Impedance matching by stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single stub matching using Smith chart

# UNIT IV WAVE GUIDES 12 General Wave behavior along uniform guiding structures -Transverse Electromagnetic Waves, Transverse Magnetic Waves, Transverse Electric Waves - TM and TE Waves between parallel plates. Field Equations in rectangular waveguides, TM and TE waves in rectangular waveguides UNIT V RF SYSTEM DESIGN CONCEPTS 12 Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, Basic concepts of RF design, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the general characteristics of transmission lines and their losses CO2: Explain the standing wave ratio and input impedance in high-frequency transmission lines **CO3:** Explain various impedance-matching methods CO4: Make use of the Smith chart to design stub-matching transformers. CO5: Apply Maxwell's equation to explain the characteristics of TE and TM waves in various waveguides CO6: Build RF wireless transceiver system for communication TEXT BOOKS: John D Ryder, "Networks, lines and fields", 2nd Edition, 1 Prentice Hall India, 2015. Mathew M. Radmanesh, -Radio Frequency & Microwave Electronics, Pearson Education Asia, Second Edition, 2002.

| REFERENCES: |                                                                                         |      |       |       |            |       |       |      |       |      |       |       |        |      |       |      |
|-------------|-----------------------------------------------------------------------------------------|------|-------|-------|------------|-------|-------|------|-------|------|-------|-------|--------|------|-------|------|
| 1           | Reinhol                                                                                 | ld I | uď    | wig   | an         | d P   | ow    | el B | reto  | hko  | o, "F | RF C  | ircui  | it D | esig  | 'n"  |
|             | - Theor                                                                                 | ry a | ind   | Αŗ    | pli        | cati  | ons   | ",P  | ears  | son  | Εdι   | ıcati | on A   | Asia | ı, Fi | rst  |
|             | Edition                                                                                 | , 20 | 01.   |       |            |       |       |      |       |      |       |       |        |      |       |      |
| 2           | D. K.                                                                                   | N    | /lisi | a,    | "I         | Rad   | io    | Fr   | equ   | enc  | zy -  | and   | N      | licr | owa   | ive  |
|             | Commu                                                                                   | ınic | catio | on (  | Circ       | uits  | s"    | Ana  | lys   | is a | nd I  | )esig | gn, Jo | ohn  | Wi    | ley  |
|             | &                                                                                       | Son  | ıs, 2 | .004  | Ļ.         |       |       |      |       |      |       |       |        |      |       |      |
| 3           | Richard                                                                                 | l Cl | ni-H  | Isi I | Li -       | . , " | RF    | Cir  | cuit  | t De | esigr | n" –  | A Jo   | hn   | Wi    | ley  |
|             | &                                                                                       | Son  | s, I  | nc,   | Pul        | olica | atio  | ns   |       |      |       |       |        |      |       | •    |
| 4           | W.Alan                                                                                  | Da   | vis   | , Kı  | rish       | na    | Aga   | arw  | al, ' | "Ra  | dio   | Frec  | uen    | cy ( | Circ  | uit  |
|             | W.Alan Davis, Krishna Agarwal, "Radio Frequency Circuit Design", John willy & Sons,2001 |      |       |       |            |       |       |      |       |      |       |       |        |      |       |      |
|             | POs PSOs                                                                                |      |       |       |            |       |       |      |       |      |       |       |        |      |       |      |
| (           | COs                                                                                     | 1    | 2     | 3     | 4          | 5     | 6     | 7    | 8     | 9    | 10    | 11    | 12     | 1    | 2     | 3    |
|             | 1                                                                                       | 2    | 1     | -     | -          | _     | -     | 2    | 1     |      | 2     | -     | - 5    | 2    | -     | -    |
|             | 2 .ow                                                                                   | 2    | 41    | V     | -          | -     | 1     | 2    | -     | 1    | 2     |       | A      | 2    | -     | 1    |
| 9           | 3                                                                                       | 2    | 1     | 2     | <b>/</b> - | 2     | A     | 2    | -/    | Y    | 2     | ı     | -      | 2    | 2     | 1    |
| 1           | 4                                                                                       | 3    | 2     | 1     | 1          | 2     |       | 2    | \     | A    | 2     | 1     |        | 3    | 2     | -    |
| 1           | 5                                                                                       | 3    | 2     | 1     | 1          | _     | -     | 2    | -     | 1    | 2     | 2/    |        | 3    |       | -    |
| N N         | 6                                                                                       | 3    | 3     | 2     | 2          | 2     | -     | 2    | -     | -    | 2     | -     | -      | 3    | 2     | -    |
| O           | verall                                                                                  | 3    | 2     | 1     | 1          | Ğ     | )L    | 1    | υĖ    | 01   | ,     | 5     | NC     | 2    | ğ     |      |
| Corı        | elation                                                                                 | 3    |       | 1     |            | 2     | ILTA' | 2    | O AN  | NA.L | 2     | BSITY | AUT    | 3    | 2     | 150  |
| Reco        | mmended                                                                                 | l by | Bo    | ard   | of S       | Stud  | lies  | 04-  | 11-2  | 2024 |       |       |        |      |       |      |
|             | Approve                                                                                 | d b  | y A   | cad   | emi        | c     |       | 3rd  | AC    | CM   |       | Date  | ?      | 30-  | -11-2 | 2024 |

| 23EC511 | DIGITAL SIGNAL PROCESSING | L | T | P | C |
|---------|---------------------------|---|---|---|---|
|         |                           | 3 | 0 | 2 | 4 |

## **COURSE OBJECTIVES:**

- To learn discrete Fourier transform, properties of DFT and its application to linear filtering.
- To understand the characteristics of digital filters, design digital IIR and FIR filters and apply these filters to filter undesirable signals in various frequency bands.
- To understand the effects of finite precision representation on digital filters.
- To understand the fundamental concepts of multi rate signal processing and its applications.
- To introduce the concepts of adaptive filters and its application to communication engineering

# UNIT I DISCRETE FOURIER TRANSFORM

9

Discrete Fourier transform (DFT) - Properties of DFT - Periodicity, symmetry, circular convolution.-Filtering long data sequences - overlap save and overlap add method. Fast computation of DFT - Radix-2 Decimation-in-time (DIT), Decimation-in-frequency (DIF) algorithm.

## UNIT II FINITE IMPULSE RESPONSE FILTERS

.

Design of FIR filters - symmetric and Anti-symmetric FIR filters - design of linear phase FIR filters using Fourier series method - FIR filter design using windows (Rectangular, Hamming and Hanning window), Frequency sampling method. FIR filter structures - linear phase structure, direct form realizations

## UNIT III | INFINITE IMPULSE RESPONSE FILTERS

9

Characteristics of practical frequency selective filters. Characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design of IIR filters from analog filters (LPF, HPF, BPF, BRF) using Impulse invariance method, Bilinear transformation Frequency transformation in the analog domain (simple problems only).

#### UNIT IV | FINITE WORD LENGTH EFFECTS

9

Fixed point and floating-point number representation - ADC - quantization - truncation and rounding- quantization noise - input / output quantization - coefficient quantization error - product quantization error - overflow error - limit cycle oscillations due to product quantization and summation - scaling to prevent overflow.

#### UNIT V DSP APPLICATIONS

9

Multi-rate signal processing: Decimation, Interpolation, Sampling rate conversion by rational factor—Adaptive Filters: Introduction, Applications of adaptive filtering to equalization-DSP Architecture-Fixed- and Floating-point architecture principles

**TOTAL: 45 PERIODS** 

#### PRACTICAL EXERCISES:

# MATLAB / EQUIVALENT SOFTWARE PACKAGE/ PROCESSOR BASED IMPLEMENTATION

- 1. Linear and Circular convolutions
- 2. Auto correlation and Cross Correlation
- 3. Frequency Analysis using DFT
- 4. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation
- 5. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the filtering operations
- 6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the filtering operations
- 7. Implement an Up-sampling and Down-sampling
- 8. Perform MAC operation using various addressing modes.

**TOTAL:30 PERIODS** 

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

CO1: Examine discrete-time signal using Discrete Fourier Transform (DFT).

| CO2: | O2: Examine discrete-time signal using Fast Fourier Transform         |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
|------|-----------------------------------------------------------------------|----------------------------------|---------------------------------|--------------------------------------------------------|---------------------------------|--------------------------------------|---------------------|---------|--------------------------------------|-------|---------------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|------------------------------------------|
| 1    | Examin<br>(FFT).                                                      | e a                              | iscr                            | ete-                                                   | ·um                             | ie si                                | igna                | ai u    | Sing                                 | 5 F   | ist f                                 | ouri                             | er 1                             | ran                             | SIOI                            | m                                        |
| CO2. | Interpre                                                              | \+ +l                            | no d                            | ocio                                                   | TD (                            | √ II                                 | p a                 | ioit    | -1 fi                                | 1tor  |                                       |                                  |                                  |                                 |                                 |                                          |
|      | Constru                                                               |                                  |                                 | •                                                      | _                               |                                      |                     |         |                                      |       |                                       |                                  | :                                | ر اد مد                         | ~=.=:                           |                                          |
| CU4: |                                                                       |                                  |                                 | _                                                      | ,                               |                                      |                     |         | $\circ$                              | our   | ier s                                 | erie                             | 5, W1                            | nac                             | )W1                             | ng                                       |
| COE  | and free                                                              |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      | aioi. | 010 1                                 | 101011                           | 2000                             | tati                            | 212                             | 212                                      |
| CO3. | digital f                                                             |                                  |                                 | ene                                                    | ecis                            | OI                                   | 1111                | пе      | pre                                  | CISI  | 011 1                                 | ерге                             | esem                             | lall                            | <i>)</i> 11 (                   | 511                                      |
| CO6  | Explain                                                               |                                  |                                 | -rat                                                   | e si                            | σna                                  | a1 P                | roc     | essi                                 | nσ    | Ad                                    | antiv                            | ze fi                            | lter                            | 'S 21                           | nd                                       |
|      | DSP are                                                               |                                  |                                 |                                                        | C 51                            | 811                                  | <i>A</i> 1 1        | 100     | C001                                 | 115/  | 110                                   | ири                              | V C 11                           | ittei                           | J a                             | ila                                      |
| TEX  | T BOOKS:                                                              |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
| 1    | John G. Proakis and Dimitris G.Manolakis, Digital Signal              |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
|      | Processing - Principles, Algorithms and Applications,                 |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
|      | Fourth Edition, Pearson Education / Prentice Hall, 2007.              |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
| 2    | A. V. Oppenheim, R.W. Schafer and J.R. Buck, —Discrete-               |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
|      | Time Signal Processing", 8th Indian Reprint, Pearson, 2004.           |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
| REF  | ERENCES:                                                              |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
| 1    | Emmanuel C. Ifeachor& Barrie. W. Jervis, "Digital Signal              |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
| 3    | Processing", Second Edition, Pearson Education / Prentice             |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
|      | Hall, 2002.  Sanjit K. Mitra "Digital Signal Processing - A Computer. |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
| 2    | Sanjit K. Mitra, "Digital Signal Processing – A Computer              |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
|      | Based Approach", Tata Mc Graw Hill, 2007.                             |                                  |                                 |                                                        |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
| 2    |                                                                       |                                  |                                 | Andreas Antoniou, "Digital Signal Processing", Tata Mc |                                 |                                      |                     |         |                                      |       |                                       |                                  |                                  |                                 |                                 |                                          |
| 3    | Andrea                                                                | s A                              | nto                             |                                                        | u,                              |                                      | 0                   |         | O                                    |       | -                                     | -1.1                             | O                                |                                 |                                 | Лс                                       |
|      | Andrea<br>Graw H                                                      | s A                              | nto                             |                                                        | u,                              |                                      | LIAT                | EDIT    | ) AN                                 |       | -                                     | -1.1                             | າg",                             | DIVO                            | MOU                             |                                          |
|      | Andrea                                                                | s A<br>Iill,                     | 200                             | 06.                                                    |                                 | AFF                                  | I                   | POs     | ) AN                                 | NA U  | NIVER                                 | ISITY                            | AUT                              | I                               | PSO                             | s                                        |
|      | Andrea<br>Graw H                                                      | s A<br>Iill,<br>1                | 200<br>2                        | 3                                                      | 4                               | 5                                    | I 6                 | EDIT    | 8                                    |       | 10                                    | 11                               | 12                               | I<br>1                          | PSO<br>2                        | )s<br>3                                  |
|      | Andrea<br>Graw H<br>COs                                               | s A<br>lill,<br>1                | 200<br>2                        | 3<br>2                                                 | <b>4</b> 2                      | 5<br>1                               | 6<br>1              | POs 7 - | 8                                    | 9     | <b>10</b> 1                           | <b>11</b> 1                      | <b>12</b> 1                      | 1<br>3                          | 2<br>3                          | 9s<br>3<br>1                             |
|      | Andrea<br>Graw H<br>COs<br>1<br>2                                     | s A<br>lill,<br>1<br>3           | 200<br>2<br>3<br>3              | 3<br>2<br>2                                            | <b>4</b> 2 2                    | 5<br>1<br>1                          | I 6 1 1             | POs     | 8<br>1<br>1                          | 9 -   | 10<br>1<br>1                          | 11<br>1<br>1                     | 12<br>1<br>1                     | 1<br>3<br>3                     | 2<br>3<br>3                     | 9s<br>3<br>1<br>1                        |
|      | Andrea<br>Graw F<br>COs<br>1<br>2<br>3                                | s A<br>lill,<br>1<br>3<br>3      | 200<br>2<br>3<br>3              | 3<br>2<br>2                                            | 4<br>2<br>2                     | 5<br>1<br>1                          | I 6 1 1 1 1         | POs 7 - | 8<br>1<br>1                          | 9     | 10<br>1<br>1<br>1                     | 11<br>1<br>1<br>1                | 12<br>1<br>1<br>1                | 1<br>3<br>3<br>3                | 2<br>3<br>3<br>2                | 9s<br>3<br>1<br>1                        |
|      | Andrea<br>Graw H<br>COs<br>1<br>2<br>3                                | s A<br>lill,<br>1<br>3<br>3<br>2 | 2<br>2<br>3<br>3<br>1<br>2      | 3<br>2<br>2<br>-                                       | <b>4</b> 2 2                    | 5<br>1<br>1<br>1<br>1                | I 6 1 1 1 1 1 1     | POs 7 - | 8<br>1<br>1<br>1<br>1                | 9 -   | 10<br>1<br>1<br>1<br>1                | 11<br>1<br>1<br>1<br>1           | 12<br>1<br>1<br>1                | 1<br>3<br>3<br>3<br>3           | 2<br>3<br>3<br>2<br>2           | 9s<br>3<br>1<br>1<br>1<br>1              |
|      | Andrea<br>Graw H<br>COs<br>1<br>2<br>3<br>4<br>5                      | s A [ill, 3 3 2 3 2              | 2<br>3<br>3<br>1<br>2           | 3<br>2<br>2<br>-<br>1                                  | 4<br>2<br>2<br>-<br>1           | 5<br>1<br>1<br>1<br>1<br>1           | I 6 1 1 1 1 1 1 1   | POs 7   | 8<br>1<br>1<br>1<br>1                | 9     | 10<br>1<br>1<br>1<br>1<br>1           | 11<br>1<br>1<br>1<br>1<br>1      | 12<br>1<br>1<br>1<br>1<br>1      | 3<br>3<br>3<br>3<br>3           | 2<br>3<br>3<br>2<br>2<br>2      | 9s 1 1 1 1 1 1 1 1 1 1                   |
| (    | Andrea<br>Graw H<br>COs<br>1<br>2<br>3<br>4<br>5<br>6                 | s A<br>lill,<br>1<br>3<br>3<br>2 | 2<br>2<br>3<br>3<br>1<br>2      | 3<br>2<br>2<br>-                                       | 4<br>2<br>2                     | 5<br>1<br>1<br>1<br>1                | I 6 1 1 1 1 1 1     | POs 7 - | 8<br>1<br>1<br>1<br>1                | 9     | 10<br>1<br>1<br>1<br>1                | 11<br>1<br>1<br>1<br>1           | 12<br>1<br>1<br>1                | 1<br>3<br>3<br>3<br>3           | 2<br>3<br>3<br>2<br>2           | 9s<br>3<br>1<br>1<br>1<br>1              |
| Or   | Andrea<br>Graw H<br>COs<br>1<br>2<br>3<br>4<br>5                      | s A [ill, 3 3 2 3 2              | 2<br>3<br>3<br>1<br>2           | 3<br>2<br>2<br>-<br>1                                  | 4<br>2<br>2<br>-<br>1           | 5<br>1<br>1<br>1<br>1<br>1           | I 6 1 1 1 1 1 1 1   | POs 7   | 8<br>1<br>1<br>1<br>1                | 9     | 10<br>1<br>1<br>1<br>1<br>1           | 11<br>1<br>1<br>1<br>1<br>1      | 12<br>1<br>1<br>1<br>1<br>1      | 3<br>3<br>3<br>3<br>3           | 2<br>3<br>3<br>2<br>2<br>2      | 9s 1 1 1 1 1 1 1 1 1 1                   |
| Or   | Andrea<br>Graw F<br>COs<br>1<br>2<br>3<br>4<br>5<br>6<br>verall       | 1<br>3<br>3<br>2<br>3<br>2<br>3  | 2<br>3<br>3<br>1<br>2<br>1<br>1 | 3<br>2<br>2<br>-<br>1<br>-                             | 4<br>2<br>2<br>-<br>1<br>-<br>1 | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>2 | I 6 1 1 1 1 1 1 1 2 | POs 7   | 8<br>1<br>1<br>1<br>1<br>1<br>1<br>2 | 9     | 10<br>1<br>1<br>1<br>1<br>1<br>1<br>2 | 11<br>1<br>1<br>1<br>1<br>1<br>1 | 12<br>1<br>1<br>1<br>1<br>1<br>1 | 1<br>3<br>3<br>3<br>3<br>3<br>3 | 2<br>3<br>3<br>2<br>2<br>2<br>2 | 9s 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

| 23EC512 | NETWORKS AND SECURITY | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         |                       | 3 | 0 | 2 | 4 |
| COURSE  | OBJECTIVES:           |   |   |   |   |

- To learn the Network Models and datalink layer functions.
- To interpret routing in the Network Layer.
- To explore methods of communication and congestion control by the Transport Layer.
- To study the Network Security Mechanisms.
- To learn various hardware security attacks and their countermeasures.

| UNIT I | NETWORK MODELS AND DATALINK | 9 |
|--------|-----------------------------|---|
|        | LAYER                       |   |

Overview of Networks and its Attributes – Network Models – OSI, TCP/IP, Addressing – Introduction to Datalink Layer – Error Detection and Correction – Ethernet(802.3)- Wireless LAN – IEEE 802.11, Bluetooth – Flow and Error Control Protocols.

# UNIT II NETWORK LAYER PROTOCOLS 9

Network Layer – IPv4 Addressing – Network Layer Protocols (IP,ICMP and Mobile IP) Unicast and Multicast Routing – Intra domain and Inter domain Routing Protocols – IPv6 Addresses – IPv6 – Datagram Format.

# UNIT III TRANSPORT AND APPLICATION LAYERS 9

Transport Layer Protocols – UDP and TCP Connection and State Transition Diagram - Congestion Control and Avoidance (DEC bit, RED)- QoS - Application Layer Paradigms –Domain Name System – World Wide Web, HTTP, Electronic Mail.

# UNIT IV NETWORK SECURITY 9

OSI Security Architecture – Attacks – Security Services and Mechanisms – Encryption –Advanced Encryption Standard – Public Key Cryptosystems – RSA Algorithm – Hash Functions – Secure Hash Algorithm – Digital Signature Algorithm.

| UNI   | ΓV     | HARDWARE SECURITY                                           | 9    |
|-------|--------|-------------------------------------------------------------|------|
| Intro | ductio | l<br>on to hardware security, Hardware Trojans, Sido        | e –  |
|       |        | Attacks - Physical Attacks and Countermeasure               |      |
|       |        | Security. Introduction to Block chain Technology.           |      |
|       |        | TOTAL: 45 PERIO                                             | DDS  |
| PRA   | CTIC   | AL EXERCISES:                                               |      |
| 1.    | Imp    | lement the Data Link Layer framing methods,                 |      |
| 2.    | Imp    | lementation of Error Detection / Correction Technic         | lues |
| 3.    | Imp    | lementation of Stop and Wait, and Sliding Window            |      |
|       | Prot   | rocols                                                      |      |
| 4.    | Imp    | lementation of Go back-N and Selective Repeat               |      |
|       | Prot   | cocols.                                                     |      |
| 5.    | Imp    | lementation of Distance Vector Routing algorithm            |      |
|       | (Roı   | ıting Information Protocol) (Bellman-Ford).                 | >    |
| 6.    | Imp    | lementation of Link State Routing algorithm (Open           |      |
| Į.    | Shor   | r <mark>test Pat</mark> h First) with 5 nodes (Dijkstra's). |      |
| 7.    | Data   | a encryption and decryption using Data Encryption           |      |
| A     |        | dard algorithm.                                             |      |
| 8.    |        | a encryption and decryption using RSA (Rivest, Shar         | mir  |
|       |        | Adleman) algorithm.                                         |      |
| 9.    | Imp    | lement Client Server model using FTP protocol.              |      |
|       |        | TOTAL:30 PERIO                                              | DDS  |
| COU   |        | OUTCOMES:                                                   |      |
| 601   |        | completion of the course, the students will be able t       | o:   |
|       |        | ain the network models, layers and functions                |      |
| CO2:  |        | e use of IP protocol and routing techniques to expl         | ain  |
| 0.00  |        | rork layer                                                  |      |
| CO3:  |        | ly TCP, UDP and Congestion control techniques               | in   |
|       |        | sport Layer                                                 |      |
| CO4:  | Expl   | ain the various functions of Application layer              |      |

CO5: Examine

mechanism

and

choose the various network

| CO6:  | Make                                                      | use   | of    | f v     | ario  | ous   | ha    | ırdv  | var       | e s          | ecui  | ity    | atta   | icks | a                | nd         |
|-------|-----------------------------------------------------------|-------|-------|---------|-------|-------|-------|-------|-----------|--------------|-------|--------|--------|------|------------------|------------|
|       | counter                                                   | me    | asu   | res     | for   | Haı   | rdw   | are   | sec       | uri          | ty    |        |        |      |                  |            |
| TEX   | Г ВООК                                                    | S:    |       |         |       |       |       |       |           |              |       |        |        |      |                  |            |
| 1     | Behrou                                                    | z.A   | .Foı  | ouz     | zan   | ,     | D     | ata   |           | Co           | mm    | unic   | atio   | n    | a                | nd         |
|       | Networ                                                    | kin   | g, F  | ifth    | Ed    | litio | n, T  | MI    | H, 2      | 017          | .(Un  | it - : | I,II,I | II)  |                  |            |
| 2     | William                                                   | ı S   | talli | ngs     | s, C  | Cryp  | otog  | rap   | hy        | an           | d N   | etw    | ork    | Sec  | uri              | ty,        |
|       | Seventh                                                   | ı Ec  | litic | n, I    | Pear  | csor  | ı Ed  | luca  | atio      | n, 2         | 017(  | Unit   | t- IV  | )    |                  |            |
| 3     | Bhunia                                                    | S     | war   | up,     | I     | Iarc  | lwa   | re    | Se        | cur          | ity   | -A     | На     | nds  | s (              | On         |
|       | Approa                                                    | ch,   | Mo    | rgaı    | n Ka  | aufı  | mar   | ın, 1 | Firs      | t ed         | itio  | ո, 20  | 18.(l  | Uni  | t – <sup>v</sup> | V).        |
| REFI  | ERENCE                                                    | S:    |       |         |       |       |       |       |           |              |       |        |        |      |                  |            |
| 1     | James.F                                                   | .Κι   | ıros  | e aı    | nd I  | Keit  | h.W   | V.Ro  | oss,      | Co           | mpu   | ter l  | Netv   | vorl | king             | <b>5</b> – |
|       | A Top -                                                   | - Do  | owr   | ı Ap    | opro  | oacł  | n, Si | ixth  | Ed        | itio         | n, Pe | ears   | on, 2  | 2017 | <b>.</b>         |            |
| 2     | Doughl                                                    | as.   | E.C   | om      | er, ( | Con   | npu   | ter   | Net       | wo           | rks a | ınd l  | [nter  | net  | s w              | ith        |
|       | Internet Applications, Fourth Edition, Pearson Education, |       |       |         |       |       |       |       |           |              |       |        |        |      |                  |            |
|       | 2008. WER DRE                                             |       |       |         |       |       |       |       |           |              |       |        |        |      |                  |            |
| 3     | Andrew S Tanenbaum. Computer Networks Pearson             |       |       |         |       |       |       |       |           |              |       |        |        |      |                  |            |
| Ì     | Prentice Hall, 2011                                       |       |       |         |       |       |       |       |           |              |       |        |        |      |                  |            |
| 4     | Behrou                                                    | z.A   | .Foi  | ouz     | zan   | . Cr  | ypt   | ogr   | aph       | y a          | nd N  | Jetw   | ork    | sec  | urit             | у,         |
| Î     | Sixth Ed                                                  | ditio | on,   | ТΜ      | H, 2  | 2018  |       |       |           |              |       |        |        |      |                  |            |
|       | COs                                                       | RR    | ALL   | diam'r. |       | CC    | ŀΙ    | POs   | oE.       | U)           | IE    | CH     | NU     | I    | PSC              | s          |
| · ·   | 203                                                       | 1     | 2     | 3       | 4     | 5     | 6     | 7     | 8         | 9            | 10    | 11     | 12     | 1    | 2                | 3          |
|       | 1                                                         | 2     | 1     | -       | -     | -     | -     | -     | -         | -            | -     | -      | -      | 2    | -                | -          |
|       | 2                                                         | 3     | 2     | 1       | 1     | 1     | -     | -     | -         | -            | -     | -      | -      | 3    | 1                | -          |
|       | 3                                                         | 3     | 2     | 1       | 1     | -     | -     | -     | -         | -            | -     | -      | -      | 3    | -                | -          |
|       | 4                                                         | 2     | 1     | -       | -     | -     | -     | -     | -         | -            | -     | -      | -      | 2    | -                | -          |
|       | 5                                                         | 3     | 3     | 2       | 2     | -     | -     | -     | 2         | -            | -     | -      | -      | 3    | -                | 2          |
|       | 6                                                         | 3     | 2     | 1       | 1     | -     | -     | -     | 2         | -            | -     | -      | -      | 3    | -                | 2          |
|       | verall<br>relation                                        | 3     | 2     | 1       | 1     | 1     | -     | -     | 1         | -            | -     | -      | -      | 3    | 1                | 1          |
|       | mmende                                                    | d by  | z Bo  | ard     | of S  | Stud  | ies   | 04-   | <br>11-2  | 024          |       |        |        |      |                  |            |
| 11000 | Approve                                                   |       |       |         |       |       |       |       | AC        |              |       | Date   | ,      | 30-  | 11-2             | 2024       |
|       | Thhink                                                    | .u D  | y A   | cau     | CILII | _     |       | 5     | $\Lambda$ | -1 <b>AT</b> |       | Date   | -      | 50-  | 11-2             | .044       |

| 23EC521 | MINI PROJECT | L | T | P | C |
|---------|--------------|---|---|---|---|
|         |              | 0 | 0 | 2 | 1 |

## **COURSE OBJECTIVES:**

- Encourage students to apply foundational theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork and effective communication.
- Train students in basic research methodology, technical documentation, and presentation techniques to articulate project outcomes clearly.
- Enhance students' ability to systematically design, analyze, and evaluate simple prototypes or models.
- Prepare students for real-world engineering challenges and lay the foundation for multidisciplinary teamwork and problem-solving in advanced projects.

#### **COURSE DESCRIPTION:**

This course serves as an introductory platform for students to apply the foundational knowledge acquired from their core and interdisciplinary subjects in a practical setting. This course enables students to work on small-scale, department-relevant projects that focus on problem identification, basic design, and preliminary prototype development. With limited prior expertise, students will explore the process of translating theoretical concepts into tangible solutions, fostering creativity, teamwork, and critical thinking. The course emphasizes hands-on communication, and project documentation, laying a strong foundation for advanced projects and professional challenges in later semesters.

## PROJECT OUTLINE:

| Week 1 | Course Orientation and Topic Selection   |
|--------|------------------------------------------|
| Week 2 | Problem Definition and Objective Setting |

| Week 3   | Literature Review and Research                     |
|----------|----------------------------------------------------|
| Week 4   | First Review and Feedback                          |
| Week 5   | Problem Refinement and Research Gap Identification |
| Week 6   | Conceptual Design and Initial Approach             |
| Week 7   | Methodology and Project Planning                   |
| Week 8   | Second Review and Project Evaluation               |
| Week 9   | Design Refinement and Testing                      |
| Week 10  | Resource Identification and Budget Estimation      |
| Week 11  | Report Writing and Presentation Preparation        |
| Week 12  | Third Review Presentation and Submission of Thesis |
| TXIATTAT | IONI                                               |

#### **EVALUATION:**

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The project should focus on topics from first three or four semester (whichever is applicable) subjects / industry demand topics, or futuristic technologies. It is recommended for Faculty of Aeronautical Engineering, Civil Engineering, and Mechanical Engineering students, the project should demonstrate an understanding of first principles of engineering.
- Similarly for students of Faculty of Computer Science Engineering, the project may involve programming using Python or C language. For Faculty of Electronics and Communication Engineering, the student project shall

- incorporate appropriate techniques and systems relevant to the field. For the students of Faculty of Fashion Technology, the project based on material innovations, or technology in fashion is recommended.
- The evaluation will focus on how well the project is structured, including clarity and logical flow in both oral presentations and written texts.
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability, innovation, and SDG-aligned goals.
- The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content.

| COU  | RSE OUTCOMES:                                                                                                        |
|------|----------------------------------------------------------------------------------------------------------------------|
| 4    | After completion of the course, the students will be able to:                                                        |
| CO1: | Apply basic engineering principles to solve simple problems.                                                         |
| CO2: | Choose relevant sources to understand the current knowledge and identify areas to improve.                           |
| CO3: | Utilise basic tools and techniques to test simple solutions.                                                         |
| CO4: | Interpret the impact of engineering solutions on society and the environment.                                        |
| CO5: | Combine in teams to plan and complete projects within given constraints.                                             |
| CO6: | Develop comprehensive technical reports and deliver structured presentations to effectively convey project outcomes. |

| COs                  |                                 | POs |   |   |   |     |    |    |      |      |    | PSOs |      |      |   |
|----------------------|---------------------------------|-----|---|---|---|-----|----|----|------|------|----|------|------|------|---|
| COs                  | 1                               | 2   | 3 | 4 | 5 | 6   | 7  | 8  | 9    | 10   | 11 | 12   | 1    | 2    | 3 |
| 1                    | 3                               | 2   | 1 | 1 | 1 | 1   | 1  | 3  | 2    | 2    | 2  | 1    | 3    | 1    | 3 |
| 2                    | 3                               | 2   | 1 | 1 | 1 | 1   | 1  | 3  | 2    | 2    | 2  | 1    | 3    | 1    | 3 |
| 3                    | 3                               | 2   | 1 | 1 | 1 | 1   | 1  | 3  | 2    | 2    | 2  | 1    | 3    | 1    | 3 |
| 4                    | 3                               | 2   | 1 | 1 | 1 | 1   | 1  | 3  | 2    | 2    | 2  | 1    | 3    | 1    | 3 |
| 5                    | 3                               | 2   | 1 | 1 | 1 | 1   | 1  | 3  | 2    | 2    | 2  | 1    | 3    | 1    | 3 |
| 6                    | 3                               | 2   | 1 | 1 | 1 | 1   | 1  | 3  | 2    | 2    | 2  | 1    | 3    | 1    | 3 |
| Overall              | 3                               | 2   | 1 | 1 | 1 | 1   | 1  | 3  | 2    | 2    | 2  | 1    | 3    | 1    | 3 |
| Correlation          | 3                               |     | 1 | 1 | 1 | 1   | 1  | 3  | 4    | 2    | 4  | 1    | 3    | 1    | 3 |
| Recommende           | Recommended by Board of Studies |     |   |   |   |     |    |    | 2024 | :    |    |      | •    |      |   |
| Approved by Academic |                                 |     |   |   |   | 3rd | AC | CM |      | Date | )  | 30-  | 11-2 | 2024 |   |



| 23ES                                               | 591        | APTITUDE AND LOGICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                              | T     | P     | C          |  |  |  |
|----------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|-------|------------|--|--|--|
|                                                    |            | REASONING -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                              | 0     | 2     | 1          |  |  |  |
| COU                                                | RSE OF     | BJECTIVES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                              |       |       |            |  |  |  |
| •                                                  | To im      | prove the problem solving and logi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cal                                            | thin  | king  | 7          |  |  |  |
|                                                    |            | of the students.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |       | ,          |  |  |  |
| •                                                  | To acq     | uaint the student with frequently aske                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d pa                                           | tteri | ns ir | ı          |  |  |  |
| quantitative aptitude and logical reasoning during |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |       |       |            |  |  |  |
|                                                    |            | s examinations and campus interviews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                              |       |       |            |  |  |  |
| UNIT I                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |       |       |            |  |  |  |
| Prob                                               | ability, I | Permutation & Combination, Algebra,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prob                                           | olem  | s or  | ì          |  |  |  |
| ages                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |       |       |            |  |  |  |
| UNI                                                | ГІІ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |       |       | 4          |  |  |  |
| Mens                                               | suration   | , Logarithms, inequalities and modulu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s, Sy                                          | llog  | ism   |            |  |  |  |
| UNI                                                | ΓIII       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |       |       | 4          |  |  |  |
| Dire                                               | ctions, 1  | ogical sequence words, number ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ies,                                           | Ana   | alyt  | ical       |  |  |  |
| Reas                                               | oning      | THE CONTRACTOR OF THE CONTRACT |                                                |       | 4     | 98         |  |  |  |
| UNI                                                | ΓΙ         | 71,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | - 1   |       | 4          |  |  |  |
| Blood                                              | d relatio  | n, Clock and Calendar, Picture puzzles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 \                                            |       | 1     |            |  |  |  |
| UNI                                                |            | , ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | 9     |       | 4          |  |  |  |
| Data                                               | sufficie   | ncy, cube and cuboids, odd man out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |       |       |            |  |  |  |
|                                                    | CINE       | TOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L: 20                                          | PE    | RIO   | DS         |  |  |  |
| COU                                                |            | JTCOMES: AFFILIATED TO ANNA UNIVERSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r AU                                           | TONO  | MOU   | 5          |  |  |  |
|                                                    |            | empletion of the course, the students w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                | e ab  | le to | <b>)</b> : |  |  |  |
| CO1:                                               |            | concepts of probability, permutation, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and                                            |       |       |            |  |  |  |
|                                                    |            | ation to solve real-world problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |       |       |            |  |  |  |
| CO2:                                               |            | lgebraic problems and age-related pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | blen                                           | ns us | sing  |            |  |  |  |
|                                                    | )          | approaches and techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |       |       |            |  |  |  |
| CO3:                                               | -          | e and solve problems in mensuration,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | loga                                           | rith  | ms,   |            |  |  |  |
|                                                    |            | equalities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |       |       |            |  |  |  |
| CO4:                                               | -          | et and solve problems related to direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ions                                           | , log | gical |            |  |  |  |
| 00-                                                | _          | ce, and number series.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                              | - 1   |       |            |  |  |  |
| CO5:                                               |            | y and solve problems in logical reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                              | such  | as    |            |  |  |  |
| 666                                                |            | sm, blood relations, clock and calendar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                | 1     |       |            |  |  |  |
| CO6:                                               |            | y and solve problems in logical reason:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                | such  | as    |            |  |  |  |
|                                                    | syllogis   | sm, blood relations, clock and calendar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>.                                      </u> |       |       |            |  |  |  |

| TEX  | TEXT BOOK:                                                 |                                                          |          |      |        |      |      |      |      |      |      |       |      |   |   |   |
|------|------------------------------------------------------------|----------------------------------------------------------|----------|------|--------|------|------|------|------|------|------|-------|------|---|---|---|
| 1    | Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020. |                                                          |          |      |        |      |      |      |      |      |      |       |      |   |   |   |
| 2    | Agarw                                                      | Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand |          |      |        |      |      |      |      |      |      |       |      |   |   |   |
|      | Publish                                                    | ning                                                     | <u>.</u> |      |        |      |      | _    |      |      |      |       |      |   |   |   |
| REFI | ERENCE                                                     | ES:                                                      |          |      |        |      |      |      |      |      |      |       |      |   |   |   |
| 1    | Agarw                                                      | Agarwal, R.S. "A Modern Approach to Verbal & Non-        |          |      |        |      |      |      |      |      |      |       |      |   |   |   |
|      | Verbal                                                     | Rea                                                      | asor     | ning | g." 21 | nd e | ed., | S. C | Chai | nd I | Publ | ishiı | ng.  |   |   |   |
|      | COs                                                        | POs                                                      |          |      |        |      |      |      |      |      |      |       | PSOs |   |   |   |
| `    | LOS                                                        | 1                                                        | 2        | 3    | 4      | 5    | 6    | 7    | 8    | 9    | 10   | 11    | 12   | 1 | 2 | 3 |
|      | 1                                                          | 3                                                        | 2        | 2    | 1      | 3    | 2    | 2    | 2    | 1    | 3    | 1     | 2    | 3 | 2 | 2 |
|      | 2                                                          | 3                                                        | 2        | 2    | 2      | 3    | 2    | 3    | 2    | 1    | 2    | 1     | 2    | 3 | 2 | 3 |
|      | 3                                                          | 3                                                        | 3        | 2    | 2      | 2    | 2    | 2    | 2    | 1    | 3    | 1     | 2    | 3 | 3 | 2 |
|      | 4                                                          | 2                                                        | 3        | 2    | 1      | 2    | 3    | 1    | 2    | 3    | 3    | 2     | 3    | 2 | 2 | 3 |
|      | 5                                                          | 2                                                        | 3        | 3    | 2      | 2    | 2    | 2    | 3    | 2    | 2    | 2     | 3    | 3 | 3 | 3 |
|      | 6                                                          | 3                                                        | 3        | 2    | 2      | 3    | 2    | 3    | 3    | 2    | 2    | 1     | 2    | 3 | 3 | 2 |
| O    | verall                                                     | ER                                                       | 900      | 2    |        | 2    | 2    | 2    | 2    | 2    | 2    |       | 2    | 2 | 2 | 2 |

3 3

Recommended by Board of Studies

Approved

Correlation

2

3 3

3

3 2

3rd ACM

COLLEGE OF TECHNOLOGY

3 2 3

13-11-2024

Date

3 3

30-11-2024

3

## **SEMESTER -VI**

| 23EC601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANTENNA AND WAVE L T P                        |       |       |        |     |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------|-------|--------|-----|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROPAGATION                                   | 3     | 0     | 0      | 3   |  |  |  |  |
| COURSE OBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ECTIVES:                                      |       |       |        |     |  |  |  |  |
| To expl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ain the various antenna parameters            |       |       |        |     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ve the radiation pattern of basic antenn      |       |       |        |     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y about the aperture and slot antenna         | s an  | d s   | peci   | ial |  |  |  |  |
| antennas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |       |       |        |     |  |  |  |  |
| To introduce the pattern multiplication and to design antenna arrays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |       |       |        |     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | carrays<br>niliarize the measurement of vario | 2110  | 212   | teni   | 20  |  |  |  |  |
| parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | ous   | an    | tern   | lla |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | duce the concepts of radio wave propa         | aoati | ion   |        |     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NDAMENTALS OF RADIATION                       | 1541  | 1011  |        | 9   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |       |       |        |     |  |  |  |  |
| ALC: A CONTRACTOR OF THE PARTY | antenna parameters - Gain, Directiv           |       |       |        |     |  |  |  |  |
| * /AME/07 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iation Resistance, Band width, Beam           |       |       | _      |     |  |  |  |  |
| Impedance. P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olarization mismatch, Antenna noise           | tem   | per   | atuı   | re, |  |  |  |  |
| Radiation from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n oscillating dipole, half wave dipole.       |       |       | 1      | Р.  |  |  |  |  |
| UNIT II AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ERTURE AND SLOT ANTENNAS                      |       |       | )      | 9   |  |  |  |  |
| Radiation fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m rectangular apertures, Uniform a            | and   | Ta    | per    | ed  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n antenna, Reflector antenna, Apertu          |       | 21277 | FILM U |     |  |  |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tures, Slot antennas, Microstrip antenna      |       |       |        | -   |  |  |  |  |
| UNIT III AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ITENNA ARRAYS                                 |       |       |        | 9   |  |  |  |  |
| NT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D. (1.1 D. 1.                                 | . 1   |       | 1 17   | 1   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ear array, Pattern multiplication, Broad      |       |       |        |     |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yagi array antenna, Basic principle           | of    | an    | ten    | na  |  |  |  |  |
| Synthesis- Binomial array.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |       |       |        |     |  |  |  |  |
| UNIT IV SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ECIAL ANTENNAS AND MEASURE                    | EME   | NT    | S      | 9   |  |  |  |  |
| Principle of f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | requency independent antennas -Sp             | iral  | ant   | enr    | ıa, |  |  |  |  |
| helical anten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | na, Log periodic. Modern antenna              | as-   | An    | ten    | na  |  |  |  |  |
| Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s-Test Ranges, Measurement of Gai             | n, I  | Rad   | iatio  | on  |  |  |  |  |
| pattern, Polari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zation, VSWR.                                 |       |       |        |     |  |  |  |  |

| UNI   | Γ V PROPAGATION OF RADIO WAVES                              | 9   |
|-------|-------------------------------------------------------------|-----|
|       |                                                             |     |
|       | es of propagation, Structure of atmosphere, Ground wa       |     |
|       | agation, Tropospheric propagation, Duct propagati           |     |
| _     | oscatter propagation, Flat earth and Curved earth conc      | ept |
| Sky v | wave propagation.                                           |     |
|       | TOTAL: 45 PERIO                                             | DS  |
| COU   | RSE OUTCOMES:                                               |     |
|       | After completion of the course, the students will be able t |     |
| CO1:  | Make use of different antenna parameters to derive          | the |
|       | radiation pattern of oscillating and half-wave dip          | ole |
|       | antenna.                                                    |     |
|       | Explain various aperture and slot antennas.                 |     |
| CO3:  | Apply pattern multiplication to design various anter        | nna |
|       | arrays.                                                     | >   |
| CO4:  | Explain the various types of special antennas such          | as  |
| 1     | frequency-independent antennas.                             |     |
| CO5:  | Interpret the procedure to measure antenna parameters.      |     |
| CO6:  | Explain the Radio Wave propagation for the desi             | red |
|       | application and its various parameters.                     | Υ   |
| TEX   | T BOOKS: AFFILIATED TO ANNA UNIVERSITY LAUTONOMO            | US. |
| 1     | John D Kraus," Antennas for all Applications", 3rd Editi    | on, |
|       | Mc Graw Hill, 2005.                                         |     |
| 2     | Constantine.A.Balanis "Antenna Theory Analysis a            | and |
|       | Design", Wiley Student Edition, 2006.                       |     |
| 3     | Raju, G. S. N. Antennas and wave propagation. Pears         | son |
|       | Education India, 2006.                                      |     |
| REFE  | ERENCES:                                                    |     |
| 1     | R.E.Collin,"Antennas and Radiowave Propagation",            | Mc  |
|       | Graw Hill 1985.                                             |     |
| 2     | Constantine.A.Balanis "Antenna Theory Analysis a            | and |
|       | Design", Wiley Student Edition, 2006.                       |     |

| 2         | D - :                                | <b>:</b>                                                    | C1                              | - 11                            | <b>:</b> -            |            | // A . | - 1                   |                            | т1.  |           |                   | 1                          | D                               | -11-  | _ //                       |
|-----------|--------------------------------------|-------------------------------------------------------------|---------------------------------|---------------------------------|-----------------------|------------|--------|-----------------------|----------------------------|------|-----------|-------------------|----------------------------|---------------------------------|-------|----------------------------|
| 3         | Rajeswa                              |                                                             |                                 |                                 | ,                     |            |        |                       |                            |      | •         | •                 |                            |                                 |       |                            |
|           | Revised                              | l Se                                                        | con                             | d E                             | diti                  | ion        | Ne     | w P                   | \ge                        | Int  | erna      | tion              | al Pı                      | ubli                            | she   | rs,                        |
|           | 2006.                                |                                                             |                                 |                                 |                       |            |        |                       |                            |      |           |                   |                            |                                 |       |                            |
| 4         | S. Dra                               | bov                                                         | vitc                            | h,                              | "N                    | Iod        | ern    | A                     | nte                        | nna  | ıs"       | Seco              | ond                        | Ec                              | litic | n,                         |
|           | Springe                              | r P                                                         | ubli                            | cati                            | ions                  | s, 20      | 007.   |                       |                            |      |           |                   |                            |                                 |       |                            |
| 5         | Robert                               | S.I                                                         | Ellic                           | ott                             | "A                    | ntei       | nna    | T                     | neo                        | ry   | and       | De                | esigr                      | າ"                              | Wil   | ey                         |
|           | Student                              | t Ed                                                        | itio                            | n, 2                            | 2006                  | ) <u>.</u> |        |                       |                            | •    |           |                   | Ü                          |                                 |       | ,                          |
| 6         | H.Sizur                              |                                                             |                                 |                                 |                       |            | ron    | aga                   | tio                        | n fo | r Te      | leco              | mm                         | บทเ                             | cati  | on                         |
| Ŭ         |                                      |                                                             |                                 |                                 |                       |            | -      | _                     |                            |      |           |                   |                            |                                 |       |                            |
|           | 2007.                                | Applications", First Indian Reprint, Springer Publications, |                                 |                                 |                       |            |        |                       |                            |      |           |                   |                            |                                 |       |                            |
|           | 2007.                                |                                                             |                                 |                                 |                       |            |        |                       |                            |      |           |                   |                            | _                               |       |                            |
|           |                                      | COs                                                         |                                 |                                 |                       |            |        |                       |                            |      |           |                   |                            |                                 |       |                            |
|           | COs                                  |                                                             | _                               | _                               | I -                   | _          |        | POs                   |                            | _    |           |                   |                            |                                 | PSO   |                            |
| •         |                                      | 1                                                           | 2                               | 3                               | 4                     | 5          | 6      | POs 7                 | 8                          | 9    | 10        | 11                | 12                         | 1                               | 2     | )s<br>3                    |
| •         | COs                                  | <b>1</b> 3                                                  | <b>2</b> 2                      | <b>3</b>                        | <b>4</b>              | 5          |        |                       |                            | 9    | <b>10</b> | 11<br>-           | <b>12</b> 2                |                                 |       |                            |
|           |                                      |                                                             |                                 | _                               | _                     | 5          |        |                       |                            | 9 -  |           | 11<br>-<br>-      |                            | 1                               |       |                            |
|           | 1                                    | 3                                                           | 2                               | _                               | _                     | 5          |        |                       |                            | 9 -  |           | 11<br>-<br>-      | 2                          | <b>1</b>                        |       |                            |
|           | 1 2                                  | 3 2                                                         | 2                               | 1                               | 1                     | 5          |        |                       |                            | 9    | 1         | 11                | 2                          | <b>1</b> 3 2                    |       |                            |
|           | 1<br>2<br>3                          | 3 2 3                                                       | 2<br>1<br>2                     | 1                               | 1                     | 5          |        |                       |                            | 9    | 1         | 11<br>-<br>-<br>- | 2 2 2                      | 1<br>3<br>2<br>3                |       |                            |
|           | 1<br>2<br>3<br>4                     | 3<br>2<br>3<br>2                                            | 2<br>1<br>2<br>1                | 1                               | 1                     | 5          |        |                       | 8                          | 9    | 1         | 11                | 2<br>2<br>2<br>2           | 1<br>3<br>2<br>3<br>2           |       | 3                          |
|           | 1<br>2<br>3<br>4<br>5                | 3<br>2<br>3<br>2<br>2<br>2                                  | 2<br>1<br>2<br>1<br>1           | 1<br>-<br>1<br>-<br>-           | 1                     | 5          |        |                       | 8<br>-<br>-<br>-<br>1<br>1 | 9    | 1 - 1     | 11                | 2<br>2<br>2<br>2<br>2<br>2 | 1<br>3<br>2<br>3<br>2<br>2<br>2 |       | 3<br>-<br>-<br>-<br>1<br>1 |
| 0         | 1<br>2<br>3<br>4<br>5<br>6           | 3<br>2<br>3<br>2<br>2                                       | 2<br>1<br>2<br>1<br>1           | 1                               | 1                     | 5          |        |                       | 8<br>-<br>-<br>-<br>-<br>1 | 9    | 1         | 11<br>            | 2<br>2<br>2<br>2<br>2      | 1<br>3<br>2<br>3<br>2<br>2      |       | 3<br>-<br>-<br>-<br>1      |
| O<br>Corr | 1<br>2<br>3<br>4<br>5<br>6<br>verall | 3<br>2<br>3<br>2<br>2<br>2<br>2                             | 2<br>1<br>2<br>1<br>1<br>1<br>2 | 1<br>-<br>1<br>-<br>-<br>-<br>1 | 1<br>1<br>-<br>-<br>1 | -          | 6      | 7<br>-<br>-<br>-<br>- | 8<br>-<br>-<br>-<br>1<br>1 | 9    | 1 1       | 11<br>            | 2<br>2<br>2<br>2<br>2<br>2 | 1<br>3<br>2<br>3<br>2<br>2<br>2 |       | 3<br>-<br>-<br>-<br>1<br>1 |

| 23EC602                                | VLSI AND CHIP DESIGN                      | L     | Т     | P    | C    |
|----------------------------------------|-------------------------------------------|-------|-------|------|------|
| 25LC002                                | VESI AND CITI DESIGN                      | 3     | 0     | 0    | 3    |
| COURSE OB                              | <br> FCTIVES:                             | 3     | U     | U    | 3    |
| • Unders                               | tand the fundamentals of IC technolog     | у со  | mp    | one  | ents |
|                                        | ir characteristics.                       |       |       |      |      |
| <ul> <li>Unders<br/>princip</li> </ul> | tand combinational logic circuits les.    | an    | d     | des  | ign  |
| <ul> <li>Unders</li> </ul>             | tand sequential logic circuits and clock  | ing s | stra  | teg  | ies. |
| <ul> <li>Unders</li> </ul>             | tand ASIC Design functioning and des      | ign.  |       |      |      |
|                                        | tand Memory Architecture and buildir      |       | ock   | s    |      |
| UNIT I                                 | MOS TRANSISTOR PRINCIPLES                 | S     |       |      | 9    |
| MOS logic far                          | milies (NMOS and PMOS), Ideal and I       | Non   | Ide   | eal  | IV   |
| Characteristic                         | s, CMOS devices, MOS (FET)                | T     | ran   | sist | or   |
|                                        | under Static and Dynamic Conditions       | , Te  | chn   | olo  | gy   |
| O I OW                                 | r consumption                             | 1     |       |      |      |
| UNIT II CC                             | OMBINATIONAL LOGIC CIRCUITS               | ſ     |       |      | 9    |
| Propagation I                          | Delays, stick diagram, Layout diagrams    | , Exa | mp    | les  | of   |
| combinationa                           | l logic design, Elmore's constant, Static | Log   | gic ( | Gate | es,  |
| Dynamic Log                            | ic Gates, Pass Transistor Logic, Power    | Dis   | sip   | atic | n,   |
|                                        | esign principles.                         | NO    | LU    | G)   |      |
|                                        | QUENTIAL LOGIC CIRCUITS AND               |       |       |      | 9    |
| CL                                     | OCKING STRATEGIES                         |       |       |      |      |
| Static Latches                         | s and Registers, Dynamic Latches ar       | nd I  | Regi  | iste | rs,  |
| Pipelines, No                          | n- bi stable Sequential Circuits, Timing  | clas  | sific | cati | on   |
| of Digital Sy                          | ystems, Synchronous Design, Self-Ti       | med   | lC    | ircu | ıit  |
| Design.                                |                                           |       |       |      |      |
| UNIT IV IN                             | TERCONNECT AND ARITHMETIC                 |       |       |      | 9    |
| CI                                     | RCUITS                                    |       |       |      |      |
| Interconnect                           | Parameters - Capacitance, Resi            | stan  | ce,   | aı   | nd   |
| Inductance, E                          | Electrical Wire Models, Sequential di     | gital | ciı   | cui  | ts:  |
|                                        | ltipliers, comparators, shift regis       |       |       | •    | -    |
| Implementation                         | on using Programmable Devices (           | RON   | Л,    | PL   | Α,   |

| FPG   | A), FPGA Building Block Architectures (XC4000 Seri           | les), |  |  |  |  |  |
|-------|--------------------------------------------------------------|-------|--|--|--|--|--|
| FPG   | A Interconnect Routing Procedures.                           |       |  |  |  |  |  |
| UNI   | T V ASIC DESIGN AND TESTING                                  | 9     |  |  |  |  |  |
| ASIC  | C Design Flow, Full custom and Semi-custom des               | ign,  |  |  |  |  |  |
| Stand | dard cell design and cell libraries, Introduction to         | test  |  |  |  |  |  |
| benc  | benches, writing test benches in Verilog HDL, Automatic test |       |  |  |  |  |  |
| patte | rn generation, Design for Testability: Ad Hoc Testing, S     | can   |  |  |  |  |  |
| Desig | gn, BIST, IDDQ Testing, Design for Manufacturabil            | lity, |  |  |  |  |  |
| Bour  | ndary Scan.                                                  |       |  |  |  |  |  |
|       | TOTAL: 45 PERIO                                              | ODS   |  |  |  |  |  |
| COU   | RSE OUTCOMES:                                                |       |  |  |  |  |  |
|       | After completion of the course, the students will be able    | to:   |  |  |  |  |  |
|       | Explain the MOS Transistor Principle                         |       |  |  |  |  |  |
| CO2:  | Develop Combinational Logic Circuits and Des                 | sign  |  |  |  |  |  |
|       | Principles in VLSI                                           |       |  |  |  |  |  |
| CO3:  | Develop Combinational Logic Circuits and Des                 | sign  |  |  |  |  |  |
|       | Principles in VLSI                                           |       |  |  |  |  |  |
| CO4:  | Analyze various interconnect models and arithmetic circ      | uits  |  |  |  |  |  |
|       | in VLSI                                                      | Υ     |  |  |  |  |  |
| CO5:  | Explain the FPGA building blocks and Memory Architect        | ure   |  |  |  |  |  |
|       | building blocks                                              |       |  |  |  |  |  |
|       | Summarize ASIC Design and Chip Design Testing                |       |  |  |  |  |  |
| TEXT  | Г BOOKS:                                                     |       |  |  |  |  |  |
| 1     | Jan D Rabaey, Anantha Chandrakasan, "Digital Integra         |       |  |  |  |  |  |
|       | Circuits: A Design Perspective", PHI, 2016.(Units II, III    | and   |  |  |  |  |  |
|       | IV).                                                         |       |  |  |  |  |  |
| 2     | Neil H E Weste, Kamran Eshranghian, "Principles of CM        |       |  |  |  |  |  |
|       | VLSI Design: A System Perspective," Addison Wes              | ley,  |  |  |  |  |  |
|       | 2009.( Units - I, IV).                                       |       |  |  |  |  |  |
| 3     | Michael J Smith ," Application Specific Integrated Circu     | ıits, |  |  |  |  |  |
|       | Addison Wesley,(Unit -V)                                     |       |  |  |  |  |  |

Samir Palnitkar," Verilog HDL:A guide to Digital Design Second and Synthesis", Edition. Pearson Education, 2003. (Unit - V) Parag K.Lala," Digital Circuit Testing and Testability", Academic Press, 1997, (Unit - V) **REFERENCES:** D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated Circuits, International Student Edition, McGraw Hill 1983 P. Rashinkar, Paterson and L. Singh, "System-on-a-Chip Techniques", Verification-Methodology and Kluwer Academic Publishers, 2001 SamihaMourad and YervantZorian, "Principles of Testing Electronic Systems", Wiley 2000 M. Bushnell and V. D. Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2000 **PSOs** POs COs \_ Overall Correlation Recommended by Board of Studies 04-11-2024

Approved by Academic

3rd ACM

Date

30-11-2024

| 23CE611 | ENVIRONMENTAL SCIENCE |   | T | P | C |
|---------|-----------------------|---|---|---|---|
|         | AND ENGINEERING       | 3 | 0 | 2 | 4 |

# **COURSE OBJECTIVES:**

- To provide basic knowledge on environment impact assessment
- To create an awareness on the pollutants in the environment
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products
- To develop simple climate models and evaluate climate changes using models

# UNIT I INTRODUCTION TO ENVIRONMENT IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework

# UNIT II MOVEMENT OF POLLUTANTS IN 9 ENVIRONMENT

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

# UNIT III | ECOLOGICAL RESTORATION 9

Wastewater treatment: anaerobic, aerobic process, methanogenesis, treatment schemes for waste water: dairy, distillery, tannery, sugar, antibiotic industries; solid waste treatment: sources and management (composting, vermiculture

| and methane production, landfill. hazardous waste treatment).  UNIT IV   ECOLOGICALLY SAFE PRODUCTS AND PROCESSES    Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation  UNIT V   CLIMATE CHANGE MODELS   9  Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of density of biofuels. 3. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate change |       |        |                                                         |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---------------------------------------------------------|-------|
| Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation  UNIT V CLIMATE CHANGE MODELS 9  Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of density of biofuels. 3. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                 | and 1 | metha  | ane production, landfill. hazardous waste treatment)    |       |
| Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation  UNIT V   CLIMATE CHANGE MODELS   9  Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of density of biofuels. 3. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                             | UNI   | ΓΙ     | ECOLOGICALLY SAFE PRODUCTS AND                          | 9     |
| plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation  UNIT V   CLIMATE CHANGE MODELS   9  Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of density of biofuels. 3. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                    |       |        | PROCESSES                                               |       |
| plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation  UNIT V   CLIMATE CHANGE MODELS   9  Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of density of biofuels. 3. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                    | Biofe | rtiliz | ers microbial insecticides and nesticides bio-contro    | ol of |
| stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation  UNIT V CLIMATE CHANGE MODELS  Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of density of biofuels. 3. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                    |       |        | -                                                       |       |
| microbial transformation  UNIT V   CLIMATE CHANGE MODELS   9  Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of density of biofuels. 3. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                               | _     | _      |                                                         |       |
| Constructing a climate model - climate system modeling - climate simulation and drift - Evaluation of climate model simulation - regional (RCM) - global (GCM) - Global average response to warming -climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of density of biofuels. 3. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                             |       |        |                                                         | 9).   |
| Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point.  2. Determination of density of biofuels.  3. Determination of BOD/COD in water.  4. Simulating the RCM and GCM model for different geographic conditions.  5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                         |       |        |                                                         | 9     |
| simulation and drift - Evaluation of climate model simulation - regional (RCM) - global (GCM) - Global average response to warming -climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |                                                         | ,     |
| regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date  TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point. 2. Determination of BOD/COD in water. 4. Simulating the RCM and GCM model for different geographic conditions. 5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |                                                         |       |
| TOTAL: 60 PERIODS  LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point.  2. Determination of density of biofuels.  3. Determination of BOD/COD in water.  4. Simulating the RCM and GCM model for different geographic conditions.  5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |        |                                                         |       |
| LIST OF EXPERIMENTS  1. Determination of Bio fuel parameters such as flash point and fire point.  2. Determination of density of biofuels.  3. Determination of BOD/COD in water.  4. Simulating the RCM and GCM model for different geographic conditions.  5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _     |        |                                                         | e to  |
| 1. Determination of Bio fuel parameters such as flash point and fire point.  2. Determination of density of biofuels.  3. Determination of BOD/COD in water.  4. Simulating the RCM and GCM model for different geographic conditions.  5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | warn  | ning - |                                                         |       |
| <ol> <li>Determination of Bio fuel parameters such as flash point and fire point.</li> <li>Determination of density of biofuels.</li> <li>Determination of BOD/COD in water.</li> <li>Simulating the RCM and GCM model for different geographic conditions.</li> <li>Measurement of Pollutant in environment by Gaussian Plume model.</li> <li>COURSE OUTCOMES:         <ul> <li>After completion of the course, the students will be able to:</li> </ul> </li> <li>CO1: Explain the importance of the process of Environmental impact assessment and its types.</li> <li>CO2: Illustrate the chemical processes and pollutant chemistry</li> <li>CO3: Identify the methods to solve environmental problems</li> <li>CO4: Apply the knowledge to develop ecofriendly products.</li> <li>CO5: Construct the various simple climate models for simulation</li> <li>CO6: Apply the climate model simulation to monitor climate</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |                                                         | ODS   |
| and fire point.  2. Determination of density of biofuels.  3. Determination of BOD/COD in water.  4. Simulating the RCM and GCM model for different geographic conditions.  5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 200    |                                                         |       |
| <ol> <li>Determination of density of biofuels.</li> <li>Determination of BOD/COD in water.</li> <li>Simulating the RCM and GCM model for different geographic conditions.</li> <li>Measurement of Pollutant in environment by Gaussian Plume model.</li> <li>COURSE OUTCOMES:         <ul> <li>After completion of the course, the students will be able to:</li> </ul> </li> <li>CO1: Explain the importance of the process of Environmental impact assessment and its types.</li> <li>CO2: Illustrate the chemical processes and pollutant chemistry</li> <li>CO3: Identify the methods to solve environmental problems</li> <li>CO4: Apply the knowledge to develop ecofriendly products.</li> <li>CO5: Construct the various simple climate models for simulation</li> <li>CO6: Apply the climate model simulation to monitor climate</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |        |                                                         | int   |
| <ol> <li>Determination of BOD/COD in water.</li> <li>Simulating the RCM and GCM model for different geographic conditions.</li> <li>Measurement of Pollutant in environment by Gaussian Plume model.</li> <li>COURSE OUTCOMES:         <ul> <li>After completion of the course, the students will be able to:</li> </ul> </li> <li>CO1: Explain the importance of the process of Environmental impact assessment and its types.</li> <li>CO2: Illustrate the chemical processes and pollutant chemistry</li> <li>CO3: Identify the methods to solve environmental problems</li> <li>CO4: Apply the knowledge to develop ecofriendly products.</li> <li>CO5: Construct the various simple climate models for simulation</li> <li>CO6: Apply the climate model simulation to monitor climate</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Í     |        | N N N N N N N N N N N N N N N N N N N                   |       |
| 4. Simulating the RCM and GCM model for different geographic conditions.  5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 9   |        |                                                         |       |
| geographic conditions.  5. Measurement of Pollutant in environment by Gaussian Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |                                                         | V     |
| <ul> <li>5. Measurement of Pollutant in environment by Gaussian Plume model.</li> <li>COURSE OUTCOMES:         <ul> <li>After completion of the course, the students will be able to:</li> </ul> </li> <li>CO1: Explain the importance of the process of Environmental impact assessment and its types.</li> <li>CO2: Illustrate the chemical processes and pollutant chemistry</li> <li>CO3: Identify the methods to solve environmental problems</li> <li>CO4: Apply the knowledge to develop ecofriendly products.</li> <li>CO5: Construct the various simple climate models for simulation</li> <li>CO6: Apply the climate model simulation to monitor climate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4     |        |                                                         |       |
| Plume model.  COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _     |        |                                                         |       |
| COURSE OUTCOMES:  After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5     |        |                                                         | n     |
| After completion of the course, the students will be able to:  CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Pl     | iume model.                                             |       |
| CO1: Explain the importance of the process of Environmental impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COU   | RSE    | OUTCOMES:                                               |       |
| impact assessment and its types.  CO2: Illustrate the chemical processes and pollutant chemistry  CO3: Identify the methods to solve environmental problems  CO4: Apply the knowledge to develop ecofriendly products.  CO5: Construct the various simple climate models for simulation  CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | After  | r completion of the course, the students will be able t | to:   |
| CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO1:  | Expl   | ain the importance of the process of Environmental      |       |
| CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | impa   | act assessment and its types.                           |       |
| CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO2:  | Illus  | trate the chemical processes and pollutant chemistry    | 7     |
| CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO3:  | Iden   | tify the methods to solve environmental problems        |       |
| CO6: Apply the climate model simulation to monitor climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO4:  | App    | ly the knowledge to develop ecofriendly products.       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO5:  | Cons   | struct the various simple climate models for simulati   | ion   |
| change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO6:  | App    | ly the climate model simulation to monitor climate      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | chan   | nge                                                     |       |

| TEX | TEXT BOOKS: |         |       |       |      |       |      |       |              |      |       |        |       |      |      |      |
|-----|-------------|---------|-------|-------|------|-------|------|-------|--------------|------|-------|--------|-------|------|------|------|
| 1   | David .     | EΝ      | eeli  | n "(  | Clin | nate  | e Cl | nang  | ge a         | nd   | Moc   | lellii | ng",  |      |      |      |
|     | Cambri      | dge     | Ur    | iive  | rsit | y Pı  | ess  | , Ca  | alifo        | rni  | a 201 | 12.    |       |      |      |      |
| 2   | Evans, 0    | G.G     | i. &  | Fur   | lon  | g, J. | . 20 | 10. ] | Env          | iro  | nme   | ntal   |       |      |      |      |
|     | Biotech     | nol     | ogy   | : Th  | eor  | y aı  | nd A | App   | olica        | atio | n (2r | nd e   | ditio | n).  |      |      |
|     | Wiley-B     | Blac    | kwe   | e11 F | ubl  | icat  | ion  | s.    |              |      |       |        |       |      |      |      |
| 3   | Pani, B.    | 200     | )7. ] | [ext  | boc  | ok o  | f Eı | nvir  | onr          | nen  | tal ( | Chen   | nistr | y. I | K    |      |
|     | internat    | ion     | al F  | ubl   | ishi | ing   | Ho   | use   |              |      |       |        |       |      |      |      |
| 4   | N.S. Ra     | maı     | n , A | A.R.  | Ga   | jbhi  | iye  | & S   | .R. 1        | Kha  | ınde  | shw    | ar,   |      |      |      |
|     | Environ     | ıme     | nta   | l Im  | ıpac | ct A  | sse  | ssm   | ent          | , 20 | 14,II | < Int  | erna  | tio  | nal  |      |
|     | Pvt Ltd.    | -       |       |       |      |       |      |       |              |      |       |        |       |      |      |      |
| REF | ERENCE      |         |       |       |      |       |      |       |              |      |       |        |       |      |      |      |
| 1   | Carson      | `       |       |       | ,    |       |      |       |              |      |       |        |       |      |      |      |
| 2   | Encyclo     | CATAVO. |       | of    | Env  | iro   | nme  | enta  | al Is        | sue  | s by  | Cra    | ig W  | 7. A | llin |      |
|     | &I          |         |       | 1     |      |       | 1    | 9     |              | 9    |       | 9      |       |      | W    |      |
| 3   | Encyclo     |         | edia  | of    | Env  | iro   | nme  | enta  | ıl st        | udi  | es by | y Wi   | lliar | n 📗  |      | ľ.   |
|     | Ashwor      |         |       | VA.   |      | Ÿ     |      |       | _ 1          | 1    |       |        |       |      | 20   |      |
| 4   | Climate     |         | 48.7  |       |      |       |      |       |              | `    | _     |        |       | itio | 1.   |      |
| 5   | Environ     |         |       | 200   |      |       |      |       |              |      | velo  | pme    |       |      | C.V  | r)   |
|     | Eberhar     | nd A    | Abil  | e ,R  | Rein | er A  |      |       |              | 5    | NIVER | SILL   | AUT   |      |      |      |
|     | COs         |         |       | _     |      | _     |      | POs   |              |      | 40    |        |       |      | SC   |      |
|     |             | 1       | 2     | 3     | 4    | 5     | 6    | 7     | 8            | 9    | 10    | 11     | 12    | 1    | 2    | 3    |
|     | 1           | 2       | 1     | -     | -    | -     | 2    | 1     | -            | -    | -     | -      | -     | 2    | -    | -    |
|     | 2           | 3       | 2     | 1     | 1    | -     | 3    | 2     | -            | -    | -     | -      | 1     | 3    | -    | -    |
|     | 3           | 3       | 2     | 1     | 1    | -     | 3    | 2     | -            | -    | -     | -      | 1     | 3    | -    | -    |
|     | 5           | 3       | 2     | 1     | 1    | -     | 3    | 2     | -            | -    | -     | -      | 1     | 3    | -    | -    |
|     | 6           | 3       | 2     | 1     | 1    | -     | 3    | 2     | -            | -    | -     | -      | 1     | 3    | -    | -    |
| 0   | verall      | 3       |       | 1     | T    | _     | 3    |       | -            | -    | -     | -      | 1     | 3    | -    | -    |
|     |             |         |       |       |      |       |      | _     |              |      |       |        |       |      |      |      |
|     | relation    | 3       | _     | _     | _    |       |      |       |              |      |       |        |       |      |      | _    |
| Cor | mmended     | l by    |       | ard   |      | tud   | ies  |       | 11-2<br>1 AC |      |       |        |       |      |      | 2024 |

| 23EC621 | VLSI LABORATORY | L | T | P | C |
|---------|-----------------|---|---|---|---|
|         |                 | 0 | 0 | 4 | 2 |

## **COURSE OBJECTIVES:**

- To learn Hardware Descriptive Language (Verilog/VHDL).
- To learn the fundamental principles of Digital System Design using HDL and FPGA.
- To learn the fundamental principles of VLSI circuit design in digital domain
- To learn the fundamental principles of VLSI circuit design in analog domain
- To provide hands on design experience with EDA platforms

#### LIST OF EXPERIMENTS:

- 1. Design of basic combinational and sequential (Flip-flops) circuits using HDL. Simulate it Using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 2. Design an Adder; Multiplier (Min 8 Bit) using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 3. Design and implement Universal Shift Register using HDL. Simulate it using Xilinx/Altera Software
- 4. Design Memories using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 5. Design Finite State Machine (Moore/Mealy) using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 6. Design 3-bit synchronous up/down counter using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 7. Design 4-bit Asynchronous up/down counter using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- 8. Design and simulate a CMOS Basic Gates & Emp; Flip-Flops. Generate Manual/Automatic Layout.
- 9. Design and simulate a 4-bit synchronous counter using a Flip-Flops. Generate Manual/Automatic Layout
- 10. Design and Simulate a CMOS Inverting Amplifier.

- 11. Design and Simulate basic Common Source, Common Gate and Common Drain Amplifiers.
- 12. Design and simulate simple 5 transistor differential amplifier.

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Apply HDL code for basic as well as advanced digital integrated circuit.
- **CO2:** Apply the logic modules into FPGA Boards.
- CO3: Make use of Synthesize process in Place and Route to digital circuits.
- **CO4:** Develop Simulate and Extract the layouts of Digital IC Blocks using EDA Tools.
- CO5: Build Simulate and Extract the layouts of Analog IC Blocks using EDA Tools.

CO6: Apply Test and Verification of IC design.

| COs         |   | POs |   |   |   |       |      |      |   |      |      |                 | PSOs |   |             |
|-------------|---|-----|---|---|---|-------|------|------|---|------|------|-----------------|------|---|-------------|
| COS         | 1 | 2   | 3 | 4 | 5 | 6     | 7    | 8    | 9 | 10   | 11   | 12              | 1    | 2 | 3           |
| 100         | 3 | 2   | 1 | 1 | 2 | ) E I | ΕC   | ΞE   | 1 | 1    | CH   | \1 <sub>0</sub> | 3    | 2 | // <b>-</b> |
| 2           | 3 | 2   | 1 | 1 | 2 | LIAT  | ED T | ) AN | 1 | NI1E | SITY | 2               | 3    | 2 | · -         |
| 3           | 3 | 2   | 1 | 1 | 2 | -     | -    | -    | 1 | 1    | 1    | 2               | 3    | 2 | -           |
| 4           | 3 | 2   | 1 | 1 | 2 | -     | -    | -    | 1 | 1    | 1    | 1               | 3    | 2 | -           |
| 5           | 3 | 2   | 1 | 1 | 2 | -     | -    | -    | 1 | 1    | -    | 3               | 3    | 2 | -           |
| 6           | 3 | 2   | 1 | 1 | 2 | -     | -    | -    | 1 | 1    | -    | 3               | 3    | 2 | -           |
| Overall     | 3 | 2   | 1 | 1 | 2 | _     | _    | _    | 1 | 1    | 1    | 2               | 3    | 2 | _           |
| Correlation |   |     |   |   |   |       |      | 11.0 |   |      | _    | _               | J    | _ |             |

Recommended by Board of Studies | 04-11-2024 | Approved by Academic | 3<sup>rd</sup> ACM | Date | 30-11-2024

| 23EC622 | PROJECT WORK PHASE-1 | L | T | P | C |
|---------|----------------------|---|---|---|---|
|         |                      | 0 | 0 | 4 | 2 |

#### **COURSE DESCRIPTION:**

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

#### **COURSE OBJECTIVES:**

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

# PROJECT OUTLINE:

| ,      |                                                       |
|--------|-------------------------------------------------------|
| Week 1 | Orientation and course overview. Formation of project |
|        | teams and approval of topics by HoD.                  |
| Week 2 | Initial meeting with supervisors. Define problem      |
|        | statement and objectives                              |
| Week 3 | Literature review: Research methodologies and topic-  |
|        | specific studies.                                     |
| Week 4 | Zeroth Review.                                        |

| Week 5     | Refinement of literature review and identification of    |
|------------|----------------------------------------------------------|
|            | research gaps.                                           |
| Week 6     | Identification of Base Paper.                            |
| Week 7     | First Review.                                            |
| Week 8     | Conceptual design discussions and brainstorming          |
|            | solutions.                                               |
| Week 9     | Narrowing done on the exact work.                        |
| Week 10    | Completion of first stage of the Project.                |
| Week 11    | Development of detailed conceptual design and            |
|            | methodology.                                             |
| Week 12    | Incorporation of feedback and refinement of design       |
|            | and methodology.                                         |
| Week 13    | Second Review.                                           |
| Week 14    | Compilation of Phase 1 results, report writing, and      |
| 48         | presentation preparation.                                |
| Week 15    | Final Viva Voce Presentations.                           |
| Individual | meetings will be set up on a need's basis in conjunction |

Individual meetings will be set up on a need's basis in conjunction with developing work

#### **EVALUATION:**

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is required to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDG-aligned goals.

Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written communication, ensuring effective delivery of technical content. **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Develop feasible solutions by analyzing complex engineering problems using foundational knowledge, mathematics, and science. **CO2:** Survey literatures to identify gaps, define research questions, and propose designs and methods for solving engineering problems. CO3: Make use of modern tools to check the feasibility of the solutions effectively. **CO4:** Evaluate societal and environmental impacts of solutions while incorporating sustainability and ethical practices. CO5: Combine in teams to plan, manage, and lead projects within professional and economic constraints. CO6: Formulate technical reports, deliver presentations, and engage in lifelong learning to adapt to new technologies. **POs PSOs** COs Overall Correlation

04-11-2024

3rd ACM

Date

30-11-2024

Recommended by Board of Studies

Approved by Academic

| 23EC623 | TECHNICAL TRAINING | L | T | P | C |
|---------|--------------------|---|---|---|---|
|         |                    | 0 | 0 | 2 | 1 |

#### PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

#### **COURSE OBJECTIVES:**

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

#### **COURSE OUTCOMES:**

| A    | fter completion of the course, the students will be able to: |
|------|--------------------------------------------------------------|
| CO1: | Identify specific domain from the enrolled branch and to     |
|      | get training preferable in computer-oriented platform.       |
| CO2: | Survey and apprehend the learning modules in the             |
|      | training program and to become expert in the specific        |
|      | domain.                                                      |

| CO3: | Apply theoretical learning in the practical environment |
|------|---------------------------------------------------------|
|      | and enhance the skillset of learner.                    |
| CO4: | Estimate the learning using available data.             |
| CO5: | Defend a presentation about the learning done in the    |
|      | specified skillset.                                     |
| CO6: | Construct a technical report about the training.        |

#### **GUIDELINES:**

- More than one training program may be given depending on availability and interest of the students. One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

#### **EVALUATION PATTERN:**

# **Training Coordinator:**

50 marks (Training Manual - 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall

approve the entries in the Training Manual during the weekly meeting with the student), Attendance – 10,).

# Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

# Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

|                    |      |     |      |      |     |     | -               | Гrаi | iniı | ng di | urati | on · | - 30 | Но   | urs  |  |  |
|--------------------|------|-----|------|------|-----|-----|-----------------|------|------|-------|-------|------|------|------|------|--|--|
| COs                |      |     |      |      |     | ]   | POs             | 6    |      |       |       |      | I    | PSOs |      |  |  |
| COs                | 1    | 2   | 3    | 4    | 5   | 6   | 7               | 8    | 9    | 10    | 11    | 12   | 1    | 2    | 3    |  |  |
| 1                  | 3    | 2   | 1    | 1    | 1   | 2   | 1               | -    | 4    | 1     | § •   | 3    | 3    |      | -    |  |  |
| 2                  | 3    | 3   | 2    | 1    | - 0 | 2   | 1               | -    | 4    | 1     | 1     | 3    | 3    | -    | -    |  |  |
| 3                  | 3    | 3   | 3    | 3    | 3   | •   | M               | 1    | 1    | 2     |       | 3    | 3    | 3    | 1    |  |  |
| 4                  | 3    | 3   | 3    | 2    | 2   | -   | -               | 1    | -    | 3     | -     | 3    | 3    | 2    | - 1  |  |  |
| 5 G <sub>M50</sub> | 3    | 3   | 3    | 2    | (10 | 2   | Ē               | 2    | 0    | 2     | GH    | 2    | 3    | (1)  | 2    |  |  |
| 6                  | 3    | 3   | 3    | 3    | 2   | 2   | EDT             | 2    | 4    | 3     | RSHY  | 3    | 3    | 2    | 2    |  |  |
| Overall            | 3    | 3   | 2    | 2    | 2   | 2   | 1               | 2    |      | 3     |       | 2    | 2    | •    | ,    |  |  |
| Correlation        | 3    | •   | 3    | 3    | 2   | 2   | 1               | 2    | -    | 3     | 1     | 3    | 3    | 2    | 2    |  |  |
| Recommended        | l by | Boa | ard  | of S | tud | ies | 04-             | 11-2 | 2024 |       |       |      |      | •    | ·    |  |  |
| Approve            | d b  | y A | cade | emi  | 2   |     | 3 <sup>rd</sup> | AC   | M    |       | Date  | !    | 30-  | 11-2 | 2024 |  |  |

| 23EC624 | TECHNICAL SEMINAR - 1 | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         |                       | 0 | 0 | 2 | 1 |

#### PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

#### **COURSE OBJECTIVES:**

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

### **GUIDELINES:**

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned

Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

#### **EVALUATION PATTERN**

#### **Seminar Coordinator:**

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

#### Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

## Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

TOTAL: 45 PERIODS

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

| CO1: | Identify                      | aca                                                | ade  | mic  | do   | cun  | nent  | ts fr | om   | the   | lite   | ratu  | re w | hicl | h ar | e    |
|------|-------------------------------|----------------------------------------------------|------|------|------|------|-------|-------|------|-------|--------|-------|------|------|------|------|
|      | related t                     | to h                                               | er/  | his  | are  | as c | of in | tere  | est. |       |        |       |      |      |      |      |
| CO2: | Survey                        | Survey and apprehend an academic document from the |      |      |      |      |       |       |      |       |        |       |      |      |      |      |
|      | literatur                     | e w                                                | hic  | h is | rel  | ate  | d to  | hei   | :/ h | is a  | reas   | of i  | nter | est. |      |      |
| CO3: | Compile                       | Compile a presentation about an academic document. |      |      |      |      |       |       |      |       |        |       |      |      |      |      |
| CO4: | Estimate                      | e th                                               | e C  | ont  | ents | s us | ing   | ava   | ilal | ole I | litera | ature | е.   |      |      |      |
| CO5: | Defend                        | a p                                                | rese | enta | tior | n ab | out   | an    | aca  | der   | nic (  | locu  | mer  | ıt.  |      |      |
| CO6: | Construct a technical report. |                                                    |      |      |      |      |       |       |      |       |        |       |      |      |      |      |
|      | COs                           | POs                                                |      |      |      |      |       | I     | PSOs |       |        |       |      |      |      |      |
| COs  |                               | 1                                                  | 2    | 3    | 4    | 5    | 6     | 7     | 8    | 9     | 10     | 11    | 12   | 1    | 2    | 3    |
|      | 1                             | 3                                                  | 3    | 3    | 2    | 2    | 1     | 1     | 2    | 3     | 3      | 2     | 2    | 3    | 2    | 2    |
|      | 2                             | 3                                                  | 3    | 3    | 1    | 2    | 1     | 1     | 2    | 3     | 3      | 2     | 2    | 3    | 2    | 2    |
|      | 3                             | 3                                                  | 3    | 2    | 2    | 2    | 1     | 1     | 1    | 3     | 3      | 1     | 1    | 3    | 2    | 2    |
|      | 4                             | 3                                                  | 3    | 2    | 1    | 1    | 1     | 2     | 2    | 3     | 3      | 2     | 1    | 3    | 2    | 2    |
|      | 5                             | 3                                                  | 3    | 2    | 1    | 1    | 1     | 1     | 2    | 2     | 2      | 2     | 2    | 3    | 1    | 2    |
|      | 6                             | 3                                                  | 3    | 2    | 1    | 1    | 1     | 1     | 2    | 2     | 2      | 2     | 2    | 3    | 1    | 2    |
| 3    | verall<br>relation            | 3                                                  | 3    | 2    | 1    | 1    | 1     | 1     | 2    | 3     | 3      | 2     | 2    | 3    | 2    | 2    |
| Reco | mmended                       | d by                                               | Во   | ard  | of S | Stud | ies   | 04-   | 11-2 | 2024  |        |       |      |      |      |      |
|      | Approve                       | ed b                                               | y A  | cad  | emi  | c    | M     | 3rd   | AC   | CM    | TE     | Date  | MO   | 30-  | 11-2 | 2024 |

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

#### SEMESTER - VII

| 23EC701 | OPTICAL COMMUNICATION | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         | AND NETWORKS          | 3 | 0 | 0 | 3 |

#### **COURSE OBJECTIVES:**

- To study various optical fiber modes and configurations of optical fibers
- To study transmission characteristics of optical fibers
- To learn about the various optical sources and detectors employed for communication
- To explore about various optical networking concepts
- To enrich knowledge about optical switching networks and protocols

| UNIT I | INTRODUCTION TO OPTICAL FIBER | 9 |
|--------|-------------------------------|---|
|        | COMMUNICATION                 |   |
|        | OWER DAS                      | 1 |

Introduction: The General Systems, Advantages of Optical Fiber Communication - Ray Theory Transmission: Total Internal Reflection, Acceptance Angle, Numerical Aperture - Electromagnetic Mode Theory for Optical Propagation: Modes in a Planar Guide, Phase and group velocity - Cylindrical Fiber: Step index fibers, Graded index fibers - Single mode fibers: Cutoff wavelength

| UNIT II | TRANSMISSION CHARACTERISTICS OF | 9 |
|---------|---------------------------------|---|
|         | OPTICAL FIBERS                  |   |

Attenuation - Bending Loss - Material absorption losses in silica glass fibers: Intrinsic absorption, Extrinsic absorption - Linear scattering losses: Rayleigh scattering, Mie Scattering - Nonlinear scattering losses: Stimulated Brillouin Scattering, Stimulated Raman Scattering - Dispersion: Chromatic dispersion, Material dispersion, Waveguide dispersion, Intermodal dispersion.

| UNIT | III ' | OPTICAL S | SOURCES . | AND OPT | <b>ICAL</b> |     | 9 |
|------|-------|-----------|-----------|---------|-------------|-----|---|
|      |       | DETECTO   | RS        |         |             |     |   |
| TED  | TD1   | TED D     | TED C     |         |             | T 1 | • |

LED: Planar LED, Dome LED, Surface emitter LED, Edge emitter

LED, Power and Efficiency, LED Characteristics – LASER: Structure and radiation pattern of laser diode, modes and threshold conditions, quantum efficiency and resonant frequency – Optical Detectors: Introduction, Optical Detection Principles, Quantum Efficiency, Responsivity, P-N Photodiode ,P-I-N Photo Diode and Avalanche Photodiode

## UNIT IV OPTICAL NETWORKING CONCEPTS

9

Optical Networking: Terminology, Optical Network Node and Switching Elements, Wavelength Division Multiplexed Networks, Overview of Public Telecommunications Network - Optical Network Transmission Modes, Layers and Protocols: Synchronous Networks, Asynchronous Transfer Mode, Open System Interconnection Reference Model, Optical Transport Network, and Internet Protocol

# UNIT V OPTICAL SWITCHING NETWORKS

9

Wavelength Routing Networks: Routing And Wavelength Assignment- Switching Networks: Optical Circuit Switched Networks, Optical Packet Switched Networks, Multiprotocol Label Switching, Optical Burst Switching Networks- Optical Network Deployment: Long Haul Networks, Metropolitan area networks, Access networks, Local Area Networks

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Apply basic terminologies of optical fibers, different modes and configurations
- CO2: transmission characteristics of fibers for deployment in optical communication systems
- CO3: Make use of optical sources for their use in transmitter section of optical communication system
- **CO4:** Develop optical detectors for their use in receiver section of optical communication system

| <ul> <li>protocols associated with different types of networks</li> <li>CO6: Explain optical switching networks, their classification a deployment</li> <li>TEXT BOOKS:         <ol> <li>Gred Keiser, "Optical Fiber Communication", McGraw F Education (India) Private Limited. Fifth Edition, Reprint</li> <li>John M.Senior, "Optical Fiber Communication", Pears Education, Fouth Edition.2010.</li> </ol> </li> <li>REFERENCES:         <ol> <li>Govind P. Agrawal, "Fiber-Optic Communication System Third Edition, John Wiley &amp; Sons, 2004.</li> </ol> </li> </ul> | lill<br>on                              |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|--|
| deployment  TEXT BOOKS:  1 Gred Keiser, "Optical Fiber Communication", McGraw F Education (India) Private Limited. Fifth Edition, Reprint  2 John M.Senior, "Optical Fiber Communication", Pears Education, Fouth Edition.2010.  REFERENCES:  1 Govind P. Agrawal, "Fiber-Optic Communication Systems                                                                                                                                                                                                                                                                         | lill<br>on                              |  |  |  |  |  |  |  |  |
| <ul> <li>TEXT BOOKS:</li> <li>1 Gred Keiser, "Optical Fiber Communication", McGraw F Education (India) Private Limited. Fifth Edition, Reprint</li> <li>2 John M.Senior, "Optical Fiber Communication", Pears Education, Fouth Edition.2010.</li> <li>REFERENCES:</li> <li>1 Govind P. Agrawal, "Fiber-Optic Communication System</li> </ul>                                                                                                                                                                                                                                  | on                                      |  |  |  |  |  |  |  |  |
| <ol> <li>Gred Keiser, "Optical Fiber Communication", McGraw F Education (India) Private Limited. Fifth Edition, Reprint</li> <li>John M.Senior, "Optical Fiber Communication", Pears Education, Fouth Edition.2010.</li> <li>REFERENCES:</li> <li>Govind P. Agrawal, "Fiber-Optic Communication System</li> </ol>                                                                                                                                                                                                                                                             | on                                      |  |  |  |  |  |  |  |  |
| Education (India) Private Limited. Fifth Edition, Reprint  2 John M.Senior, "Optical Fiber Communication", Pears Education, Fouth Edition.2010.  REFERENCES:  1 Govind P. Agrawal, "Fiber-Optic Communication Systems                                                                                                                                                                                                                                                                                                                                                         | on                                      |  |  |  |  |  |  |  |  |
| <ul> <li>John M.Senior, "Optical Fiber Communication", Pears Education, Fouth Edition.2010.</li> <li>REFERENCES:</li> <li>Govind P. Agrawal, "Fiber-Optic Communication Systems</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    |                                         |  |  |  |  |  |  |  |  |
| Education, Fouth Edition.2010.  REFERENCES:  1 Govind P. Agrawal, "Fiber-Optic Communication Systems"                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |  |  |  |  |  |  |  |  |
| REFERENCES:  1 Govind P. Agrawal, "Fiber-Optic Communication System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s",                                     |  |  |  |  |  |  |  |  |
| 1 Govind P. Agrawal, "Fiber-Optic Communication System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3″,                                     |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s",                                     |  |  |  |  |  |  |  |  |
| Third Edition, John Wiley & Sons, 2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Third Edition, John Wiley & Sons, 2004. |  |  |  |  |  |  |  |  |
| 2 J.Gower, "Optical Communication System", Prentice H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | all                                     |  |  |  |  |  |  |  |  |
| Of India, 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |  |  |  |  |  |  |  |
| Rajiv Ramaswami, "Optical Networks ", Second Edition,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |  |  |  |  |  |  |  |  |
| Elsevier, 2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |  |  |  |  |  |  |  |  |
| 4 P Chakrabarti, "Optical Fiber Communication", McGr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıw                                      |  |  |  |  |  |  |  |  |
| Hill Education (India)Private Limited, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |  |  |  |  |  |  |  |
| COs POs PSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSOs                                    |  |  |  |  |  |  |  |  |
| 1 2 3 4 5 6 7 8 9 10 11 12 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                       |  |  |  |  |  |  |  |  |
| <b>1</b> 3 2 1 1 - 1 - 2 - 2 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                       |  |  |  |  |  |  |  |  |
| <b>2</b> 3 3 2 2 - 2 - 2 - 2 - 2 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       |  |  |  |  |  |  |  |  |
| 3 3 2 1 1 - 1 2 - 2 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       |  |  |  |  |  |  |  |  |
| <b>4</b> 3 2 1 1 - 1 - 2 - 2 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                       |  |  |  |  |  |  |  |  |
| 5 3 3 2 2 - 1 2 - 2 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       |  |  |  |  |  |  |  |  |
| 6 3 2 1 1 - 1 2 - 2 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                       |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |  |  |  |  |  |  |  |  |
| Overall Correlation         3         3         2         2         -         2         -         -         -         2         -         3         3         -                                                                                                                                                                                                                                                                                                                                                                                                               | 3 3 7 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 |  |  |  |  |  |  |  |  |
| Overall Correlation         3         3         2         2         -         2         -         -         -         2         -         3         3         -           Recommended by Board of Studies         04-11-2024                                                                                                                                                                                                                                                                                                                                                  | -                                       |  |  |  |  |  |  |  |  |

| 23EC702 | COMPREHENSION | L | T | P | C |
|---------|---------------|---|---|---|---|
|         |               | 2 | 0 | 0 | 2 |

#### **PURPOSE:**

To provide a complete review of the topics covered in the previous semesters, to ensure that a comprehensive understanding of the subjects is achieved. The student will be tested as per the guidelines given by national level examinations like GATE, TANCET etc. It will also help students to face job interviews and competitive examinations.

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Analyse the phenomena involved in the concerned problem and solve them.
- CO2: Apply principles to new and unique circumstances.
- **CO3:** Estimate concepts and principles of concerned branch of engineering.
- CO4: Distinguish between facts and opinion in the engineering field.
- CO5: Deduct cause-and-effect relationships of any relationship.
- CO6: Interpret data from charts and graphs and judge the relevance of information.

#### **GUIDELINES:**

- The Department shall form an Internal Assessment Committee for the Comprehension with Academic coordinator for that class as the Comprehension Instructor and Class coordinator as member.
- Instructor shall provide required input to their students regarding the overview of all topics covered in the previous semesters.
- Periodic tests can be conducted to assess students.

| COs                            |   |   |   |   |   | I   | POs |      |              |    |      |    | I   | SC   | s    |
|--------------------------------|---|---|---|---|---|-----|-----|------|--------------|----|------|----|-----|------|------|
| COs                            | 1 | 2 | 3 | 4 | 5 | 6   | 7   | 8    | 9            | 10 | 11   | 12 | 1   | 2    | 3    |
| 1                              | 3 | 3 | 2 | 1 | - | 2   | 1   | -    | -            | -  | -    | 1  | 3   | -    | -    |
| 2                              | 3 | 2 | 1 | 1 | ı | 1   | 1   | 1    | -            | •  | -    | 1  | 3   | -    | -    |
| 3                              | 3 | 3 | 3 | 3 | 3 | -   | -   | 3    | -            | 3  | -    | 3  | 3   | 3    | 3    |
| 4                              | 3 | 2 | 1 | 1 | 2 | -   | -   | 1    | -            | 3  | -    | 3  | 3   | 2    | 1    |
| 5                              | 3 | 3 | 3 | 2 | 1 | 2   | -   | 2    | -            | 2  | -    | 2  | 3   | 1    | 2    |
| 6                              | 3 | 3 | 3 | 2 | 1 | 2   | -   | 2    | -            | 2  | -    | 2  | 3   | 1    | 2    |
| Overall                        | 3 | 3 | 3 | 3 | 3 | 2   | 1   | 2    |              | 3  |      | 3  | 3   | 3    | 2    |
| Correlation                    | • | 3 | • | 3 | • | ۷   | 1   |      | 1            | •  | -    | 3  | 3   | •    |      |
| Recommended by Board of Studie |   |   |   |   |   | ies | 04- | 11-2 | 024          |    |      |    |     |      |      |
| Approved by Academic           |   |   |   |   |   |     | 3rd | AC   | $\mathbf{M}$ |    | Date | )  | 30- | 11-2 | 2024 |



| 23EC721 | ADVANCED COMMUNICATION | L | T | P | C |
|---------|------------------------|---|---|---|---|
|         | LABORATORY             | 0 | 0 | 4 | 2 |

#### **COURSE OBJECTIVES:**

- Understand the working principle of optical sources, detectors, fibers
- Develop an understanding of simple optical communication link
- Understand the measurement of BER, Pulse broadening
- Understand and capture an experimental approach to digital wireless communication
- Understand actual communication waveforms that will be sent and received across the wireless channel

#### LIST OF OPTICAL EXPERIMENTS

- 1. Measurement of connector, bending, and fiber attenuation losses.
- 2. Numerical Aperture and Mode Characteristics of Fibers.
- 3. DC Characteristics of LED and PIN Photodiode.
- 4. Fiber optic Analog and Digital Link Characterization frequency response (analog), eye diagram and BER (digital)

#### LIST OF WIRELESS COMMUNICATION EXPERIMENTS

- Wireless Channel Simulation including fading and Doppler effects
- 2. Simulation of Channel Estimation, Synchronization & Equalization techniques
- 3. Analyze Impact of Pulse Shaping and Matched Filtering using Software Defined Radios
- 4. OFDM Signal Transmission and Reception using Software Defined Radios

#### LIST OF MICROWAVE AND ANTENNA EXPERIMENTS

- Characterization of Directional Couplers, Isolators, Circulators
- 2. Gunn Diode Characteristics

- 3. Radiation Pattern measurement of Horn Antenna
- 4. Simulation of Patch Antenna

# **TOTAL: 60 PERIODS**

| CO     | URSE | OUT             | CON | MES: |
|--------|------|-----------------|-----|------|
| $\sim$ | CIGL | $\sim$ $\sim$ 1 | -   |      |

After completion of the course, the students will be able to:

- CO1: Test for the performance of simple optical links by measurement of losses
- **CO2:** Analyse the mode characteristics of fiber
- CO3: Analyse the Eye Pattern, Pulse broadening of optical fiber, and the impact on BER
- **CO4:** Analyse the Wireless Channel Characteristics
- CO5: Analyze the performance of Wireless Communication System

**CO6:** Develop the intricacies of Microwave System design

| COs         | 234 | PE | 1 |   |     | 1    | POs | 1   | 9    |    | ~   | M    | I | PSC | s |
|-------------|-----|----|---|---|-----|------|-----|-----|------|----|-----|------|---|-----|---|
| COs         | 1   | 2  | 3 | 4 | 5   | 6    | 7   | 8   | 9    | 10 | 11  | 12   | 1 | 2   | 3 |
| 1           | 3   | 3  | 2 | 2 | _ ° | -    |     | -   | P    | 2  | -   | 2    | 3 | 1   | - |
| 2           | 3   | 3  | 2 | 2 | -   | -    |     | -   | 1    | 2  | 1   | 2    | 3 | 1   | - |
| 3           | 3   | 3  | 2 | 2 | 1   | 1    | -1  | -   | )    | 2  | -50 | 2    | 3 | ),  | 1 |
| 4 GINE      | 3   | 3  | 2 | 2 | 3   | Ų    | ű,  | Ш   | U)   | 2  | 7   | V    | 2 | 3   | ١ |
| 5           | 3   | 3  | 2 | 2 | 3   | LIAI |     | JAN | NA.U | 2  | 7   | AUTE | 2 | 3   | 1 |
| 6           | 3   | 2  | 1 | 1 | 1   | -    | ı   | -   | -    | 2  | •   | 2    | 3 | -   | • |
| Overall     | 3   | 3  | 2 | 2 | 1   |      |     |     |      | 2  |     | 2    | 3 | 1   |   |
| Correlation | 3   | 3  |   |   | 1   |      | -   | _   | _    |    | _   |      | 3 | 1   | - |

Recommended by Board of Studies 04-11-2024

Approved by Academic 3<sup>rd</sup> ACM Date 30-11-2024

| 23EC722 | PROJECT WORK PHASE-2 | L | T | P | C |
|---------|----------------------|---|---|---|---|
|         |                      | 0 | 0 | 6 | 3 |

## **COURSE DESCRIPTION:**

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through fabrication, simulation, or experimental validation. Students will refine their designs, validate test problems, and commission setups for final testing. This phase emphasizes hands-on application, calibration, and demonstration of results, culminating in a final presentation and report submission.

### **COURSE OBJECTIVES:**

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

# PROJECT OUTLINE:

| ,      |                                                                                                          |
|--------|----------------------------------------------------------------------------------------------------------|
| Week 1 | Review of Phase 1 outcomes and refinement of proposed methodology.                                       |
| Week 2 | Material procurement/ software setup for simulation, and initiation of fabrication/simulation work.      |
| Week 3 | Intermediate fabrication/simulation work and initial testing or calibration, troubleshooting challenges. |

| Week 4    | Second Review.                                                                          |
|-----------|-----------------------------------------------------------------------------------------|
| Week 5    | Validation of test problem or refinement of prototype/simulation                        |
| Week 6    | Optimisation of the test setup or solution trials, Data curation / uncertainty analysis |
| Week 7    | Final testing of setup or simulation outcomes,<br>Validation of Data .                  |
| Week 8    | Third Review                                                                            |
| Week 9    | Demonstration of the solution with high level of data accuracy and precision.           |
| Week 10   | Compilation of Phase 2 results, report writing, and presentation preparation.           |
| Week 11   | Preparing or publishing of research article/ Filing or Grant of Patent                  |
| Week 12   | Final Viva Voce Presentations.                                                          |
| Individua | moetings will be set up on a need's basis in conjunction                                |

Individual meetings will be set up on a need's basis in conjunction with developing work

#### **EVALUATION:**

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.

Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project.

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Apply appropriate methodologies to implement solutions for complex engineering problems identified in phase -1 using hardware / software or both systems.
- CO2: Develop existing functional prototypes or simulations models by integrating theoretical and practical knowledge.
- **CO3:** Evaluate solutions ensuring compliance with design specifications.
- **CO4:** Appraise the performance of solutions by refining designs or improving algorithms for enhanced outcomes.
- CO5: Collaborate effectively with team members to plan, manage, and execute engineering projects adhering to ethical principles and professional standards.
- CO6: Prepare technical reports, impactful presentations that communicate solutions effectively.

| COs                    | ~    | 2               | (8) |      | 00   | ar l | POs | TE.  | OF  | TE | CHI | VIO. | PSOs |   |   |  |
|------------------------|------|-----------------|-----|------|------|------|-----|------|-----|----|-----|------|------|---|---|--|
| COS                    | 1    | 2               | 3   | 4    | 5    | 6    | 7   | 8    | 9   | 10 | 11  | 12   | 1    | 2 | 3 |  |
| 1                      | 3    | 2               | 2   | 2    | 1    | 2    | 2   | 3    | 3   | 3  | 3   | 3    | 3    | 1 | 3 |  |
| 2                      | 3    | 2               | 2   | 2    | 1    | 2    | 2   | 3    | 3   | 3  | 3   | 3    | 3    | 1 | 3 |  |
| 3                      | 3    | 2               | 2   | 2    | 1    | 2    | 2   | 3    | 3   | 3  | 3   | 3    | 3    | 1 | 3 |  |
| 4                      | 3    | 2               | 2   | 2    | 1    | 1    | 2   | 3    | 3   | 3  | 3   | 3    | 3    | 1 | 3 |  |
| 5                      | 3    | 2               | 2   | 2    | 1    | 2    | 2   | 3    | 3   | 3  | 3   | 3    | 3    | 1 | 3 |  |
| 6                      | 3    | 2               | 2   | 2    | 1    | 2    | 2   | 3    | 3   | 3  | 3   | 3    | 3    | 1 | 3 |  |
| Overall<br>Correlation | 3    | 2               | 2   | 2    | 1    | 2    | 2   | 3    | 3   | 3  | 3   | 3    | 3    | 1 | 3 |  |
| Recommended            | d by | <sup>7</sup> Во | ard | of S | Stud | ies  | 04- | 11-2 | 024 |    |     |      |      |   |   |  |

Approved by Academic

3rd ACM

Date

30-11-2024

| 23EC723 | TECHNICAL SEMINAR - 2 | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         |                       | 0 | 0 | 4 | 2 |

#### PREAMBLE:

The course 'Technical Seminar 2' is intended to be continuation of Technical Seminar 1. It enables a B.E./B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

# **COURSE OBJECTIVES:**

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

#### **GUIDELINES:**

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

#### **EVALUATION PATTERN**

#### Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

#### **Presentation:**

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

# Report:

20 marks to be awarded by the IAC (check for technical

| CO               | content, overall quality, templates followed, adequacy of |      |                               |      |          |      |     |     |     |      |      |      |       |      |      |      |
|------------------|-----------------------------------------------------------|------|-------------------------------|------|----------|------|-----|-----|-----|------|------|------|-------|------|------|------|
|                  | references etc.).                                         |      |                               |      |          |      |     |     |     |      |      |      |       |      |      |      |
| COUR             | SE OU                                                     | TC   | ON                            | 1ES  | <b>:</b> |      |     |     |     |      |      |      |       |      |      |      |
| A                | fter co                                                   | mp   | leti                          | on o | of th    | ne c | our | se, | the | stu  | dent | s wi | ll be | abl  | e to | ):   |
| CO1: Id          | -                                                         |      |                               |      |          |      |     |     |     | the  | lite | ratu | re w  | hicl | n ar | e    |
|                  | elated t                                                  |      |                               |      |          |      |     |     |     |      |      |      |       |      |      |      |
| CO2: S           | •                                                         |      | _                             | _    |          |      |     |     |     |      |      |      |       |      | ıe   |      |
|                  | teratur                                                   |      |                               |      |          |      |     |     |     |      |      |      |       |      |      |      |
| CO3: C           |                                                           |      |                               |      |          |      |     |     |     |      |      |      |       | ent. |      |      |
| <b>CO4:</b> E    |                                                           |      |                               |      |          |      |     |     |     |      |      |      |       |      |      |      |
|                  | 5: Defend a presentation about an academic document.      |      |                               |      |          |      |     |     |     |      |      |      |       |      |      |      |
| CO6: C           | Constru                                                   | ct a | tec                           | hni  | ical     | rep  |     |     |     |      |      |      |       | 1    |      |      |
| CC               | )s                                                        |      |                               |      |          |      | I   | POs | 1   |      |      |      |       | I    | PSC  | s    |
|                  |                                                           | 1    | 2                             | 3    | 4        | 5    | 6   | 7   | 8   | 9    | 10   | 11   | 12    | 1    | 2    | 3    |
| 1                | 177                                                       | 3    | 3                             | 3    | 2        | 2    | 1   | 1   | 2   | 3    | 3    | 2    | 2     | 3    | 2    | 2    |
| 2                | 177                                                       | 3    | 3                             | 3    | 1        | 2    | 1   | 1   | 2   | 3    | 3    | 2    | 2     | 3    | 2    | 2    |
| 3                | 16                                                        | 3    | 3                             | 2    | 2        | 2    | 1   | 1   | 1   | 3    | 3    | 1    | 1     | 3    | 2    | 2    |
| 4                | W                                                         | 3    | 3                             | 2    | 1        | 1    | 1   | 2   | 2   | 3    | 3    | 2    | 1     | 3    | 2    | 2    |
| 5                | 1 21                                                      | 3    | 3                             | 2    | /1       | 1    | 1   | 1   | 2   | 2    | 2    | 2    | 2     | 3    | 1    | 2    |
| 6                | 50779                                                     | 3    | 3                             | 2    | 1        | 10   | 1   | 1   | 2   | 2    | 2    | 2    | 2     | 3    | 4    | - 2  |
|                  | APPLY 2.                                                  | 1283 | 3 3 2 1 1 1 1 2 3 3 2 2 3 2 2 |      |          |      |     |     |     |      |      |      |       |      |      |      |
| Ove              |                                                           | 3    | 3                             | 2    | 1        | 1    |     |     | ,   | •    | •    | ,    | ')    | 3    | 2    | ,    |
| Correl           | ation                                                     | 3    | 3                             | 2    | 1        | 1    | 1   | 1   |     |      |      | 2    | 2     | 3    | 2    | 2    |
| Correl<br>Recomi | ation                                                     | d by | у Во                          | ard  | of S     | Stud |     | 04- |     | 2024 |      | Date |       |      |      | 2024 |

#### **SEMESTER-VIII**

| 23EC821 | CAPSTONE PROJECT | L | T | P  | С  |
|---------|------------------|---|---|----|----|
|         |                  | 0 | 0 | 20 | 10 |

#### **COURSE DESCRIPTION:**

#### **Prerequisites:**

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

# **COURSE OBJECTIVES:**

The Capstone Project should demonstrate the depth and extent of knowledge of students

During this course, students will

- Investigate and evaluate prominent literature connected to vour CP.
- Present a clearly articulated investigative framework, while situating projects within established academic

- practices and/ or ideas.
- Develop and create practical resources (either computational or experimental) for the concerned area of interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

|             | -                                                        |
|-------------|----------------------------------------------------------|
| PROJECT     | OUTLINE:                                                 |
| Week 1      | Identification problem.                                  |
| Week 2      | Literature review.                                       |
| Week 3      | Preliminary work.                                        |
| Week 4      | First review.                                            |
| Week 5      | Completion of first stage of the Project methodology.    |
| Week 6      | Development.                                             |
| Week 7      | Testing & Validation.                                    |
| Week 8      | Second review.                                           |
| Week 9      | Repeatability.                                           |
| Week 10     | Report correction and Documentation                      |
| Week 11     | Third review-Submission of paper for conference/journal  |
| Week 12     | Thesis Correction and Submission                         |
| Individual  | meetings will be set up on a need's basis in conjunction |
| with develo | oping work                                               |

| COU                                                           | RSE OU                                                                                | JTC                   | CON                           | /IES                       | <b>5:</b>                     |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------------------|----------------------------|-------------------------------|------------------------------------|----------------------------|-----------------------------------|-----------------------|----------------------------|-----------------------|-----------------------|-----------------------|----------------------------|---------------------------------|----------------------------|
| After completion of the course, the students will be able to: |                                                                                       |                       |                               |                            |                               |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
| CO1:                                                          | Take part in challenging practical problems and find                                  |                       |                               |                            |                               |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
|                                                               | solutions by formulating proper methodology.                                          |                       |                               |                            |                               |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
| CO2:                                                          | Plan research methodology to tackle a specific problem.                               |                       |                               |                            |                               |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
| CO3:                                                          | Construct extensive study on particular research projects.                            |                       |                               |                            |                               |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
| CO4:                                                          | Develop experimental and computational studies on innovative research projects.       |                       |                               |                            |                               |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
| CO5:                                                          | Estimate incremental study on existing research projects.                             |                       |                               |                            |                               |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
| CO6:                                                          | CO6: Take part in real life engineering challenges and propose appropriate solutions. |                       |                               |                            |                               |                                    |                            |                                   |                       |                            |                       |                       |                       |                            |                                 |                            |
| COs                                                           |                                                                                       | ER Do                 |                               |                            |                               |                                    | POs                        |                                   |                       |                            |                       |                       | PSOs                  |                            |                                 |                            |
| COS                                                           | 1                                                                                     | 2                     | 3                             | 4                          | 5                             | 6                                  | 7                          | 8                                 | 9                     | 10                         | 11                    | 12                    | 1                     | 2                          | -                               |                            |
| Į.                                                            | 1                                                                                     | 3                     | 3                             | 3                          | 0                             |                                    |                            |                                   |                       |                            |                       |                       |                       |                            | -                               | 3                          |
|                                                               |                                                                                       |                       |                               | )                          | 3                             | 3                                  | 3                          | 3                                 | 3                     | 3                          | 3                     | 3                     | 3                     | 3                          | 3                               | <b>3</b>                   |
|                                                               | 2                                                                                     | 3                     | 2                             | 3                          | 3                             | 2                                  | 3                          | 3 2                               | 3                     | 3                          | 3                     | 3                     | 3                     | 3                          |                                 | _                          |
|                                                               | 3                                                                                     | 3 2                   | 2                             |                            |                               | 1                                  | - 1                        | -5                                | - 1                   |                            | _                     | _                     |                       | _                          | 3                               | 3                          |
| 1                                                             | _ \V                                                                                  |                       |                               | 3                          | 3                             | 2                                  | 3                          | 2                                 | 3                     | 2                          | 3                     | 2                     | 3                     | 3                          | 3 2                             | 3                          |
|                                                               | 3                                                                                     | 2                     | 3                             | 3                          | 3                             | 2                                  | 3                          | 2                                 | 3                     | 2                          | 3                     | 2                     | 3                     | 3                          | 3 2 3                           | 3 3 3                      |
|                                                               | 3 4                                                                                   | 2                     | 3 2                           | 3<br>3<br>2                | 3 3 2                         | 2 3 2                              | 3 3 2                      | 2<br>3<br>2                       | 3 3 2                 | 2 3 2                      | 3 3 2                 | 2<br>3<br>2           | 3 3 2                 | 3 2 2                      | 3<br>2<br>3<br>2                | 3<br>3<br>3<br>2           |
| O                                                             | 3 4 5                                                                                 | 2<br>2<br>2<br>2      | 3 2 3 2                       | 3<br>3<br>2<br>3<br>2      | 3<br>3<br>2<br>3<br>2         | 2<br>3<br>2<br>3<br>2              | 3<br>3<br>2<br>3<br>2      | 2<br>3<br>2<br>3<br>2             | 3<br>3<br>2<br>3<br>2 | 2<br>3<br>2<br>3<br>2      | 3<br>3<br>2<br>3<br>2 | 2<br>3<br>2<br>3<br>2 | 3<br>3<br>2<br>3<br>2 | 3<br>2<br>2<br>2<br>2      | 3<br>2<br>3<br>2<br>3<br>2      | 3<br>3<br>3<br>2<br>3<br>2 |
| Corr                                                          | 3 4 5 6 verall                                                                        | 2<br>2<br>2<br>2<br>3 | 3<br>2<br>3<br>2<br>3         | 3<br>3<br>2<br>3<br>2<br>3 | 3<br>3<br>2<br>3<br>2<br>3    | 2<br>3<br>2<br>3<br>2<br>3         | 3<br>3<br>2<br>3<br>2<br>3 | 2<br>3<br>2<br>3<br>2             | 3<br>3<br>2<br>3<br>2 | 2<br>3<br>2<br>3<br>2<br>3 | 3<br>3<br>2<br>3<br>2 | 2<br>3<br>2<br>3      | 3<br>3<br>2<br>3      | 3<br>2<br>2<br>2           | 3<br>2<br>3<br>2<br>3           | 3<br>3<br>3<br>2<br>3      |
| Corr                                                          | 3<br>4<br>5<br>6<br>verall                                                            | 2<br>2<br>2<br>2<br>3 | 3<br>2<br>3<br>2<br>3<br>y Bo | 3<br>3<br>2<br>3<br>2<br>3 | 3<br>2<br>3<br>2<br>3<br>of § | 2<br>3<br>2<br>3<br>2<br>3<br>5tud | 3<br>3<br>2<br>3<br>2<br>3 | 2<br>3<br>2<br>3<br>2<br>3<br>04- | 3<br>3<br>2<br>3<br>2 | 2<br>3<br>2<br>3<br>2<br>3 | 3<br>3<br>2<br>3<br>2 | 2<br>3<br>2<br>3<br>2 | 3<br>3<br>2<br>3<br>2 | 3<br>2<br>2<br>2<br>2<br>3 | 3<br>2<br>3<br>2<br>3<br>2<br>3 | 3<br>3<br>3<br>2<br>3<br>2 |

# VERTICAL 1 - SEMICONDUCTOR CHIP DESIGN AND TESTING

| 23EC031             | ADVANCED DIGITAL SYSTEM | L | T | P | C |  |  |  |  |
|---------------------|-------------------------|---|---|---|---|--|--|--|--|
|                     | DESIGN                  | 3 | 0 | 0 | 3 |  |  |  |  |
| COLIDGE ODIECTIVES. |                         |   |   |   |   |  |  |  |  |

#### **COURSE OBJECTIVES:**

- To design asynchronous sequential circuits.
- To learn about hazards in asynchronous sequential circuits.
- To study the fault testing procedure for digital circuits.
- To understand the architecture of programmable devices.
- To design and implement digital circuits using programming tools.

# UNIT I SEQUENTIAL CIRCUIT DESIGN 9

Analysis of Clocked Synchronous Sequential Circuits and Modelling- State Diagram, State Table, State Table Assignment and Reduction-Design of Synchronous Sequential Circuits Design of Iterative Circuits-ASM Chart and Realization using ASM.

# UNIT II ASYNCHRONOUS SEQUENTIAL CIRCUIT 9 DESIGN

Analysis of Asynchronous Sequential Circuit – Flow Table Reduction-Races-State Assignment-Transition Table and Problems in Transition Table- Design of Asynchronous Sequential Circuit - Static, Dynamic and Essential hazards – Mixed Operating Mode Asynchronous Circuits – Designing Vending Machine Controller.

# UNIT III FAULT DIAGNOSIS AND TESTABILITY 9 ALGORITHMS

Fault Table Method-Path Sensitization Method – Boolean Difference Method - D Algorithm – Tolerance Techniques – The Compact Algorithm – Fault in PLA – Test Generation - DFT Schemes – Built in Self Test.

## UNIT IV SYNCHRONOUS DESIGN USING 9 PROGRAMMABLE DEVICES Programming Logic Device Families - Designing a Synchronous Sequential Circuit using PLA/PAL - Designing ROM with PLA -Realization of Finite State Machine using PLD - FPGA - Xilinx FPGA - Xilinx 4000. SYSTEM DESIGN USING VERILOG UNIT V 9 Hardware Modelling with Verilog HDL - Logic System, Data Types And Operators For Modelling In Verilog HDL - Behavioral Descriptions In Verilog HDL - HDL Based Synthesis - Synthesis Of Finite State Machines- Structural Modelling - Compilation And Simulation Of Verilog Code - Test Bench - Realization Of Combinational And Sequential Circuits Using Verilog - Registers - Counters - Sequential Machine - Serial Adder - Multiplier- Divider - Design Of Simple Microprocessor, Introduction To System Verilog. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Analyze and design synchronous sequential circuits. CO2: Analyze hazards and design asynchronous sequential circuits. CO3: Explain the testing procedure for combinational circuit and PLA. **CO4:** Construct synchronous design using programmable device. CO5: Interpret Hardware Modelling using Verilog HDL **CO6:** Construct digital circuits using HDL language. **TEXT BOOKS:** Charles H.Roth jr., "Fundamentals of Logic Design" 1 Thomson Learning, 2013. M.D.Ciletti , Modeling, Synthesis and Rapid Prototyping 2

with the Verilog HDL, Prentice Hall, 1999

| 3   | M.G.Arnold, Verilog Digital – Computer Design, Prentice                            |                            |                       |                       |                       |                       |                  |      |                       |      |                       |                  |                  |                       |                       |                            |
|-----|------------------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|------|-----------------------|------|-----------------------|------------------|------------------|-----------------------|-----------------------|----------------------------|
|     | Hall (P                                                                            | Hall (PTR), 1999.          |                       |                       |                       |                       |                  |      |                       |      |                       |                  |                  |                       |                       |                            |
| REF | ERENCE                                                                             | S:                         |                       |                       |                       |                       |                  |      |                       |      |                       |                  |                  |                       |                       |                            |
| 1   | Nripen                                                                             | dra                        | ΝE                    | Bisw                  | vas                   | "Lo                   | gic              | Des  | sigr                  | ı Th | eory                  | 7" P1            | enti             | ce I                  | Hall                  | of                         |
|     | India,20                                                                           | 001.                       |                       |                       |                       |                       |                  |      |                       |      |                       |                  |                  |                       |                       |                            |
| 2   | Paragk.                                                                            | Lal                        | a "]                  | Fau                   | lt T                  | ole                   | ran              | t ar | nd ]                  | Fau  | lt Te                 | estal            | ole F            | lar                   | dwa                   | are                        |
|     | Design'                                                                            | "В                         | SΡι                   | ıbli                  | cati                  | ons                   | ,200             | 02   |                       |      |                       |                  |                  |                       |                       |                            |
| 3   | Paragk.                                                                            | Lal                        | a "                   | 'Dig                  | gita                  | 1 S                   | yste             | em   | De                    | sig  | n U                   | sing             | , PI             | JD"                   | В                     | S                          |
|     | Publica                                                                            | tior                       | ıs,20                 | 003.                  |                       |                       |                  |      |                       |      |                       |                  |                  |                       |                       |                            |
| 4   | Palnitka                                                                           | ar ,                       | Ve                    | rilo                  | g F                   | IDL                   | <b>.</b> – .     | Α (  | Guio                  | de t | o D                   | igita            | 1 De             | esig                  | n a                   | nd                         |
|     | Palnitkar , Verilog HDL - A Guide to Digital Design and Synthesis, Pearson , 2003. |                            |                       |                       |                       |                       |                  |      |                       |      |                       |                  |                  |                       |                       |                            |
|     | Synthes                                                                            | sis, l                     | Pea                   | rsoı                  | n,2                   | 2003                  | 3.               |      |                       |      |                       |                  |                  |                       |                       |                            |
|     | 1 ,                                                                                | sis, ]                     | Pea                   | rsoı                  | n, 2                  | 2003                  |                  | POs  | <u> </u>              |      |                       |                  |                  | I                     | PSC                   | s                          |
|     | Synthes COs                                                                        | sis, ]<br>1                | Pea:                  | rsoi                  | 1,2                   | 2003<br>5             |                  | POs  | 8                     | 9    | 10                    | 11               | 12               | 1<br>1                | PSO<br>2              | )s<br>3                    |
|     | 1 ,                                                                                |                            | 1                     |                       |                       | 1                     | I                |      |                       | 9    | <b>10</b> 1           | <b>11</b> 1      | <b>12</b> 1      |                       | -                     |                            |
|     | COs                                                                                | 1                          | 2                     | 3                     | 4                     | 5                     | 6                | 7    | 8                     | 9 -  |                       |                  |                  | 1                     | 2                     | 3                          |
|     | COs                                                                                | <b>1</b> 3                 | <b>2</b> 3            | 3 2                   | <b>4</b> 2            | 5                     | 6<br>1           | 7    | 8                     | 9    | 1                     | 1                | 1                | <b>1</b> 3            | <b>2</b>              | <b>3</b>                   |
|     | COs  1 2                                                                           | 1<br>3<br>3                | <b>2</b> 3 3          | 3 2                   | <b>4</b> 2            | 5<br>1<br>1           | 6<br>1           | 7    | 8<br>1<br>1           | 9    | 1                     | 1                | 1                | <b>1</b> 3 3          | 1<br>1                | 3<br>1<br>1                |
|     | COs  1 2 3                                                                         | 1<br>3<br>3<br>2           | 3<br>3                | 3<br>2<br>2           | 4<br>2<br>2           | 5<br>1<br>1           | 6<br>1<br>1      | 7    | 8<br>1<br>1           | 9    | 1<br>1<br>1           | 1<br>1<br>1      | 1<br>1<br>1      | 1<br>3<br>3<br>3      | 1<br>1<br>1           | 3<br>1<br>1<br>1           |
|     | COs 1 2 3 4                                                                        | 1<br>3<br>3<br>2<br>3      | 2<br>3<br>3<br>1<br>2 | 3<br>2<br>2           | 4<br>2<br>2<br>-      | 5<br>1<br>1<br>1      | 6<br>1<br>1<br>1 | 7    | 8<br>1<br>1<br>1      | 9    | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2 | 1<br>1<br>1<br>2 | 1<br>3<br>3<br>3<br>3 | 1<br>1<br>1<br>1      | 3<br>1<br>1<br>1<br>1      |
|     | COs 1 2 3 4 5                                                                      | 1<br>3<br>3<br>2<br>3<br>2 | 2<br>3<br>3<br>1<br>2 | 3<br>2<br>2<br>-<br>1 | 4<br>2<br>2<br>-<br>1 | 5<br>1<br>1<br>1<br>1 | 1 1 1 1 1 1      | 7    | 8<br>1<br>1<br>1<br>1 | 9    | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>2 | 1<br>1<br>2<br>1 | 1<br>3<br>3<br>3<br>3 | 1<br>1<br>1<br>1<br>1 | 3<br>1<br>1<br>1<br>1<br>1 |

| 23EC032 | ANALOG IC DESIGN | L | T | P | C |
|---------|------------------|---|---|---|---|
|         |                  | 2 | 0 | 2 | 3 |

- To design and analyse basic MOS amplifier configurations for key performance parameters.
- To evaluate frequency response and noise in amplifier stages.
- To study feedback and design single-stage operational amplifiers.
- To understand stability and apply frequency compensation techniques.
- To learn fault detection and testability methods in logic circuits.

## UNIT I SINGLE STAGE AMPLIFIERS 6

Basic MOS physics and equivalent circuits and models, CS, CG and Source Follower, differential amplifier with active load, Cascode and Folded Cascode configurations with active load, design of Differential and Cascode Amplifiers – to meet specified SR, noise, gain, BW, ICMR and power dissipation, voltage swing, high gain amplifier structures.

## UNIT II HIGH FREQUENCY AND NOISE 6 CHARACTERISTICS OF AMPLIFIERS

Miller effect, association of poles with nodes, frequency response of CS, CG and Source Follower, Cascode and Differential Amplifier stages, statistical characteristics of noise, noise in Single Stage amplifiers, noise in Differential Amplifiers.

| UNIT III | FEEDBACK AND SINGLE STAGE | 6 |
|----------|---------------------------|---|
|          | OPERATIONAL AMPLIFIER     |   |

Properties and types of negative feedback circuits, effect of loading in feedback networks, operational amplifier performance parameters, single stage Op Amps, two-stage Op Amps, input

range limitations, gain boosting, slew rate, power supply rejection, noise in Op Amps.

## UNIT IV STABILITY, FREQUENCY COMPENSATION

Multipole Systems, Phase Margin, Frequency Compensation, Compensation of Two Stage Op Amps, Slewing In Two Stage Op Amps, Other Compensation Techniques.

## UNIT V LOGIC CIRCUIT TESTING

6

6

Faults in Logic Circuits- Basic Concepts of Fault Detection- Design for Testability- AdHoc Techniques, Level-Sensitive Scan Design, Partial Scan, Built-in Self-Test.

### **TOTAL: 30 PERIODS**

### PRACTICAL EXERCISES:

- 1. Design a CMOS inverter and analyze its characteristics.
- 2. Design a Common source amplifier and analyze its performance.
- Design a Common drain amplifier and analyze its performance.
- 4. Design a Common gate amplifier and analyze its performance.
- **5.** Design a differential amplifier with resistive load using transistors.

### TOTAL:30 PERIODS

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Explain the specification of designing an amplifier.
- CO2: Design of differential and cascode amplifiers.
- **CO3:** Design and analyse feedback amplifiers.
- **CO4:** Design and analyse of single stage op-amps.
- **CO5:** Analyse the stability of op amp.
- **CO6:** Explain the testing experience of logic circuits.

## **TEXT BOOKS:**

- 1 Behzad Razavi, "Design Of Analog Cmos Integrated Circuits", Tata Mcgraw Hill, 2001.(Unit -I,II,III,IV)
- Parag K.Lala, "An Introduction to Logic Circuit Testing", Morgan & Claypool Publishers, 2009. (Unit V)

## **REFERENCES:**

- Willey M.C. Sansen, "Analog Design Essentials", Springer, 2006.
- Grebene, "Bipolar And Mos Analog Integrated Circuit Design", John Wiley & Sons,Inc.,2003. Phillip E.Allen, Douglas R. Holberg, "Cmos Analog Circuit Design", Oxford University Press, 2nd Edition, 2002.
- 3 Jacob Baker "CMOS: Circuit Design, Layout, And Simulation, Wiley IEEE Press, 3rd Edition, 2010.

| COs                    |   | POs |   |          |   |   |      |   |      |    |    |    |   | PSOs |   |  |  |
|------------------------|---|-----|---|----------|---|---|------|---|------|----|----|----|---|------|---|--|--|
| COS                    | 1 | 2   | 3 | 4        | 5 | 6 | 7    | 8 | 9    | 10 | 11 | 12 | 1 | 2    | 3 |  |  |
| 17/4                   | 2 | 1   | 2 | <b>-</b> | 1 | 1 | ķ-   | 1 | 7-   | 1  | 1  | 1  | 3 | 1    | 1 |  |  |
| 2                      | 3 | 3   | 2 | 2        | 1 | 1 | 4    | 1 | 4    | 1  | 1  | 1  | 3 | 1    | 1 |  |  |
| 3                      | 3 | 3   | 2 | 2        | 1 | 1 |      | 1 | /    | 1  | 1  | 1  | 3 | 1    | 1 |  |  |
| 4                      | 3 | 3   | 2 | 2        | 1 | 1 | 1    | 1 | 1    | 1  | 1  | 1  | 3 | 1    | 1 |  |  |
| 5 CINE                 | 3 | 3   | 2 | 2        | 1 | 1 | .EK  | 1 | 0    | 1  | 1  | 1  | 3 | 1    | 1 |  |  |
| 6                      | 2 | 1   | - | -        | 1 | 1 | ED T | 1 | NA.U | 1  | 1  | 1  | 3 | 1    | 1 |  |  |
| Overall<br>Correlation | 3 | 3   | 2 | 2        | 1 | 1 | -    | 1 | -    | 1  | 1  | 1  | 3 | 1    | 1 |  |  |

| 23EC033 | LOW POWER IC DESIGN                      | L     | T    | P    | C   |
|---------|------------------------------------------|-------|------|------|-----|
|         |                                          | 2     | 0    | 2    | 3   |
| COURSE  | OBJECTIVES:                              |       |      |      |     |
| •       | To learn the fundamentals of low power   | er lo | w v  | olt  | age |
|         | VLSI design.                             |       |      |      |     |
| •       | To understand the impact of power        | r o   | n s  | syst | em  |
|         | performance.                             |       |      |      |     |
| •       | To understand the different design appro | oach  | es.  |      |     |
| •       | To develop the low power low voltage n   | nemo  | orie | s.   |     |
| •       | To develop the low power low voltage n   | nemo  | orie | s.   |     |
| UNIT I  | FUNDAMENTALS OF LOW POWER                |       |      |      | 6   |
|         | CIRCUITS                                 |       |      |      |     |

Need for Low Power Circuit Design, Sources of Power Dissipation – Switching Power Dissipation, Short Circuit Power Dissipation, Leakage Power Dissipation, Glitching Power Dissipation, Short Channel Effects –Drain Induced Barrier Lowering and Punch Through, Surface Scattering, Velocity Saturation, Impact Ionization, Hot Electron Effect.

| UNIT II | LOW-POWER DESIGN APPROACHES | 6     |
|---------|-----------------------------|-------|
|         |                             | 10.00 |

Low-Power Design through Voltage Scaling: VTCMOS circuits, MTCMOS circuits, Architectural Level Approach -Pipelining and Parallel Processing Approaches. Switched Capacitance Minimization Approaches: System Level Measures, Circuit Level Measures, Mask level Measures.

## UNIT III LOW-VOLTAGE LOW-POWER ADDERS 6

Introduction, Standard Adder Cells, CMOS Adder's Architectures – Ripple Carry Adders, Carry Look-Ahead Adders, Carry Select Adders, Carry Save Adders, Low Voltage Low Power Design Techniques –Trends of Technology and Power Supply Voltage, Low Voltage Low-Power Logic Styles

| UNI   | IV      | LOW-VOLTAGE LOW-POWER MULTIPLIERS                      | 6    |
|-------|---------|--------------------------------------------------------|------|
| Intro | ductio  | on, Overview of Multiplication, Types of Multip        | lier |
| Arch  | itectu  | res, Braun Multiplier, Baugh-Wooley Multiplier, Bo     | oth  |
| Mult  | iplier, | Introduction to Wallace Tree Multiplier                |      |
| UNIT  | T V     | LOW-VOLTAGE LOW-POWER MEMORIES                         | 6    |
| Basic | s of R  | OM, Low-Power ROM Technology, Future Trend             | and  |
|       |         | ent of ROMs, Basics of SRAM, Memory Cell, Pre-cha      |      |
|       | •       | zation Circuit, Low-Power SRAM Technologies, Ba        | _    |
|       | -       | Self-Refresh Circuit, Future Trend and Developmer      |      |
| DRA   |         | •                                                      |      |
|       |         | TOTAL: 30 PERIO                                        | DDS  |
| PRA   | CTICA   | AL EXERCISES:                                          |      |
| 1.    | Mod     | eling and sources of power consumption                 |      |
| 2.    | Pow     | er estimation at different design levels (mainly circu | ıit, |
|       | trans   | sistor, and gate)                                      |      |
| 3.    |         | er optimization for combinational circuits             |      |
| 4.    |         | er optimization for sequential circuits                |      |
| 5.    | Pow     | er optimization for RT and algorithmic levels.         |      |
|       | (0)     | TOTAL:30 PERIO                                         | DDS  |
| COU   |         | OUTCOMES: AFFILIATED TO ANNA UNIVERSITY I AUTONOMO     | US   |
|       |         | completion of the course, the students will be able t  | :0:  |
|       |         | ine the fundamentals of low power circuits.            |      |
|       |         | ain various low-power design approaches.               |      |
|       |         | truct various low-voltage low-power adders.            |      |
|       |         | nine various low-voltage low-power multipliers.        |      |
|       |         | marize low-voltage low-power read-only memories        |      |
|       |         | rate low-voltage low-power random-access memor         | ies. |
| TEXT  | BOC     | - 1                                                    |      |
| 1     |         | -Mo Kang, Yusuf Leblebici, "CMOS Digital Integra       | ited |
|       | Circu   | uits - Analysis and Design", TMH, 2011.                |      |

VLSI Subsystems", TMH Professional Engineering, 2004.

2

Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power

| REFERENCES: |          |                                                      |      |      |      |      |       |      |      |            |       |        |      |      |      |     |
|-------------|----------|------------------------------------------------------|------|------|------|------|-------|------|------|------------|-------|--------|------|------|------|-----|
| 1           | Ming-B   | Ming-BO Lin, "Introduction to VLSI Systems: A Logic, |      |      |      |      |       |      |      |            |       |        |      |      |      |     |
|             | Circuit  | Circuit and System Perspective", CRC Press, 2012.    |      |      |      |      |       |      |      |            |       |        |      |      |      |     |
| 2           | Ananth   | a C                                                  | har  | ndra | akas | san, | "L    | ow   | Pov  | wer        | CM    | OS I   | Desi | gn"  | , IE | EE  |
|             | Press, / | Wi                                                   | ley  | Inte | erna | atio | nal,  | 199  | 98   |            |       |        |      |      |      |     |
| 3           | Kaushil  | k R                                                  | oy,  | Sha  | arat | . C. | Pra   | asac | d, " | Lov        | v Po  | wer    | · CN | 105  | VI   | SI  |
|             | Circuit  | Des                                                  | sign | ", J | ohr  | ı W  | iley  | , &  | Sor  | ns, 2      | 2000. |        |      |      |      |     |
| 4           | Gary K   | . Ye                                                 | eap, | "P   | rac  | tica | l Lo  | w ]  | Pow  | ver        | Digi  | tal V  | VLSI | De   | sig  | ı", |
|             | Kluwer   | Ac                                                   | ade  | mic  | e Pr | ess, | 200   | 02   |      |            |       |        |      |      |      |     |
| 5           | Bellamo  | our,                                                 | M.   | I. I | Elar | nas  | ri, " | Lov  | νP   | owe        | er C  | MOS    | 5 VL | SI ( | Circ | uit |
|             | Design'  | ', A                                                 | Kl   | uwe  | er A | cac  | lem   | ic I | res  | s, 1       | 995.  |        |      |      |      |     |
| 6           | Siva G   | . N                                                  | are  | ndr  | an,  | Aı   | nath  | na ( | Cha  | ındı       | raka  | san,   | "Le  | eaka | ige  | in  |
|             | Nanom    | ete                                                  | r Cl | MO   | ST   | echi | nolo  | ogie | es", | Spr        | inge  | er, 20 | 005. |      |      |     |
|             | COs      |                                                      |      |      |      |      | I     | POs  |      |            |       |        |      | I    | PSC  | s   |
| Ì           | Wog      | 1                                                    | 2    | 3    | 4    | 5    | 6     | 7    | 8    | 9          | 10    | 11     | 12   | 1    | 2    | 3   |
|             | 170      | 2                                                    | 1    | (2)  | \-   | 1    | 1     | -    | 1    |            | 1     | 1      | 1    | 3    | 1    | 1   |
| Í           | 2        | 2                                                    | 1    | /-   | 1-   | 1    | 1     | 3    | 1    | 1          | 1     | _1     | 1    | 3    | 1    | 1   |
| Į.          | 3        | 3                                                    | 2    | 1    | 1    | 1    | 1     | _    | 1    | 7.         | 1     | 2      | 2    | 3    | 1    | 1   |
| N.          | 4        | 3                                                    | 3    | 2    | 2    | 1    | 1     | -    | 1    | -          | 1     | 1      | 1    | 3    | 1    | 1   |
|             | 5 SAVEE  | 2                                                    | 1    | -    | -    | 1    | 1     | .E.  | 1    | <u>U</u> 1 | 1     | 1      | 1    | 3    | 1    | 1   |
|             | 6        | 2                                                    | 1    | -    | -    | 1    | 1     | 111  | 1    | NA U       | 1     | 1      | 1    | 3    | 1    | 1   |
|             | verall   | 3                                                    | 2    | 1    | 1    | 1    | 1     | _    | 1    | _          | 1     | 2      | 2    | 3    | 1    | 1   |
| Cori        | relation |                                                      | _    | _    | •    | •    | •     |      | *    |            | •     | _      | _    |      | •    | _   |

| 23EC034      | VLSI TESTING AND DESIGN FOR                                         | L     | T    | P    | C        |
|--------------|---------------------------------------------------------------------|-------|------|------|----------|
|              | TESTABILITY                                                         | 2     | 0    | 2    | 3        |
| COURSE       | OBJECTIVES:                                                         |       |      |      |          |
| •            | To introduce the basics of semiconductor                            |       |      |      |          |
| •            | To study various fault modelling and sim                            |       |      |      |          |
| •            | To know about various basic methods of fa<br>and functional testing | ault  | mo   | dell | ing      |
| •            | To introduce purpose of design for testab                           | ility |      |      |          |
| •            | To study about the built in self-test and P                         | LA t  | esti | ng   |          |
| UNIT I       | INTRODUCTION TO SEMICONDUC                                          | TOF   | ₹    |      | 6        |
|              | TESTING                                                             |       |      |      |          |
| Introduction | on to semiconductor testing – Need                                  | for   | Te   | stir | <u></u>  |
|              | of faults – Functional and Structural, L                            |       |      |      |          |
| -            | , Logic Simulation – types of simulat                               |       |      |      |          |
|              | arious types of faults - Controllability and                        |       |      | 9007 | -        |
| UNIT II      | FAULT MODELLING AND SIMULAT                                         |       |      |      | 6        |
|              |                                                                     |       |      |      |          |
| 1 TO 10      | lelling – Logic fault modelling – Fault o                           |       |      |      |          |
|              | cy – Fault equivalence and Fault loca                               |       |      |      |          |
|              | e -Single Stuck Fault Model - Multiple                              |       |      |      | ult      |
|              | Fault Variables, Fault Simulation T                                 |       | -    |      | -        |
|              | onal Circuits – Fault Sampling – Statistical                        | faul  | t an | aly  | sis      |
| UNIT III     | TESTING FOR SINGLE STUCK AND                                        |       |      |      | 6        |
|              | BRIDGING FAULT AND FUNCTIONA                                        | AL    |      |      |          |
|              | TESTING                                                             |       |      |      |          |
| ATG for s    | ingle stuck fault - Combinational circuits                          | - S   | equ  | ent  | ial      |
| Circuits, B  | ridge fault model – Feedback and Non-fee                            | edba  | ck ł | orid | ge       |
|              | unctional testing - without fault model -                           |       |      |      |          |
| fault mode   | el - Exhaustive and Pseudo-exhaustive tes                           | ting  |      |      |          |
| UNIT IV      | DESIGN FOR TESTABILITY                                              |       |      |      | 6        |
| Testability  | - Ad hoc design for testability t                                   | echi  | niqu | ıes  | _        |
| Controllab   | ility and Observability by means of sca                             | n re  | egis | ters | <u> </u> |

| Gene        | ric scan based design - Classical scan designs - Broad level   |
|-------------|----------------------------------------------------------------|
| and s       | ystem level DFT approaches – Boundary scan standards           |
| UNIT        | BUILT IN SELF-TEST AND PLA TESTING 6                           |
| Intro       | duction to BIST concepts - Test pattern generation for BIST -  |
| BIST        | architecture - Specific BIST architecture, PLA testing - Test  |
| gene        | ration algorithms for PLAs – Testable PLA Design               |
|             | TOTAL: 30 PERIODS                                              |
| PRA         | CTICAL EXERCISES:                                              |
| DESI        | GN AND TESTING OF THE FOLLOWING CIRCUITS                       |
| 1.          | Verification of single stuck fault model for a combinational   |
|             | circuit.                                                       |
| 2.          | Verification of bridge fault model for a combinational         |
|             | circuit.                                                       |
| 3.          | Implementation and Testing of RS Latch and Flip-flops          |
| 4.          | Design and testing of asynchronous counter                     |
| 5.          | Design and testing of synchronous counter                      |
| <u> </u>    | TOTAL:30 PERIODS                                               |
| COU         | RSE OUTCOMES:                                                  |
|             | After completion of the course, the students will be able to:  |
| CO1:        | Illustrate the purpose of semiconductor testing and its        |
|             | modelling.                                                     |
| CO2:        | Examine combinational and sequential circuit using fault       |
|             | modeling.                                                      |
|             | Apply single stuck and bridge fault to test a circuit.         |
| CO4:        | Illustrate about the design for testability techniques.        |
|             | Interpret built in self-test and its architecture.             |
| <b>CO6:</b> | Explain PLA testing and the test generation algorithms         |
| TEXT        | BOOKS:                                                         |
| 1           | M. Abramovici M.A, Breuer and Ad Friedman, "Digital            |
|             | Systems Testing and Testable Design", Computer Sciences        |
|             | Press, 2002 (Unit I – IV)                                      |
| 2           | P.K. Lala, "Digital Circuit Testing and Testability", Academic |
|             | D -000                                                         |

Press, 2002

| DEEL | REFERENCES:                                                |                                                       |      |                |      |      |       |      |          |      |       |            |       |      |      |     |
|------|------------------------------------------------------------|-------------------------------------------------------|------|----------------|------|------|-------|------|----------|------|-------|------------|-------|------|------|-----|
|      | Robert J.Feuguate, Jr. Steven M.Mcintyre, "Introduction to |                                                       |      |                |      |      |       |      |          |      |       |            |       |      |      |     |
| 1    |                                                            | , ,                                                   |      |                |      |      |       |      |          |      |       |            |       |      |      |     |
|      | VLSI te                                                    | VLSI testing', Prentice Hall, Englewood Cliffs, 1998. |      |                |      |      |       |      |          |      |       |            |       |      |      |     |
| 2    | Essentia                                                   | als                                                   | of   | Ele            | ctro | nic  | Te    | stin | ıg f     | or   | Digi  | tal,       | Mer   | nor  | y a  | nd  |
|      | Mixed-                                                     | Sigi                                                  | nal  | VLS            | SI C | ircu | ıits, | Vis  | hw       | ani  | Agr   | awa        | l and | d M  | ich  | ael |
|      | Bushne                                                     | 11, 5                                                 | pri  | nge            | r, 2 | 002  |       |      |          |      |       |            |       |      |      |     |
| 3    | Jan D R                                                    | Raba                                                  | aey, | Ar             | nant | ha   | Cha   | and  | rak      | asaı | n, "  | Digi       | tal I | nte  | grat | ed  |
|      | Circuits                                                   | s: A                                                  | De   | sigi           | n Pe | ersp | ecti  | ive" | ′, Pl    | HI,  | 2016  | ) <b>.</b> |       |      |      |     |
| 4    | Samiha                                                     | Mo                                                    | ura  | d a            | nd   | Yeı  | rvai  | ntZo | oria     | n, ' | 'Priı | ncip       | les c | of T | esti | ng  |
|      | Electro                                                    | nic :                                                 | Sys  | tem            | s",  | Wil  | ley 2 | 200  | 0        |      |       | -          |       |      |      |     |
|      |                                                            |                                                       |      |                |      |      | Ī     | POs  | <u> </u> |      |       |            |       | I    | PSC  | )s  |
| (    | COs                                                        | 1                                                     | 2    | 3              | 4    | 5    | 6     | 7    | 8        | 9    | 10    | 11         | 12    | 1    | 2    | 3   |
|      | 1                                                          | 2                                                     | 1    | -              | -    | 1    | 1     | -    | 1        | -    | 1     | 1          | 1     | 3    | 1    | 1   |
|      | 2                                                          | 3                                                     | 3    | 2              | 2    | 1    | 1     | -    | 1        | -    | 1     | 1          | 1     | 3    | 1    | 1   |
|      | 3 POW                                                      | 3                                                     | 2    | 1              | 1    | 1    | 1     | -    | 1        | 9    | 1     | 2          | 2     | 3    | 1    | 1   |
| 8    | 4                                                          | 2                                                     | 1    |                | -    | 1    | 1     | -    | 1        | -    | 1     | 1          | 1     | 3    | 1    | 1   |
| Î    | 5                                                          | 2                                                     | 1    | <b>/</b> -     | -    | 1    | 1     | 9    | 1        | A    | 1     | 1          | 1     | 3    | 1    | 1   |
| 1    | 6                                                          | 2                                                     | 1    | / <sub>7</sub> | 7/-  | 1    | 1     | _    | 1        | 1    | 1     | 1          | 1     | 3    | 1    | 1   |
|      | verall<br>relation                                         | 3                                                     | 2    | 1              | 1    | 10   | 1     | EC   | 1        | OF   | 1     | 2          | 2     | 3    | (1)  | 1   |

| 23EC035        | PHYSICAL DESIGN                           | L     | T    | P     | С   |
|----------------|-------------------------------------------|-------|------|-------|-----|
|                |                                           | 3     | 0    | 0     | 3   |
| COURSE OB      | JECTIVES:                                 |       |      |       |     |
|                | o know about VLSI Technology back er      | nd d  | esig | 'n    |     |
|                | ow and about implementations.             |       |      |       | _   |
|                | o understand about the input and outp     | ut of | f Ph | ysi   | cal |
|                | esign                                     |       |      |       |     |
|                | o understand about the procedure of Fl    | oor   | plai | n ar  | ıd  |
|                | ower plan                                 | 1     | D    |       | _   |
|                | o understand Placement, CTS, hold fixi    |       | Kou  | ting  |     |
| UNIII          | TRODUCTION TO PHYSICAL DESI               | GN    |      |       | 9   |
| Introduction   | to PD flow, Inputs of PD - Library f      | iles, | Nε   | et li | st, |
| SDC(Synopsis   | s Design Constraints), LEF(Librar         | y l   | Excl | han   | ge  |
| File),Output   | of PD - GDSII, Area, Power, Timing rep    | orts  |      |       |     |
| UNIT II PA     | RTITIONING AND FLOOR PLANN                | ING   |      |       | 9   |
| Partitioning,  | Floor planning, Floor plan Algo           | orith | ms,  | F     | in  |
| Assignment,    | Floor plan-Die size estimation, Aspec     | t Ra  | tio, | Co    | re  |
| Utilization, M | lacros and Types -Soft macros, Hard       | mac   | ros, | Fi    | m   |
| macros         | COLLEGE OF TECH                           |       |      | GY    |     |
| UNIT III PO    | OWER PLAN AFFILIATED TO ANNA UNIVERSITY   | AUTO  | NON  | 40U   | 9   |
| Power plan -   | Rings, Stripes, Rails, Core power mana    | agen  | nen  | t, I/ | O'  |
| cell power ma  | anagement, IR drop - types of IR drop     |       |      |       |     |
| UNIT IV PL     | ACEMENT                                   |       |      |       | 9   |
| Type of Plac   | ement - Standard cell placement, Br       | ıildi | ng   | blo   | ck  |
|                | ell types - Well tap cells, End cap cells |       | _    |       |     |
| 1 *            | pare cells, Timing driven placement       |       | -    |       |     |
|                | ement, Placement Congestion – C           |       | _    |       |     |
| _              | ongestion map, Easing congestion          |       |      |       |     |
|                | OCK TREE SYNTHESIS AND ROUT               | INC   | j    |       | 9   |
| Skew, Latence  | y, Jitter, Early clock tree, Useful skew  | , Ho  | old  | fixi  | ng  |
| function mod   | e and shift mode, Generated clocks, clo   | ck g  | rou  | ps v  | vs. |
|                | clock routing, NDR, Routing - Glo         | _     |      | _     |     |

Detailed Routing, Design Rule check, clock route vs. signal route, shorts, drc, opens, routing signals in higher layers, Getting attributes like route length, number of vias for a given net **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Illustrate various stages of back-end VLSI design CO2: Analyse and implement partitioning, floor-planning, and pin assignment strategies to optimize the physical layout of IC's CO3: Outline the various ideas of Power plan **CO4:** Explain the various types of placement and understand the challenges of placement. **CO5:** Summarize clock tree synthesis and its techniques. CO6: Construct various routing algorithm and understand the common issues in routing. **TEXT BOOKS:** S.H. Gerez, "Algorithms for VLSI Design Automation", John 1 Wiley & Sons, 2002. N.A. Sherwani, "Algorithms for VLSI Physical Design 2 Automation", Kluwer Academic Publishers, 2002. REFERENCES: Sadiq M. Sait, Habib Youssef, "VLSI Physical Design 1 automation: Theory and Practice", World scientific 1999. Steven M.Rubin, "Computer Aids for VLSI Design", 2 Addison Wesley Publishing 1987. Michael J Smith," Application Specific Integrated Circuits, 3 Addison Wesley, D.A. Hodges and H.G. Jackson, Analysis and Design of 4 Digital Integrated Circuits, International Student Edition,

McGraw Hill 1983

| COs                    |   |   |   |   |   | I | POs |   |   |    |    |    | I | PSC | s |
|------------------------|---|---|---|---|---|---|-----|---|---|----|----|----|---|-----|---|
| COs                    | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 1 | 2   | 3 |
| 1                      | 2 | 1 | - | - | 1 | 1 | -   | 1 | - | 1  | 1  | 1  | 3 | 1   | 1 |
| 2                      | 3 | 3 | 2 | 2 | 1 | 1 | -   | 1 | - | 1  | 1  | 1  | 3 | 1   | 1 |
| 3                      | 2 | 1 | - | - | 1 | 1 | -   | 1 | - | 1  | 1  | 1  | 3 | 1   | 1 |
| 4                      | 2 | 1 | - | - | 1 | 1 | -   | 1 | - | 1  | 1  | 1  | 3 | 1   | 1 |
| 5                      | 2 | 1 | - | - | 1 | 1 | -   | 1 | - | 1  | 1  | 1  | 3 | 1   | 1 |
| 6                      | 3 | 2 | 1 | 1 | 1 | 1 | -   | 1 | - | 1  | 2  | 2  | 3 | 1   | 1 |
| Overall<br>Correlation | 3 | 2 | 1 | 1 | 1 | 1 | -   | 1 | 1 | 1  | 2  | 2  | 3 | 1   | 1 |



| 23EC036 | MIXED SIGNAL IC DESIGN AND | L | T | P | C |
|---------|----------------------------|---|---|---|---|
|         | TESTING                    | 3 | 0 | 0 | 3 |

- To know about mixed-signal devices and the need for testing these devices.
- To study the various techniques for testing.
- To learn about ADC and DAC based testing.
- To understand the Clock and Serial Data Communications Channels.

9

To study the general purpose measuring devices

## UNIT I MIXED - SIGNAL TESTING

Common Types of Analog and Mixed- Signal Circuits - Applications of Mixed-Signal Circuits - Post-Silicon Production Flow - Test and Packing - Characterization versus Production Testing - Test and Diagnostic Equipment - Automated Test Equipment - Wafer Probers - Handlers - E-Beam Probers - Focused Ion Beam equipment - Forced - Temperature

## UNIT II YIELD, MEASUREMENT ACCURACY, AND TEST TIME

Yield - Measurement Terminology - Repeatability, Bias, and Accuracy - Calibrations and Checkers - Tester Specifications - Reducing Measurement Error with Greater Measurement Time - Guard bands - Effects of Measurement Variability on Test Yield - Effects of Reproducibility and Process Variation on Yield - Statistical Process Control

## UNIT III DAC TESTING 9

Basics of Data Converters -Principles of DAC and ADC Conversion, Data Formats, Comparison of DACs and ADCs, DAC Failure Mechanisms - Basic DC Tests - Transfer Curve Tests - Dynamic DAC Tests - Tests for Common DAC Applications

## UNIT IV ADC TESTING 9

ADC Testing Versus DAC Testing - ADC Code Edge Measurements - Edge Code Testing Versus Centre Code Testing, Step Search and Binary Search Methods, Servo Method, Linear Ramp Histogram Method, Histograms to Code Edge Transfer Curves, Rising Ramps Versus Falling Ramps, Sinusoidal Histogram Method - DC Tests and Transfer Curve Tests - Dynamic ADC Tests - Tests for Common ADC Applications

# UNIT V CLOCK AND SERIAL DATA 9 COMMUNICATIONS CHANNEL MEASUREMENT 9

Synchronous and Asynchronous Communications - Time-Domain Attributes of a Clock Signal - Frequency-Domain Attributes of a Clock Signal - Communicating Serially Over a Channel - Bit Error Rate Measurement - Methods to Speed Up BER Tests in Production - Deterministic Jitter Decomposition - Jitter Transmission Tests.

#### **TOTAL: 45 PERIODS**

## **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Outline the fundamentals of mixed signal circuits.
- CO2: Explain the various optimizing measurements and yield in testing
- CO3: Illustrate various DAC testing methods
- CO4: Illustrate various ADC testing methods
- **CO5:** Examine ADC code edge measurements and transfer curves
- CO6: Construct serial data communication systems and performance metrics

### **TEXT BOOKS:**

1 Gordon W.Roberts, Friedrich Taenzler, Mark Burns, "An Introduction to Mixed-signal IC Test and Measurement" Oxford University Press, Inc.2012 (Unit I - V)

|      | 2 M.L.Bushnell and V.D.Agrawal, "Essentials of Electronic              |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
|------|------------------------------------------------------------------------|----------------------------|----------------------------|-----------------------|-----------------------|-----------------------|------------------------------------|--------------------------|-----------------------|-----|-----------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------|------------------------|
| 2    | M.L.Bu                                                                 | shn                        | ell                        | anc                   | d V                   | .D.                   | Agr                                | aw                       | al,                   | "Es | sent                        | ials                        | of 1                        | Elec                       | tro                   | nic                    |
|      | Testing                                                                | fc                         | or I                       | Dig                   | ital                  | , N                   | Лen                                | nory                     | y a                   | ınd | Mi                          | ixed                        | -Sig1                       | nal                        | VI                    | LSI                    |
|      | Circuits                                                               | s", I                      | (luv                       | wer                   | Ac                    | ade                   | mic                                | Pu                       | blis                  | her | s, 20                       | 02. (                       | (Uni                        | t - I                      | II                    |                        |
| REFI | REFERENCES:                                                            |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
| 1    |                                                                        |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
|      | Prentice Hall, 1998.(Unit - II)                                        |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
| 2    | Digital and Analogue Instrumentation: Testing and                      |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
|      | Measurement by NihalKularatna                                          |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
| 3    | Mixed Signal and DSP design Techniques, Analog Device,                 |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
|      | Newness, 2003.                                                         |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
| 4    | Newness, 2003.  SamihaMourad and YervantZorian, "Principles of Testing |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
|      | Electronic Systems", Wiley 2000                                        |                            |                            |                       |                       |                       |                                    |                          |                       |     |                             |                             |                             |                            |                       |                        |
|      |                                                                        |                            |                            |                       |                       |                       |                                    |                          |                       | ш,  | 1 111                       | icip.                       | ics c                       | ,1 1                       | Con                   | 118                    |
|      |                                                                        |                            |                            |                       |                       |                       | ey 2                               | 2000                     | )                     | ш,  | 1111                        | пстр.                       |                             |                            |                       |                        |
|      |                                                                        | nic S                      | Syst                       | tem                   | s",                   | Wil                   | ey 2                               | 2000<br><b>POs</b>       | )                     |     |                             |                             |                             | I                          | PSC                   | s                      |
| •    | Electroi                                                               | nic S                      | Syst                       |                       |                       | Wil<br>5              | ey 2<br>I<br>6                     | 2000<br>POs<br>7         | 8                     | 9   | 10                          | 11                          | 12                          | 1<br>1                     | PSO<br>2              | )s<br>3                |
| (    | Electron COs                                                           | 1<br>2                     | 2<br>1                     | tem                   | s",                   | Wil 5 1               | ey 2<br>I<br>6<br>1                | 2000<br>POs<br>7         | 8 1                   |     | <b>10</b> 1                 | 11<br>1                     | <b>12</b>                   | 1<br>3                     | 2<br>1                | )s<br>3                |
|      | Electron COs 1 2                                                       | 1<br>2<br>2                | 2<br>1                     | tem                   | s",                   | Wil 5 1 1             | ey 2<br><b>I 6</b> 1               | 2000<br>POs<br>7         | 8 1 1                 | 9   | 10<br>1<br>1                | 11<br>1<br>1                | 12<br>1<br>1                | 1<br>3<br>3                | 2<br>1<br>1           | )s 3 1 1               |
|      | Electron COs                                                           | 1<br>2                     | 2<br>1                     | tem                   | s",                   | Wil 5 1               | ey 2<br>6<br>1<br>1                | 2000<br>POs<br>7         | 8<br>1<br>1           | 9   | <b>10</b> 1                 | 11<br>1<br>1<br>1           | <b>12</b>                   | 1<br>3                     | 2<br>1<br>1           | )s<br>3                |
|      | Electron COs 1 2                                                       | 1<br>2<br>2                | 2<br>1                     | tem                   | s",                   | Wil 5 1 1             | ey 2<br><b>I 6</b> 1               | 2000<br>POs<br>7         | 8 1 1                 | 9   | 10<br>1<br>1                | 11<br>1<br>1                | 12<br>1<br>1                | 1<br>3<br>3                | 2<br>1<br>1           | )s 3 1 1               |
|      | Electron COs 1 2 3                                                     | 1<br>2<br>2<br>2           | 2<br>1<br>1                | tem                   | s", 4                 | 5<br>1<br>1           | ey 2<br>6<br>1<br>1                | 2000<br>POs<br>7         | 8<br>1<br>1           | 9   | 10<br>1<br>1<br>1           | 11<br>1<br>1<br>1           | 12<br>1<br>1                | 1<br>3<br>3<br>3           | 2<br>1<br>1           | 9s<br>3<br>1<br>1      |
|      | Electron  COs  1 2 3 4                                                 | 1<br>2<br>2<br>2           | 2<br>1<br>1<br>1           | 3<br>-<br>-           | 4<br>-<br>-<br>-      | 5<br>1<br>1<br>1      | ey 2<br>6<br>1<br>1<br>1           | 2000<br>7<br>-<br>-      | 8<br>1<br>1<br>1      | 9   | 10<br>1<br>1<br>1<br>1      | 11<br>1<br>1<br>1           | 12<br>1<br>1<br>1           | 1<br>3<br>3<br>3<br>3      | 2<br>1<br>1<br>1      | 3<br>1<br>1<br>1       |
|      | Electron COs 1 2 3 4 5                                                 | 1<br>2<br>2<br>2<br>2<br>3 | 2<br>1<br>1<br>1<br>1<br>3 | 3<br>-<br>-<br>-<br>2 | 4<br>-<br>-<br>-<br>2 | 5<br>1<br>1<br>1<br>1 | ey 2<br>1<br>6<br>1<br>1<br>1<br>1 | 2000<br>7<br>-<br>-<br>- | 8<br>1<br>1<br>1<br>1 | 9   | 10<br>1<br>1<br>1<br>1<br>1 | 11<br>1<br>1<br>1<br>1<br>1 | 12<br>1<br>1<br>1<br>1<br>1 | 1<br>3<br>3<br>3<br>3<br>3 | 2<br>1<br>1<br>1<br>1 | 9s 3 1 1 1 1 1 1 1 1 1 |

| 23EC037      | EMBEDDED SYSTEMS AND IoT                         | L     | T    | P    | C   |
|--------------|--------------------------------------------------|-------|------|------|-----|
|              | DESIGN                                           | 2     | 0    | 2    | 3   |
| COURSE       | OBJECTIVES:                                      |       |      |      |     |
| •            | Learn the architecture and features of 805       | 1.    |      |      |     |
| •            | Study the design process of an embedded          | sys   | tem  | •    |     |
| •            | Understand the real – time processing in system. | an e  | mb   | edc  | led |
| •            | Learn the architecture and design flow of        | IoT.  |      |      |     |
| •            | Build an IoT based system.                       |       |      |      |     |
| UNIT I       | EMBEDDED SYSTEMS                                 |       |      |      | 6   |
| Embedded     | System Design Process - Model Train              | Cor   | ntro | ller | _   |
|              | cessor - Instruction Set Preliminaries           |       |      |      |     |
| Programm     | ing Input and Output - Supervisor Mode           | – E:  | xce  | otio | ns  |
| and Trap -   | Models for programs - Assembly, Linking          | and   | Lo   | adi  | ng  |
| (AP)\\\      | tion Techniques - Program Level Performa         |       |      |      |     |
| UNIT II      | REAL TIME OPERATING SYSTEMS                      |       |      |      | 6   |
| Structure o  | of a Real Time System Estimating progr           | am 1  | run  | tim  | ies |
| - Task Ass   | signment and Scheduling - Fault Tolerand         | e Te  | chn  | iqu  | ies |
| - Reliabilit | y, Evaluation - Clock Synchronization.           |       |      |      |     |
| UNIT III     | REAL TIME PROCESSES                              |       |      |      | 6   |
| Multiple T   | asks and Multiple Processes -Priority base       | ed sc | hec  | luli | ng  |
| _            | process Communication Mechanisms -               |       |      |      | -   |
| Embedded     |                                                  |       |      |      |     |
| Multiproce   | essors – Design Example – Audio Player, Er       | ngin  | e Co | onti | rol |
| _            | ideo Accelerator.                                | O     |      |      |     |
| UNIT IV      | IOT ARCHITECTURE AND PROTOCO                     | OLS   |      |      | 6   |
| Internet -   | of - Things - Physical Design, Logical           | Desi  | gn   | - I  | оТ  |
| Enabling T   | Technologies - Domain Specific IoTs - IoT        | Γan   | d M  | I2N  | [ - |
| IoT Refere   | nce Model - Domain Model - Communica             | ation | Mo   | ode  | 1 – |
| IoT Refere   | ence Architecture - IoT Protocols - M            | QTT   | , X  | MF   | P,  |
| Modbus, C    | CANBUS and BACNet.                               |       |      |      |     |

| UNIT V | IOT SYSTEM DESIGN | 6 |
|--------|-------------------|---|

Basic building blocks of an IoT device – Raspberry Pi – Board – Linux on Raspberry Pi – Interfaces – Programming with Python – Case Studies: Home Automation, Smart Cities, Environment and Agriculture.

## **TOTAL: 30 PERIODS**

### PRACTICAL EXERCISES:

- 1. Experiments using ARM
- 2. Interfacing ADC and DAC
- 3. Blinking of LEDs and LCD
- 4. Interfacing keyboard and Stepper Motor.
- 5. Mini projects for IoT

#### TOTAL:30 PERIODS

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Develop a model of an embedded system
- CO2: Summarize the concepts of real time operating systems.
- CO3: Make use of various real time processes to design an embedded systems
- CO4: Explain the architecture of IoT.
- CO5: Develop protocols of IoT.
- **CO6:** Construct an IoT based system for any application.

## **TEXT BOOKS:**

- Marilyn Wolf, Computers as Components Principles of Embedded Computing System Design, Third Edition, Morgan Kaufmann, 2012.
- 2 Mayur Ramgir, Internet of Things, Architecture, Implementation and Security, First Edition, Pearson Education, 2020.

#### REFERENCES:

1 Lyla B.Das, Embedded Systems: An Integrated Approach, Pearson Education 2013.

| 2    | Jane.W.                                                    | S.       | Liu | , R | eal | <b>-</b> ] | Γim | e S | yste | ems | , Ре | earsc   | n E | duc | atio     | on, |
|------|------------------------------------------------------------|----------|-----|-----|-----|------------|-----|-----|------|-----|------|---------|-----|-----|----------|-----|
|      | 2003.                                                      |          |     |     |     |            |     |     |      |     |      |         |     |     |          |     |
| 3    | Arshdeep Bahga, Vijay Madisetti, Internet - of- Things - A |          |     |     |     |            |     |     |      |     |      |         |     |     |          |     |
|      | Hands on Approach, Universities Press, 2015.               |          |     |     |     |            |     |     |      |     |      |         |     |     |          |     |
| 4    | Mohammed Ali Mazidi, Janice Gillispie Mazidi, Rolin        |          |     |     |     |            |     |     |      |     |      |         |     |     |          |     |
|      | D.McKinlay, The 8051 Microcontroller and Embedded          |          |     |     |     |            |     |     |      |     |      |         |     |     |          |     |
|      | Systems Using Assembly and C, Second Edition, Pearson      |          |     |     |     |            |     |     |      |     |      |         |     |     |          |     |
|      | Education, 2008                                            |          |     |     |     |            |     |     |      |     |      |         |     |     |          |     |
|      | COs                                                        | POs PSOs |     |     |     |            |     |     |      |     |      |         |     | s   |          |     |
| •    | COs                                                        | 1        | 2   | 3   | 4   | 5          | 6   | 7   | 8    | 9   | 10   | 11      | 12  | 1   | 2        | 3   |
|      | 1                                                          | 3        | 2   | 1   | 1   | 2          | -   | -   | -    | -   | -    | -       | -   | 3   | 2        | -   |
|      | 2                                                          | 2        | 1   | -   | -   | 2          | -   | -   | -    | -   | -    | -       | -   | 3   | 2        | -   |
|      | 3                                                          | 3        | 2   | 1   | 1   | 2          | -   | -   | -    | -   | -    | -       | -   | 2   | 1        | -   |
|      | 4                                                          | 2        | 1   | -   | -   | 2          | -   | 4   | 1    | 1   | -    | -       | - 3 | 3   | 3        | -   |
|      | 5 LOW                                                      | 3        | 2   | 1   | 1   | 2          | 7   | -   | -7   |     |      | <u></u> | 4   | 3   | 3        | -   |
| 9    | 6                                                          | 3        | 2   | 1   | 1   | 3          |     | -   | -/   | -   | -    | -       | _   | 3   | 3        | ř-  |
| O    | Overall                                                    |          | 2   | 1   | 1   | 3          | 4   |     | -/   | V   | -73  | -0-     |     | 3   | 3        | _   |
| Cori | relation                                                   | 3        | 1   | /   | 1   |            |     | 1   |      | 1   |      | >       |     |     | The same | P   |

## COLLEGE OF TECHNOLOGY

| 23EC038 | IoT BASED SYSTEM DESIGN | L | T | P | C |
|---------|-------------------------|---|---|---|---|
|         |                         | 3 | 0 | 0 | 3 |

- To understand the basics of IoT.
- To get knowledge about the various services provided by IoT.
- To familiarize themselves with various communication techniques and networking.
- To know the implementation of IoT with different tools.
- To understand the various applications in IoT.

## UNIT I INTRODUCTION TO INTERNET OF THINGS 9

Rise of the machines – Evolution of IoT – Web 3.0 view of IoT – Definition and characteristics of IoT – IoT Enabling Technologies – IoT Architecture – Fog, Edge and Cloud in IoT – Functional blocks of an IoT ecosystem – Sensors, Actuators, Smart Objects and Connecting Smart Objects - IoT levels and deployment templates – A panoramic view of IoT applications.

## UNIT II MIDDLEWARE AND PROTOCOLS OF IoT 9

Middleware technologies for IoT system (IoT Ecosystem Overview – Horizontal Architecture Approach for IoT Systems – SOA based IoT Middleware) Middleware architecture of RFID, WSN, SCADA, M2M – Interoperability challenges of IoT-Protocols for RFID, WSN, SCADA, M2M- Zigbee, KNX, BACNet, MODBUS – Challenges Introduced by 5G in IoT Middleware (Technological Requirements of 5G Systems – Perspectives and a Middleware Approach Toward 5G (Compass Middleware) – Resource management in IoT.

## UNIT III | COMMUNICATION AND NETWORKING | 9

IoT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and Lora WAN – Network Layer: IP versions, Constrained Nodes and Constrained Networks – Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks

 Application Transport Methods: Supervisory Control and Data Acquisition – Application Layer Protocols: CoAP and MQTT- Data aggregation & dissemination

## UNIT IV | IOT IMPLEMENTATION TOOLS

9

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python, Implementation of IoT with Raspberry Pi.

## UNIT V | APPLICATIONS AND CASE STUDIES

9

Home automations - Smart cities - Environment - Energy - Retail - Logistics - Agriculture - Industry - Health and life style - Case study.

## **TOTAL: 45 PERIODS**

## **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Explain the main concepts, key technologies, strength and limitations of IoT.
- CO2: Summarize the architecture, infrastructure models of IoT.
- CO3: Examine the IOT access technology
- CO4: Analyze the networking and how the sensors are communicated in IoT.
- CO5: Analyze and design different models for IoT implementation.
- **CO6:** Develop the new models for market strategic interaction.

### **TEXT BOOKS:**

- 1 Honbo Zhou, "Internet of Things in the cloud: A middleware perspective", CRC press, 2012.
- 2 Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on Approach)", VPT, 1st Edition, 2014.

|     | PERFECTOR                                                 |                                                                                                       |              |      |            |     |      |       |       |      |       |      |       |     |      |     |
|-----|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------|------|------------|-----|------|-------|-------|------|-------|------|-------|-----|------|-----|
| REF | EFERENCES:                                                |                                                                                                       |              |      |            |     |      |       |       |      |       |      |       |     |      |     |
| 1   | Ella Ha                                                   | ssia                                                                                                  | anie         | n,   | A 8        | ξAz | zar. | A.T   | (E    | dito | rs),  | "Bra | ain-C | Con | npu  | ter |
|     | Interfac                                                  | es (                                                                                                  | Cur          | rent | Tre        | end | s ar | nd A  | App   | lica | tion  | s",S | prin  | ger | , 20 | 15. |
| 2   | Pethuru                                                   | ı R                                                                                                   | aj a         | and  | Aı         | nup | am   | a C   | C. F  | Ram  | ıan,  | "Th  | e In  | ter | net  | of  |
|     | Things: Enabling Technologies, Platforms, and Use Cases", |                                                                                                       |              |      |            |     |      |       |       |      |       |      |       |     |      |     |
|     | CRC Press, 2017.                                          |                                                                                                       |              |      |            |     |      |       |       |      |       |      |       |     |      |     |
| 3   | Constandinos X. Mavromoustakis, George Mastorakis, Jordi  |                                                                                                       |              |      |            |     |      |       |       |      |       |      |       |     |      |     |
|     | Mongay                                                    | ongayBatalla, "Internet of Things (IoT) in 5G Mobile                                                  |              |      |            |     |      |       |       |      |       |      |       |     |      |     |
|     | Techno                                                    | gayBatalla, "Internet of Things (IoT) in 5G Mobile nologies" Springer International Publishing        |              |      |            |     |      |       |       |      |       |      |       |     |      |     |
|     | Switzer                                                   | echnologies" Springer International Publishing witzerland 2016.                                       |              |      |            |     |      |       |       |      |       |      |       |     |      |     |
| 4   | Dieter                                                    | Ucl                                                                                                   | keln         | nan  | n,         | Ma  | rk   | Hai   | rrisc | on,  | Flo   | rian | Mie   | cha | hell | es, |
|     | "Archit                                                   | Uckelmann, Mark Harrison, Florian Michahelles, tecting the Internet of Things" Springer-Verlag Berlin |              |      |            |     |      |       |       |      |       |      |       |     |      | lin |
|     | Heidelb                                                   | erg                                                                                                   | <b>, 2</b> 0 | 11.  |            |     |      |       |       |      | _     |      |       |     |      |     |
|     | CO-                                                       |                                                                                                       |              |      |            |     | I    | POs   |       |      |       |      | - 65  | I   | PSC  | s   |
| '   | COs                                                       | 1                                                                                                     | -2           | 3    | 4          | 5   | 6    | 7     | 8     | 9    | 10    | 11   | 12    | 1   | 2    | 3   |
| ,   | 1                                                         | 2                                                                                                     | 1            | 0    | <b>/</b> - | 1   | 3    | 1     | -//   | 7-   | -     | 2    | 3     | 3   | 3    | i'- |
|     | 2                                                         | 2                                                                                                     | 1            | /-   | 1          | 1   | 4    | 3     | -\    | 7    |       | 1    | 2     | 3   | 3    | -   |
|     | 3                                                         | 3                                                                                                     | 3            | 2    | 2          | 1   | 2    | 7     | 1     | 1    | -     | 3    | 2     | 3   | 2    | -   |
| 1   | 4                                                         | 3                                                                                                     | 3            | 2    | 2          | 1   | 2    | -     | -     | -    | -     | 3    | 2     | 3   | 2    | -   |
|     | 5 GINE                                                    | 3                                                                                                     | 3            | 2    | 2          | 3   | ) LI | .EC   | ı E   | Q1-  | LE    | CH   | 10    | 3   | 3    | _   |
|     | 6                                                         | 3                                                                                                     | 2            | 1    | 1          | 2   | 1    | EQ.11 | ) AN  | VA.U | MIVER | 2    | 1     | 3   | 2    | -   |
| O   | verall                                                    | 3                                                                                                     | 3            | `    | `          | 2   | 2    |       |       |      |       | •    | 2     | 3   | 3    |     |
| Cor | relation                                                  | 3                                                                                                     | 3            | 2    | 2          | 2   | 2    | -     | -     | -    | _     | 2    | 2     | 3   | 3    | _   |

| 23EC039 | WIRELESS SENSOR NETWORK | L | T | P | C |
|---------|-------------------------|---|---|---|---|
|         | DESIGN                  | 3 | 0 | 0 | 3 |

- To understand the basic WSN technology and different applications in WSN.
- To understand MAC and Routing protocols used in WSN.
- To understand Design principles and architecture of a WSN.

Understand various operating systems used in WSN

## UNIT I INTRODUCTION

9

Introduction: Fundamentals of wireless communication technology, the electromagnetic spectrum radio propagation, characteristics of wireless channels, modulation techniques, multiple access techniques, wireless LANs, PANs, WANs, and MANs, Wireless Internet. Hardware Platform, Motes, Sensor Devices, Types of Sensors, Sensor's Specification, Commercial available smart sensors with microcontrollers

## UNIT II MAC AND ROUTING PROTOCOLS

9

MAC Protocols: Fundamentals of MAC protocols - Requirements and design constraints for wireless MAC protocols, Important classes of MAC protocols, MAC protocols for wireless sensor networks, Contention-based protocols – CSMA, PAMAS, The IEEE 802.15.4 MAC protocol. Routing Strategies in Wireless Sensor Networks - WSN Routing Techniques, Geographical Routing.

## UNIT III DATA AGGERATION IN WIRELESS SENSOR NETWORKS

9

Challenges & techniques; Node Clustering and its Algorithms in Wireless Sensor Networks. Node Localization: Concepts, Challenges, & Algorithms; Ranging Techniques. Time Synchronization: Need and Requirements of Synchronization in Wireless Sensor Networks; Synchronization Protocols for Wireless Sensor Networks. Security Issues in Wireless Sensor networks: Challenges of Security in Wireless Sensor Networks, Security

|       |           | n Sensor Networks, Protocols and Mechanisms                                         | for  |
|-------|-----------|-------------------------------------------------------------------------------------|------|
|       |           | Future Trends in Wireless Sensor Networks.                                          |      |
| UNI   | ΓΙ        | OPERATING SYSTEMS FOR WIRELESS                                                      | 9    |
|       |           | SENSOR NETWORKS                                                                     |      |
| Oper  | ating     | Systems for Wireless Sensor Networks : Introduct                                    | ion, |
| _     | _         | System Design Issues, Examples of Operating System                                  |      |
| _     | _         | OS, Mate, MagnetOS, MANTIS, OSPM, EYES OS, Sen                                      |      |
|       | -         | DS, PicOS, Performance Modeling of WSNs                                             | ,    |
| UNI   |           | QoS AND MANAGEMENT                                                                  | 9    |
|       |           |                                                                                     |      |
|       |           | nergy Management: Issues and Challenges in provid                                   | _    |
| _     |           | ssifications, MAC, network layer solutions, G                                       |      |
|       |           | ks, need for energy management, classification, batt                                |      |
| trans | missi     | on power, and system power management schemes.                                      |      |
|       |           | OWER DAS TOTAL: 45 PERIO                                                            | DDS  |
| COU   | AMERICA A | OUTCOMES:                                                                           |      |
| Ì     | 537       | r <mark>comple</mark> tion of th <mark>e course, the students will be able t</mark> |      |
| CO1:  | 100 A     | ain the WSN Node Architecture with issues                                           | and  |
| No.   | 1800      | lenges                                                                              |      |
| CO2:  | Dev       | elop the various Routing and MAC Protocols                                          | Y    |
| CO3:  | Eval      | uate the various aggregation used in sensor network                                 | S    |
| CO4:  | Eval      | uate the various tools and Operating system used                                    | d in |
|       | WSN       | 1                                                                                   |      |
| CO5:  | App       | ly the various QoS and Management Systems to st                                     | udy  |
|       | the p     | performance of WSN                                                                  |      |
| CO6:  | Infe      | r the various Energy Management System to study                                     | the  |
|       | perf      | ormance in WSN                                                                      |      |
| TEXT  | ГВО       | OKS:                                                                                |      |
| 1     | Will      | iam Stallings, "Wireless Communications and Netwo                                   | orks |
|       | ", Pe     | arson Education 2004                                                                |      |
| 2     | Feng      | g Zhao and Leonides Guibas, "Wireless sensor netwo                                  | orks |
|       | ", Els    | sevier publication - 2004.                                                          |      |

| REFI | EFERENCES:                                                 |     |          |      |    |      |     |       |          |     |                   |     |     |      |     |      |
|------|------------------------------------------------------------|-----|----------|------|----|------|-----|-------|----------|-----|-------------------|-----|-----|------|-----|------|
| 1    | Holger                                                     | Kaı | rl ar    | nd A | nd | reas | s W | illig | , Pr     | oto | cols              | and | Arc | hite | ctu | res  |
|      | for Wireless Sensor Networks John Wiley & Sons, Ltd, 2005. |     |          |      |    |      |     |       |          |     |                   |     |     |      |     |      |
| 2    | Kazem Sohrby, Daniel Minoli, Wireless Sensor Network       |     |          |      |    |      |     |       |          |     |                   |     |     |      |     |      |
|      | Technology, Protocols and Applications, Wiley-Inter        |     |          |      |    |      |     |       |          |     |                   |     |     |      |     |      |
|      | science.                                                   |     |          |      |    |      |     |       |          |     |                   |     |     |      |     |      |
| 3    | Philip Levis, "TinyOS Programming", 2006 -                 |     |          |      |    |      |     |       |          |     |                   |     |     |      |     |      |
|      | www.tinyos.net.                                            |     |          |      |    |      |     |       |          |     |                   |     |     |      |     |      |
| 4    | The Contiki Operating System.http://www.sics.se/contiki.   |     |          |      |    |      |     |       |          |     |                   |     |     |      |     |      |
|      | 20-                                                        |     | POs PSOs |      |    |      |     |       |          |     |                   |     |     |      | s   |      |
| ,    | COs                                                        | 1   | 2        | 3    | 4  | 5    | 6   | 7     | 8        | 9   | 10                | 11  | 12  | 1    | 2   | 3    |
|      | 1                                                          | 2   | 1        | -    | -  | 2    | 1   | -     | -        | -   | -                 | 2   | 2   | 3    | 1   | -    |
|      | 2                                                          | 3   | 2        | 1    | 1  | 2    | 1   | -     | -        | ı   | -                 | -   | 2   | 3    | 2   | -    |
|      | 3                                                          | 3   | 3        | 2    | 2  | 2    | 1   | -     | -        | -   | _                 | -   | 3   | 3    | 2   | -    |
|      | 4 OW                                                       | 3   | 3        | 2    | 2  | 2    | 2   | 4     | - 7      | 4   | -                 | 1   | 2   | 2    | 2   | -    |
| ,    | 5                                                          | 3   | 2        | 1    | 1  | 3    | 2   | Ç-    | -//      | 1/4 | -                 | -   | 2   | 2    | 2   | ï-   |
| 1    | 6                                                          | 2   | 1        | -    | 1  | 3    | 2   |       | -/       | 7   | : - <sub>22</sub> | 7   | 2   | 2    | 2   | -    |
| O    | verall                                                     | 3   | 2        | 1    | 1  | 3    | 2   | 1     | <u>_</u> | 1   |                   | 1   | 3   | 3    | 2   | .e.i |
| Corı | elation                                                    | 25  | 4        | 30   | 1  |      | _   |       |          |     |                   | -   |     |      |     | *    |

| 23EC040 | INDUSTRIAL IoT AND INDUSTRY 4.0 | L | T | P | C |
|---------|---------------------------------|---|---|---|---|
|         |                                 | 2 | 0 | 2 | 3 |
| COLIDAR |                                 |   |   |   |   |

- To understand the basic concepts of IoT Nodes & Sensors
- To study and understand about IoT Gateways
- To familiarize themselves in IoT Cloud Systems
- To learn about IoT Cloud Dashboards
- To know about the Challenges in Iot system Design Hardware & Software

## UNIT I UNDERSTANDING IOT CONCEPT AND 6 DEVELOPMENT PLATFORM

IoT Definition, Importance of IoT, Applications of IoT, IoT architecture, Understanding working of Sensors, Actuators, Sensor calibration, Study of Different sensors and their characteristics

| UNIT II | ANALYZING & DECODING OF        | 6 |
|---------|--------------------------------|---|
| - X     | COMMUNICATION PROTOCOL USED IN |   |
|         | IoT DEVELOPMENT PLATFORM       | _ |
|         |                                |   |

UART Communication Protocol, I2C Protocol device interfacing and decoding of signal, SPI Protocol device interfacing and decoding of signal, WIFI and Router interfacing, Ethernet Configuration, Bluetooth study and analysis of data flow, Zigbee Interfacing and study of signal flow

| UNIT III | IoT PHYSICAL DEVICES AND ENDPOINTS | 6 |
|----------|------------------------------------|---|
|          | AND CONTROLLIN HARDWARE AND        |   |
|          | SENSORS                            |   |

IoT Physical Devices and Endpoints-Introduction to Arduino and Raspberry Pi- Installation, Interfaces (serial, SPI, I2C), Programming – Python program with Raspberry PI, Controlling Hardware, Sensors- Embedded Sensors, Distance Measurement with ultrasound sensor.

## UNIT IV CLOUD SERVICES USED IN IoT 6 DEVELOPMENT PLATFORM

Configuration of the cloud platform, Sending data from the IoT nodes to the gateways using different communication options; Transferring data from gateway to the cloud; Exploring the web services like mail, Messaging (SMS) and Twitter, Tracking of cloud data as per the requirement; Google Cloud service architect; AWS clod Services architect; Microsoft Azure cloud services Architect.

## UNIT V CHALLENGES IN IOT SYSTEM DESIGN - 6 HARDWARE & SOFTWARE

Antenna design and placement, Chip-package system development, Power electronics, electromagnetic interference/compatibility (EMI/EMC), Electronics reliability Battery simulation.

## **TOTAL: 30 PERIODS**

## PRACTICAL EXERCISES:

- 1. Write a program using IR sensor for working morning alarm and night lamp
- 2. Write a program using Temperature sensor for detecting heat / fire
- 3. Write a program using Gas sensor for detecting LPG gas leak
- 4. Write a program using Ultrasound sensor for range detection
- 5. Write a program using sensors for car parking assist
- 6. Write a program using sensors for water level indicator and overflow detection

### TOTAL:30 PERIODS

## **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Explain the building blocks of IoT technology and explore the vast spectrum of IoT applications
- CO2: Analyse various communication protocols used in IoT Design

| CO3:        | Interpre                                                            | et Io | Tc   | ohy  | sica | 1 de | evic | es a | nd   | enc  | lpoi   | nt    |       |      |     |     |
|-------------|---------------------------------------------------------------------|-------|------|------|------|------|------|------|------|------|--------|-------|-------|------|-----|-----|
| CO4:        | Develo                                                              | p va  | ario | us ( | con  | trol | ling | Ţ На | ard  | war  | e an   | d Se  | nsoı  | rs u | sed | in  |
|             | IoT                                                                 |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| CO5:        | Make 1                                                              | use   | of   | clo  | oud  | se   | rvio | ces  | use  | ed   | in I   | οТ    | Dev   | eloj | ome | ent |
|             | platform                                                            |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
|             | Explain                                                             |       | e va | rio  | us c | hal  | len  | ges  | in I | оΤο  | desi   | gn    |       |      |     |     |
| TEXT        | TEXT BOOKS:                                                         |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| 1           | Internet of Things - A Hands-on Approach, Arshdeep Bahga            |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
|             | and Vijay Madisetti, Universities Press, 2015, ISBN:                |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
|             | 9788173719547                                                       |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| 2           | Getting Started with Raspberry Pi, Matt Richardson &                |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| D           | Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759            |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| REFERENCES: |                                                                     |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| 1           | Raspberry Pi Cookbook, Software and Hardware Problems               |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
|             | and solutions, Simon Monk, O'Reilly (SPD), 2016, ISBN 7989352133895 |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| 2           | N. Ida, Sensors, Actuators and Their Interfaces, SciTech            |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| _           | Publishers, 2014.                                                   |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
| 3           | Peter Waher, 'Learning Internet of Things', Packt Publishing,       |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |
|             | 2015 3.                                                             |       |      |      |      |      |      |      |      | 6    | -6- /  |       |       |      |     | -0/ |
| 4           | Dr. Ovi                                                             | idiu  | ıVe: | rme  | sar  | , D  | r. P | ete  | r Fr | iess | s, "I1 | nteri | net c | of T | hin | gs: |
|             | Conver                                                              | gin   | g I  | Гесl | nno  | logi | ies  | for  | Sı   | nar  | t Eı   | nvir  | onm   | ents | s a | nd  |
|             | Integra                                                             | ted   | Eco  | sys  | ten  | ıs", |      |      |      | lish | ners   | SITY  | AUTO  |      |     |     |
|             | COs                                                                 |       |      |      |      |      | I    | POs  | ,    |      |        |       |       | I    | PSO | s   |
|             | 200                                                                 | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10     | 11    | 12    | 1    | 2   | 3   |
|             | 1                                                                   | 2     | 1    | -    | -    | 2    | -    | 1    | -    | ı    | -      | -     | 2     | 3    | 2   | -   |
|             | 2                                                                   | 3     | 3    | 2    | 2    | 2    | -    | -    | -    | -    | -      | -     | 2     | 3    | 3   | -   |
|             | 3                                                                   | 2     | 1    | -    | -    | 2    | -    | -    | -    | -    | -      | -     | 2     | 3    | 3   | -   |
|             | 4                                                                   | 3     | 2    | 1    | 1    | 2    | -    | -    | -    | -    | -      | -     | 2     | 3    | 3   | -   |
|             | 5                                                                   | 3     | 2    | 1    | 1    | 2    | -    | -    | -    | -    | -      | -     | 2     | 3    | 3   | -   |
|             | 6                                                                   | 2     | 1    | _    | _    | 3    | _    | _    | _    |      | _      | _     | 1     | 3    | 2   | _   |
| _           | verall                                                              | 3     | 2    | 1    | 1    | 3    | _    | -    | _    | -    | _      | _     | 2     | 3    | 3   | _   |
| Corr        | elation                                                             |       |      |      |      |      |      |      |      |      |        |       |       |      |     |     |

| 23EC041                                                          | MEMS DESIGN                                   | L     | T     | P     | C   |  |  |  |  |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------|-------|-------|-------|-----|--|--|--|--|--|--|--|
|                                                                  |                                               | 3     | 0     | 0     | 3   |  |  |  |  |  |  |  |
| COURSE                                                           | OBJECTIVES:                                   |       |       |       |     |  |  |  |  |  |  |  |
| • To 1                                                           | earn the basic electrical and mechanical c    | once  | pts   | of    |     |  |  |  |  |  |  |  |
| ME                                                               | MS design                                     |       |       |       |     |  |  |  |  |  |  |  |
| • To 1                                                           | nterpret the design aspects of electrostation | and   | its   |       |     |  |  |  |  |  |  |  |
|                                                                  | ators                                         |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | nterpret the design aspects of thermal ser    | sors  | and   | l its |     |  |  |  |  |  |  |  |
|                                                                  | ators                                         |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | Study the design aspects of piezoelectric s   |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | Study the design aspects of magnetic sens     | ors a | nd i  | ts    |     |  |  |  |  |  |  |  |
| actuators UNIT I ESSENTIAL ELECTRIC AND MECHANICAL               |                                               |       |       |       |     |  |  |  |  |  |  |  |
| UNITI                                                            |                                               | NIC   | AL    |       | 9   |  |  |  |  |  |  |  |
|                                                                  | CONCEPTS                                      |       |       |       |     |  |  |  |  |  |  |  |
| Conductivity of semiconductors, Crystal planes and orientations, |                                               |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | strain, flexural beam bending analysis        |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | onditions, Dynamic system, resonant f         | eque  | ency  | a     | nd  |  |  |  |  |  |  |  |
| quality fac                                                      |                                               | 100   |       |       |     |  |  |  |  |  |  |  |
| UNIT II                                                          | ELECTRO STATIC SENSING AND                    |       |       |       | 9   |  |  |  |  |  |  |  |
|                                                                  | ACTUATION                                     |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | ate capacitor, Applications of parallel pla   |       | -     |       |     |  |  |  |  |  |  |  |
|                                                                  | nsor, pressure sensor, flow sensor, tactile s |       |       |       |     |  |  |  |  |  |  |  |
| comb driv                                                        | ators, interdigitated finger capacitors, a    | ppiic | catic | ns    | 10  |  |  |  |  |  |  |  |
|                                                                  | e devices. THERMAL SENSING AND ACTUATION      | ONI   |       |       | 9   |  |  |  |  |  |  |  |
|                                                                  |                                               |       | 1     | 1     |     |  |  |  |  |  |  |  |
|                                                                  | ntals of thermal transfer, Sensors and actual |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | expansion, Thermal couples, Thern             |       | resi  |       |     |  |  |  |  |  |  |  |
|                                                                  | ns- Infrared sensors, flow sensors, Inertial  | sens  | ors,  | ou    | ıer |  |  |  |  |  |  |  |
| sensors                                                          | PIEZOELECTRIC SENSING AND ACT                 | ΤΙΔΊ  | ΓΙΩ   | NI    | 9   |  |  |  |  |  |  |  |
|                                                                  | ical description of piezoelectric effect      |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | ric actuator model, properties of piezoele    |       |       |       |     |  |  |  |  |  |  |  |
|                                                                  | PZT, PVDF, ZnO, Applications - Acc            |       |       |       |     |  |  |  |  |  |  |  |
| Tactile ser                                                      |                                               | astic | . 30. | 1130  | 10, |  |  |  |  |  |  |  |
| UNIT V                                                           | MAGNETIC SENSING AND ACTUAT                   | ION   |       |       | 9   |  |  |  |  |  |  |  |
|                                                                  |                                               | •     |       |       | _   |  |  |  |  |  |  |  |

Concepts and principles- magnetization and nomenclatures, principles of micromagnetic actuators, fabrication of micro

|                           | netic coil                                                          |      |       |      |       |      |      |      |      |       | n ar  | nd f   | abri  | cati | on    | of   |
|---------------------------|---------------------------------------------------------------------|------|-------|------|-------|------|------|------|------|-------|-------|--------|-------|------|-------|------|
|                           |                                                                     | ,    |       |      |       |      |      |      |      |       | TO    | ΓAL    | : 45  | PEF  | RIO   | DS   |
| COU                       | RSE OU                                                              | TC   | ON    | 1ES  | :     |      |      |      |      |       |       |        |       |      |       |      |
|                           | After co                                                            | mp   | leti  | on ( | of th | ne c | our  | se,  | the  | stu   | dent  | s wi   | ll be | abl  | e to  | ):   |
| CO1:                      | Apply 6                                                             | elec | trica | al c | onc   | epts | s in | ME   | EMS  | de    | sign  |        |       |      |       |      |
| CO2:                      | Make u                                                              | se c | of th | ne m | necl  | nani | ical | cor  | ıcep | ots i | n M   | EMS    | des   | ign  | =     |      |
| CO3:                      | Analyze the design of electro static sensors and actuators.         |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| CO4:                      | Examine the design of thermal sensors and actuators.                |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| CO5:                      | Examine the design of magnetic sensors and actuators.               |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| CO6:                      | Analyze the design of piezoelectric sensors and actuators.          |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| TEXT BOOKS:               |                                                                     |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| 1                         | Chang Liu, "Foundations of MEMS", Pearson education                 |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
|                           | India limited, 2006                                                 |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| 2                         | Mohamed Gad-el-Hak, Mems Design and Fabrication, First              |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| Edition, CRC Press, 2019. |                                                                     |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| 1                         | REFERENCES:  1   Sergey Edward Lyshevski, "MEMS and NEMS: Systems," |      |       |      |       |      |      |      |      |       |       |        |       |      |       |      |
| -                         | Devices                                                             |      |       |      |       |      |      |      |      |       |       | INL    | 1015. | Эу.  | SICI  | 115, |
| 2                         | Tai Ra                                                              |      |       |      |       |      |      |      |      |       |       | ms     | Des   | sigr | a     | nd   |
|                           | Manufa                                                              |      |       |      |       |      |      |      |      |       |       | CH     | NO    | LO   | G)    |      |
| 3                         | Vinod k                                                             |      |       |      |       |      |      | sen  | sor  | s: Pl | nysio | cal, ( | Cher  | nica | al, a | nd   |
|                           | Biologic                                                            |      |       | _    |       |      |      |      |      |       |       |        |       |      |       |      |
| 4                         | Siva Ye                                                             |      | -     |      | MŁ    | EMS  | Se   | ensc | rs:  | Des   | sign  | anc    | l Ap  | plic | catio | on,  |
|                           | Intech o                                                            | pei  | 1, 4  | 010  |       |      | I    | POs  |      |       |       |        |       | I    | PSC   | )c   |
| (                         | COs                                                                 | 1    | 2     | 3    | 4     | 5    | 6    | 7    | 8    | 9     | 10    | 11     | 12    | 1    | 2     | 3    |
|                           | 1                                                                   | 3    | 2     | 1    | 1     | _    | _    | _    | _    | _     | -     | _      | _     | 3    | _     | _    |
|                           | 2                                                                   | 3    | 2     | 1    | 1     | _    | _    | _    | _    | _     | -     | _      | _     | 3    | _     | _    |
|                           | 3                                                                   | 3    | 3     | 2    | 2     | _    | 1    | 1    | 1    | _     | -     | _      | -     | 3    | _     | 1    |
|                           | 4                                                                   | 3    | 3     | 2    | 2     | _    | 1    | 1    | 1    | _     | -     | _      | _     | 3    | _     | 1    |
|                           | 5                                                                   | 3    | 3     | 2    | 2     | -    | 1    | 1    | 1    | -     | -     | -      | -     | 3    | -     | 1    |
|                           | 6                                                                   | 3    | 3     | 2    | 2     | -    | 1    | 1    | 1    | -     | -     | -      | -     | 3    | -     | 1    |
| O                         | verall                                                              | 3    | 3     | 2    | 2     | _    | 1    | 1    | 1    | _     | _     | _      | _     | 3    | _     | 1    |
| Corı                      | elation                                                             |      |       |      |       |      |      |      |      |       |       |        |       |      |       | _    |

| 23EC042                                                            | FUNDAMENTALS OF NANO                                         | L     | T    | P    | C   |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------|-------|------|------|-----|--|--|--|--|
|                                                                    | ELECTRONICS                                                  | 3     | 0    | 0    | 3   |  |  |  |  |
| COURSE C                                                           | BJECTIVES:                                                   |       |      |      |     |  |  |  |  |
| • To ex                                                            | plain the concepts of nano electronics                       |       |      |      |     |  |  |  |  |
| • To u                                                             | nderstand the concepts of quantum electr                     | onio  | cs   |      |     |  |  |  |  |
| • To in                                                            | terpret the nano electronic devices and tra                  | ansi  | stor | s,   |     |  |  |  |  |
| • To f                                                             | amiliarize tunneling devices and supe                        | r co  | ond  | uct  | ing |  |  |  |  |
| devid                                                              | ces                                                          |       |      |      |     |  |  |  |  |
|                                                                    | immarize the basics of nanotube devices                      |       |      |      |     |  |  |  |  |
| UNIT I                                                             | INTRODUCTION TO NANO ELECTRO                                 | NI    | CS   |      | 9   |  |  |  |  |
| Scaling to N                                                       | lano - Light as a wave and particle- Electr                  | ons   | as v | wav  | res |  |  |  |  |
| and particles- origin of quantum mechanics - General postulates of |                                                              |       |      |      |     |  |  |  |  |
| quantum mechanics - Time independent Schrodinger wave              |                                                              |       |      |      |     |  |  |  |  |
| equation- Electron confinement - Quantum dots, wires and well-     |                                                              |       |      |      |     |  |  |  |  |
| Spin and angular momentum                                          |                                                              |       |      |      |     |  |  |  |  |
| UNIT II QUANTUM ELECTRONICS                                        |                                                              |       |      |      |     |  |  |  |  |
| Quantum e                                                          | lectronic devices - short channel MOS tra                    | nsis  | tor  | - Sp | lit |  |  |  |  |
| gate transis                                                       | tor - Electron wave transistor - Electron wa                 | ave   | trar | sist | or  |  |  |  |  |
| - Electron s                                                       | pin transistor - Quantum cellular automa                     | ta -( | Qua  | ntu  | ım  |  |  |  |  |
| - CONT. / 1                                                        | Quantum memory.                                              |       |      |      |     |  |  |  |  |
| UNIT III                                                           | NANO ELECTRONIC TRANSISTORS                                  |       |      |      | 9   |  |  |  |  |
| Coulomb b                                                          | olockade - Coulomb blockade in Nano                          | car   | oaci | tors | -   |  |  |  |  |
|                                                                    | ockade in tunnel junctions - Single electro                  | _     |      |      |     |  |  |  |  |
| Semicondu                                                          | ctor nanowire FETs and SETs, Molecul                         | ar S  | SET  | s a  | nd  |  |  |  |  |
| molecular e                                                        | lectronics - Memory cell.                                    |       |      |      |     |  |  |  |  |
|                                                                    | NANO ELECTRONIC TUNNELING AN                                 | ID    |      |      | 9   |  |  |  |  |
| 9                                                                  | SUPER CONDUCTING DEVICES                                     |       |      |      |     |  |  |  |  |
| Tunnel effe                                                        | ect -Tunneling element -Tunneling diod                       | e -   | Res  | ona  | ınt |  |  |  |  |
|                                                                    | tunneling diode - Three terminal resonant tunneling devices- |       |      |      |     |  |  |  |  |
| · ·                                                                | acting switching devices- Cryotron-                          | _     |      |      |     |  |  |  |  |
| 1                                                                  |                                                              | ,     | ]    | L    |     |  |  |  |  |

tunneling device.

| UNI   | T V NANOTUBES AND NANOSTRUCTURE DEVICES                      | 9          |
|-------|--------------------------------------------------------------|------------|
| Carb  | on Nanotube - Fullerenes - Types of nanotubes - Formati      | on         |
| of na | anotubes -Assemblies - Purification of carbon nanotubes      | s –        |
| Elect | ronic properties - Synthesis of carbon nanotubes - Carb      | on         |
| nanc  | otube interconnects - Carbon nanotube FETs and SETs          | ; <b>-</b> |
| Nano  | otube for memory applications- Nano structures and Na        | no         |
| struc | etured devices.                                              |            |
|       | TOTAL: 45 PERIO                                              | DS         |
| COU   | IRSE OUTCOMES:                                               |            |
|       | After completion of the course, the students will be able to | ):         |
| CO1:  | Explain the basics of Nano electronics                       |            |
| CO2:  | Interpret the quantum electronic devices and the mechanis    | sm         |
| CO3:  | Develop the various Nano electronics transistor              | E          |
| CO4:  | Analyze the key performance aspects of tunneling Na          | no         |
| Į.    | electronic devices                                           |            |
| CO5:  | Analyze the key performance aspects of super conducti        | ng         |
| - 1   | Nano electronic devices                                      |            |
| CO6:  | Make use of Nano electronics in the development of Na        |            |
|       | tubes and structures.                                        | 5          |
| TEX   | Γ BOOKS:                                                     |            |
| 1     | Hanson, Fundamentals of Nano electronics, Pears              | on         |
|       | education, 2009.                                             |            |
| 2     | Kumar Sanjay Sinha, Fundamentals of Nano electroni           | cs,        |
|       | Anmol Publishers, 2012                                       |            |
| REFI  | ERENCES:                                                     |            |
| 1     | Jan Dienstuhl, Karl Goser, and Peter Glösekött               | •          |
|       | Nanoelectronics and Nanosystems: From Transistors            | to         |
|       | Molecular and Quantum Devices, Springer-Verlag, 2004.        |            |

Mircea Dragoman and Daniela Dragoman, Nanoelectronics:

Principles and Devices, Artech House, 2009.

2

| 3 | Robert Puers,  | Livio Baldi, Marcel Van de | Voorde and     |
|---|----------------|----------------------------|----------------|
|   | Sebastiaan E.  | Van Nooten, Nanoelectroni  | cs: Materials, |
|   | Devices, Appli | cations, Wiley, 2017.      |                |

| 4 | Brajesh Kumar Kaushik, Nanoelectronics: Devices, Circuits |
|---|-----------------------------------------------------------|
|   | and Systems, Elsevier science, 2018                       |

| COs         |      |    |   |   |   | I   | POs |   |   |    |    |    | PSOs |   |   |  |
|-------------|------|----|---|---|---|-----|-----|---|---|----|----|----|------|---|---|--|
| COs         | 1    | 2  | 3 | 4 | 5 | 6   | 7   | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |  |
| 1           | 2    | 1  | - | - | - | 1   | -   | - | - | -  | -  | 2  | 2    | - | - |  |
| 2           | 2    | 1  | - | - | - | 2   | -   | - | - | -  | -  | 2  | 3    | - | - |  |
| 3           | 3    | 2  | 1 | 1 | - | 2   | -   | - | - | -  | -  | 2  | 3    | - | - |  |
| 4           | 3    | 3  | 2 | 2 | - | 2   | -   | - | - | -  | -  | 2  | 3    | - | - |  |
| 5           | 3    | 3  | 2 | 2 | - | 2   | -   | - | - | -  | -  | 2  | 3    | - | - |  |
| 6           | 3    | 2  | 1 | 1 | - | 3   | -   | - | - | -  | -  | 2  | 3    | - | - |  |
| Overall     | 3    | 2  | 1 | 1 | _ | 2   | _   |   |   |    | _  | 2  | 3    |   | _ |  |
| Correlation | ER L | RE |   |   |   | - 2 | 9   |   |   | _  |    | 1  | _    |   |   |  |





#### **VERTICAL 3 - HIGH SPEED COMMUNICATIONS**

| 23EC043 | L | T | P | C |   |
|---------|---|---|---|---|---|
|         |   | 3 | 0 | 0 | 3 |

## **COURSE OBJECTIVES:**

- To study and understand the concepts and design of a Cellular System.
- To Study And Understand Mobile Radio Propagation
- To Study And Understand Various Digital Modulation Techniques.
- To Understand The Concepts Of Multiple Access Techniques And Wireless Networks.

## UNIT I THE CELLULAR CONCEPT-SYSTEM DESIGN 9 FUNDAMENTALS

Introduction-Frequency Reuse-Channel Assignment Strategies-Handoff Strategies: Prioritizing Handoffs, Practical Handoff Considerations. Interference And System Capacity: Co-Channel Interference And System Capacity-Channel Planning For Wireless Systems, Adjacent Channel Interference, Power Control For Reducing Interference, Trunking And Grade Of Service. Improving Coverage

## UNIT II MOBILE RADIO PROPAGATION

9

Large Scale Path Loss: Introduction To Radio Wave Propagation - Free Space Propagation Model - Three Basic Propagation Mechanism: Reflection - Brewster Angle - Diffraction, Scattering. Small Scale Fading And Multipath: Small Scale Multipath Propagation, Factors Influencing Small-Scale Fading, Doppler Shift, Coherence Bandwidth, Doppler Spread And Coherence Time. Types Of Small-Scale Fading: Fading Effects

## UNIT III MODULATION TECHNIQUES AND EQUALIZATION AND DIVERSITY

9

Digital Modulation - An Overview: Factors That Influence The Choice Of Digital Modulation, Linear Modulation Techniques:

Minimum Shift Keying (MSK), Gaussian Minimum Shift Keying(GMSK), Spread Spectrum Modulation Techniques: Pseudo- Noise (PN) Sequences, Direct Sequence Spread Spectrum (DS-SS) Equalization, Diversity And Channel Coding: Introduction-Fundamentals Of Equalization- Diversity Techniques: Practical Space Diversity Considerations, Polarization Diversity, Frequency Diversity, Time Diversity.

## UNIT IV MULTIPLE ACCESS TECHNIQUES

9

Introduction: Introduction To Multiple Access- Frequency Division Multiple Access(FDMA)- Time Division Multiple Access(TDMA)- Spread Spectrum Multiple Access-Code Division Multiple Access(CDMA)- Space Division Multiple Access(SDMA)- Capacity Of Cellular Systems: Capacity Of Cellular CDMA, Capacity Of CDMA With Multiple Cells.

## UNIT V WIRELESS NETWORKING

9

Introduction: Difference Between Wireless And Fixed Telephone Networks, The Public Switched Telephone Network(PSTN), Development Of Wireless Networks: First Generation Wireless Networks, Second Generation Wireless Networks, Third Generation Wireless Networks, Fixed Network Transmission Hierarchy, Traffic Routing In Wireless Networks: Circuit Switching, Packet Switching- Personal Communication Services/Networks(PCS/PCNs)

#### **TOTAL: 45 PERIODS**

### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Explain the cellular concept and capacity improvement Techniques.
- CO2: Analyse mathematically mobile radio propagation mechanisms & its fading Effects.
- CO3: Summarize the Various Digital Modulation Techniques.
- CO4: Summarize the various Equalization Algorithms and Diversity combining techniques

| CO5: | Illustra                                                                   |                                                      |      |       | r sy      | ster  | n ba | asec | l on | res  | our   | ce av | aila   | bili | ty a | nd  |
|------|----------------------------------------------------------------------------|------------------------------------------------------|------|-------|-----------|-------|------|------|------|------|-------|-------|--------|------|------|-----|
|      | traffic d                                                                  |                                                      |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
| CO6: | Interpre                                                                   |                                                      |      | rele  | ss (      | chai  | nne  | l ar | ıd e | vol  | ve t  | he s  | yste   | m c  | lesi | gn  |
|      | specific                                                                   |                                                      | ns.  |       |           |       |      |      |      |      |       |       |        |      |      |     |
| TEXT | BOOK                                                                       | S:                                                   |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
| 1    | Rappap                                                                     |                                                      |      |       |           |       |      |      |      | nun  | icati | ons'  | ,      | Ре   | ears | on  |
|      | Educati                                                                    | on,                                                  | Sec  | onc   | 1 Ec      | litic | n, 2 | 2010 | ).   |      |       |       |        |      |      |     |
| 2    | Andrea                                                                     | s.F.                                                 | Mo   | olisc | :h,-\     | Wir   | eles | s C  | om   | mu   | nicat | tions | s, Jol | nn V | Vile | ey- |
|      | India,20                                                                   | 006                                                  | (INI | ΤII   | I,V       | )     |      |      |      |      |       |       |        |      |      |     |
| REFI | ERENCE                                                                     | S:                                                   |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
| 1    | Wireless Communication -Andrea Goldsmith, Cambridge University Press, 2011 |                                                      |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
|      |                                                                            |                                                      |      |       |           |       |      |      |      |      |       |       |        |      |      | O   |
| 2    | Van N                                                                      | Van Nee, R. and Ramji Prasad, —OFDM for wireless     |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
|      | multim                                                                     | multimedia communications, Artech, House, 2000       |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
| 3    | David                                                                      | David Tse and Pramod Viswanath, —Fundamentals of     |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
|      | Wireles                                                                    | Wireless Communication, Cambridge, University Press, |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
|      | 2005. WER DREAM                                                            |                                                      |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
| 4    | Upena                                                                      | Γ                                                    | ala  | 1,    | <u></u> V | Vire  | eles | s    | Co   | mm   | unio  | catio | n",    | C    | xfo  | rd  |
|      | Univers                                                                    | sity                                                 | Pre  | ss, Z | 2009      | 9.    |      |      |      | A    | - 50  |       |        |      |      |     |
| 5    | Andrea                                                                     | s.F.                                                 | N    | lolis | sch,      |       | Wiı  | ele  | ss   | Cor  | nmu   | ınica | ation  | ıs", | Jo   | hn  |
| - 1  | Wiley -                                                                    |                                                      |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
| 6    | Wireles                                                                    | s C                                                  | om   | muı   | nica      | tio   | n ar | nd N | Vetv | vor  | ks -  | Will  | iam    | Sta  | llin | gs, |
|      | Pearsor                                                                    | ı Ec                                                 | luca | itio  | n, S      | eco   | nd 1 | Edit | ion  | , 20 | 02.   | SITY  | AUTO   | INO  | иои  |     |
|      | COs                                                                        |                                                      |      |       |           |       | I    | POs  |      |      |       |       |        | I    | PSC  | s   |
|      | LOS                                                                        | 1                                                    | 2    | 3     | 4         | 5     | 6    | 7    | 8    | 9    | 10    | 11    | 12     | 1    | 2    | 3   |
|      | 1                                                                          | 2                                                    | 1    | -     | -         | 3     | 1    | -    | -    | -    | -     | -     | 1      | 3    | 3    | -   |
|      | 2                                                                          | 3                                                    | 3    | 2     | 2         | 3     | 2    | -    | -    | -    | -     | -     | -      | 3    | 3    | -   |
|      | 3                                                                          | 2                                                    | 1    | -     | -         | 3     | 2    | -    | -    | -    | -     | -     | -      | 3    | 3    | -   |
|      | 4                                                                          | 2                                                    | 1    | -     | -         | 2     | 2    | -    | -    | -    | 1     | -     | 1      | 3    | 2    | -   |
|      | 5                                                                          | 2                                                    | 1    | -     | 1         | 2     | 1    | 1    | -    | -    | ı     | -     | 1      | 2    | 2    | ı   |
|      | 6 2 1 2 2 1 2 2 -                                                          |                                                      |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
| _    | Overall 3 2 1 1 2 2 1 3 2 -                                                |                                                      |      |       |           |       |      |      |      |      |       |       |        |      |      |     |
| Corr | elation                                                                    | 5                                                    |      | 1     | 1         |       |      | _    | _    | _    | _     | •     | 1      | ,    | ۷    | 1   |

| 23EC044 | MICROWAVE     | L | T | P | C |
|---------|---------------|---|---|---|---|
|         | COMMUNICATION | 3 | 0 | 0 | 3 |

## **COURSE OBJECTIVES:**

- To inculcate an understanding of the basics required for circuit representation of RF networks.
- To deal with the issues in the design of microwave amplifiers.
- To instill knowledge of the properties of various microwave components.
- To deal with the microwave generation and microwave measurement techniques

| UNIT I | PASSIVE AND ACTIVE MICROWAVE | 9 |
|--------|------------------------------|---|
|        | DEVICES                      |   |

Formulation of S-parameters, Properties of S parameters, Reciprocal and lossless Network, Transmission matrix, RF behaviour of Resistors, Capacitors and Inductors. Terminations, Attenuators, Phase shifters, Directional couplers, Hybrid Junctions, Power dividers, Circulator, Isolator, PIN diode switch, Gunn diode oscillator, IMPATT diode, Varactor diode.

## UNIT II MICROWAVE GENERATION 9

Theory and application of Two cavity Klystron Amplifier, Reflex Klystron oscillator, Travelling wave tube amplifier, Magnetron oscillator using Cylindrical, Linear, Coaxial Voltage tunable Magnetrons, Backward wave Crossed field amplifier and oscillator.

## UNIT III MICROWAVE MEASUREMENTS 9

Measuring Instruments: Principle of operation and application of VSWR meter, Power meter, Spectrum analyser, Network analyser, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, Sparameters

| UNI   | ΓΙ          | ADVANCEMENTS IN MICROWAVE<br>ENGINEERING                      | 9     |
|-------|-------------|---------------------------------------------------------------|-------|
|       |             | ENGINEERING                                                   |       |
| Effec | et of       | Microwaves on human body, Medical and C                       | ivil  |
| appli | icatio      | ns of microwaves, Electromagnetic interference                | /     |
| Elect | roma        | gnetic Compatibility (EMI / EMC), Monolit                     | thic  |
| Micr  | owav        | e IC fabrication, RF MEMS for microwave compone               | nts,  |
|       |             | e Imaging                                                     |       |
| UNI   | ΓV          | MICROWAVE COMMUNICATION SYSTEMS                               | 9     |
| Wire  | eless (     | Communications system, Radar Systems, Radiome                 | eter  |
| Syste | ems, S      | Satellite Communication, Remote sensing, Microw               | ave   |
| Prop  | agatio      | on, Microwave Antennas.                                       |       |
|       |             | TOTAL: 45 PERIO                                               | DDS   |
| COU   |             | OUTCOMES:                                                     |       |
|       | 200.7       | r completion of the course, the students will be able t       |       |
| CO1:  | A0000V - 1/ | ain the active & passive microwave devices                    |       |
| ĺ     |             | p <mark>onents</mark> used in Microwave communication systems |       |
|       |             | elop and design microwave amplifiers.                         |       |
|       | 10. Y. F    | lyze the Microwave signals and parameters                     | - ·   |
| l .   | _           | ain the effects of microwaves on human body.                  | T .   |
| CO5:  | _           | ain the fundamentals that are essential for electron          | nics  |
|       |             | stry in the field of EMI / EMC.                               |       |
| l .   |             | ain various microwave systems and its applications            |       |
|       | Г ВОС       |                                                               |       |
| 1     |             | uel Liao - Microwave devices and circuits, PHI. (Uni          | t I - |
|       | III)        |                                                               |       |
| 2     |             | 'Introduction to Microwave Measurements,' CRC Pr              | ess   |
| _     |             | (Unit IV)                                                     |       |
| 3     |             | raus, Antennas, McGraw Hill, 1988. (Unit V)                   |       |
|       | EREN        |                                                               |       |
| 1     |             | 1. Pozar, Microwave Engineering, John Wiley, USA.             |       |
| 2     | Sanj        | eev Gupta, Microwave Engineering, Khanna Pub.                 |       |

| 3 | Henry    | 1                   | W.  | (    | Ott, |              | "El  | ectr | om    | agr   | etic | (     | Com   | pat  | ibil | ity |
|---|----------|---------------------|-----|------|------|--------------|------|------|-------|-------|------|-------|-------|------|------|-----|
|   | Engine   | erin                | g", | Joh  | n W  | /iley        | y &  | Sor  | ns II | nc, ] | New  | yorl  | k, 20 | 09.  |      |     |
| 4 | Hector   | J.                  | De  | Los  | Sa   | ntc          | s, ' | 'RF  | M     | EM    | S C  | ircui | it D  | esię | gn f | or  |
|   | Wireles  | s A                 | ppl | icat | ions | s", <i>E</i> | Arte | ch I | Ηοι   | ıse,  | 200  | 2     |       |      |      |     |
| 5 | B. Edd   | le,                 | Ra  | dar: | : P  | rino         | cipl | es,  | Te    | chn   | olog | gy,   | App   | lica | tio  | ns, |
|   | Prentice | rentice Hall, 1993. |     |      |      |              |      |      |       |       |      |       |       |      |      |     |
|   | COs      |                     |     |      |      |              |      |      |       |       |      | PSOs  |       |      |      |     |
| ' | COs      | 1                   | 2   | 3    | 4    | 5            | 6    | 7    | 8     | 9     | 10   | 11    | 12    | 1    | 2    | 3   |
|   | 1        | 2                   | 1   | -    | -    | -            | -    | -    | -     | -     | 2    | -     | 2     | 3    | -    | -   |
|   | 2        | 3                   | 2   | 1    | 1    | -            | -    | -    | -     | -     | 1    | -     | 2     | 2    | -    | -   |
|   | 3        | 3                   | 3   | 2    | 2    | -            | -    | -    | -     | -     | 2    | -     | -     | 1    | -    | -   |
|   | 4        | 2                   | 1   | -    | -    | -            | -    | -    | -     | -     | 2    | -     | -     | 2    | -    | -   |
|   | 5        | 2                   | 1   | -    | -    | -            | -    | -    | -     | -     | 2    | -     | 2     | 2    | -    | -   |
|   |          |                     |     |      |      |              |      |      |       |       |      |       |       |      |      |     |
|   | 6        | 2                   | 1   | -    | -    | _            | -    | 5_   | -     |       | 2    | -     | 2     | 2    | 1    | -   |




| 23EC045                                   | SATELLITE COMMUNICATION                      | L     | T    | P     | C   |
|-------------------------------------------|----------------------------------------------|-------|------|-------|-----|
|                                           |                                              | 3     | 0    | 0     | 3   |
| COURSE                                    | OBJECTIVES:                                  |       |      |       |     |
| • To u                                    | nderstand the basics of satellite orbits.    |       |      |       |     |
|                                           | nderstand the satellite segment and earth    | _     | nen  | t.    |     |
|                                           | nalyse the various methods of satellite acc  | ess.  |      |       |     |
|                                           | nderstand the applications of satellites.    |       |      |       |     |
|                                           | nderstand the basics of satellite Networks   | •     |      |       |     |
| UNIT I                                    | SATELLITE ORBITS                             |       |      |       | 9   |
| Kepler's                                  | Laws, Newton's law, orbital parame           | ters  | , 0  | rbi   | tal |
| perturbation                              | ons, station keeping, geo stationary ar      | nd 1  | non  | -Ge   | 20- |
| stationary                                | orbits - Look Angle Determination- Limit     | s of  | visi | ibili | ity |
| _                                         | Sub satellite point -Sun transit outag       |       |      |       | -   |
| _                                         | s - launch vehicles and propulsion.          |       |      |       | Ü   |
| UNIT II                                   | SPACE SEGMENT                                | 1     |      |       | 9   |
| C                                         | T 1 1 C( ) D:                                | A 11: | 1    | _     | 1   |
|                                           | Technology- Structure, Primary power,        |       |      |       |     |
| 7, 100 (100 (100 (100 (100 (100 (100 (100 | rol, Thermal control and Propulsion, con     | - 10  |      |       |     |
| - 1                                       | nd supporting subsystems, Telemetry, T       |       | King | g ai  | าต  |
| 346.577                                   | Transponders-The Antenna Subsystem.          | VO    | 0    | GΥ    | ^   |
| UNITIII                                   | SATELLITE LINK DESIGN                        |       |      | 100   | 9   |
| Basic link a                              | nalysis, Interference analysis, Rain induce  | d att | enu  | ati   | on  |
| and interfe                               | rence, Ionospheric characteristics, Link Des | sign  | wit  | h aı  | nd  |
| without fre                               | equency reuse.                               |       |      |       |     |
| UNIT IV                                   | EARTH SEGMENT AND SATELLITE A                | CCI   | ESS  |       | 9   |
|                                           | METHODS                                      |       |      |       |     |
| Earth Stati                               | ion- Transmitter and Receiver Earth Sta      | tior  | , T  | VR    | Ō,  |
|                                           | d CATV. Multiple access: FDMA, TDM           |       |      |       |     |
|                                           | signment Methods                             |       |      |       |     |
| UNIT V                                    | SATELLITE APPLICATIONS                       |       |      |       | 9   |
| INTELSAT                                  | Series, INSAT, VSAT, Mobile satellite se     | rvic  | es:  | GSI   | M,  |
| GPS, INM                                  | ARSAT, LEO, MEO, Satellite Navigational      | Sys   | tem  | . G   | PS  |
| -,                                        | , = = , = = , = = = = = = = = = = = = =      | - , , |      |       |     |

Position Location Principles, Differential GPS, Direct Broadcast satellites (DBS/DTH). TOTAL: 45 PERIODS **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Utilise the Kepler's and Newton's Laws to explain various parameters of the satellite orbits and the launching procedures. CO2: Explain the different subsystems of the satellite space segment. CO3: Analyse uplink and downlink equations for the satellite using noise effects. **CO4:** Explain various types of transmitters and receivers in earth segment. CO5: Compare and interpret various multiple access techniques. CO6: Summarize different satellite access performance metrics apply it in satellite applications. TEXT BOOKS: Dennis Roddy, "Satellite Communication", 4th Edition, Mc 1 Graw Hill International, 2006. Timothy Pratt, Charles, W. Bostain, Jeremy E. Allnutt, 2 "Satellite Communication", 2nd Edition, Wilev Publications, 2002. **REFERENCES:** Wilbur L. Pritchard, Hendri G. Suyderhoud, Robert A. 1 Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, 2007. "The 2 Bruce R. Elbert. Satellite Communication Applications", Hand Book, Artech House Bostan London, 1997. M.Richharia, "Satellite Communication Systems-Design 3

Principles", Macmillan 2003.

| COs                    |   |   |   |   |   | I | POs |   |   |    |    |    | PSOs |   |   |  |
|------------------------|---|---|---|---|---|---|-----|---|---|----|----|----|------|---|---|--|
| COs                    | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |  |
| 1                      | 3 | 2 | 1 | 1 | - | - | -   | - | - | -  | -  | -  | 3    | - | - |  |
| 2                      | 2 | 1 | - | - | - | - | -   | - | - | -  | -  | -  | 2    | - | - |  |
| 3                      | 3 | 3 | 2 | 2 | - | - | -   | - | - | -  | -  | -  | 3    | - | - |  |
| 4                      | 2 | 1 | - | - | - | - | -   | - | - | -  | -  | -  | 3    | - | - |  |
| 5                      | 2 | 1 | - | - | - | - | -   | - | - | -  | -  | -  | 2    | - | - |  |
| 6                      | 2 | 1 | - | - | - | - | -   | - | - | -  | -  | -  | 3    |   |   |  |
| Overall<br>Correlation | 3 | 2 | 1 | 1 | - | 1 | -   | ı | 1 | -  | -  | -  | 3    | - | - |  |



| 23EC046 | RADAR TECHNOLOGIES | L | T | P | С |
|---------|--------------------|---|---|---|---|
|         |                    | 3 | 0 | 0 | 3 |

## **COURSE OBJECTIVES:**

- To understand the basics of Radar and Radar equation
- To understand the types of Radar
- To understand tracking Radar
- To understand the various signal processing in Radar
- To understand the Subsystems in Radar

## UNIT I INTRODUCTION TO RADARS 9

The Origins of Radar, Radar principles, Basic Block Diagram, Radar classifications based on Frequencies, Wave form and application, Radar Fundamentals: Detection, Range, velocity, The simple form of the Radar Equation, Pulsed Radar equation, Detection of Signals in Noise- Receiver Noise, Signal-to-Noise Ratio, Probabilities of Detection and False Alarm, Integration of Radar Pulses, Radar Cross Section of Targets, Transmitter Power, Pulse Repetition Frequency, Antenna Parameters, System losses.

# UNIT II CW, MTI AND PULSE DOPPLER RADAR 9

CW and Frequency Modulated Radar, Doppler and MTI Radar-Delay Line Cancellers, Staggered Pulse Repetition Frequencies, Doppler Filter Banks, Digital MTI Processing, Moving Target Detector, Limitations to MTI Performance, MTI from a Moving Platform (AMIT), Pulse Doppler Radar.

# UNIT III TRACKING RADAR 9

Tracking with Radar, Monopulse Tracking, Conical Scan, Sequential Lobing, Limitations to Tracking Accuracy, Low-Angle Tracking - Comparison of Trackers, Track while Scan (TWS) Radar- Target prediction, state estimation, Measurement models, alpha - beta tracker, Kalman Filtering, Extended Kalman filtering.

## UNIT IV RADAR SIGNAL PROCESSING

Radar Signal Processing Fundamentals, Detection strategies, Optimal detection, Threshold detection, Constant False alarm rate detectors, Adaptive CFAR, pulse compression waveforms, compression gain, LFM waveforms matched filtering, radar ambiguity functions, radar resolution, Detection of radar signals in Noise and clutter, detection of non-fluctuating target in noise, Doppler spectrum of fluctuating targets, Range Doppler spectrum of stationary and moving radar.

## UNIT V RADAR TRANSMITTERS AND RECEIVERS

Radar Transmitter, Linear Beam Power Tubes, Solid State RF Power Sources, Magnetron, Crossed Field Amplifiers, Other RF Power Sources. The Radar Receiver, Receiver noise power, Super heterodyne Receiver, Duplexers and Receiver Protectors- Radar Displays. Radar Antenna - Reflector Antennas - Electronically Steered Phased Array Antennas - Phase Shifters

#### **TOTAL: 45 PERIODS**

9

9

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Analyze the various Radar parameters
- CO2: Summarize various radar types
- CO3: Explain different tracking and filtering schemes
- **CO4:** Apply signal processing in target detection
- CO5: Develop and design Construct Radar transmitter blocks
- CO6: Develop and design Radar receiver functional blocks

#### TEXT BOOKS:

- 1 Habibur Rahman, Fundamental Principles of Radar, CRC press, Taylor and Francis, 2019.
- 2 M. R. Richards, J. A. Scheer, W. A. Holm, Editors "Principles of Modern Radar, Basic Principles", SciTech Publishing, 2012

| REFI | REFERENCES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |      |      |       |      |      |      |      |      |      |      |      |      |      |     |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|------|-------|------|------|------|------|------|------|------|------|------|------|-----|--|--|
| 1    | Nathan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | san                            | , "R | lada | ar d  | esig | ցո բ | orin | cip  | les- | Sign | al p | roce | ssin | ıg a | nd  |  |  |
|      | environ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ıme                            | nt", | PF   | HI, 2 | nd   | Edi  | tior | 1,20 | 07.  |      |      |      |      |      |     |  |  |
| 2    | M.I.Sko                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lnil                           | ζ,"  | Intr | odı   | ıcti | on t | o R  | ada  | r Sy | ster | ns", | Tata | Mo   | Gra  | aw  |  |  |
|      | Hill 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06.                            |      |      |       |      |      |      |      |      |      |      |      |      |      |     |  |  |
| 3    | Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A.                             | Ri   | cha  | rds   | , "  | 'Fuı | nda  | me   | ntal | s c  | of I | Rada | r    | Sig  | nal |  |  |
|      | Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rocessing", McGraw-Hill, 2005. |      |      |       |      |      |      |      |      |      |      |      |      |      |     |  |  |
|      | COs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |      |      |       |      |      |      |      |      |      |      |      |      | PSOs |     |  |  |
| `    | COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                              | 2    | 3    | 4     | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 1    | 2    | 3   |  |  |
|      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                              | 3    | 2    | 2     | -    | -    | -    | -    | -    | -    | -    | -    | 3    | -    | -   |  |  |
|      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                              | 1    | -    | -     | -    | -    | -    | -    | -    | -    | -    | -    | 2    | -    | -   |  |  |
|      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                              | 1    | -    | -     | -    | -    | -    | -    | -    | -    | -    | -    | 3    | -    | -   |  |  |
|      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                              | 2    | 1    | 1     | -    | -    | ı    | ı    | ı    | 1    | -    | -    | 3    | -    | -   |  |  |
|      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                              | 2    | 1    | 1     | Н    | -    | Į.   | ā    | - 1  | -    | 1    | - 3  | 2    | 1    | -   |  |  |
|      | 6 3 2 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |      |      |       |      |      |      |      |      |      |      |      | 3    |      |     |  |  |
|      | verall relation         3         2         1         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |                                |      |      |       |      |      |      |      |      |      |      | 3    | -    | -    |     |  |  |

# COLLEGE OF TECHNOLOGY

| 23EC047                  | 4G/5G COMMUNICATION                          | L     | T     | P     | C   |
|--------------------------|----------------------------------------------|-------|-------|-------|-----|
|                          | NETWORKS                                     | 2     | 0     | 2     | 3   |
| COURSE                   | OBJECTIVES:                                  |       |       |       |     |
| • To le                  | earn the evolution of wireless networks.     |       |       |       |     |
| <ul> <li>To g</li> </ul> | et acquainted with the fundamentals of 50    | G ne  | two   | rks   |     |
| • To s                   | tudy the processes associated with 5G arcl   | nited | tur   | e.    |     |
| • To s                   | tudy spectrum sharing and spectrum trad      | ing.  |       |       |     |
| • To le                  | earn the security features in 5G networks    |       |       |       |     |
| UNIT I                   | EVOLUTION OF WIRELESS NETWOR                 | RKS   |       |       | 6   |
| Networks                 | evolution: 2G, 3G, 4G, evolution of          | radi  | io a  | acce  | ess |
|                          | need for 5G. 4G versus 5G, Next Generati     |       |       |       |     |
| core), visua             | alized Evolved Packet core (vEPC).           |       |       |       |     |
| UNIT II                  | 5G CONCEPTS AND CHALLENGES                   | -     |       |       | 6   |
| Fundamen                 | tals of 5G technologies, overview of 5G      | core  | ne    | txazo | rk  |
| 200 A 300                | e,5G new radio and cloud technologies,       |       |       |       |     |
| 1                        | ies (RATs), EPC for 5G.                      | IXau. | 10 1  | 1000  | 233 |
| UNIT III                 | NETWORK ARCHITECTURE AND TH                  | ΗE    |       |       | 6   |
|                          | PROCESSES                                    |       |       |       |     |
| 6                        | COLLEGE OF TECH                              |       |       |       |     |
|                          | ecture and core, network slicing, multi      |       |       |       | _   |
| _                        | (MEC)visualization of 5G components          |       |       |       |     |
|                          | hitecture, service continuity, relation to E |       |       |       |     |
|                          | . 5G protocols: 5G NAS, NGAP, GTP-U, IP      |       |       |       | RE. |
| UNIT IV                  |                                              | NT.   | AN    | D     | 6   |
|                          | MM-WAVES                                     |       |       |       |     |
| Mobility m               | nanagement, Command and control, spec        | trun  | n sh  | ari   | ng  |
| and spectr               | rum trading, cognitive radio based on 50     | G, n  | nilli | me    | ter |
| waves.                   |                                              |       |       |       |     |
| UNIT V                   | SECURITY IN 5G                               |       |       |       | 6   |
| Security fe              | l<br>atures in 5G networks, network domain s | secu  | rity  | , us  | ser |
| ,                        | ecurity, flow based QoS framework, m         |       |       |       |     |
| threats in 5             | 6G                                           |       |       |       |     |

#### **TOTAL: 30 PERIODS**

#### PRACTICAL EXERCISES:

- 1. 4G / 5G-Compliant waveform generation and testing
- 2. Modeling of 5G Synchronization signal blocks and bursts
- 3. Channel modeling in 5G networks
- 4. Multiband OFDM demodulation
- 5. Perfect Channel estimation
- 6. Development of 5G New Radio Polar Coding

## **TOTAL:30 PERIODS**

## **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Make use of the evolution of wireless networks and explain its components.
- **CO2:** Make use of the 5G architecture and its components.
- CO3: Utilize the Radio access technologies, cloud technologies and EPC for 5G.
- CO4: Apply the network slicing, MEC and 5G protocols.
- CO5: Make use of the different spectrum sharing mechanisms.
- CO6: Analyze the various security attacks in 5G and QoS mechanisms in 4G and 5G.

#### **TEXT BOOKS:**

- 1 5G Core networks: Powering Digitalization, Stephen Rommer, Academic Press, 2019.
- 2 An Introduction to 5G Wireless Networks: Technology, Concepts and Use cases, Saro Velrajan, First Edition, 2020.

## **REFERENCES:**

- 1 5G Simplified: ABCs of Advanced Mobile Communications Jyrki. T.J.Penttinen, Copyrighted Material.
- 2 5G system Design: An end-to-end Perspective, Wan Lee Anthony, Springer Publications, 2019.
- 3 Fundamentals of 5G Mobile Networks, Johnathan Rodriguez, Wiley June 2015

| 4 |                    |   | nunication, Aaron Kevin Cameron, Karthika, SIPH ons, 2024 |   |   |   |   |   |   |   |    |    |    |   |   |      |  |  |
|---|--------------------|---|-----------------------------------------------------------|---|---|---|---|---|---|---|----|----|----|---|---|------|--|--|
|   | 7 <b>0</b> °       |   | POs                                                       |   |   |   |   |   |   |   |    |    |    |   |   | PSOs |  |  |
| , | COs                | 1 | 2                                                         | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3    |  |  |
|   | 1                  | 3 | 2                                                         | 1 | 1 | 1 | • | - | - | - | -  | -  | 2  | 2 | 1 | -    |  |  |
|   | 2                  | 3 | 2                                                         | 1 | 1 | 1 | - | - | - | - | -  | -  | 2  | 3 | 1 | -    |  |  |
|   | 3                  | 3 | 2                                                         | 1 | 1 | 1 | - | - | - | - | -  | 1  | 2  | 3 | 1 | -    |  |  |
|   | 4                  | 3 | 2                                                         | 1 | 1 | 1 | - | - | - | - | -  | 1  | 2  | 3 | 1 | -    |  |  |
|   | 5                  | 3 | 2                                                         | 1 | 1 | 1 | ı | ı | ı | ı | -  | ı  | 2  | 3 | 1 | -    |  |  |
|   | 6                  | 3 | 3                                                         | 2 | 2 | 3 | ı | 1 | 1 | 1 | -  | 1  | 3  | 3 | 3 | -    |  |  |
|   | verall<br>relation | 3 | 3                                                         | 2 | 2 | 2 | - | - | - | - | -  | ,  | 3  | 3 | 2 | -    |  |  |



| 23EC048 | WIRELESS BROAD BAND | L | T | P | C |
|---------|---------------------|---|---|---|---|
|         | COMMUNICATION       | 3 | 0 | 0 | 3 |

## **COURSE OBJECTIVES:**

- To study the various network layer and transport layer protocols for wireless networks
- To study the architecture and interference mitigation techniques in 3G standards
- To learn about 4G technologies and LTE-A in mobile cellular network.
- To learn about the layer level functionalities in interconnecting networks.
- To study the emerging techniques in 5G network.

## UNIT I WIRELESS PROTOCOLS

9

Mobile network layer- Fundamentals of Mobile IP, data forwarding procedures in mobile IP, IPv4, IPv6, IP mobility management, IP addressing - DHCP, Mobile transport layer-Traditional TCP, congestion control, slow start, fast recovery/fast retransmission, classical TCP improvements- Indirect TCP, snooping TCP, Mobile TCP.

## UNIT II 3G EVOLUTION

3

IMT-2000 - W-CDMA, CDMA 2000 - radio & network components, network structure, packet-data transport process flow, Channel Allocation, core network, interference-mitigation techniques, UMTS-services, air interface, network architecture of 3GPP, UTRAN – architecture, High Speed Packet Data-HSDPA, HSUPA.

## UNIT III | 4G EVOLUTION

9

Introduction to LTE-A – Requirements and Challenges, network architectures – EPC, E- UTRAN architecture – mobility management, resource management, services, channel -logical and transport channel mapping, downlink/uplink data transfer, MAC control element, PDU packet formats, scheduling services, random access procedure.

## UNIT IV LAYER-LEVEL FUNCTIONS

9

Characteristics of wireless channels - downlink physical layer, uplink physical layer, MAC scheme - frame structure, resource structure, mapping, synchronization, reference signals and channel estimation, SC-FDMA, interference cancellation - CoMP, Carrier aggregation, Services - multimedia broadcast/multicast, location-based services.

## UNIT V 5G EVOLUTION

9

5G Roadmap - Pillars of 5G - 5G Architecture, The 5G internet - IoT and context awareness - Networking reconfiguration and virtualization support - Mobility QoS control - emerging approach for resource over provisioning, Small cells for 5G mobile networks-capacity limits and achievable gains with densification - Mobile data demand, Demand Vs. Capacity, Small cell challenges, conclusion and future directions.

## **TOTAL: 45 PERIODS**

## **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Summarise the various protocols in wireless networks.
- CO2: Utilise the architecture of 3G network standards for wireless communication (WCDMA and 3GPP).
- CO3: Examine the authentication techniques for the data transfer in WCDMA and 3GPP systems.
- CO4: Explain the various MAC elements.
- CO5: Make use of the interconnecting network functionalities for layer level functions.
- CO6: Summarise the communication concepts in current generation (5G) network architecture.

#### TEXT BOOKS:

1 Jochen H. Schller, "Mobile Communications", Second Edition, Pearson Education, New Delhi, 2007.(Unit-1)

| 2   | Clint Sı             | nith                       | 1,P.1                   | E, D        | anı               | nel (                                                                              | Col              | lins  | , "30 | GV   | Virel                  | ess l        | Netv                        | vor              | ks"                        |                        |
|-----|----------------------|----------------------------|-------------------------|-------------|-------------------|------------------------------------------------------------------------------------|------------------|-------|-------|------|------------------------|--------------|-----------------------------|------------------|----------------------------|------------------------|
|     | Tata Mo              | cGr                        | aw-                     | Hi          | 11, 2             | nd                                                                                 | Edi              | itioı | n, 2  | 011  | .(Ur                   | nit 2)       |                             |                  |                            |                        |
| REF | FERENCES:            |                            |                         |             |                   |                                                                                    |                  |       |       |      |                        |              |                             |                  |                            |                        |
| 1   | Sassan               | Aŀ                         | ıma                     | di,         | "L                | ГЕ                                                                                 | Ad               | van   | ced   | -    | A ]                    | prac         | tical                       | sy               | ste                        | ms                     |
|     | approa               | ch t                       | o ur                    | nde         | rsta              | ndi                                                                                | ng t             | the   | 3GF   | PΙ   | TE I                   | Relea        | ases                        | 10 a             | and                        | 11                     |
|     | radio a              | cces                       | s te                    | chn         | olo               | gies                                                                               | s", I            | Else  | viei  | , 20 | )14.(                  | Unit         | 3&4                         | )                |                            |                        |
| 2   | Jonatha              | n                          | Ro                      | drig        | gue               | z,                                                                                 | "Fı              | ınd   | ame   | enta | als                    | of           | 5G                          | N                | Лob                        | ile                    |
|     | networ               | ks",                       | Joh                     | ın V        | Vile              | y, 2                                                                               | 015              | .(U1  | nit 5 | 5)   |                        |              |                             |                  |                            |                        |
| 3   | Vijay K              | (.Ga                       | arg,                    | "W          | Vire              | less                                                                               | N                | etw   | ork   | Ev   | olut                   | ion          | - 20                        | 3 &              | : 30                       | <u>.</u> ".            |
|     | Prentice             | е На                       | all, i                  | 200         | 8.                |                                                                                    |                  |       |       |      |                        |              |                             |                  |                            |                        |
| 4   | Kaveh l              | Pah                        | lava                    | an, '       | 'Pri              | Prentice Hall, 2008.  Kaveh Pahlavan, "Principles of wireless networks", Prentice- |                  |       |       |      |                        |              |                             |                  |                            |                        |
|     | Hall of India, 2008. |                            |                         |             |                   |                                                                                    |                  |       |       |      |                        |              |                             |                  |                            |                        |
|     | Hall of              | Ind                        |                         |             |                   |                                                                                    | 7100             | , 01  | ,,,,, | cico | 3 HC                   | 01           | κο ,                        |                  | .1161                      |                        |
|     |                      | Ind                        |                         |             |                   |                                                                                    | -                | POs   |       |      |                        |              | <b>10</b> /                 |                  | PSC                        |                        |
| •   | Hall of              | Ind<br>1                   |                         |             |                   | 5                                                                                  | -                |       |       | 9    | 10                     | 11           | 12                          |                  |                            |                        |
| •   |                      |                            | ia, 2                   | 2008        | 3.                |                                                                                    | I                | POs   |       |      |                        |              | Γ                           | I                | PSC                        | s                      |
|     | COs                  | 1                          | ia, 2<br>2              | 2008        | 3.                | 5                                                                                  | I                | POs   |       |      |                        |              | 12                          | I<br>1           | PSC<br>2                   | s                      |
|     | COs                  | 1 2                        | ia, 2  2                | 3           | 3.<br>4<br>-      | <b>5</b> 3                                                                         | I                | POs   |       |      | 10                     |              | 12                          | 1<br>2           | 2<br>3                     | s                      |
|     | COs  1 2             | 1<br>2<br>3                | ia, 2  2  1 2           | 3<br>-<br>1 | 3.<br>4<br>-<br>1 | <b>5</b> 3                                                                         | I                | POs   |       |      | 10<br>-<br>2           |              | 12<br>2<br>3                | 1<br>2<br>3      | 2<br>3                     | s                      |
|     | COs  1 2 3           | 1<br>2<br>3<br>3           | ia, 2  2  1  2  2       | 3<br>-<br>1 | 3.<br>4<br>-<br>1 | <b>5</b> 3                                                                         | I                | POs   |       |      | 10<br>-<br>2<br>2      |              | 12<br>2<br>3<br>3           | 1<br>2<br>3<br>3 | 2<br>3                     | s                      |
|     | COs 1 2 3 4          | 1<br>2<br>3<br>3           | ia, 2  1  2  2  2  2  2 | 3<br>-<br>1 | 3.<br>4<br>-<br>1 | 5<br>3<br>-                                                                        | 1<br>6<br>-<br>- | POs 7 | 8     | 9    | 10<br>-<br>2<br>2      |              | 12<br>2<br>3<br>3           | 1<br>2<br>3<br>3 | 2<br>3<br>3                | s                      |
|     | COs  1 2 3 4 5       | 1<br>2<br>3<br>3<br>3<br>2 | ia, 2  1  2  2  2  1    | 3<br>-<br>1 | 3.<br>4<br>-<br>1 | 5<br>3<br>-<br>-<br>3                                                              | I 6              | POs 7 | 8     | 9    | 10<br>-<br>2<br>2<br>2 | 11<br>-<br>- | 12<br>2<br>3<br>3<br>3<br>2 | 1 2 3 3 3 2      | 2<br>3<br>3<br>-<br>-<br>3 | 9s<br>3<br>-<br>-<br>- |

#### **VERTICAL 4 - NETWORKS AND CYBER SECURITY**

| 23EC049 | NETWORK ESSENTIALS | L | T | P | C |
|---------|--------------------|---|---|---|---|
|         |                    | 2 | 0 | 2 | 3 |

## **COURSE OBJECTIVES:**

- Concept of network communication
- Importance of standards and protocols in network communications
- Configuration of an integrated wireless router and wireless client to connect securely to the internet.
- Connecting wireless PC clients to a wireless router
- Concept to build a simple computer network using Cisco devices and troubleshoot basic network connectivity issues.

## UNIT I BASICS OF NETWORKING 6

The Fundamentals of Internet Connectivity - PC Basics - Overview of High-Speed and Dialup Connectivity - Web Browsers and Plug-Ins - Networking Terminology - Analogies That Describe Digital Bandwidth.

# UNIT II INTRODUCTION TO NETWORK 6 SIMULATION AND COMMUNICATION

Network Simulation using Packet Tracer: Packet Tracer Network Simulator - Networking Models - Network Topologies - Wireless Communications.

# UNIT III INTRODUCTION TO NETWORK 6 ADDRESSING

Introduction to TCP/IP: Comparing the OSI Reference Model Layers and the TCP/IP Reference Model Layers, Internet Architecture - IP Addresses: IPv4 Addressing, IP Address Classes, Reserved IP Addresses, Public and Private Addresses, Introduction to Subnetting, IPv4 Versus IPv6 - IP Address Assignment, Acquisition, and Hierarchy: Obtaining an Internet Address, Static Assignment of an IP Address, Address Resolution Protocol, RARP IP Address Assignment.

| UNIT I   | V INTRODUCTION TO TRANSPORT LAYER                         | 6     |
|----------|-----------------------------------------------------------|-------|
| Transpo  | ort Layer Services - Understanding the TCP/IP Transp      | ort   |
| Layer: 1 | Flow Control, Session Establishment, Maintenance, a       | ınd   |
| Termina  | ation Overview, Three-Way Handshake. Windowi              | ng:   |
| Acknow   | vledgment, TCP, UDP, TCP and UDP Port Numbers             |       |
| UNIT V   | INTRODUCTION ROUTER                                       | 6     |
|          | TROUBLESHOOTING                                           |       |
| Introdu  | <br>ction to Network Testing - Troubleshooting Router Iss | ues   |
|          | the show interface and show interfaces Commands           |       |
| Trouble  | shooting Routing Issues Using the show CDP neighbors      | ors   |
| Comma    | nd - Troubleshooting Routing Issues Using show IP ro      | ute   |
| and sho  | w IP protocol - Troubleshooting Router Connections Usi    | ing   |
| the show | w controllers serial Command.                             |       |
|          | TOTAL: 30 PERIO                                           | DS    |
| PRACT    | ICAL EXERCISES:                                           |       |
| 1. N     | Making of cross cable and straight cable.                 |       |
| 2. C     | Conf <mark>igurati</mark> on of switches and routers      |       |
| 3. C     | reation of different Topologies using switches and Rou    | iters |
| fo       | or Connecting Computers                                   | Y     |
|          | ransferring data in an established Computer Network us    | sing  |
| a        | ddressing schemes.                                        |       |
|          | · · · · 1 · · 1 A NT · · 1                                |       |

5. Creation of a simple Local Area Network.

6. Routing Protocols.

7. Simulation of unicast and multicast routing protocols

#### TOTAL:30 PERIODS

|      | TOTAL;50 PERIODS                                              |
|------|---------------------------------------------------------------|
| COU  | RSE OUTCOMES:                                                 |
|      | After completion of the course, the students will be able to: |
| CO1: | Explain the Basic concepts of Networking                      |
| CO2: | Illustrate about the various types of cabling used in the     |
|      | networking                                                    |
| CO3: | Interpret the various addressing scheme used in networking    |
| CO4: | Explain the basic of Transport Layer                          |
| CO5: | Summarize the basic of Network Security                       |

| CO6· | Make 11                                                           | se c                                                        | of th            | ne c | onf          | 0111                  | rati                  | on f             | n tr                  | 1011        | olest                  | noot  | the a                  | dev                   | ices             |                       |
|------|-------------------------------------------------------------------|-------------------------------------------------------------|------------------|------|--------------|-----------------------|-----------------------|------------------|-----------------------|-------------|------------------------|-------|------------------------|-----------------------|------------------|-----------------------|
|      | Make use of the configuration to troubleshoot the devices  BOOKS: |                                                             |                  |      |              |                       |                       |                  |                       |             |                        |       |                        |                       |                  |                       |
|      | 1                                                                 | BOOKS: Cisco Networking Academy Program CCNA 1 and 2        |                  |      |              |                       |                       |                  |                       |             |                        |       |                        |                       |                  |                       |
| 1    |                                                                   |                                                             |                  |      | _            |                       |                       | -                |                       | _           |                        |       |                        | 1 6                   | and              | 2                     |
|      | Compa                                                             | nio                                                         | n G              | uid  | e, tl        | nird                  | l Ed                  | litic            | n b                   | y C         | ISCO                   | ) Pr  | ess                    |                       |                  |                       |
| 2    | Cisco C                                                           | Cert                                                        | ifie             | d N  | Vetv         | vor                   | k /                   | Asso             | ocia                  | te S        | Stud                   | y G   | uide                   | : Se                  | ver              | nth                   |
|      | Edition                                                           | , To                                                        | dd               | Lar  | nm           | le, 9                 | SYB                   | EX               |                       |             |                        |       |                        |                       |                  |                       |
| REFE | ERENCE                                                            | S:                                                          |                  |      |              |                       |                       |                  |                       |             |                        |       |                        |                       |                  |                       |
| 1    | Beasley                                                           | , J.S                                                       | . ar             | nd N | Jilk         | aew                   | v, P.                 | ., 20            | 18.                   | Net         | wor                    | king  | g Ess                  | ent                   | ials             | : A                   |
|      | CompT                                                             | ΊA                                                          | N                | etw  | ork          | (+                    | N1                    | 0-0              | 07                    | Te          | xtbo                   | ok.   | Pea                    | arsc                  | n                | IT                    |
|      | Certific                                                          |                                                             |                  |      |              |                       |                       |                  |                       |             |                        |       |                        |                       |                  |                       |
|      |                                                                   |                                                             |                  | 201  | F (          | 1:                    |                       |                  | 1.1                   | ,           |                        |       | 1 т                    | 1                     | T A 7 * 1        | 1                     |
|      |                                                                   | McMillan, T., 2015. Cisco networking essentials. John Wiley |                  |      |              |                       |                       |                  |                       |             |                        |       |                        |                       |                  |                       |
| 2    |                                                                   |                                                             |                  |      |              | .1SC(                 | o ne                  | etwo             | orki                  | ıng         | esse                   | ntia  | ls. Jo                 | nn                    | VV1              | ley                   |
| 2    | & Sons,                                                           |                                                             |                  |      |              | JSCO                  |                       |                  |                       | ing         | esse                   | ntia  | is. jo                 |                       |                  | ,                     |
|      | & Sons,                                                           |                                                             |                  |      |              | .1SC                  |                       | POs              |                       | ing         | esse                   | ntia  | is. jo                 |                       | PSC              | ,                     |
|      |                                                                   |                                                             |                  |      |              | 5                     |                       |                  |                       | ng<br>9     | 10                     | ntia. | 12                     |                       |                  | ,                     |
|      | & Sons,                                                           | 2n                                                          | d E              | diti | on           |                       | ]                     | POs              | <u> </u>              |             |                        |       |                        | I                     | PSC              | )s                    |
|      | & Sons,                                                           | 2n                                                          | d E              | diti | on           | 5                     | 6                     | POs              | 8                     | 9           | 10                     | 11    | 12                     | I<br>1                | PSC<br>2         | )s<br>3               |
|      | & Sons,                                                           | 2n 1 2                                                      | 2<br>1           | diti | 4 -          | <b>5</b> 3            | 6<br>2                | POs 7 1          | 8 2                   | 9 2         | 10<br>2                | 11    | 12<br>2                | 1<br>3                | 2<br>3           | )s<br>3<br>3          |
|      | & Sons, COs  1 2                                                  | 2n  1 2 2                                                   | 2<br>1           | diti | on 4 - 1     | 5<br>3<br>3           | 6<br>2<br>2           | 7<br>1           | 8 2 2                 | 9 2 2       | 10<br>2<br>2           | 11    | 12<br>2<br>2           | 1<br>3<br>3           | 2<br>3<br>3      | 3<br>3<br>3           |
|      | & Sons,                                                           | 2n 2 2 2                                                    | 2<br>1<br>1      | diti | on  4  - 1 1 | 5<br>3<br>3<br>3      | 6<br>2<br>2<br>2      | POs 7 1 1 1      | 8<br>2<br>2<br>2      | 9 2 2 2     | 10<br>2<br>2<br>2      | 11    | 12<br>2<br>2<br>2      | 1<br>3<br>3<br>3      | 2<br>3<br>3<br>3 | 3<br>3<br>3           |
|      | & Sons, COs  1 2 3 4                                              | 2n<br>1<br>2<br>2<br>2<br>2                                 | 2<br>1<br>1<br>1 | 3    | on  4 - 1 1  | 5<br>3<br>3<br>3<br>3 | 6<br>2<br>2<br>2<br>2 | 7<br>1<br>1<br>1 | 8<br>2<br>2<br>2<br>2 | 9 2 2 2 2 2 | 10<br>2<br>2<br>2<br>2 | 11    | 12<br>2<br>2<br>2<br>2 | 1<br>3<br>3<br>3<br>3 | 2<br>3<br>3<br>3 | 3<br>3<br>3<br>3<br>3 |

| 23EC050      | NETWORK ENGINEERING                        | L     | T     | P    | C   |
|--------------|--------------------------------------------|-------|-------|------|-----|
|              |                                            | 2     | 0     | 2    | 3   |
| COURSE       | OBJECTIVES:                                |       |       |      |     |
| • To le      | earn the Network Models and datalink lay   | er fu | ınci  | tion | s.  |
| • To u       | inderstand routing in the Network Layer.   |       |       |      |     |
|              | xplore methods of communication and con    | nges  | stion | n    |     |
|              | rol by the Transport Layer.                |       |       |      |     |
|              | tudy the Network Security Mechanisms.      | 1.1   |       |      |     |
|              | earn various hardware security attacks and | i the | eir   |      |     |
| UNIT I       | ntermeasures.  NETWORKING TODAY            |       |       |      | 6   |
| UNITI        | NEIWORKING IODAI                           |       |       |      | U   |
| Networkir    | g - Components, types, Internet            | Con   | nec   | tio  | ıs, |
| Requireme    | ents of a reliable network, Network        | Con   | npo   | nen  | ts, |
| Network      | Representations and Topologies, Comm       | on '  | Тур   | es   | of  |
| Networks,    | Internet Connections, Reliable Networ      | ks,   | Ne    | two  | rk  |
| Trends, Ne   | etwork Security                            |       |       | _    |     |
| UNIT II      | BASIC SWITCH AND END DEVICE                |       |       | -    | 6   |
|              | CONFIGURATION                              |       |       |      |     |
| Cisco IOS    | Access, IOS Navigation, The Command St     | ructi | ure,  | Ba   | sic |
| Device Co    | nfiguration, Save Configurations, Ports an | d A   | ddr   | ess  | es, |
| Configure    | IP Addressing, Verify Connectivity         |       |       |      |     |
| UNIT III     | PROTOCOLS AND MODELS                       |       |       |      | 6   |
| The Rules    | , Protocols, Protocol Suites, Standards O  | rgai  | niza  | tio  | ns, |
| Reference    | Models, Data Encapsulation, Data access    |       |       |      |     |
| UNIT IV      | ETHERNET SWITCHING                         |       |       |      | 6   |
| Ethernet I   | Frames, Ethernet MAC Address, The M        | AC    | Ac    | ldre | ess |
| Table, Swi   | tch Speeds and Forwarding Methods          |       |       |      |     |
| UNIT V       | ADDRESS RESOLUTION                         |       |       |      | 6   |
| Introduction | on, MAC and IP, Packet Tracer – Identify   | MA    | C a   | nd   | ΙP  |
|              | , ARP, Video—ARP Request, Video—A          |       |       |      |     |
|              | Communications, IPv6 Neighbor Disc         |       |       |      |     |

Neighbor Discovery – Address Resolution

## **TOTAL: 30 PERIODS**

## PRACTICAL EXERCISES:

- 1. Basic Switch and End Device Configuration and examine the ARP Table ILM
- 2. Create network and assign Static IP address to the host using Supernetting and subnetting.
- 3. Design a network using VLANs, Wireless LANs and InterVLAN routing.
- 4. Design a simple firewall for host and network.
- 5. Configure and troubleshoot redundancy on a switched network using EtherChannel.
- 6. Simulation of Transport Layer Protocols and analysis of congestion control techniques in network

|      | TOTAL:30 PERIODS                                              |
|------|---------------------------------------------------------------|
| COU  | RSE OUTCOMES:                                                 |
| 9    | After completion of the course, the students will be able to: |
| CO1: | Explain the basic of IOS Commands to configure the devices    |
| A    | using CLI                                                     |
| CO2: | Interpret the usage of various transmission medium used in    |
|      | the connectivity                                              |
| CO3: | Make use of the IP Addressing scheme to implement the         |
|      | VLSM Scheme, Subnetting to interconnect various active        |
|      | ports of routers                                              |
| CO4: | Summarize the various protocols used in transport layer       |
| CO5: | Interpret the protocols used in the Application Layer.        |
| CO6: | Make use of the security features to configure the devise to  |
|      | enhance the security as well to protect from the threats.     |
| TEXT | BOOKS:                                                        |
| 1    | Introduction to Networks Companion Guide (CCNAv7),            |
|      | CISCO Press                                                   |
| 2    | Juniper, 'Distinguished Network Engineering Book SET',        |
|      | Wiley, 2011                                                   |

| REFI | EFERENCES:                                          |                                           |      |      |      |      |      |      |      |      |       |         |       |     |     |     |
|------|-----------------------------------------------------|-------------------------------------------|------|------|------|------|------|------|------|------|-------|---------|-------|-----|-----|-----|
| 1    | CCNA 200-301, Volume 1 Official Cert Guide, WENDELL |                                           |      |      |      |      |      |      |      |      |       |         |       |     |     |     |
|      | ODOM                                                | ODOM, CCIE No. 1624 Emeritus, CISCO Press |      |      |      |      |      |      |      |      |       |         |       |     |     |     |
| 2    | Keshav                                              | , '                                       | 'An  | ]    | Eng  | ine  | erin | g    | Ap   | pro  | ach   | To      | o (   | Con | npu | ter |
|      | Networ                                              | kin                                       | ıg:  | ΑT   | M    | N    | letw | orl  | ζS,  | The  | e In  | tern    | et,   | And | 1 T | he  |
|      | Telepho                                             | one                                       | Ne   | two  | ork' | , Pe | arso | on I | Edu  | cati | on, î | 1997    | •     |     |     |     |
| 3    | Jason 1                                             | Ede                                       | lma  | n,   | Scc  | tt : | S. 1 | Lov  | ve,  | Ma   | tt C  | )swa    | alt,  | 'Ne | two | ork |
|      | Program                                             | nm                                        | abil | lity | ar   | ıd.  | Aut  | tom  | atio | n    | Skill | ls fo   | or t  | he  | Ne  | xt- |
|      | Genera                                              | tior                                      | ı Ne | etw  | ork  | Eng  | gine | eer' | , O' | Rei  | lly N | 1edi    | a, 20 | 18  |     |     |
| 4    | Stalling                                            | s, '                                      | Coı  | npı  | utei | · N  | etw  | ork  | ing  | W    | ith I | nter    | net   | Pro | toc | ols |
|      | And Te                                              | chn                                       | olo  | gy'  | , Pe | ars  | on I | Edu  | cati | on,  | 2003  | 3       |       |     |     |     |
|      | COs                                                 |                                           |      |      |      |      |      | POs  | ,    |      |       |         |       | I   | PSC | )s  |
|      |                                                     | 1                                         | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10    | 11      | 12    | 1   | 2   | 3   |
|      | 1                                                   | 2                                         | 1    | -    | -    | 3    | 2    | 1    | 2    | 2    | 2     | -       | 2     | 3   | 3   | 3   |
|      | 2 OW                                                | 2                                         | 1.   | 1    | -    | 3    | 2    | 1    | 2    | 2    | 2     | <u></u> | 2     | 3   | 3   | 3   |
| 18   | 3                                                   | 3                                         | 2    | 1    | 1    | 3    | 2    | 1    | 2    | 2    | 2     | -       | 2     | 3   | 3   | 3   |
| Î    | 4                                                   | 2                                         | 1    | À    | -    | 3    | 2    | 1    | 2    | 2    | 2     | 1       | 2     | 3   | 3   | 3   |
|      | 5                                                   | 2                                         | 1    | Æ.   | /-   | 3    | 2    | 1    | 2    | 2    | 2     | -       | 2     | 3   | 3   | 3   |
| N.   | 6                                                   | 3                                         | 2    | 1    | 1    | 3    | 2    | 1    | 2    | 2    | 2     | -       | 2     | 3   | 3   | 3   |
|      | verall<br>relation                                  | 3                                         | 2    | 1    | 1    | 3    | 2    | 1    | 2    | 2    | 2     | SITY    | 2     | 3   | 3   | 3   |

| 23EC051      | SWITCHING, ROUTING AND                     | L     | Т    | P    | C    |
|--------------|--------------------------------------------|-------|------|------|------|
| 23EC031      | ·                                          | 2     | 0    | 2    | 3    |
|              | WIRELESS ESSENTIALS                        |       | U    |      | 3    |
|              | OBJECTIVES:                                |       |      |      |      |
|              | nt will understand a switch functionality  | y ar  | nd a | able | to   |
| _            | gure VLANs.                                |       |      |      |      |
|              | nts will gain knowledge of dynamic host    | con   | figu | ırat | ion  |
| _            | cols, understand LAN security concepts.    |       |      |      |      |
|              | nts will study switch security issues an   |       |      |      |      |
|              | ss them. Understand Wireless LAN           | conc  | cept | s a  | and  |
| -            | ding wireless security.                    | c     |      |      |      |
|              | nts will study routing concepts and p      | erto  | orm  | sta  | atıc |
| routir       | ng configurations.                         |       |      |      |      |
| UNIT I       | BASIC DEVICE CONFIGURATION                 |       |      | 1    | 6    |
| UNITI        | BASIC DEVICE CONFIGURATION                 |       |      |      | 6    |
| Configure    | a Switch with Initial Settings, Configure  | Swit  | tch  | Por  | ts,  |
| Secure Ren   | note Access, Basic Router Configuration, V | erify | y Di | rec  | tly  |
| Connected    |                                            |       | _    |      | ľ    |
| UNIT II      | SWITCHING CONCEPTS                         | 7     |      |      | 6    |
| Frame For    | warding, Collision and Broadcast Domain    | ns, ( | Ove  | rvie | ew   |
| of VLANs     | , VLANs in a Multi-Switched Environi       | men   | t, N | /LA  | N    |
| Configurat   | ion, VLAN Trunks                           |       |      |      |      |
| UNIT III     | SWITCH SECURITY CONFIGURATION              | N     |      |      | 6    |
| Implement    | Port Security, Mitigate VLAN Attacks, Mi   | itiga | te I | OHO  | СР   |
| _            | itigate ARP Attacks, Mitigate STP Attacks  | _     |      |      |      |
| UNIT IV      | ROUTING CONCEPTS                           |       |      |      | 6    |
| Path Deter   | rmination, Packet Forwarding, IP Routing   | Tal   | ole, | Sta  | tic  |
| and Dynar    | nic Routing                                |       |      |      |      |
| UNIT V       | WIRELESS LAN                               |       |      |      | 6    |
| Introduction | on to Wireless, WLAN Components, WLA       | ΝO    | per  | atic | n,   |
| CAPWAP       | Operation, WLAN Threats, Secure WLAN       | [s]   |      |      |      |
|              |                                            |       |      |      |      |

**TOTAL: 30 PERIODS** 

## PRACTICAL EXERCISES:

- 1. Basic Switch and Router Configuration using console mode
- 2. Configure VLANs and Trunking
- Implementation of VLANs and Trunking
- 4. Configure Router-on-a-Stick Inter-VLAN Routing
- 5. Troubleshoot Inter-VLAN Routing
- 6. Implement the Inter VLAN Routing

#### **TOTAL:30 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Explain how Layer 2 switches forward data
- CO2: Explain how STP enables redundancy in a Layer 2 network.
- **CO3:** Make use of DHCPv4 to operate across multiple LANs
- **CO4:** Explain how to configure DTP and native VLAN to mitigate VLAN attacks
- CO5: Summarize the operation of SLAAC.
- CO6: Interpret how a router processes packets when a static route is configured

## **TEXT BOOKS:**

- Switching, Routing, and Wireless Essentials v7.0 (SRWE)
  Companion Guide, Cisco Press
- 2 James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, Eighth Edition, Pearson Education, 2021

#### **REFERENCES:**

- 1 CCNA 200-301, Volume 1 Official Cert Guide, WENDELL ODOM, CCIE No. 1624 Emeritus, CISCO Press
- Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol Suite, Sixth Edition TMH, 2022
- Wendell Odom, CCNA Routing and Switching 200-125 Official Cert Guide, CISCO press, 1st edition
- 4 Bruce Hartpence, 'Packet Guide to Routing and Switching', O'Reilly Media, Inc. 2011

| COs                    |   |   |   |   |   | I | POs | , |   |    |    |    | F | SC | s |
|------------------------|---|---|---|---|---|---|-----|---|---|----|----|----|---|----|---|
| COs                    | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 1 | 2  | 3 |
| 1                      | 2 | 1 | - | - | 3 | 2 | 1   | 2 | 2 | 2  | -  | 2  | 3 | 3  | 3 |
| 2                      | 2 | 1 | - | - | 3 | 2 | 1   | 2 | 2 | 2  | -  | 2  | 3 | 3  | 3 |
| 3                      | 3 | 2 | 1 | 1 | 3 | 2 | 1   | 2 | 2 | 2  | -  | 2  | 3 | 3  | 3 |
| 4                      | 2 | 1 | - | - | 3 | 2 | 1   | 2 | 2 | 2  | -  | 2  | 3 | 3  | 3 |
| 5                      | 2 | 1 | - | - | 3 | 2 | 1   | 2 | 2 | 2  | -  | 2  | 3 | 3  | 3 |
| 6                      | 2 | 1 | - | - | 3 | 2 | 1   | 2 | 2 | 2  | -  | 2  | 3 | 3  | 3 |
| Overall<br>Correlation | 3 | 2 | 1 | 1 | 3 | 2 | 1   | 2 | 2 | 2  | 1  | 2  | 3 | 3  | 3 |



| 23EC052                   | ENTERPRISE NETWORKING,                                                   | L      | T          | P     | C   |
|---------------------------|--------------------------------------------------------------------------|--------|------------|-------|-----|
|                           | SECURITY AND AUTOMATION                                                  | 2      | 0          | 2     | 3   |
| COURSE                    | OBJECTIVES:                                                              | · ·    | ,          |       |     |
| Work w                    | vith routers and switches using OSPF in po                               | oint-  | -to-j      | poi   | nt  |
|                           | llti-access networks.                                                    |        |            |       |     |
| 0                         | e threats and enhance network security us                                | sing   | acce       | ess   |     |
|                           | lists and security                                                       | .11    |            |       |     |
|                           | p critical thinking and problem-solving sk                               | ılls ı | ısın       | ig re | eal |
|                           | ent and Cisco Packet Tracer.<br>tand virtualization, SDN, and how APIs a | nd     |            |       |     |
|                           | ration management tools enable network                                   |        | ma         | tior  | ٦.  |
| UNIT I                    | SINGLE-AREA OSPFV2                                                       |        |            |       | 6   |
| 0.000                     |                                                                          |        |            |       |     |
|                           | atures and Characteristics- OSPF Pa                                      |        |            | OS    |     |
| -                         | - OSPF Router ID- Point-to-Point OSP                                     |        | _          |       |     |
| 100                       | ess OSPF Networks- Modify Single-A                                       |        | OS         | PFv   | 72- |
| Application of the second | ute Propagation- Verify Single-Area OSPF                                 | v2     |            |       | r.  |
| UNIT II                   | NETWORK SECURITY CONCEPTS                                                |        |            |       | 6   |
| Current Sta               | ate of Cyber security- Threat Actors- Threa                              | t Ac   | tors       | To    | ol- |
| 1000                      | Common Network Attacks- IP Vulner                                        |        |            |       |     |
| Threats- T                | CP and UDP Vulnerabilities- IP Service                                   | es-    | Ne         | twc   | rk  |
| Security Be               | est Practices- Cryptography                                              |        |            |       |     |
| UNIT III                  | ACL CONCEPTS                                                             |        |            |       | 6   |
| Purpose of                | ACLs- Wildcard Masks in ACLs- Guidel                                     | ines   | for        | A     | CL  |
| Creation-                 | Types of IPv4 ACLs- ACLs for IPv4 C                                      | onfi   | gur        | atic  | n-  |
| Configure                 | Standard IPv4 ACLs-Modify IPv4 ACLs                                      | - Sec  | cure       | v V   | ГΥ  |
| Ports with                | a Standard IPv4 AC- Configure Extende                                    | d IF   | v4         | AC    | Ls  |
| NAT for IF                | 8                                                                        |        |            |       |     |
| UNIT IV                   | WAN, VPN, IPSEC AND QOS                                                  |        |            |       | 6   |
| Wan Conc                  | l<br>epts- Purpose of WANs- VPN Technolo                                 | gy-    | Tyt        | oes   | of  |
| T.TDN T                   |                                                                          | •.     | <i>J</i> 1 |       |     |

Traffic

VPNs- IPsec- Network Transmission Quality-

Characteristics- QoS Models

| UNIT  | Γ <b>V</b> | NETWORK TROUBLESHOOTING AND VIRTUALIZATION                    | 6     |
|-------|------------|---------------------------------------------------------------|-------|
|       |            | VIKTUALIZATION                                                |       |
| Netw  | ork        | Documentation- Troubleshooting Proc                           | ess-  |
| Troul | blesho     | ooting Tools- Cloud Computing - Virtualization                |       |
|       |            | TOTAL: 30 PERIO                                               | ODS   |
| PRAG  | CTICA      | AL EXERCISES:                                                 |       |
| 1.    | Conf       | figure Single-Area OSPFv2                                     |       |
| 2.    | Expl       | ore DNS Traffic                                               |       |
| 3.    | Conf       | figure and Verify Extended IPv4 ACLs                          |       |
| 4.    | Conf       | figure NAT for IPv4                                           |       |
| 5.    |            | stigate the Broadband distribution and analyse                | e the |
|       | acces      | ss options for the Scenarios                                  |       |
|       |            | TOTAL:30 PERIO                                                | ODS   |
| COU   |            | OUTCOMES:                                                     |       |
|       | 45.10      | completion of the course, the students will be able           |       |
| CO1:  | Expla      | a <mark>in ho</mark> w single-area OSPF operates in both poin | t-to- |
| Ì     | point      | t and broadcast multi access networks.                        |       |
| CO2:  | Sumi       | marize network security concepts with respect to              | ГСР   |
| ¥     | and I      | JDP vulnerabilities                                           |       |
|       |            | rate the ACL and NAT and its types in IPv4                    | ı Y   |
| CO4:  | Make       | e use of NAT services on the edge router to provide l         | Pv4   |
|       | addr       | ess scalability                                               |       |
| CO5:  | Inter      | pret how VPNs and IPsec secure site-to-site and ren           | note  |
|       | acces      | s connectivity                                                |       |
| CO6:  | Sumi       | marize how network automation is enabled thro                 | ugh   |
|       | Restf      | ul APIs and configuration management tools.                   |       |
| TEXT  | BOC        | OKS:                                                          |       |
| 1     | Enter      | rprise Networking, Security, and Automation Co                | urse  |
|       | Book       | let (CCNAv7), CISCO Press                                     |       |
| 2     | Mike       | Shema, "Hacking Web Apps: Detecting                           | and   |
|       | Preve      | enting Web Application Security Problems", l                  | First |
|       | editio     | on, Syngress Publishing, 2012                                 |       |

| REFI | REFERENCES:                                                |                                                         |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
|------|------------------------------------------------------------|---------------------------------------------------------|------------------|------------------|-----------------------|------------------|-----------------------|------------------|-----------------------|------------------|------------------|------------------------|------------------|-----------------------|------------------|------------------|
| 1    | CCNA 200-301, Volume 1 Official Cert Guide, WENDELL        |                                                         |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
|      | ODOM, CCIE No. 1624 Emeritus, CISCO Press                  |                                                         |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
| 2    | Pallapa Venkataram, Satish Babu, Wireless and Mobile       |                                                         |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
|      | Network Security, First Edition, Tata McGraw Hill, 2010    |                                                         |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
| 3    | Markus Schumacher, Security Patterns: Integrating Security |                                                         |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
|      | and Sy                                                     | and Systems Engineering, Wiley Software Pattern Series, |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
|      | 2010                                                       |                                                         |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
| 4    | Angula                                                     | r 6 f                                                   | for l            | Ente             | erpi                  | rise             | -Rea                  | ady              | We                    | eb A             | ppli             | icati                  | ons,             | Dog                   | guh              | an               |
|      | Uluca,                                                     | 1st e                                                   | edit             | ion              | , Pa                  | ckt              | Pul                   | blis             | hin                   | g                |                  |                        |                  |                       |                  |                  |
|      | POs PSOs                                                   |                                                         |                  |                  |                       |                  |                       |                  |                       |                  |                  |                        |                  |                       |                  |                  |
|      | $^{\circ}$ Oc                                              |                                                         |                  |                  |                       |                  | I                     | POs              | ;                     |                  |                  |                        |                  | I                     | PSC              | )s               |
| (    | COs                                                        | 1                                                       | 2                | 3                | 4                     | 5                | 6                     | POs 7            | 8                     | 9                | 10               | 11                     | 12               | 1<br>1                | PSC<br>2         | )s<br>3          |
|      | COs 1                                                      | <b>1</b> 2                                              | <b>2</b>         | 3                | 4                     | <b>5</b>         |                       |                  |                       | 9                | 10<br>2          | 11<br>-                | <b>12</b> 2      |                       |                  |                  |
|      |                                                            | _                                                       | _                | 3 -              | <b>4</b> -            |                  | 6                     | 7                | 8                     | _                |                  | 11<br>-                |                  | 1                     | 2                | 3                |
|      | 1                                                          | 2                                                       | 1                | 3                | 4<br>-<br>-           | 3                | <b>6</b> 2            | 7<br>1           | 8                     | 2                | 2                | 11<br>-<br>-           | 2                | <b>1</b> 3            | <b>2</b> 3       | <b>3</b>         |
|      | 1 2                                                        | 2 2                                                     | 1                | 3<br>-<br>-<br>1 | 4<br>-<br>-<br>-<br>1 | 3                | 6<br>2<br>2           | 7<br>1<br>1      | 8<br>2<br>2           | 2 2              | 2                | 11                     | 2                | <b>1</b> 3 3          | <b>2</b> 3 3     | 3<br>3           |
|      | 1<br>2<br>3                                                | 2 2 2                                                   | 1<br>1<br>1      | -                | -<br>-                | 3<br>3<br>3      | 6<br>2<br>2<br>2      | 7<br>1<br>1      | 8<br>2<br>2<br>2      | 2 2 2            | 2 2 2            | 11<br>-<br>-<br>-<br>- | 2 2 2            | 1<br>3<br>3<br>3      | 3<br>3<br>3      | 3<br>3<br>3<br>3 |
|      | 1<br>2<br>3<br>4                                           | 2<br>2<br>2<br>3                                        | 1<br>1<br>1<br>2 | -                | -<br>-                | 3<br>3<br>3<br>3 | 6<br>2<br>2<br>2<br>2 | 7<br>1<br>1<br>1 | 8<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2 | 2<br>2<br>2<br>2 | 11                     | 2<br>2<br>2<br>2 | 1<br>3<br>3<br>3<br>3 | 3<br>3<br>3<br>3 | 3<br>3<br>3<br>3 |

AFFILIATED TO ANNA UNIVERSITY - AUTONOMOUS

| 225052            | NETWORK DEGICN                                                                                 | -     | -     | -    | -   |
|-------------------|------------------------------------------------------------------------------------------------|-------|-------|------|-----|
| 23EC053           | NETWORK DESIGN                                                                                 | L     | T     | P    | C   |
|                   |                                                                                                | 3     | 0     | 0    | 3   |
| COURSE OB         |                                                                                                |       |       |      |     |
|                   | pire the students to learn the variou                                                          | s sv  | vitc  | hin  | g   |
| technol           | O                                                                                              |       |       |      |     |
|                   | gn the networks for various categories                                                         |       |       |      |     |
|                   | oduce the purpose of management of                                                             | the 1 | netv  | vor  | k   |
| systems UNIT I SW | S<br>VITCHING TECHNOLOGIES                                                                     |       |       | 1    | 0   |
| UNITI             | VIICHING TECHNOLOGIES                                                                          |       |       |      | 9   |
| Switching tec     | chnologies, multiplexing, circuit swite                                                        | ching | z, r  | acl  | cet |
|                   | 5, frame relax, SMDs ATM, B-ISDN, t                                                            |       |       |      |     |
| traffic pattern   | calculations, performance issues of pac                                                        | ket r | etv   | vor] | κs, |
|                   | ility and reliability                                                                          |       |       |      |     |
| UNIT II NE        | TWORK DESIGN FOR ACCESS                                                                        |       |       |      | 9   |
| Notreonle Doci    | ion for Access Compus naturals decid                                                           | n 10  | 200   | J 1; | 200 |
|                   | ign for Access: Campus network design for Access: Campus network design for the Access Network |       |       |      |     |
|                   | network design, Frame-relay interfa                                                            |       |       |      |     |
|                   | Γ & WLAN network design                                                                        | ices  | Œ     | LIGI | 110 |
|                   | TWORK DESIGN FOR BACKBONE                                                                      |       |       |      | 9   |
| Network Des       | sign for Backbone: Identification &                                                            | sele  | ectio | on   | of  |
|                   | ng devices, CISCO routers & Nortel sw                                                          |       |       |      |     |
|                   | TWORK DESIGN FOR CONVERGE                                                                      |       |       |      | 9   |
| Network Des       | ign for convergence: UDP broadcasts,                                                           | IP N  | Vet   | vor  | ks  |
| for Voice, Da     | ta, Video, Fax, Soft & hard design exa                                                         | ampl  | les   | for  | IΡ  |
|                   | etworks, network design for digital vic                                                        |       |       |      | st  |
| UNIT V DA         | ATA NETWORK MANAGEMENT SY                                                                      | STE   | MS    | 3    | 9   |
|                   | k Management Systems: Managing IP                                                              |       |       |      |     |
|                   | porting Ethernet traffic, managing bridg                                                       |       |       |      |     |
|                   | HP, NMS Tools. Case Studies: selected                                                          | fror  | n d   | esię | ţn, |
| architecture &    | topology areas of internetworks.                                                               |       |       |      |     |
|                   | TOTAL:                                                                                         | 45 P  | ER    | ЮI   | )S  |
| COURSE OU         | TCOMES:                                                                                        |       |       |      |     |
| After co          | mpletion of the course, the students wi                                                        | ll be | abl   | e to | :   |

| Corr     | elation                                                                                                 | 2                                                          | 1    | -    | -     | 2    |      | 1     | 3    | 3    | 3     |       |        | 3           | 3            | 2    |
|----------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|------|-------|------|------|-------|------|------|-------|-------|--------|-------------|--------------|------|
| O        | verall                                                                                                  | 2                                                          | 1    |      |       | 2    | 2    | 1     | 3    | 3    | 3     | 2     | 2      | 3           | 3            | 2    |
|          | 6                                                                                                       | 2                                                          | 1    | -    | -     | 3    | 3    | 1     | 3    | 2    | 3     | 1     | 2      | 3           | 3            | 2    |
|          | 5                                                                                                       | 2                                                          | 1    | -    | -     | 2    | 1    | 1     | 3    | 2    | 2     | 1     | 2      | 3           | 2            | 2    |
|          | 4                                                                                                       | 2                                                          | 1    | -    | -     | 1    | 3    | 1     | 2    | 3    | 2     | 1     | 1      | 3           | 3            | 2    |
|          | 3                                                                                                       | 2                                                          | 1    | -    | -     | 2    | 1    | 1     | 2    | 2    | 3     | 1     | 2      | 3           | 3            | 2    |
|          | 2                                                                                                       | 2                                                          | 1    | -    | -     | 2    | 1    | 1     | 2    | 2    | 1     | 3     | 3      | 3           | 2            | 2    |
|          | 1                                                                                                       | 2                                                          | 1    | -    | -     | 1    | 1    | 1     | 1    | 3    | 2     | 1     | 2      | 3           | 2            | 2    |
| '        | COs                                                                                                     | 1                                                          | 2    | 3    | 4     | 5    | 6    | 7     | 8    | 9    | 10    | 11    | 12     | 1           | 2            | 3    |
|          |                                                                                                         |                                                            |      |      | 0 -   |      |      | POs   |      |      |       |       |        |             | SO           |      |
|          | VPNs (I                                                                                                 |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| <b>T</b> | Networ                                                                                                  |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| 4        | Tim Szi                                                                                                 | get                                                        | i (  | hrid | etin  | a H  |      |       |      |      |       |       |        |             |              |      |
|          | Founda<br>Edition                                                                                       | tioi                                                       | ı L  | earı | าเทรู | 3 G  |      |       | •    |      |       |       | 642    |             |              |      |
| 3        | Designi                                                                                                 |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
|          | CISCO                                                                                                   | sys                                                        | tem  | s, 2 | 001   |      |      |       | h    | 1    |       |       | 7      |             | - Carrie     |      |
| 2        | Jeff Do                                                                                                 |                                                            |      |      |       |      | hav  | en    | Caı  | rrol | [ ']  | Rout  | ing    | TC          | P/I          | Ρ΄,  |
| h        | Inc., 199                                                                                               |                                                            | 1    | 0    | \     |      | A    | 0     |      |      |       | ,     |        |             |              | ľ.   |
| 1        | Feit, 'Sl                                                                                               | J:81                                                       | PC   | SDE  | Νe    | etwo | orki | ng    | Ma   | nag  | eme   | nť, l | Mc-C   | Gra         | w F          | Iill |
| REFE     | CISCO Press, 1993<br>ERENCES:                                                                           |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
|          | Network Design & Case Studies "CISCO Systems Inc." CISCO Press, 1993                                    |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| 2        | Data Network Design; D L Spolin, Mc-Graw Hill, 1993  Network Design & Case Studies "CISCO Systems Inc." |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| 1        |                                                                                                         |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| TEYT     | Design BOOKS:                                                                                           |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| CO6:     | Explain the various managing schemes used in the Network                                                |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| 001      | Design                                                                                                  |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| CO5:     | Interpret the Various data processing tools used in Network                                             |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
|          | convergence networks                                                                                    |                                                            |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
| CO4:     |                                                                                                         | Explain the process involved in the design process for the |      |      |       |      |      |       |      |      |       |       |        |             |              |      |
|          | backbor                                                                                                 |                                                            |      |      |       | OIF  |      | 5-516 | P    | 100  |       | cirip | 10 y C | <b>ч</b> 1, | <i>-</i> 1 ( |      |
|          | Summa                                                                                                   |                                                            |      |      |       |      |      |       |      |      |       |       | love   | d f         | or t         | he   |
| CO2·     | Interpre                                                                                                | ot th                                                      | ne n | etw  | ork   | : de | sion | ı fo  | r th | e ac | ress  |       |        |             |              |      |
| CO1:     | Explain design                                                                                          | the                                                        | e va | riou | 1S S  | wite | chir | ng to | echi | niqı | ıes ı | ıse i | n the  | e ne        | two          | ork  |
| 004      | г 1 ·                                                                                                   | .1                                                         |      |      |       | • .  | 1 .  |       | 1    |      |       |       | .1     |             |              | 1    |

| 23EC054         | CYBER SECURITY                                      | ESSENTIALS        | L     | T     | P            | C   |  |  |  |  |
|-----------------|-----------------------------------------------------|-------------------|-------|-------|--------------|-----|--|--|--|--|
|                 |                                                     |                   | 3     | 0     | 0            | 3   |  |  |  |  |
| COURSE OBJ      |                                                     |                   |       |       |              |     |  |  |  |  |
|                 | e the concept of privac                             |                   | rote  | ctio  | ns.          |     |  |  |  |  |
|                 | n basic computer foren                              |                   |       |       |              |     |  |  |  |  |
|                 | e the social implication                            | •                 | -     | 1     |              |     |  |  |  |  |
|                 | tand the risks and bene                             |                   |       |       | 2011         |     |  |  |  |  |
| • Describ       | e the basic ethical cons                            | iderations relate | ea to | Cyt   | er           |     |  |  |  |  |
| J               | TRODUCTION TO C                                     | YBER SECURIT      | Ϋ́    |       |              | 9   |  |  |  |  |
| Overview of O   | Cyber Security- Challe                              | enges and Const   | rain  | ts,   | Cyl          | er  |  |  |  |  |
| Threats:- Cyb   | er Warfare-Cyber Crii                               | me, Cyber terr    | orisı | n, (  | Cyb          | er  |  |  |  |  |
| Espionage, C    | yber Operations, Cyb                                | er Weaponry, (    | Суве  | er v  | vor          | ld, |  |  |  |  |
| Advanced Per    | rsistent Threat- Need                               | for a Compreh     | ensi  | ve (  | Cyb          | er  |  |  |  |  |
| Security Policy | y, Need for a Nodal Au                              | ıthority          |       |       | 4            |     |  |  |  |  |
|                 | BER SECURITY VUL<br>BER SECURITY SAF                |                   | AN    | D     |              | 9   |  |  |  |  |
| Cyber Secur     | ity Vulnerabilities-O                               | verview, vulne    | erabi | litie | es           | in  |  |  |  |  |
| software, Sy    | stem administration                                 | and Open          | Ac    | ces   | $\mathbf{s}$ | to  |  |  |  |  |
| Organizationa   | al Data, Unprotected                                | Broadband com     | ımuı  | nica  | tio          | ns, |  |  |  |  |
| Poor Cyber S    | Security Awareness.                                 | Cyber Security    | Saf   | egu   | ıarc         | ls- |  |  |  |  |
| Overview, Sec   | curity Services and Med                             | chanism, Audit    |       |       |              |     |  |  |  |  |
| UNIT III SE     | CURING WEB APPLI                                    | CATION, SERV      | /ICE  | ES    |              | 9   |  |  |  |  |
| AN              | ID SERVERS                                          |                   |       |       |              |     |  |  |  |  |
| Introduction,   | Basic security for HTT                              | P Applications    | and   | Ser   | vic          | es, |  |  |  |  |
|                 | for SOAP Services, Id                               |                   |       |       |              |     |  |  |  |  |
| -               | horization Patterns, S                              |                   |       |       |              |     |  |  |  |  |
| Theft, Abuse o  |                                                     | J                 |       |       | ,            |     |  |  |  |  |
| UNIT IV CY      | BERSPACE AND TH                                     | E LAW             |       |       |              | 9   |  |  |  |  |
| Introduction t  | to Cyberspace enviror                               | ment and its cl   | nara  | cter  | isti         | cs, |  |  |  |  |
| Cyberspace      | Cyberspace Operations -Network Operations (NETOPS), |                   |       |       |              |     |  |  |  |  |
| Defensive Cyl   | berspace Operations (                               | DCO), Offensive   | e Cy  | ber   | spa          | ice |  |  |  |  |

| _     | rations (OCO), Operational methodologies to conduct               |
|-------|-------------------------------------------------------------------|
|       | rspace operations, Cyber Security Regulations                     |
| UNI   | TV CYBER FORENSICS 9                                              |
| Intro | duction to Cyber Forensics, Spyware and Adware, Handling          |
| Preli | minary Investigations, Controlling an Investigation,              |
| Cond  | ducting disk-based analysis, Investigating Information-           |
| hidir | ng, Scrutinizing E-mail, Validating E-mail header information,    |
| Traci | ng Internet access                                                |
|       | TOTAL: 45 PERIODS                                                 |
| COU   | RSE OUTCOMES:                                                     |
|       | After completion of the course, the students will be able to:     |
| CO1:  | Explain the basics of cyber security.                             |
| CO2:  | Summarize the steps involved in finding vulnerabilities in        |
|       | cyber security and to offer counter measures.                     |
| CO3:  | Apply security mechanisms and develop audit processes to          |
| Į.    | enhance cybersecurity.                                            |
| CO4:  | Summarize the security in servers and web applications.           |
| CO5:  | Apply methodologies to conduct cyberspace operations and          |
|       | utilize cybersecurity regulations for effective NETOPS,           |
|       | DCO, and OCO.  AFFILIATED TO ANNA UNIVERSITY I AUTONOMOUS         |
| CO6:  | Analyze cyber forensic techniques to investigate digital evidence |
|       | and examine email and internet traces                             |
| TEX   | T BOOKS:                                                          |
| 1     | Jeffery Carr et al, "Inside Cyber Warfare: Mapping the Cyber      |
|       | Underworld," O'Reilly Publication December 2012                   |
| 2     | George K.Kostopoulous, Cyber Space and Cyber Security,            |
|       | CRC Press, 2013                                                   |
| REFI  | ERENCES:                                                          |
| 1     | Martti Lehto, Pekka Neittaanmäki, "Cyber Security:                |
|       | Analytics, Technology and Automation edited", Springer            |
|       | International Publishing Switzerland, 2015                        |

| Ī |   |         |         |               | P     | Os              |          | PSOs      |
|---|---|---------|---------|---------------|-------|-----------------|----------|-----------|
|   |   | 2014.   |         |               |       |                 |          |           |
|   |   | Princip | les, Pr | otocols ar    | nd Ar | chitecture", 6t | h Editio | on, PHI - |
|   | 4 | Douglas | s E     | Comer,        | "Inte | ernetworking    | with     | TCP/IP,   |
|   |   | and Inv | estiga  | tions", Ce    | ngage | e Learning, Ne  | w Delh   | i, 2009   |
| Ī | 3 | Nelson  | Philli  | ps and En     | finge | Steuart, "Co    | nputer   | Forensics |
|   |   | Educati | on, 20  | 15.           |       |                 |          |           |
|   |   | Margul  | ies, "S | Security ir   | Con   | nputing", 5th   | Edition  | , Pearson |
|   | 2 |         |         | 0             |       | Lawrence Pf     | 0        | =         |
| Γ | 2 | Charles | D I     | Office on the | Thom: | Lavimonas Di    | 10000    | Ionathan  |

| COs                 |   |   |   |   |    | I | POs |   |   |    |    |    | PSOs |   |   |  |
|---------------------|---|---|---|---|----|---|-----|---|---|----|----|----|------|---|---|--|
| COs                 | 1 | 2 | 3 | 4 | 5  | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |  |
| 1                   | 2 | 1 | - | - | -  | 1 | -   | 1 | 3 | -  | -  | 2  | 2    | - | 1 |  |
| 2                   | 2 | 1 | 1 | 1 | ı  | 1 | ı   | 2 | 2 | 1  | 1  | 3  | 2    | ı | 2 |  |
| 3                   | 3 | 2 | 1 | 1 | -  | 1 | -   | 2 | 2 | -  | -  | 2  | 3    | - | 2 |  |
| 4                   | 2 | 1 | - | - | -1 | 3 | 1   | 2 | 3 | -  | -  | 1  | 2    | 1 | 2 |  |
| 5 00W               | 3 | 2 | 1 | 1 | -  | 1 | -   | 3 | 2 | Ţ  | 1  | 2  | 3    | - | 3 |  |
| 6                   | 3 | 3 | 2 | 2 | -  | 3 | 2   | 3 | 2 | -  | -  | 2  | 3    | - | 3 |  |
| Overall Correlation | 3 | 2 | 1 | 1 | -  | 2 | 6   | 3 | 3 |    |    | 2  | 3    |   | 3 |  |

# COLLEGE OF TECHNOLOGY

## **VERTICAL 5 - BIO MEDICAL TECHNOLOGIES**

| 23EC055    | WEARABLE DEVICES                                    | L     | T    | P    | C    |
|------------|-----------------------------------------------------|-------|------|------|------|
|            |                                                     | 3     | 0    | 0    | 3    |
| COURSE     | OBJECTIVES:                                         |       |      |      |      |
|            | Го know the hardware requirement of wea             |       |      |      |      |
|            | Γο understand the communication and se              | curi  | ty a | spe  | ects |
|            | n the wearable devices.                             |       |      |      |      |
|            | Γο know the applications of wearable devi           | ces i | n th | e fi | eld  |
|            | of medicine.                                        |       |      |      |      |
| UNIT I     | INTRODUCTION TO WEARABLE SYS                        | TEN   | 1S   |      | 9    |
|            | AND SENSORS                                         |       |      |      |      |
| Wearable   | Systems- Introduction, Need for Weara               | ble   | Svs  | ter  | ns,  |
|            | s of Conventional Systems for Wearable              |       | -    |      |      |
|            | ns of Wearable Systems, Types of Weara              |       |      |      | 0    |
|            | nts of wearable Systems. Sensors for wears          |       |      |      |      |
| Inertia mo | vement sensors, Respiration activity sens           | or,   | Ind  | acti | ive  |
| plethysmo  | g <mark>raphy,</mark> Impedance plethysmography, pn | eum   | ogr  | apl  | ny,  |
| Wearable § | ground reaction force sensor                        |       |      |      |      |
| UNIT II    | SIGNAL PROCESSING AND ENERGY                        |       |      |      | 9    |
| The Co     | HARVESTING FOR WEARABLE DEVI                        | CES   |      | G١   |      |
|            | y issues -physical shape and placemer               |       |      |      |      |

Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

| TINITT III | WIRELESS HEALTH SYSTEMS                           | a   |
|------------|---------------------------------------------------|-----|
| UNII III   | WIRELESSTIEALTH STSTEMS                           | 9   |
|            |                                                   |     |
|            |                                                   |     |
| NT 1.0     | · 1                                               | 1   |
| Need tor   | wireless monitoring. Definition of Body area netw | ork |

Need for wireless monitoring, Definition of Body area network, BAN and Healthcare, Technical Challenges- System security and reliability, BAN Architecture – Introduction, Wireless communication Techniques.

## UNIT IV | SMART TEXTILES 9 Introduction to smart textile- Passive smart textile, active smart textile. Fabrication Techniques- Conductive Fibres, Treated Conductive Fibres, Conductive Fabrics, Conductive Inks. Case study- smart fabric for monitoring biological parameters - ECG, respiration. **APPLICATIONS OF WEARABLE SYSTEMS** UNIT V 9 Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Illustrate the concepts of wearable system. CO2: Apply signal processing techniques to analyse the output of sensors CO3: Experiment with the energy harvestings in wearable device. **CO4:** Utilise the concepts of BAN in health care. **CO5:** Summarise the concepts of smart textile. **CO6:** Analyse the various wearable devices in healthcare system. **TEXT BOOKS:** 1 Annalisa Bonfiglo and Danilo De Rossi, Wearable Monitoring Systems, Springer, 2011. Zhang and Yuan-Ting, Wearable Medical Sensors and 2 Systems, Springer, 2013. **REFERENCES:** 1 Sandeep K.S, Gupta, Tridib Mukherjee and Krishna Kumar Venkatasubramanian, Body Area Networks Safety, Security, and Sustainability, Cambridge University Press, 2013.

Guang-Zhong Yang, Body Sensor Networks, Springer, 2006.

2

| 3 | Edward Sazonov and Micheal R Neuman, Wearable Sensors:   |
|---|----------------------------------------------------------|
|   | Fundamentals, Implementation and Applications, Elsevier, |
|   | 2014.                                                    |

4 Mehmet R. Yuce and Jamil Y. Khan, Wireless Body Area Networks Technology, Implementation applications, Pan Stanford Publishing Pte. Ltd, Singapore, 2012.

| COs                    |   |   |   |   |   | I | POs |   |   |    |    |    | PSOs |   |   |  |
|------------------------|---|---|---|---|---|---|-----|---|---|----|----|----|------|---|---|--|
| COs                    | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |  |
| 1                      | 2 | 1 | - | - | - | - | -   | - | - | -  | -  | 2  | 2    | - | - |  |
| 2                      | 3 | 2 | 1 | 1 | 2 | - | -   | - | - | -  | -  | 2  | 3    | 2 | - |  |
| 3                      | 3 | 2 | 1 | 1 | - | - | -   | - | - | -  | -  | 2  | 3    | - | - |  |
| 4                      | 3 | 2 | 1 | 1 | 2 | - | -   | - | - | -  | -  | 2  | 3    | 2 | - |  |
| 5                      | 2 | 1 | - | - | - | - | -   | - | - | -  | -  | 3  | 2    | - | - |  |
| 6                      | 3 | 3 | 2 | 2 | 2 | - | ч   | 1 | - | -  | -  | 3  | 2    | 2 | - |  |
| Overall<br>Correlation | 3 | 2 | 1 | 1 | 1 | N | 1   | - |   |    |    | 3  | 3    | 1 | - |  |



| 23EC056     | HUMAN ASSIST DEVICES                                     | L        | T         | P        | C    |
|-------------|----------------------------------------------------------|----------|-----------|----------|------|
|             |                                                          | 3        | 0         | 0        | 3    |
| COURSE      | OBJECTIVES:                                              |          |           |          |      |
| • T         | o study the role and importance of machi                 | nes      | that      | t ta     | kes  |
|             | ver the functions of the heart and lungs.                |          |           |          |      |
| • T         | o study various mechanical techniques th                 | at h     | elp .     | a n      | on-  |
|             | unctioning heart.                                        |          |           |          |      |
|             | o learn the functioning of the unit wh                   | iich     | do        | es       | the  |
|             | learance of urea from the blood.                         |          |           |          |      |
|             | o understand the tests to assess the hea                 |          |           |          |      |
|             | evelopment of electronic devices to composs.             | ensa     | ate 1     | or       | tne  |
|             | oss.<br>To study about recent techniques used in m       | odo      | rn c      | lini     | ical |
|             | pplications                                              | louc     | 111 (     | .1111.   | icai |
| UNIT I      | HEART LUNG MACHINE AND ARTIF                             | ICIA     | <b>AL</b> |          | 9    |
|             | HEART                                                    |          |           |          |      |
| A.          | OWER DREA                                                |          |           |          |      |
|             | to be satisfied by the H/L System. Diffe                 |          | -         |          |      |
|             | o <mark>rs, Pum</mark> ps, Pulsatile and Continuous Type | VIII.000 | Section 1 | _400     | _    |
| Process, Sl | n <mark>unting,</mark> The Indication for Cardiac Transp | lant     | t, Di     | rivi     | ng   |
| Mechanism   | n, Blood Handling System, Functioning                    | and      | dif       | fere     | ent  |
| types of A  | rtificial Heart, Schematic for temporary l               | -        |           |          |      |
| ventricle.  |                                                          |          |           |          |      |
| UNIT II     | CARDIAC ASSIST DEVICES                                   |          |           |          | 9    |
| Assisted t  | hrough Respiration, Right and left Ventri                | cula     | ır B      | vpa      | ass  |
|             | xiliary ventricle, Open Chest and Closed                 |          |           |          |      |
|             | ic Balloon Pumping, Prosthetic Cardiac val               |          |           |          |      |
|             | l Counter pulsation techniques.                          | ,        |           |          |      |
| UNIT III    | ARTIFICIAL KIDNEY                                        |          |           |          | 9    |
| Indication  | and Dringinla of Hamadialysis Mambra                     | 20 1     | Dia1      | 1702     | to   |
|             | and Principle of Hemodialysis, Membra                    |          |           | -        |      |
| types of fi | lter and membranes, Different types of he                | emoc     | aial      | yze<br>– | rs,  |

 $Monitoring\,Systems, We arable\,Artificial\,Kidney, Implanting\,Type.$ 

# UNIT IV | RESPIRATORY AND HEARING AIDS 9 Ventilator and its types-Intermittent positive pressure, Breathing Apparatus Operating Sequence, Electronic IPPB unit with monitoring for all respiratory parameters. Types of Deafness, Hearing Aids, SISI, masking techniques, wearable devices for hearing correction. UNIT V RECENT TRENDS 9 electrical stimulator, bio-feedback, Transcutaneous nerve Diagnostic and point-of-care platforms. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain the principles and construction of artificial heart CO2: Summarise various mechanical techniques that improve therapeutic technology CO3: Experiment with the functioning of the membrane or filter that cleanses the blood. **CO4:** Identify the tests to assess the hearing loss. **CO5:** Illustrate the development of wearable devices for the same. CO6: Analyse and biofeedback electrical the stimulation techniques in rehabilitation and physiotherapy. TEXT BOOKS: Gray E Wnek, Gray L Browlin - Encyclopedia of Biomaterials and Biomedical Engineering -Marcel Dekker Inc New York 2004. John. G. Webster - Bioinstrumentation - John Wiley & Sons (Asia) Pvt Ltd - 2004 REFERENCES: Andreas.F. Von racum, "Hand book of bio material 1 evaluation", Mc-Millan publishers, 1980.

| 2   | Gray                                     | E                                                   | Wn                                       | ek,   | G    | ray  | L    | . E  | Brov | vlin | l, "   | Enc  | ycloj | ped  | ia   | of    |
|-----|------------------------------------------|-----------------------------------------------------|------------------------------------------|-------|------|------|------|------|------|------|--------|------|-------|------|------|-------|
|     | Biomate                                  | eria                                                | ls a                                     | nd    | Bio  | me   | dic  | al E | Engi | inee | ering  | g" N | larce | el D | )ekl | ker   |
|     | Inc Nev                                  | v Y                                                 | ork                                      | 200   | 4.   |      |      |      |      |      |        |      |       |      |      |       |
| 3   | D.S. Su                                  | nde                                                 | r, "                                     | Rel   | nabi | lita | tior | ı M  | edio | cine | e", 31 | rd E | ditio | n, J | ayp  | ee    |
|     | Medica                                   | l Pu                                                | ıblio                                    | catio | on,  | 201  | 0.   |      |      |      |        |      |       |      |      |       |
| 4   | Joseph                                   | ph D.Bronzino, The Biomedical Engineering Handbook, |                                          |       |      |      |      |      |      |      |        |      |       |      |      |       |
|     | Third E                                  | Third Edition: Three Volume Set, CRC Press, 2006    |                                          |       |      |      |      |      |      |      |        |      |       |      |      |       |
| 5   | Andrea                                   | s.F.                                                | F. Von racum, "Hand book of bio material |       |      |      |      |      |      |      |        |      |       |      |      |       |
|     | evaluation", Mc-Millan publishers, 1980. |                                                     |                                          |       |      |      |      |      |      |      |        |      |       |      |      |       |
|     | COs                                      | POs                                                 |                                          |       |      |      |      |      |      |      |        | PSOs |       |      |      |       |
| · ' | COs                                      | 1                                                   | 2                                        | 3     | 4    | 5    | 6    | 7    | 8    | 9    | 10     | 11   | 12    | 1    | 2    | 3     |
|     | 1                                        | 2                                                   | 1                                        | -     | -    | -    | -    | -    | -    | -    | -      | -    | 3     | 2    | -    | ı     |
|     | 2                                        | 2                                                   | 1                                        | -     | -    | -    | -    | -    | -    | -    | -      | -    | 2     | 2    | -    | ı     |
|     | 3                                        | 3                                                   | 2                                        | 1     | 1    | _    |      | -    |      |      | 1      | -    | 3     | 3    | 1    | ı     |
|     | 4 3 2 1 1 1 2                            |                                                     |                                          |       |      |      |      |      |      | 3    | 1      | ı    |       |      |      |       |
| ,   | 5                                        | 2                                                   | 1                                        | 0     | -    | 1    | di i | · -  | -//  | 7-   | -      | -    | 2     | 2    | 1    | ř-    |
|     | 6                                        | 3                                                   | 3                                        | 2     | 2    | 2    |      |      |      | A    | - 22   | -    | 3     | 3    | 2    | -     |
| O   | verall                                   |                                                     |                                          | 91    | W    |      |      | 1    |      | 1    |        | 3    | 1     |      | 1    | P. C. |

Correlation

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

| 23EC057 | THERAPEUTIC EQUIPMENT | L | T | P | C |
|---------|-----------------------|---|---|---|---|
|         |                       | 3 | 0 | 0 | 3 |

# **COURSE OBJECTIVES:**

- To learn the principles of cardiac assist devices.
- To understand the need and use of extracorporeal devices, and the use of lasers in medicine.
- To enable the students to gain knowledge on the working of therapeutic clinical equipment

| UNIT I | CARDIAC AND RESPIRATORY THERAPY | 9 |
|--------|---------------------------------|---|
|        | EQUIPMENT                       |   |

Cardiac Pacemaker: Internal and External Pacemaker-Programmable pacemakers. Cardiac Defibrillators: AC and DC Defibrillator- Internal and External Defibrillators - Protection Circuit, Defibrillator analyzers. Cardiac ablation catheter. Types of Ventilators - Pressure, Volume, and Time controlled. Basic principles of electromechanical, pneumatic and electronic ventilators. **Patient** Cycle Ventilators, Ventilator testing. Humidifiers, Nebulizers, Inhalators.

# UNIT II BIOMECHANICAL THERAPEUTIC 9 EQUIPMENT 9

Electro diagnosis, Therapeutic radiation, Electrotherapy, Electrodes, Stimulators for Nerve and Muscle, Functional Electrical Stimulation. peripheral nerve stimulator, ultrasonic stimulators, Stimulators for pain and relief - Inferential Therapy Unit, TENS. GAIT Assessment and Therapy. Continuous Passive Motion unit, Cervical / Lumber Traction Machine -Traction Table.

# UNIT III BODY CARE EQUIPMENT 9

Skin Treatment: Ultrasonic spot remove, vacuum therapy unit, Skin tightening, Wrinkle Reduction, Facial and Rejuvenation. Laser hair therapy machine. Body Slimmer/Shaper – Deep Heat Therapy, Massager, Fitness – Treadmill, Bike.

# UNIT IV DENTAL CARE EQUIPMENT

9

Dental Chair - Dental Hand pieces and Accessories: Evolution of rotary equipment, Low-speed hand piece, High-speed hand piece, Hand piece maintenance. Vacuum and Pneumatic techniques: Vacuum techniques, Oral evacuation systems, Vacuum pump, Pneumatic techniques, Dental compressor. Decontamination Unit and constant fumigation unit. Dental Radiography: Dental X-ray Machine.

# UNIT V HEAT & PHOTON THERAPY EQUIPMENT

9

High frequency heat therapy, Principle, Short wave diathermy, Microwave diathermy, Ultrasonic therapy, Lithotripsy. Therapeutic UV and IR Lamps. Basic principles of Biomedical LASERS: Applications of lasers in medicine, CO2laser, He-Ne laser, Nd-YAG and Ruby laser.

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Summarise suitable therapeutic devices for ailments related to cardiology, pulmonology, neurology
- CO2: Utilize the different types of equipment in biomechanical therapy.
- **CO3:** Demonstrate the principles of body care equipment
- CO4: Analyze the basic operations of dental care equipment.
- CO5: Examine different technologies involved in heat and photon therapy equipment.
- CO6: Develop the application of lasers in biomedical applications.

#### **TEXT BOOKS:**

- 1 Khandpur. R.S., "Handbook of Biomedical Instrumentation". Second Edition. Tata McGrawHill Pub. Co., Ltd. 2003.
- 2 John.G.Webster. "Medical Instrumentation, Application and Design". Fourth Edition.Wiley &s ons, Inc., NewYork. 2009.

| REF | ERENCE            | S:                                                  |      |      |     |      |      |     |      |      |      |      |       |      |       |     |
|-----|-------------------|-----------------------------------------------------|------|------|-----|------|------|-----|------|------|------|------|-------|------|-------|-----|
| 1   | Leslie            | Cro                                                 | mv   | vell | , F | red  | . J. | W   | /eib | ell  | &    | Eric | h. /  | A.Pí | feiff | er. |
|     | "Biome            | dica                                                | al I | nstı | um  | ent  | atic | n a | nd   | Μe   | easu | rem  | ents' | ". S | eco   | nd  |
|     | Edition           | Edition. Prentice Hall Inc.2000.                    |      |      |     |      |      |     |      |      |      |      |       |      |       |     |
| 2   | John 1            | Low                                                 | 7 8  | τ 1  | Anr | ı I  | Ree  | 1.  | "El  | ectr | othe | erap | y E   | Expl | ain   | ed, |
|     | Princip           | les                                                 | an   | d    | Pra | ctic | e".  | Se  | con  | d    | Edit | ion. | Bu    | tter | wo    | rth |
|     | Heinen            | Heinemann Ltd. 2000.                                |      |      |     |      |      |     |      |      |      |      |       |      |       |     |
| 3   | Joseph.           | seph. J. Carr, John Michael Brown, "Introduction to |      |      |     |      |      |     |      |      |      |      |       |      |       |     |
|     | Biomed            | iomedical Equipment Technology", Prentice Hall and  |      |      |     |      |      |     |      |      |      |      |       |      |       |     |
|     | Technology, 2008. |                                                     |      |      |     |      |      |     |      |      |      |      |       |      |       |     |
|     | CO.               | POs                                                 |      |      |     |      |      |     |      |      |      |      |       | I    | PSC   | )s  |
| '   | COs               | 1                                                   | 2    | 3    | 4   | 5    | 6    | 7   | 8    | 9    | 10   | 11   | 12    | 1    | 2     | 3   |
|     | 1                 | 2                                                   | 1    | -    | -   | -    | 1    | -   | 1    | -    | -    | -    | 2     | 2    | -     | 1   |
|     | 2                 | 3                                                   | 2    | 1    | 1   | _    | 1    | 5   | -    | -    | -    | -    | 2     | 3    | -     | -   |
|     | 3 W               | 2                                                   | 1    | 1    | -   | -    | 1    |     | - /  |      | -    |      | 2     | 2    | 7     | -   |
|     | 4                 | 3                                                   | 3    | 2    | 2   | _ 1  | 1    | -   | 1    | 7-   | -    | -    | 2     | 3    | -     | 1   |
|     | 5                 | 3                                                   | 3    | 2    | 2   | _ 8  | 1    | 2   | 1    | 1    |      | -    | 2     | 2    | -     | 1   |
|     |                   |                                                     |      |      |     |      |      |     |      |      |      |      |       |      |       |     |
|     | 6                 | 3                                                   | 2    | 1    | 1   | _    | 1    | 1   | 1    | 7    | -    | _    | 2     | 3    | 1     | 1   |

| 23EC058 | MEDICAL IMAGING SYSTEMS | L | T | P | C |
|---------|-------------------------|---|---|---|---|
|         |                         | 3 | 0 | 0 | 3 |

# **COURSE OBJECTIVES:**

- To understand the generation of X-ray and its uses in Medical imaging
- To describe the principle of Computed Tomography.
- To know the techniques used for visualizing various sections of the body.
- To learn the principles of different radio diagnostic equipment in Imaging.
- To discuss the radiation therapy techniques and radiation safety

# UNIT I INTRODUCTION TO MEDICAL IMAGING 9 AND X RAYS

Introduction to Medical imaging, Nature of X-rays- X-Ray absorption – Tissue contrast. X- Ray Equipment (Block Diagram) – X-Ray Tube, the collimator, Bucky Grid, power supply, Digital Radiography - discrete digital detectors, storage phosphor and film scanning, X-ray Image Intensifier tubes – Fluoroscopy – Digital Fluoroscopy. Angiography, Mammography.

# UNIT II COMPUTED TOMOGRAPHY

9

Principles of tomography, CT Generations, X- Ray sources-collimation- X- Ray detectors - Viewing systems - spiral CT scanning - Ultra fast CT scanners. Image reconstruction techniques - back projection and iterative method.

# UNIT III | MAGNETIC RESONANCE IMAGING

9

Fundamentals of magnetic resonance- properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Interaction of Nuclei with static magnetic field and Radio frequency wave- rotation and precession - Induction of magnetic resonance signals - bulk magnetization - Relaxation processes T1 and T2. Block Diagram approach of MRI system -

system magnet, generations of gradient magnetic fields, Radio Frequency coils shim coils, Electronic components.

# UNIT IV | NUCLEAR IMAGING

9

Radioisotopes- alpha, beta, and gamma radiations. Radio Pharmaceuticals. Radiation detectors – gas filled, ionization chambers, proportional counter, GM counter and scintillation Detectors, Gamma camera – Principle of operation, collimator, photomultiplier tube, X-Y positioning circuit, pulse height analyzer. Principles of SPECT and PET.

# UNIT V RADIATION THERAPY AND RADIATION SAFETY

9

Radiation therapy – linear accelerator, Telegamma Machine. SRS – SRT – Recent Techniques in radiation therapy – 3D CRT – IMRT – IGRT and Cyber knife – radiation measuring instruments Dosimeter, film badges, Thermo Luminescent dosimeters – electronic dosimeter – Radiation protection in medicine – radiation protection principles

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Explain the working principle of the X-ray machine and its application.
- **CO2:** Illustrate the principle computed tomography
- CO3: Identify the technique used for visualizing various sections of the body using Magnetic Resonance Imaging.
- **CO4:** Demonstrate the applications of radionuclide imaging.
- CO5: Analyse different imaging techniques and choose appropriate imaging equipment for better diagnosis
- **CO6:** Apply the methods of radiation safety.

| TEX  | TEXT BOOKS:                                        |                                                         |      |      |       |       |      |       |       |      |       |       |      |      |          |     |
|------|----------------------------------------------------|---------------------------------------------------------|------|------|-------|-------|------|-------|-------|------|-------|-------|------|------|----------|-----|
| 1    | Isaac B                                            | ank                                                     | cma  | n,   | I. I  | V.    | Ban  | km    | an,   | На   | andl  | ook   | Of   | M    | edi      | cal |
|      | Imaging                                            | g: P:                                                   | roce | essi | ng a  | and   | An   | alys  | sis ( | Bio  | med   | lical | Eng  | inee | erin     | g), |
|      | Acaden                                             | nic l                                                   | Pres | s,20 | 000   |       |      |       |       |      |       |       |      |      |          |     |
| 2    | Jacob I                                            | 3eu                                                     | tel  | (Ed  | ito   | r), ] | M.   | Soı   | nka   | (E   | dito  | r), l | Han  | dbo  | ok       | of  |
|      | Medica                                             | l In                                                    | nag  | ing  | , V   | ol 2  | 2. N | Лес   | lica  | l Ir | nage  | e Pr  | oces | sing | g a      | nd  |
|      | Analysi                                            | is, S                                                   | ΡΙĒ  | Pre  | ess i | 2000  | )    |       |       |      |       |       |      |      |          |     |
| REFI | REFERENCES:                                        |                                                         |      |      |       |       |      |       |       |      |       |       |      |      |          |     |
| 1    | Khin Wee Lai, Dyah Ekashant Octorina Dewi "Medical |                                                         |      |      |       |       |      |       |       |      |       |       |      |      |          |     |
|      | Imaging                                            | Imaging Technology", Springer Singapore, 2015.          |      |      |       |       |      |       |       |      |       |       |      |      |          |     |
| 2    | Khandr                                             | Khandpur R.S, "Handbook of Biomedical Instrumentation", |      |      |       |       |      |       |       |      |       |       |      |      |          |     |
|      | Tata McGraw - Hill, New Delhi, 2003.               |                                                         |      |      |       |       |      |       |       |      |       |       |      |      |          |     |
| 3    | Dougherty, Geoff (Ed.), "Medical Image Processing- |                                                         |      |      |       |       |      |       |       |      |       |       |      |      |          |     |
|      | Technic                                            | jues                                                    | an   | d A  | pp    | lica  | tion | ıs ", | . Sp  | ring | ger-  | Verla | ag N | lew  | Yo       | rk, |
|      | 2011                                               |                                                         |      |      |       |       |      |       |       | 4    |       | •     |      |      |          |     |
|      |                                                    |                                                         |      | 0    | 1     |       | F    | Os    | A     | 7    |       |       |      | I    | SO       | s   |
|      | COs                                                | 1                                                       | 2    | 3    | 4     | 5     | 6    | 7     | 8     | 9    | 10    | 11    | 12   | 1    | 2        | 3   |
|      | 1                                                  | 2                                                       | 1    | 11-  | -     |       | 2    | 1     | _     | 7    |       | _     | -    | 2    | The same | -   |
|      | 2                                                  | 2                                                       | 1    | 2-   | /\-   | -     | 2    | -     | 2     | -    | 1     | -     | -    | 2    | -        | 2   |
|      | 3 GINE                                             | 3                                                       | 2    | 1    | 1     | CC    | 2    | .E.C  | 2     | 01-  | 15    | CH    | NO   | 3    | 9        | 2   |
|      | 4                                                  | 2                                                       | 1    | -    | -     | AFE   | 2    | ED P  | 2     | NA U | NIVER | SHY   | AUTO | 2    | NOA      | 2   |
|      | 5                                                  | 3                                                       | 3    | 2    | 2     | -     | 2    | -     | 2     | -    | -     | -     | -    | 3    | -        | 2   |
|      | 6                                                  | 3                                                       | 2    | 1    | 1     | -     | 2    | 1     | 2     | -    | -     | -     | -    | 3    | -        | 2   |
| O    | verall                                             | 2                                                       | 2    | 1    | 1     |       | 2    |       | 2     |      |       |       |      | 2    |          | 2   |
| Cor  | relation                                           | 3                                                       | 2    | 1    | 1     | -     | 2    | -     | 2     | -    | -     | _     | _    | 3    | -        | 2   |

| 23EC059                                                     | BRAIN COMPUTER INTERFACE                        | L      | T    | P    | C     |  |  |  |
|-------------------------------------------------------------|-------------------------------------------------|--------|------|------|-------|--|--|--|
|                                                             | AND APPLICATIONS                                | 3      | 0    | 0    | 3     |  |  |  |
| <b>COURSE OBJ</b>                                           | ECTIVES:                                        |        |      |      |       |  |  |  |
| To dev                                                      | elop the use of matrix algebra techi            | niqu   | es 1 | that | is    |  |  |  |
|                                                             | by engineers for practical applications         |        |      |      |       |  |  |  |
|                                                             | liarize the students with differential ca       |        |      |      |       |  |  |  |
|                                                             | niliarize the student with function             |        |      |      |       |  |  |  |
|                                                             | es. This is needed in many branches of          | _      |      |      | _     |  |  |  |
| • 10 mak<br>integrat                                        | ke the students understand various              | tech   | nıq  | ues  | Oİ    |  |  |  |
| 0                                                           | non:<br>naint the student with mathematical to  | ole :  | ngg  | dod  | lin   |  |  |  |
|                                                             | ing multiple integrals and their applica        |        |      | ucu  | . 111 |  |  |  |
| UNIT I INTRODUCTION TO BCI                                  |                                                 |        |      |      |       |  |  |  |
|                                                             |                                                 |        |      |      |       |  |  |  |
| Introduction - Brain structure and function, Brain Computer |                                                 |        |      |      |       |  |  |  |
|                                                             | es - Synchronous and Asynchronous -I            | - 400  |      |      |       |  |  |  |
| Partially Inva                                              | sive BCI - Non Invasive BCI, Stru               | ctur   | e o  | f B  | CI    |  |  |  |
| System, BCI M                                               | <mark>lonitoring Hardware, EEG, ECoG, ME</mark> | G, fl  | MRI  | -10. |       |  |  |  |
|                                                             | AIN ACTIVATION                                  |        |      |      | 9     |  |  |  |
| Brain activation                                            | on patterns - Spikes, Oscillatory poten         | tial a | and  | ER   | D,    |  |  |  |
| slow cortical                                               | potentials, Movement related p                  | ote    | ntia | ls-N | Лu    |  |  |  |
| rhythms, mot                                                | or imagery, Stimulus related potent             | tials  | NON  | Vist | ıal   |  |  |  |
| Evoked Poter                                                | ntials - P300 and Auditory Evoke                | d P    | ote  | ntia | ıls,  |  |  |  |
| Potentials rela                                             | ted to cognitive tasks.                         |        |      |      |       |  |  |  |
| UNIT III FEA                                                | ATURE EXTRACTION METHODS                        |        |      |      | 9     |  |  |  |
| Data Processi                                               | ng - Spike sorting, Frequency dom               | ain    | ana  | alys | is,   |  |  |  |
| Wavelet anal                                                | ysis, Time domain analysis, Spatia              | al fi  | lter | ing  | · -   |  |  |  |
| Principal Con                                               | nponent Analysis (PCA), Independen              | t Co   | mp   | one  | ent   |  |  |  |
| -                                                           | A), Artifacts reduction, Feature Extra          |        | -    |      |       |  |  |  |
| •                                                           | on and coherence.                               |        |      |      |       |  |  |  |
| J                                                           |                                                 |        |      |      |       |  |  |  |

Classification techniques -Binary classification, Ensemble classification, Multiclass Classification, Evaluation of classification performance, Regression - Linear, Polynomial, RBF's,

| Perce | eptron's, Multilayer neural networks, Support ved           | ctor |
|-------|-------------------------------------------------------------|------|
|       | nine, Graph theoretical functional connectivity analysis    |      |
|       | T V APPLICATIONS OF BCI                                     | 9    |
|       |                                                             | 1\   |
|       | Studies - Invasive BCIs: decoding and tracking arm (ha      |      |
|       | ion, controlling prosthetic devices such as orthotic har    |      |
|       | or and robotic control using multi electrode array impla    |      |
|       | ical control of muscles via functional electrical stimulati |      |
|       | invasive BCIs: P300 Mind Speller, Visual cognitive E        | BCI, |
| Emo   | tion detection, Ethics of Brain Computer Interfacing        |      |
|       | TOTAL: 45 PERIO                                             | DDS  |
| COU   | RSE OUTCOMES:                                               |      |
|       | After completion of the course, the students will be able t | o:   |
| CO1:  | Interpret the significance and role of this course in       | the  |
|       | present contemporary world                                  | >    |
| CO2:  | Compare various concept of BCI.                             |      |
| CO3:  | Identify functions appropriately to the brain activation.   |      |
| CO4:  | Select appropriate feature extraction methods for differ    | ent  |
| 4     | applications.                                               |      |
| CO5:  | Examine a system using machine learning algorithms          | for  |
|       | translation. AFFILIATED TO ANNA UNIVERSITY AUTONOMOR        |      |
| CO6:  | Apply BCI in various applications.                          |      |
| TEX   | Γ BOOKS:                                                    |      |
| 1     | Rajesh.P.N.Rao, "Brain-Computer Interfacing:                | An   |
|       | Introduction", Cambridge University Press, First edition    | ion, |
|       | 2013.                                                       |      |
| 2     | Jonathan Wolpaw, Elizabeth Winter Wolpaw, —Bi               | rain |
|       | Computer Interfaces: Principles and practice, Oxf           |      |
|       | University Press, USA, Edition 1, January 2012.             |      |
| REFI  | ERENCES:                                                    |      |
| 1     | Ella Hassianien, A &Azar.A.T (Editors), "Brain-Compu        | ıter |
|       | Interfaces Current Trends and Applications", Springer, 20   |      |
|       | 11                                                          |      |

| 2 | Bernhard Graimann, Brendan Allison, Gert Pfurtscheller,    |  |  |  |  |  |  |  |  |  |  |
|---|------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|   | "Brain-Computer Interfaces: Revolutionizing Human-         |  |  |  |  |  |  |  |  |  |  |
|   | Computer Interaction", Springer, 2010                      |  |  |  |  |  |  |  |  |  |  |
| 3 | Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E   |  |  |  |  |  |  |  |  |  |  |
|   | Rirch " A curryon of cional Processing algorithms in brain |  |  |  |  |  |  |  |  |  |  |

- 3 Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch," A survey of signal Processing algorithms in brain-computer interfaces based on electrical brain signals" Journal of Neural Engineering, Vol.4, 2007, PP.32-57.
- 4 Arnon Kohen, "Biomedical Signal Processing", Vol I and II, CRC Press Inc, Boca Rato, Florida

| COs                    |   |   |   |   |   | F | Os |    |    |     |    |     | PSOs |   |     |
|------------------------|---|---|---|---|---|---|----|----|----|-----|----|-----|------|---|-----|
| COs                    | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9  | 10  | 11 | 12  | 1    | 2 | 3   |
| 1                      | 2 | 1 | - | - | - | 2 | -  | -  | -  | -   | -  | -   | 2    | - | 1   |
| 2                      | 2 | 1 | - | - | - | 2 | -  | -  | -  |     | -  | -   | 2    | - | 1   |
| 3                      | 3 | 2 | 1 | 1 | - | 2 | Ч  | 1  | -  | -   | -  | - 0 | 3    | 1 | 1   |
| 4 DOW                  | 3 | 2 | 1 | 1 | 2 | 2 |    | -7 |    | ij  |    | 4   | 3    | 2 | 1   |
| 5                      | 3 | 3 | 2 | 2 | 2 | 2 | -  | -/ | Y- | -   | -  | -   | 3    | 2 | - 1 |
| 6                      | 3 | 2 | 1 | 1 | 2 | 2 | À  | -  | 4  | - 3 | -  | -   | 3    | 2 | -   |
| Overall<br>Correlation | 3 | 2 | 1 | 1 | 1 | 2 | -  | -  | 1  | -   | _  | -   | 3    | 1 | -   |

| 23EC060                                                          | BODY AREA NETWORKS                       | L      | T    | P    | С        |  |  |  |  |  |
|------------------------------------------------------------------|------------------------------------------|--------|------|------|----------|--|--|--|--|--|
|                                                                  |                                          | 3      | 0    | 0    | 3        |  |  |  |  |  |
| COURSE OBJ                                                       | ECTIVES:                                 |        |      |      |          |  |  |  |  |  |
| To know                                                          | w the hardware requirement of BAN        |        |      |      |          |  |  |  |  |  |
| • To und the BAN                                                 | erstand the communication and secu:<br>N | rity   | asp  | ects | in       |  |  |  |  |  |
|                                                                  | w the applications of BAN in the field   | of m   | edio | cine | <u>)</u> |  |  |  |  |  |
| UNIT I IN                                                        | FRODUCTION                               |        |      |      | 9        |  |  |  |  |  |
| Definition, BA                                                   | AN and Healthcare, Technical Challe      | enge   | s- S | Sens | or       |  |  |  |  |  |
| design, biocompatibility, Energy Supply, optimal node placement, |                                          |        |      |      |          |  |  |  |  |  |
| number of                                                        | nodes, System security and relia         | abilit | ty,  | BA   | ιN       |  |  |  |  |  |
| Architecture - Introduction.                                     |                                          |        |      |      |          |  |  |  |  |  |
| UNIT II HA                                                       | ARDWARE FOR BAN                          |        |      |      | 9        |  |  |  |  |  |
| Processor-Low Power MCUs, Mobile Computing MCU                   |                                          |        |      |      |          |  |  |  |  |  |
| ,Integrated pr                                                   | ocessor with radio transceiver, Memo     | ory,   | Ant  | enr  | ıa-      |  |  |  |  |  |
| PCB antenna,                                                     | Wire antenna, Ceramic antenna, Exte      | rnal   | an   | tenı | ıa,      |  |  |  |  |  |
| Sensor Interfa                                                   | ce, Power sources- Batteries and fuel c  | ells f | or s | sens | or       |  |  |  |  |  |
| nodes.                                                           | -E/M                                     |        |      |      |          |  |  |  |  |  |
| UNIT III FEA                                                     | ATURE EXTRACTION METHODS                 | NO     | LO   | G)   | 9        |  |  |  |  |  |
| Data Processi                                                    | ng – Spike sorting, Frequency dom        | nain   | ana  | alvs | sis,     |  |  |  |  |  |
|                                                                  | ysis, Time domain analysis, Spatia       |        |      | •    |          |  |  |  |  |  |
|                                                                  | nponent Analysis (PCA), Independen       |        |      | _    |          |  |  |  |  |  |
| _                                                                | A), Artifacts reduction, Feature Extra   |        | -    |      |          |  |  |  |  |  |
| synchronization                                                  | on and coherence.                        |        |      |      |          |  |  |  |  |  |
| UNIT IV   COEXISTENCE ISSUES WITH BAN                            |                                          |        |      |      |          |  |  |  |  |  |
| Interferences                                                    | - Intrinsic - Extrinsic, Effect on       | tran   | smi  | ssi  | on,      |  |  |  |  |  |
|                                                                  | sures- on physical layer and data        |        |      |      |          |  |  |  |  |  |
|                                                                  | sues-Medical Device regulation in U      |        |      | •    |          |  |  |  |  |  |
|                                                                  | Self-protection-Bacterial attacks, Vin   |        |      |      |          |  |  |  |  |  |
| Secured protocols, Self-protection.                              |                                          |        |      |      |          |  |  |  |  |  |

| TINIT | EN ADDITION OF DANI                                         | 0    |
|-------|-------------------------------------------------------------|------|
| UNI   | T V APPLICATIONS OF BAN                                     | 9    |
| Mon   | itoring patients with chronic disease, Hospital patie       | nts, |
| Elde  | rly patients, Cardiac arrythmias monitoring, Multi pat      | ient |
| moni  | toring systems, Multichannel Neural recording, G            | Gait |
| analy | sis, Sports Medicine, Electronic pill.                      |      |
|       | TOTAL: 45 PERIO                                             | DDS  |
| COU   | RSE OUTCOMES:                                               |      |
|       | After completion of the course, the students will be able t | o:   |
| CO1:  | Illustrate the significance and role of this course in      | the  |
|       | present contemporary world.                                 |      |
| CO2:  | Construct a BAN for appropriate hardware components.        |      |
|       | Develop the different feature extraction methods.           |      |
| CO4:  | Explain the need for different frequency and time dom       | nain |
|       | analysis.                                                   | >    |
| CO5:  | Analyse the coexistence issues with BAN.                    |      |
|       | Outline the concepts of BAN for medical applications.       |      |
| TEX   | T BOOKS:                                                    |      |
| 1     | Sandeep K.S. Gupta, Tridib Mukherjee, Krishna Kur           |      |
|       | Venkata Subramanian, Body Area Networks Saf                 |      |
|       | Security, and Sustainability, Cambridge University Pr       | ess, |
|       | 2013.                                                       |      |
| 2     | Mehmet R. Yuce, Jamil Y.Khan, Wireless Body A               |      |
|       | Networks Technology, Implementation, and Application        | ons, |
|       | Pan Stanford Publishing Pte. Ltd., Singapore, 2012          |      |
|       | ERENCES:                                                    |      |
| 1     | Zhang, Yuan-Ting, Wearable Medical Sensors and Syste        | ms,  |
|       | Springer, 2013.                                             |      |
| 2     | Guang-Zhong Yang(Ed.), Body Sensor Networks, Spring         | ger, |
|       | 2006.                                                       |      |
| 3     | Annalisa Bonfiglio, Danilo De Rossi, "Wearable Monitor      | ring |
|       | Systems", Springer, 2011.                                   |      |

| COs                    |   |   |   |   |   | F | Os |   |   |    |    |    | PSOs |   |   |  |
|------------------------|---|---|---|---|---|---|----|---|---|----|----|----|------|---|---|--|
| COs                    | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |  |
| 1                      | 2 | 1 | 1 | ı | 1 | ı | 1  | 1 | 1 | -  | ı  | 1  | 2    | 1 | 1 |  |
| 2                      | 3 | 2 | 1 | 1 | - | - | -  | 1 | - | -  | -  | 1  | 3    | - | 1 |  |
| 3                      | 3 | 2 | 1 | 1 | - | - | -  | 1 | - | -  | -  | 1  | 3    | - | 1 |  |
| 4                      | 2 | 1 | - | - | - | 2 | -  | 1 | - | -  | -  | 1  | 2    | - | 1 |  |
| 5                      | 3 | 3 | 2 | 2 | - | 2 | -  | 1 | - | -  | -  | 1  | 3    | - | 1 |  |
| 6                      | 2 | 1 | - | - | - | 2 | -  | 2 |   |    |    | -  | 2    | - | 2 |  |
| Overall<br>Correlation | 3 | 2 | 1 | 1 | 1 | 1 | ı  | 2 | ı | ı  | ı  | 1  | 3    | 1 | 2 |  |



# **VERTICAL 6 - SIGNAL AND IMAGE PROCESSING**

| 23EC061          | ADVANCED DIGITAL SIGNAL                      | L      | T     | P    | C   |
|------------------|----------------------------------------------|--------|-------|------|-----|
|                  | PROCESSING                                   | 3      | 0     | 0    | 3   |
| <b>COURSE OB</b> | JECTIVES:                                    |        |       |      |     |
| • To             | know about multi rate signal processir       | ng ar  | nd i  | ts   |     |
| ар               | plications                                   |        |       |      |     |
|                  | introduce the concepts of discrete time      | ran    | don   | n    |     |
| `                | gnal processing                              |        |       |      |     |
|                  | understand the spectrum estimation to        |        | -     |      |     |
|                  | learn the concept of prediction theory       | and    | filte | rin  | _   |
| UNIT I M         | ULTIRATE SIGNAL PROCESSING                   |        |       |      | 9   |
| Multi rate Sig   | nal Processing - Decimation, Interpolati     | ion, S | Sam   | ıpli | ng  |
| Rate Convers     | ion by a rational factor - digital filter ba | nks,   | sub   | ba   | nd  |
| coding, Quad     | rature Mirror Filter.                        |        |       |      |     |
| UNIT II DI       | SCRETE TIME RANDOM PROCESS                   | ES     |       |      | 9   |
| Stationary ra    | ndom processes, Autocorrelation, Po          | wer    | Sp    | ect  | ra, |
| Filters for ge   | enerating random Processes from whi          | ite n  | oise  | e a  | nd  |
| 70L 77/ 990m     | - AR, MA and ARMA processes -                | Yul    | e w   | alk  | ker |
| equations.       | AFFILIATED TO ANNA UNIVERSITY                |        |       |      |     |
|                  |                                              |        |       |      |     |
| UNIT III   LI    | NEAR PREDICTION AND FILTERIN                 | G      |       |      | 9   |
| Linear Predic    | ction – Forward and Backward - Wier          | ner f  | filte | rs i | for |
| filtering and 1  | prediction – FIR Wiener Filter – IIR Wie     | ner    | Filte | er.  |     |
| UNIT IV AI       | DAPTIVE FILTERING                            |        |       |      | 9   |
| FIR adaptive     | filters - adaptive filters based on stee     | epes   | t de  | esce | ent |
| method - LM      | IS algorithm – adaptive echo cancellation    | on –   | ada   | apti | ve  |
| channel equa     | lization - RLS Algorithm.                    |        |       |      |     |
| UNIT V SP        | PECTRUM ESTIMATION                           |        |       |      | 9   |
| Estimation of    | power spectra from finite duration ob        | serv   | atio  | ons  | of  |
| signals - Noi    | n parametric methods of spectrum est         | imat   | ion   | – t  | he  |

Bartlett and the Welch method – Parametric spectrum estimation – AR, MA and ARMA.

TOTAL: 45 PERIODS

#### TOTAL: 45 PERIODS

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Demonstrate multirate signal processing and its applications
- CO2: Demonstrate an understanding of the power spectral density and apply to discrete random signals and systems
- CO3: Apply linear prediction techniques to discrete random signals for signal detection and estimation.
- **CO4:** Apply filtering techniques to discrete random signals for signal detection and estimation.
- CO5: Analyze adaptive filtering problems and demonstrate its application
- CO6: Apply power spectrum estimation techniques to random signals.


#### **TEXT BOOKS:**

- 1 Monson H. Hayes, "Statistical digital signal processing and modeling", John Wiley and Sons Inc. New York, Indian reprint 2008.
- John G. Proakis & Dimitris G.Manolakis, —Digital Signal Processing Principles, Algorithms & Applications, Fourth Edition, Pearson Education / Prentice Hall, 2007.
- P. Vaidyanathan, "Multirate systems and filter banks", Prentice Hall Inc. 1993.

#### REFERENCES:

- 1 Haykin, Adaptive Filter Theory, 4th Edition, Pearson Education, New Delhi, 2006.
- 2 Sophoncles J. Orfanidis, "Optimum Signal Processing ", McGraw Hill, 2000.
- 3 Openheim AV & Schafer RW, Discrete Time Signal Processing PHI. □ Taan S. Elali, "Discrete Systems and Digital Signal Processing with Matlab, "CRC Press, 2005

| COs                    |   |   |   |   |   | I | POs |   |   |    |    |    | PSOs |   |   |  |
|------------------------|---|---|---|---|---|---|-----|---|---|----|----|----|------|---|---|--|
| COs                    | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |  |
| 1                      | 2 | 1 | - | - | - | - | -   | - | - | -  | -  | 1  | 3    | - | - |  |
| 2                      | 2 | 1 | - | - | - | ı | -   | - | - | -  | -  | 2  | 3    | - | - |  |
| 3                      | 3 | 2 | 1 | 1 | - | ı | -   | - | - | -  | -  | 2  | 3    | - | - |  |
| 4                      | 3 | 2 | 1 | 1 | - | ı | -   | - | - | -  | -  | 2  | 2    | - | - |  |
| 5                      | 3 | 3 | 2 | 2 | - | ı | -   | - | - | -  | -  | 1  | 3    | - | - |  |
| 6                      | 3 | 2 | 1 | 1 | - |   |     |   |   |    |    | 1  | 3    | - | - |  |
| Overall<br>Correlation | 3 | 2 | 1 | 1 | - | 1 | -   | - | - | ı  | -  | 2  | 3    | 1 | - |  |



| 23EC062          | IMAGE PROCESSING L T P C                                                       |       |            |      |     |  |  |  |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------|-------|------------|------|-----|--|--|--|--|--|--|--|--|
|                  |                                                                                | 3     | 0          | 0    | 3   |  |  |  |  |  |  |  |  |
| COURSE OBJ       | ECTIVES:                                                                       |       |            |      |     |  |  |  |  |  |  |  |  |
| • To             | o become familiar with digital image fu                                        | nda   | mer        | ıtal | s   |  |  |  |  |  |  |  |  |
|                  | o get exposed to simple image enhance<br>chniques in Spatial and Frequency don |       |            |      |     |  |  |  |  |  |  |  |  |
| • To             | b learn concepts of degradation function<br>storation techniques.              |       |            |      |     |  |  |  |  |  |  |  |  |
|                  | o study the image segmentation and re-<br>chniques.                            | pres  | enta       | tio  | n   |  |  |  |  |  |  |  |  |
|                  | become familiar with image compress<br>cognition methods                       | sion  | anc        | 1    |     |  |  |  |  |  |  |  |  |
|                  | GITAL IMAGE FUNDAMENTALS                                                       |       |            |      | 9   |  |  |  |  |  |  |  |  |
| Fundamental      | steps in Digital Image Processing - C                                          | omp   | one        | ents | 3 – |  |  |  |  |  |  |  |  |
| Elements of V    | isual Perception - Image Sensing and                                           | Acq   | uisi       | tior | ۱ – |  |  |  |  |  |  |  |  |
| Image Sampli     | ng and Quantization - Relationships b                                          | etwe  | en         | pix  | els |  |  |  |  |  |  |  |  |
| - Color image    | fundamentals - RGB, HSI models.                                                | W.    |            |      |     |  |  |  |  |  |  |  |  |
| UNIT II IM       | AGE ENHANCEMENT                                                                | 7     |            |      | 9   |  |  |  |  |  |  |  |  |
| Spatial Dom      | ain: Gray level transformations -                                              | \(H   | listo      | gra  | m   |  |  |  |  |  |  |  |  |
| processing -     | Basics of Spatial Filtering- Smo                                               | ooth  | ing        | aı   | nd  |  |  |  |  |  |  |  |  |
| Sharpening Sp    | patial Filtering, Frequency Domain: In                                         | trod  | ucti       | on   | to  |  |  |  |  |  |  |  |  |
| Fourier Transf   | form–Smoothing and Sharpening frequ                                            | ienc  | y do       | ma   | iin |  |  |  |  |  |  |  |  |
| filters - Ideal, | , Butterworth and Gaussian filters, He                                         | omo   | -mo        | rpl  | nic |  |  |  |  |  |  |  |  |
| filtering.       |                                                                                |       |            |      |     |  |  |  |  |  |  |  |  |
| UNIT III IM      | AGE RESTORATION                                                                |       |            |      | 9   |  |  |  |  |  |  |  |  |
| Image Restora    | ation - degradation model, Noise mo                                            | dels  | ; <b>–</b> | Me   | an  |  |  |  |  |  |  |  |  |
| Filters - Orde   | r Statistics - Adaptive filters - Band r                                       | eject | Fil        | ters | 3 – |  |  |  |  |  |  |  |  |
| Band pass Fil    | ters - Notch Filters - Optimum Not                                             | tch 1 | Filt€      | rin  | g-  |  |  |  |  |  |  |  |  |
| Inverse Filteri  | ng - Wiener filtering                                                          |       |            |      |     |  |  |  |  |  |  |  |  |
|                  | AGE SEGMENTATION                                                               |       |            |      | 9   |  |  |  |  |  |  |  |  |
| Edge detection   | n, Edge linking via Hough transform –                                          | Thre  | eshc       | ldi  | ng  |  |  |  |  |  |  |  |  |
| - Region based   | d segmentation - Region growing - Re                                           | gion  | spl        | itti | ng  |  |  |  |  |  |  |  |  |

and merging – Morphological processing- erosion and dilation, Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed segmentation algorithm.

# UNIT V | IMAGE COMPRESSION AND RECOGNITION

Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching. Case study.

#### **TOTAL: 45 PERIODS**

# COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the fundamentals of digital image processing, such as digitization, sampling, quantization
- CO2: Apply the techniques of smoothing, sharpening and enhancement on images
- CO3: Analyse the restoration concepts and filtering techniques of images
- **CO4:** Build segmentation, features extraction, compression and recognition methods for colour models.
- CO5: Illustrate image compression concepts and standards
- CO6: Analyse the types of descriptors and pattern recognition concept in image processing

#### **TEXT BOOKS:**

- 1 Rafael C. Gonzalez, Richard E. Woods, 'Digital Image Processing', Pearson, Third Edition, 2010.
  - 2 Anil K. Jain, 'Fundamentals of Digital Image Processing', Pearson, 2002.

#### REFERENCES:

1 Kenneth R. Castleman, 'Digital Image Processing', Pearson, 2006.

| 2    | Rafael   | C.                                                     | Go   | nza   | lez,       | Ri   | icha | rd  | E.   | Wo  | ods  | , St | ever  | ı E  | ddi  | ns,   |
|------|----------|--------------------------------------------------------|------|-------|------------|------|------|-----|------|-----|------|------|-------|------|------|-------|
|      | 'Digital | Iı                                                     | mag  | ge    | Pro        | oces | sing | g · | usir | ng  | MA   | TLA  | AΒ′,  | Р    | ears | on    |
|      | Educati  | on,                                                    | Inc  | ., 20 | 011.       |      |      |     |      |     |      |      |       |      |      |       |
| 3    | D,E. D   | D,E. Dudgeon and RM. Mersereau, 'Multidimensional      |      |       |            |      |      |     |      |     |      |      |       |      |      |       |
|      | Digital  | Digital Signal Processing', Prentice Hall Professional |      |       |            |      |      |     |      |     |      |      |       |      |      |       |
|      | Technic  | Technical Reference, 1990.                             |      |       |            |      |      |     |      |     |      |      |       |      |      |       |
| 4    | William  | ı K                                                    | . Pı | att,  | <b>'</b> D | igit | al l | [ma | ge   | Pro | cess | ing' | , Jol | nn ' | Wil  | ey,   |
|      | New Yo   | ork,                                                   | 200  | )2    |            |      |      |     |      |     |      |      |       |      |      |       |
|      | COs      |                                                        |      |       |            |      | I    | POs | 1    |     |      |      |       | PSOs |      |       |
| ,    | COs      | 1                                                      | 2    | 3     | 4          | 5    | 6    | 7   | 8    | 9   | 10   | 11   | 12    | 1    | 2    | 3     |
|      | 1        | 2                                                      | 1    | -     | -          | -    | -    | -   | -    | -   | -    | -    | 3     | 2    | -    | -     |
|      | 2        | 3                                                      | 2    | 1     | 1          | 1    | -    | -   | -    | -   | -    | -    | 2     | 3    | 1    | -     |
|      | 3        | 3                                                      | 3    | 2     | 2          | 1    | -    | -   | -    | -   | -    | -    | 2     | 3    | 1    | -     |
|      | 4        | 3                                                      | 2    | 1     | 1          | _    | -    | Ы   | -    | - 1 | 1    | -    | 2     | 3    | -    | -     |
|      | 5 .ow    | 2                                                      | 1    | 1     | -          | -    | -2   |     | - /  |     | 1    | 1    | 2     | 2    |      | -     |
|      | 6        | 3                                                      | 3    | 2     | 2          | 1    | die. |     | 1    | 4   |      |      | 2     | 3    | 1    |       |
| O.   | verall   | 2                                                      | 2    | A     |            | 1    |      |     | 1    | 1   | 92   | -    | 2     | 2    | 1    |       |
| Corr | relation | 3                                                      | 2    | 2     | 1          | 1    | -    | 1   | -    | -   | -    | -    | 2     | 3    | 1    | P. (= |

# COLLEGE OF TECHNOLOGY

| 23EC063 | SPEECH PROCESSING | L | T | P | C |
|---------|-------------------|---|---|---|---|
|         |                   | 3 | 0 | 0 | 3 |

# **COURSE OBJECTIVES:**

- To Study the fundamentals of speech signal and extracts various speech features
- To understand different speech coding techniques for speech compression applications
- To learn to build speech enhancement, text-to-speech synthesis system

### UNIT I FUNDAMENTALS OF SPEECH

9

The Human speech production mechanism, Discrete-Time model of speech production, Speech perception - human auditory system, Phonetics - articulatory phonetics, acoustic phonetics, and auditory phonetics, Categorization of speech sounds, Spectrographic analysis of speech sounds, Pitch frequency, Pitch period measurement using spectral and cepstral domain, Formants, Evaluation of Formants for voiced and unvoiced speech

# UNIT II SPEECH FEATURES AND DISTORTION 9 MEASURES

Significance of speech features in speech-based applications, Speech Features – Cepstral Coefficients, Mel Frequency Cepstral Coefficients (MFCCs), Perceptual Linear Prediction (PLP), Log Frequency Power Coefficients (LFPCs), Speech distortion measures–Simplified distance measure, LPC-based distance measure, Spectral distortion measure, Perceptual distortion measure.

# UNIT III | SPEECH CODING

Need for speech coding, Waveform coding of speech – PCM, Adaptive PCM, DPCM, ADPCM, Delta Modulation, Adaptive Delta Modulation, G.726 Standard for ADPCM, Parametric Speech Coding – Channel Vocoders, Linear Prediction Based Vocoders, Code Excited Linear Prediction (CELP) based Vocoders,

Sinusoidal speech coding techniques, Hybrid coder, Transform domain coding of speech

# UNIT IV | SPEECH ENHANCEMENT

9

Classes of Speech Enhancement Algorithms, Spectral-Subtractive Algorithms - Multiband Spectral Subtraction, MMSE Spectral Subtraction Algorithm, Spectral Subtraction Based on Perceptual Properties, Wiener Filtering - Wiener Filters in the Time Domain, Wiener Filters in the Frequency Domain, Wiener Filters for Noise Maximum-Likelihood Reduction, Estimators, Bayesian MMSE Log-MMSE Estimators, and Estimator, Subspace Algorithms.

### UNIT V | SPEECH SYNTHESIS AND APPLICATION

9

A Text-to-Speech systems (TTS), Synthesizers technologies – Concatenative synthesis, Use of Formants for concatenative synthesis, Use of LPC for concatenative synthesis, HMM-based synthesis, Sinewave synthesis, Speech transformations, Watermarking for authentication of a speech, Emotion recognition from speech.

#### **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- CO1: Summarize the fundamentals of speech.
- CO2: Examine various speech features for speech related applications
- **CO3:** Explain speech compression techniques
- CO4: Choose an appropriate speech coder for a given application.
- **CO5:** Build a speech enhancement system.
- CO6: Apply text-to-speech synthesis system for various applications

#### **TEXT BOOKS:**

1 Shaila D. Apte, Speech and Audio Processing, Wiley India (P) Ltd, New Delhi, 2012

|     | D1 ·1·                                                      |                                                              | , т      |           |       | -     |          | 1           | т 1       | 1     |        |                                                                                                | 771         |        |            | 1         |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------|--------------------------------------------------------------|----------|-----------|-------|-------|----------|-------------|-----------|-------|--------|------------------------------------------------------------------------------------------------|-------------|--------|------------|-----------|--|--|--|--|--|--|--|
| 2   | Philipo                                                     |                                                              |          |           |       |       |          |             |           |       |        |                                                                                                |             | ,      |            |           |  |  |  |  |  |  |  |
|     | Practice                                                    | , S€                                                         | ecor     | nd I      | Edit  | ion   | ١,       | CR          | C         | Pre   | ss,Ir  | ıc., I                                                                                         | Jnite       | ed S   | Stat       | es,       |  |  |  |  |  |  |  |
|     | 2013                                                        |                                                              |          |           |       |       |          |             |           |       |        |                                                                                                |             |        |            |           |  |  |  |  |  |  |  |
| REF | ERENCE                                                      | RENCES:                                                      |          |           |       |       |          |             |           |       |        |                                                                                                |             |        |            |           |  |  |  |  |  |  |  |
| 1   | Rabiner L. R. and Juang B. H, Fundamentals of speech        |                                                              |          |           |       |       |          |             |           |       |        |                                                                                                |             |        |            |           |  |  |  |  |  |  |  |
|     | recogni                                                     | recognition, Pearson Education, 2003                         |          |           |       |       |          |             |           |       |        |                                                                                                |             |        |            |           |  |  |  |  |  |  |  |
| 2   | Thomas                                                      | Thomas F. Quatieri, Discrete-time speech signal processing - |          |           |       |       |          |             |           |       |        |                                                                                                |             |        |            |           |  |  |  |  |  |  |  |
|     | Princip                                                     | Principles and Practice, Pearson, 2012.                      |          |           |       |       |          |             |           |       |        |                                                                                                |             |        |            |           |  |  |  |  |  |  |  |
| 3   | Claudio                                                     | ) E                                                          | Becc     | het       | ti    | anc   | l I      | Luci        | io        | Pri   | na     | Rico                                                                                           | otti,       | "S     | pee        | ch        |  |  |  |  |  |  |  |
|     | Recogn                                                      | itioı                                                        | n",]     | Joh       | n W   | 'iley | , an     | ıd S        | ons       | , 19  | 99.    |                                                                                                |             |        |            |           |  |  |  |  |  |  |  |
| 4   | Ben go                                                      | old a                                                        | and      | N         | elso  | n N   | Лor      | gar         | ı, "S     | Spe   | ech    | Recognition", John Wiley and Sons, 1999.  Ben gold and Nelson Morgan, "Speech and audio signal |             |        |            |           |  |  |  |  |  |  |  |
|     | processing", processing and perception of speech and music, |                                                              |          |           |       |       |          |             |           |       |        |                                                                                                |             |        |            |           |  |  |  |  |  |  |  |
| 1   | process                                                     | ingʻ                                                         | ", p:    | roce      | essiı | ng a  | and      | per         |           | tio   | n of s |                                                                                                | ch a        | nd 1   | nus        |           |  |  |  |  |  |  |  |
|     | Wiley-                                                      | _                                                            | -        |           |       | 0     |          | -           | cep       | tio   | n of s |                                                                                                | ch a        | nd 1   | nus        |           |  |  |  |  |  |  |  |
|     | Wiley-                                                      | _                                                            | -        |           |       | 0     | 6 E      | -           | cep<br>on | tion  | n of s |                                                                                                | ch a        |        | nus<br>'SO | sic,      |  |  |  |  |  |  |  |
|     | -                                                           | _                                                            | -        |           |       | 0     | 6 E      | diti        | cep<br>on | otion |        |                                                                                                | 12          | F      |            | sic,      |  |  |  |  |  |  |  |
|     | Wiley-                                                      | Indi                                                         | ia E     | diti      | on,   | 200   | 6 E<br>F | diti<br>'Os | cep<br>on |       |        | spee                                                                                           |             | F      | 'SO        | sic,<br>s |  |  |  |  |  |  |  |
|     | Wiley-                                                      | Indi                                                         | а Е<br>2 | diti      | on,   | 200   | 6 E<br>F | diti<br>'Os | cep<br>on |       |        | spee                                                                                           | 12          | 1      | 'SO        | sic,<br>s |  |  |  |  |  |  |  |
|     | Wiley-                                                      | Indi 1 2                                                     | 2<br>1   | diti<br>3 | on, 4 | 200   | 6 E<br>F | diti<br>'Os | cep<br>on |       |        | spee                                                                                           | <b>12</b> 1 | 1<br>3 | 'SO        | sic,<br>s |  |  |  |  |  |  |  |

2 1

1 1

.3

3 2 1 1

Overall

Correlation

| 23EC064       | SOFTWARE DEFINED RADIO                                     | L     | T        | P    | C   |
|---------------|------------------------------------------------------------|-------|----------|------|-----|
|               |                                                            | 2     | 0        | 2    | 3   |
| COURSE        | OBJECTIVES:                                                |       |          |      |     |
|               | introduce the concepts of software radios                  |       |          |      |     |
|               | know about RF implementation chall                         | leng  | ges      | for  | •   |
|               | tware defined radios                                       |       |          |      |     |
|               | understand the digital generation of signa                 |       |          | c    |     |
|               | learn the software and hardware requireware defined radios | eme   | nts      | tor  | •   |
| UNIT I        | INTRODUCTION TO SOFTWARE RA                                | DIC   | <u> </u> |      | 6   |
| ONITI         | INTRODUCTION TO SOFTWARE RA                                | DIC   | ,        |      | U   |
| The Need      | for Software Radios. Characteristics and                   | Ben   | efit     | s of | fа  |
| Software R    | adio. Design Principles of a Software Radi                 | o.    |          |      |     |
| UNIT II       | RF IMPLEMENTATION                                          |       |          |      | 6   |
| Purpose of    | RF front – end, Dynamic range, RF receive                  | er fr | ont      | – e  | nd  |
| -             | Enhanced flexibility of the RF chain w                     | - 400 |          |      |     |
| 1             | portance of the components to overall                      |       |          |      |     |
| 7/10/10/10/20 | r architectures and their issues, Noise and                | - 04  | -        |      |     |
| -266          | in, Hybrid DDS – PLL systems, Applicati                    | 70    |          |      |     |
| Digital Syr   |                                                            |       |          |      |     |
| UNIT III      | DIGITAL GENERATION OF SIGNALS                              | AUTO  | NO       | 10 U | 6   |
| Compariso     | on of direct digital synthesis with a                      | nalo  | g        | sigr | nal |
| synthesis,    | Approaches to direct digital synthesis,                    | An    | aly      | sis  | of  |
| spurious si   | ignals, Performance of direct digital synth                | esis  | sys      | ten  | ns, |
| Application   | ns of direct digital synthesis.                            |       |          |      |     |
| UNIT IV       | SMART ANTENNAS                                             |       |          |      | 6   |
| Benefits of   | smart antennas, Structures for beamform                    | ning  | SVS      | ten  | ns, |
|               | enna algorithms, Hardware implementat                      |       |          |      |     |
|               | Digital Hardware Choices-Key hardware e                    |       |          |      |     |
|               | J                                                          |       |          |      |     |

| UNIT  | TV HARDWARE AND SOFTWARE FOR SDR                            | 6     |
|-------|-------------------------------------------------------------|-------|
|       | AND CASE STUDIES                                            |       |
|       |                                                             |       |
|       | Processors, FPGA, ASICs. Trade-offs, Object orien           |       |
| progr | ramming, Object Brokers, GNU Radio-USRP. Case Stud          | lies: |
| SPEA  | AK easy, JRTS, SDR-3000.                                    |       |
|       | TOTAL: 30 PERIO                                             | DDS   |
| PRAG  | CTICAL EXERCISES:                                           |       |
|       | 1. Study of SDR hardware kit.                               |       |
|       | 2. Design and Implementation of digital modulation          | on    |
|       | schemes using SDR.                                          |       |
|       | 3. Implementation of synchronization techniques using SDR.  | ng    |
|       | 4. Channel Coding Techniques using SDR.                     |       |
|       | 5. Study of channel estimation techniques using SDR.        |       |
|       | 6. Study of MIMO concepts using SDR.                        |       |
|       | TOTAL:30 PERIO                                              | DDS   |
| COU   | RSE OUTCOMES:                                               | li l  |
|       | After completion of the course, the students will be able t |       |
| CO1:  | Summarize the Characteristics, benefits and Des             |       |
|       | Principles of Software Radio (SDR).                         | V     |
| CO2:  | Analyze Radio frequency implementation issues.              | U.S   |
| CO3:  | Outline various digital synthesis procedures.               |       |
| CO4:  | Utilize various Smart antenna techniques for SDR.           |       |
| CO5:  | Make use of various Hardware modules in SDR.                |       |
| CO6:  | Analyze various Software modules and case stud              | dies  |
|       | required in SDR                                             |       |
| TEXT  | BOOKS:                                                      |       |
| 1     | Jeffrey Hugh Reed, "Software Radio: A Modern Appro          | ach   |
|       | to Radio Engineering," Prentice Hall Professional, 2002.    |       |
| 2     | Tony J Rouphael, "RF and DSP for SDR," Elsevier New         | nes   |
|       | Press, 2008.                                                |       |
| REFE  | RENCES:                                                     |       |
| 1     | P. Kenington, "RF and Baseband Techniques for Softw         | are   |

Defined Radio," Artech House, 2005.

| 2 | Paul Bu                         | ırns                                              | s, "S | oftv  | war | e D | efin | ed : | Rad  | lio f | or 30 | G," <i>E</i> | Arte | ch I | Iou | se, |
|---|---------------------------------|---------------------------------------------------|-------|-------|-----|-----|------|------|------|-------|-------|--------------|------|------|-----|-----|
|   | 2002.                           |                                                   |       |       |     |     |      |      |      |       |       |              |      |      |     |     |
| 3 | Behrou                          | rouz. F. Bourjney" Signal Processing for Software |       |       |     |     |      |      |      |       |       |              |      |      |     |     |
|   | defined                         | efined Radios", Lulu 2008.                        |       |       |     |     |      |      |      |       |       |              |      |      |     |     |
| 4 | Ram, A                          | Amithesh Pandey, "Practical Approach to Software  |       |       |     |     |      |      |      |       |       |              |      |      |     |     |
|   | Defined                         | d Ra                                              | adic  | )", I | BUK | KKS | , Ja | nua  | ry 2 | 2019  | 9.    |              |      |      |     |     |
|   | COs                             |                                                   |       |       |     |     |      |      |      |       |       | PSOs         |      |      |     |     |
| , | COS                             | 1                                                 | 2     | 3     | 4   | 5   | 6    | 7    | 8    | 9     | 10    | 11           | 12   | 1    | 2   | 3   |
|   | 1                               | 2                                                 | 1     | -     | -   | 2   | 2    | -    | 2    | -     | 1     | -            | 3    | 2    | 2   | 2   |
|   | 2                               | 3                                                 | 3     | 2     | 2   | 2   | 2    | -    | 2    | -     | 1     | -            | 2    | 3    | 2   | 2   |
|   | 3                               | 2                                                 | 1     | -     | -   | 2   | -    | -    | 1    | -     | -     | -            | 3    | 2    | 2   | 1   |
|   | 4                               | 3                                                 | 2     | 1     | 1   | 3   | -    | -    | 2    | -     | -     | -            | 3    | 3    | 3   | 2   |
|   | 5                               | 3                                                 | 2     | 1     | 1   | 3   | -    | -    | 2    | -     | -     | -            | 3    | 3    | 3   | 2   |
|   | 6                               | 3                                                 | 3     | 2     | 2   | 2   | 2    | 5_   | 2    | -     | 1     | -            | 2    | 3    | 2   | 2   |
| _ | Overall 3 2 1 1 3 1 - 2 - 1 - 3 |                                                   |       |       |     |     |      |      |      |       | 3     | 3            | 2    |      |     |     |

Correlation



| 23EC065 | DSP ARCHITECTURE AND | L | T | P | C |
|---------|----------------------|---|---|---|---|
|         | PROGRAMMING          | 2 | 0 | 2 | 3 |

### **COURSE OBJECTIVES:**

- To Study the architecture of programmable DSP processors.
- To implement various standard DSP algorithms in DSP Processors.
- To Use the Programmable DSP Processors to build real-time DSP systems.
- To develop skills in the development of DSP algorithms.
- To Study the applications of DSP Processors.

| UNIT I | ARCHITECTURES FOR PROGRAMMABLE | 6 |
|--------|--------------------------------|---|
|        | DSP PROCESSORS                 |   |

Basic Architectural features, DSP Computational building blocks, Bus architecture and memory, Data addressing capabilities, Address generation Unit, Programmability and program execution, Speed issues, Features for external interfacing.

| UNIT II | TMS320C5X PROGRAMMABLE DSP | 6 |
|---------|----------------------------|---|
|         | PROCESSOR                  |   |

Architecture of TMS320C54xx DSP processors, Addressing modes – Assembly language Instructions -Memory space, interrupts, and pipeline operation of TMS320C54xx DSP Processor, On-Chip peripherals, Block Diagram of TMS320C54xx DSP starter kit.

| UNIT III | TMS320C6X PROGRAMMABLE DSP | 6 |
|----------|----------------------------|---|
|          | PROCESSOR                  |   |

Commercial TI DSP processors, Architecture of TMS320C6x DSP Processor, Linear and Circular addressing modes, TMS320C6x Instruction Set, Assembler directives, Linear Assembly, Interrupts, Multichannel buffered serial ports, Block diagram of TMS320C67xx DSP Starter Kit and Support Tools.

# UNIT IV IMPLEMENTATION OF DSP 6 ALGORITHMS 6

DSP Development system, On-chip, and On-board peripherals of C54xx and C67xx DSP development boards, Code Composer Studio (CCS) and support files, Implementation of Conventional FIR, IIR, and Adaptive filters in TMS320C54xx/TMS320C67xx DSP processors for real-time DSP applications, Implementation of FFT algorithm for frequency analysis in real-time

# UNIT V APPLICATIONS OF DSP PROCESSORS

6

Voice scrambling using filtering and modulation, Voice detection and reverse playback, Audio effects, Graphic Equalizer, Adaptive noise cancellation, DTMF signal detection, Speech thesis using LPC, Automatic speaker recognition.

#### **TOTAL: 30 PERIODS**

#### PRACTICAL EXERCISES:

- Real-Time Sine Wave Generation
- 2. Programming examples using C, Assembly and linear assembly.
- 3. Implementation of moving average filter.
- 4. FIR implementation with a Pseudorandom noise sequence as input to a filter.
- 5. Fixed point implementation of IIR filter.
- 6. FFT of Real-Time input signal.

### HARDWARE & SOFTWARE SUPPORT TOOLS:

- TMS320C54xx/TMS320C67xx DSP Development board.
- Code Composer Studio (CCS)
- Function Generator and Digital Storage Oscilloscope.
- Microphone and speaker.

#### **TOTAL:30 PERIODS**

#### **COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Summarize the architectural features of DSP Processors.
- CO2: Utilize the organization of TMS320C54xx DSP processors.
- CO3: Build solutions using TMS320C6x DSP Processor

| CO4  | O4: Apply the various DSP algorithms using DSP development |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
|------|------------------------------------------------------------|------|-------------------|----------|------|-------|------|------|-------|------|-------|-------|---------|---------------|------|-----|
| CO4: | platforr                                                   |      | var               | IOU      | SD   | 51° ( | arge | TILI | IIIIS | us   | mg i  | DSF   | uev     | eioj          | PIHE | enu |
| CO5  | Develo                                                     |      | he.               | ad       | ant  | ive   | fi1  | ters | . 21  | nd   | FFT   | ີ a1  | gori    | thm           | 10 1 | for |
| CO3. | frequen                                                    |      |                   |          |      | IVC   | 111  | CIS  | · a   | iid  | 111   | . aı  | gon     | <b>L</b> 1111 | 1.5  | .01 |
| CO6: | Analyz                                                     |      |                   |          |      | ions  | s of | DS   | P Pı  | roce | 2SSO1 | 'S.   |         |               |      |     |
|      | ВООК                                                       |      |                   | <u> </u> |      |       |      |      |       |      |       |       |         |               |      |     |
| 1    | Avtar S                                                    | Sing | h a               | nd       | S. 5 | Srin  | iva  | san  | , Di  | gita | al Si | gnal  | Pro     | ces           | sing | 5 – |
|      | Implem                                                     | ent  | atio              | ons      | usiı | ng I  | OSP  | Mi   | croj  | pro  | cesso | ors v | vith 1  | Exa           | mp   | les |
|      | from TMS320C54xx, Cengage Learning India Private           |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
|      | Limited, Delhi 2012.                                       |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
| 2    | Rulph Chassaing and Donald Reay, Digital Signal            |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
|      | Processing and Applications with the TMS320C6713 and       |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
|      | TMS320C6416 DSK, Second Edition, Wiley India (P) Ltd,      |      |                   |          |      |       |      |      |       |      |       |       | ta,     |               |      |     |
| DEEL | New Delhi, 2008.                                           |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
| 1    | B.Venkataramani and M.Bhaskar, "Digital Signal Processors  |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
| _    | - Architecture, Programming and Applications", Tata        |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
|      | McGraw - Hill Publishing Company Limited. New Delhi,       |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
| 1    | 2003.                                                      |      | 1                 | X        |      |       | A    |      | 1     |      |       |       |         |               |      |     |
| 2    | TMS320                                                     | )C5  | <mark>4</mark> 16 | /67      | 13   |       | DS   | SK   |       | us   | er    | n     | nanu    | ıal           |      | at  |
|      | https://                                                   |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
| 3    | The Sc                                                     |      |                   |          |      |       |      |      |       |      |       |       |         |               |      |     |
|      | Process                                                    |      |                   |          |      |       |      |      |       |      | ., Ca | lifoı | 'nia    | Tec           | hni  | cal |
|      | Publish                                                    |      |                   |          |      |       |      |      |       |      |       | 200   | LIDOS A |               | 1    |     |
| 4    | Digital                                                    | Sigi | nal .             | Pro      | cess | sıng  |      |      |       | m S  | teın, | , 200 | 5, Jo   | _             |      | •   |
| (    | COs                                                        | _    | _                 |          | _    | _     |      | Os   |       | _    | 10    | 44    | 40      |               | PSC  |     |
|      |                                                            | 1    | 2                 | 3        | 4    | 5     | 6    | 7    | 8     | 9    | 10    | 11    |         | 1             | 2    | 3   |
|      | 1                                                          | 2    | 1                 | -        | -    | 2     | 2    | -    | -     | -    | 1     | -     | 3       | 2             | 2    | -   |
|      | 2                                                          | 3    | 2                 | 1        | 1    | 2     | 2    | -    | -     | -    | 1     | -     | 2       | 3             | 2    | -   |
|      | 3                                                          | 3    | 2                 | 1        | 1    | 2     | 2    | -    | -     | -    | 1     | -     | 2       | 2             | 2    | -   |
|      | 4                                                          | 3    | 2                 | 1        | 1    | 2     | 2    | -    | -     | -    | 1     | -     | 2       | 2             | 2    | -   |
|      | 5                                                          | 3    | 2                 | 1        | 1    | 2     | 2    | -    | -     | -    | 1     | -     | 2       | 2             | 2    | -   |
|      | 6                                                          | 3    | 3                 | 2        | 2    | 2     | 2    | -    | -     | -    | 1     | -     | 2       | 2             | 2    | -   |
|      | verall                                                     | 3    | 2                 | 1        | 1    | 2     | 2    | _    | _     | _    | 1     | _     | 3       | 3             | 2    |     |
| Corr | elation                                                    | ,    | _                 | 1        | 1    | _     | _    |      |       |      | 1     |       |         |               | _    | _   |

| 23EC066                                                                                        | FUNDAMENTALS OF COMPUTER                       | F COMPUTER L T 1 |          |      |      |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|----------|------|------|--|--|--|--|--|--|--|
|                                                                                                | VISION                                         | 2                | 0        | 2    | 3    |  |  |  |  |  |  |  |
| COURSE                                                                                         | OBJECTIVES:                                    |                  |          |      |      |  |  |  |  |  |  |  |
| • T                                                                                            | o understand the fundamental concepts rel      | atec             | l to     | Ima  | age  |  |  |  |  |  |  |  |
|                                                                                                | ormation and processing.                       |                  |          |      |      |  |  |  |  |  |  |  |
|                                                                                                | o learn feature detection, matching and de     |                  |          |      | 1    |  |  |  |  |  |  |  |
| <ul> <li>To become familiar with feature-based alignment and<br/>motion estimation.</li> </ul> |                                                |                  |          |      |      |  |  |  |  |  |  |  |
| <ul> <li>To develop skills in 3D reconstruction.</li> </ul>                                    |                                                |                  |          |      |      |  |  |  |  |  |  |  |
| To understand image-based rendering and recognition                                            |                                                |                  |          |      |      |  |  |  |  |  |  |  |
| UNIT I                                                                                         | JNIT I IMAGE FORMATION AND PROCESSING 6        |                  |          |      |      |  |  |  |  |  |  |  |
| Computer Vision - Geometric primitives and transformations -                                   |                                                |                  |          |      |      |  |  |  |  |  |  |  |
| Photometr                                                                                      | ic image formation - The digital can           | nera             | -        | Poi  | int  |  |  |  |  |  |  |  |
| operators - Linear filtering - More neighborhood operators -                                   |                                                |                  |          |      |      |  |  |  |  |  |  |  |
| Fourier t                                                                                      | ransforms- Pyramids and wavelets -             | . (              | Geor     | net  | ric  |  |  |  |  |  |  |  |
| transforma                                                                                     | ations - Global optimization.                  | Y                |          |      | ř    |  |  |  |  |  |  |  |
| UNIT II                                                                                        | FEATURE DETECTION, MATCHING                    | ANI              | 5        |      | 6    |  |  |  |  |  |  |  |
|                                                                                                | SEGMENTATION                                   |                  |          |      | P.I. |  |  |  |  |  |  |  |
| Points and                                                                                     | patches - Edges - Lines - Segmentation - Ac    | tive             | cor      | itou | ırs  |  |  |  |  |  |  |  |
| - Split and                                                                                    | merge - Mean shift and mode finding - Nor      | rmal             | lize     | d cı | ıts  |  |  |  |  |  |  |  |
| _                                                                                              | ts and energy-based methods.                   | W 4.1            |          |      |      |  |  |  |  |  |  |  |
| UNIT III                                                                                       | FEATURE BASED ALIGNMENT AND                    |                  |          |      | 6    |  |  |  |  |  |  |  |
|                                                                                                | MOTION ESTIMATION                              |                  |          |      |      |  |  |  |  |  |  |  |
| 2D and 3D                                                                                      | feature-based alignment - Pose estimation      | 1 - C            | eor      | net  | ric  |  |  |  |  |  |  |  |
| intrinsic c                                                                                    | alibration - Triangulation- Two-frame st       | ruct             | ure      | fro  | m    |  |  |  |  |  |  |  |
| motion - Fa                                                                                    | actorization - Bundle adjustment - Constrai    | ned              | stru     | ıctu | ıre  |  |  |  |  |  |  |  |
|                                                                                                | n - Translational alignment - Parametric mo    |                  |          |      |      |  |  |  |  |  |  |  |
| based mot                                                                                      | ion - Optical flow - Layered motion.           |                  |          |      |      |  |  |  |  |  |  |  |
| UNIT IV                                                                                        | 3D RECONSTRUCTION                              |                  |          |      | 6    |  |  |  |  |  |  |  |
| Shape from                                                                                     | l<br>n X - Active range finding - Surface repr | esei             | <br>ntat | ion  | s -  |  |  |  |  |  |  |  |
| D 1                                                                                            | 1 Training manage contract repr                | 2201             |          |      | _    |  |  |  |  |  |  |  |

Point-based representations Volumetric representations - Model-

based reconstruction - Recovering texture maps and albedos.

# UNIT V IMAGE BASED RENDERING AND 6 RECOGNITION 6

View interpolation Layered depth images - Light fields and Lumi graphs - Environment mattes -Video-based rendering-Object detection - Face recognition - Instance recognition - Category recognition - Context and scene understanding- Recognition databases and test sets

**TOTAL: 30 PERIODS** 

#### PRACTICAL EXERCISES:

#### LABORATORY EXPERIMENTS:

#### Software needed:

- 1. OpenCV computer vision Library for OpenCV in Python / PyCharm or C++ / Visual Studio or equivalent.
- 2. OpenCV Installation and working with Python.
- 3. Basic Image Processing loading images, Cropping, Resizing, Thresholding, Contour analysis, Bolb detection.
- 4. Image Annotation Drawing lines, text circle, rectangle, ellipse on images.
- 5. Image Enhancement Understanding Color spaces, color space conversion, Histogram equialization, Convolution, Image smoothing, Gradients, Edge Detection.
- 6. Image Features and Image Alignment Image transforms Fourier, Hough, Extract ORB Image features, Feature matching, cloning, Feature matching based image alignment.
  - Image segmentation using Graphcut / Grabcut.
- 7. Pose Estimation.
- 8. 3D Reconstruction Creating Depth map from stereo images.
- 9. Object Detection and Tracking using Kalman Filter, Camshift.

|      | TOTAL:30 PERIODS                                                         |
|------|--------------------------------------------------------------------------|
| COU  | RSE OUTCOMES:                                                            |
|      | After completion of the course, the students will be able to:            |
| CO1: | Summarize the concepts of Image Transforms, Operations                   |
|      | and Global Optimization.                                                 |
| CO2: | Make use of Image feature detection, Matching and Image                  |
|      | Segmentation techniques.                                                 |
| CO3: | Utilize feature-based alignment methods for 2D and 3D                    |
|      | Images.                                                                  |
| CO4: | Apply the different motion estimation techniques to Image                |
|      | Processing.                                                              |
| CO5: | Develop various 3D reconstruction techniques for Image                   |
|      | Processing                                                               |
| CO6: | Apply various Image based rendering techniques for facial                |
|      | recognition, object detection, category recognition, context             |
| 3    | and scene understanding, test database.                                  |
| TEXT | BOOKS:                                                                   |
| 1    | Richard Szeliski, "Computer Vision: Algorithms and                       |
|      | Applications", Springer- Texts in Computer Science, Second Edition, 2022 |
|      | Edition, 2022.                                                           |
| 2    | Computer Vision: A Modern Approach, D. A. Forsyth, J.                    |
|      | Ponce, Pearson Education, Second Edition, 2015.                          |
|      | RENCES:                                                                  |
| 1    | Richard Hartley and Andrew Zisserman, Multiple View                      |
|      | Geometry in Computer Vision, Second Edition, Cambridge                   |
| 2    | Christopher M. Bishop; Pattern Recognition and Machine                   |
|      | Learning, Springer, 2006.                                                |
| 3    | E. R. Davies, Computer and Machine Vision, Fourth Edition,               |
| 4    | Academic Press, 2012.                                                    |
| 4    | Joseph Howse, Joe Minichino, Learning OpenCV 4                           |
|      | Computer Vision with Python 3, Packt Publications, 2020.                 |

| Cos                    |   | POs |   |   |   |   |   |   |   |    |    |    |   |   | PSOs |  |  |
|------------------------|---|-----|---|---|---|---|---|---|---|----|----|----|---|---|------|--|--|
| Cos                    | 1 | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3    |  |  |
| 1                      | 2 | 1   | - | - | 1 | - | - | 1 | 2 | 1  | 3  | 2  | 2 | 1 | 1    |  |  |
| 2                      | 3 | 2   | 1 | 1 | 3 | - | 1 | 2 | 2 | 1  | 2  | 2  | 3 | 3 | 2    |  |  |
| 3                      | 3 | 2   | 1 | 1 | 3 | - | - | 2 | 1 | 1  | 2  | 2  | 3 | 3 | 2    |  |  |
| 4                      | 3 | 2   | 1 | 1 | 3 | - | - | 3 | 2 | 1  | 2  | 3  | 2 | 3 | 3    |  |  |
| 5                      | 3 | 2   | 1 | 1 | 2 | 2 | - | 3 | 3 | 1  | 2  | 3  | 3 | 2 | 3    |  |  |
| 6                      | 3 | 2   | 1 | 1 | 3 | - | - | 3 | 2 | 1  | 2  | 3  | 2 | 3 | 3    |  |  |
| Overall<br>Correlation | 3 | 2   | 1 | 1 | 3 | 1 | 1 | 2 | 2 | 1  | 3  | 2  | 3 | 3 | 2    |  |  |

