

REGULATIONS - 2023

CURRICULUM AND
SYLLABI
(2023-2024)

MASTER OF COMPUTER APPLICATION (MCA)

KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

REGULATIONS 2023

MCA - MASTER OF COMPUTER APPLICATIONS (2 YEARS)

CHOICE BASED CREDIT SYSTEM CURRICULUM FOR SEMESTERS I TO VIII

SEMESTER-I

S1.	Course					iods	Total	
No.	Code	Course Title	Category				Contact	Credits
				L	T	P	Periods	
	T		EORY					1
1	MA4151	Applied Probability and Statistics for Computer Science Engineers	FC	3	1	0	4	4
2	RM4151	Research Methodology and IPR	RMC	2	0	0	2	2
3	23MC4101	Advanced Data Structures and Algorithms	PCC	3	0	0	3	3
4	23MC4102	Object Oriented Programming	PCC	3	0	0	3 DNOMOUS	3
5	23MC4103	Software Engineering	PCC	3	0	0	3	3
6	23MC4104	Advanced Database Technology	PCC	3	0	2	5	4
7		Audit Course - I*	AC	2	0	0	2	0
		PRAC	TICALS					
8	23MC4111	Advanced Data Structures and Algorithms Laboratory	PCC	0	0	4	4	2
9	23MC4112	Object Oriented Programming Laboratory	PCC	0	0	4	4	2
10	23MC4113	Communication Skills Enhancement-I	EEC	0	0	2	2	1
	dit course is	TOTAL		19	1	12	32	24

^{*}Audit course is optional

SEMESTER -II

S1. No.	Course code	Course Title	Category		erio Per Vec			Credits
				L	T	P	Periods	
		THE	ORY					
1	23MC4202	Advanced Computer Networks	PCC	3	0	0	3	3
2	23MC4203	Cloud Computing Technologies	PCC	3	0	0	3	3
3	23MC4204	Mobile Application Development	PCC	3	0	2	5	4
4	23MC4205	Advanced Operating Systems	PCC	3	0	0	3	3
5	STROWN.	Professional Elective I	PEC	3	0	0	3	3
6	- N	Audit Course – II*	AC	2	0	0	2	0
7	23MC4202	Advanced Computer Networks	PCC	3	0	0	3 NOLO	3
		PRACT	ICALS	NIV	ER5	ITY	AUTONO)	40U5
8	23MC4211	Mobile Application Development Laboratory	PCC	0	0	4	4	2
9	23MC4212	Full Stack Web Development Laboratory	PCC	0	0	4	4	2
10	23MC4213	Communication Skills Enhancement– II	EEC	0	0	2	2	1
	11.	TOTAL		20	0	12	32	24

^{*}Audit course is optional

SEMESTER-III

Sl. No.	Course code	Course Title	Category	Periods Per Week L T P			Per Week		Per Week		Per Week		Total Contact Periods	Credits
		THEO	PRY			_								
1 23MC4301 AI & Machine Learning PCC 3 0 0 3														
2	23MC4302	Internet of Things	PCC	3	0	0	3	3						
3		Professional Elective II	PEC	3	0	0	3	3						
4		Professional Elective III	PEC	3	0	0	3	3						
5	WIED	Cryptography and Network Security	PEC	3	0	2	5	4						
6	100.00	Open Elective	OEC	3	0	0	3	3						
i i	N. C.	PRACTI	CALS											
7	23MC4311	AI & Machine Learning Laboratory	PCC	0	0	4	4	2						
8	23MC4312	Internet of Things Laboratory	PCC	0	0	4	LO ⁴ _{GY}	2						
	QQ10	TOTAL	ANNA UNIVE	18	0	10	NO 28	23						

^{*}Audit course is optional

SEMESTER-IV

S1. No.	Course code	Course Title	Periods Total Category Per Week Contact				Credits			
NO.	couc			L	L T		Periods			
	PRACTICALS									
1	23MC4411	Project Work	EEC	0	0	24	24	12		
	TOTAL					24	24	12		

TOTAL NO. OF CREDITS: 83

PROFESSIONAL ELECTIVE COURSES

SEMESTER II: ELECTIVE - I

Sl. No.	Course Code	Course Title	Category	Per		Week		k	Total Contact periods	Credits
1	23MC4001	Software Project Management	PEC	3	3	0	0	3		
2	23MC4002	Professional Ethics in IT	PEC	3	3	0	0	3		
3	23MC4003	E - Learning	PEC	3	3	0	0	3		
4	23MC4004	Compiler Design	PEC	3	3	0	0	3		
5	23MC4005	Information Retrieval Techniques	PEC	3	3	0	0	3		
6	23MC4006	Soft Computing Techniques	PEC	3	3	0	0	3		
7	23MC4007	Operations Research	PEC	3	3	0	0	3		
8	23MC4008	Business Data Analytics	PEC	3	3	0	INOLO	G 3		

SEMESTER III: ELECTIVE - II

S1. No.	Course Code	Course Title	Category	Per		Week		k	Total Contact periods	Credits
1	23MC4009	DevOps and Microservices	PEC	3	3	0	0	3		
2	23MC4010	Mobile Computing	PEC	3	3	0	0	3		
3	23MC4011	Digital Image Processing	PEC	3	3	0	0	3		
4	23MC4012	Social Network Analytics	PEC	3	3	0	0	3		
5	23MC4013	Cryptocurrency and Blockchain Technologies	PEC	3	3	0	0	3		
6	23MC4014	Bio Inspired learning	PEC	3	3	0	0	3		
7	23MC4015	Digital Marketing	PEC	3	3	0	0	3		

SEMESTER III: ELECTIVE - III

S1. No.	Course Code	Course Title	Category	W	rioc Per Veel		Total Contact periods	Credits
				L	T	P	perious	
1	23MC4016	Software Architecture	PEC	3	3	0	0	3
2	23MC4017	Digital Forensics	PEC	3	3	0	0	3
3	23MC4018	Natural Language Processing	PEC	3	3	0	0	3
4	23MC4019	Data Visualization Techniques	PEC	3	3	0	0	3
5	23MC4020	Data Mining and Data Warehousing Techniques	PEC	3	3	0	0	3
6	23MC4021	Discrete Mathematics	PEC	3	3	0	0	3
7	23MC4022	Organizational Behavior	PEC	3	3	0	0	3
SEMESTER III: ELECTIVE - IV								

SEMESTER III: ELECTIVE - IV

S1. No.	Course Code	Course Title	Category	Periods Per Week			Total Contact periods	Credits
				L	T	P	perious	
1	23MC4023	Advanced Python Programming	PEC	5	3	0	2	4
2	23MC4024	Computer Architecture	PEC	5	3	0	2	4
3	23MC4025	Big Data Analytics	PEC	5	3	0	2	4
4	23MC4026	Software Quality and Testing	PEC	5	3	0	2	4
5	23MC4027	Advanced Java Programming	PEC	5	3	0	2	4
6	23MC4028	UNIX Internals	PEC	5	3	0	2	4

PROFESSIONAL ELECTIVE COURSES [PEC]

S1. No.	Course Code	Course Title	Category		rio Per Vee		Total Contact periods	Credits
1		Software Project Management	PEC	5	3	0	2	4
2		Professional Ethics in IT	PEC	5	3	0	2	4
3		E – Learning	PEC	5	3	0	2	4
4		Discrete Mathematics	PEC	5	3	0	2	4
5		Information Retrieval Techniques	PEC	5	3	0	2	4
6		Soft Computing Techniques	PEC	5	3	0	2	4
7	STIPO!	Operations Research	PEC	5	3	0	2	4
8	T.	Business Data Analytics	PEC	5	3	0	2	4
9	18	DevOps and Microservices	PEC	5	3	0	2	4
10	GIN	Advances in Networking	PEC	5	3	0	2 NO	4
11		Digital Image Processing	PEC	5	3	0	2	4
12		Social Network Analytics	PEC	5	3	0	2	4
13		Cryptocurrency and Blockchain Technologies	PEC	5	3	0	2	4
14		Bio Inspired learning	PEC	5	3	0	2	4
15		Digital Marketing	PEC	5	3	0	2	4
16		Software Architecture	PEC	5	3	0	2	4
17		Digital Forensics	PEC	5	3	0	2	4

18		Wireless Networking	PEC	5	3	0	2	4
19		Data Visualization Techniques	PEC	5	3	0	2	4
20		Data Mining and Data Warehousing Techniques	PEC	5	3	0	2	4
21		Agile Methodologies	PEC	5	3	0	2	4
22		Organizational Behavior	PEC	5	3	0	2	4
23		Web Design	PEC	5	3	0	2	4
24		C# and .NET	PEC	5	3	0	2	4
25		Big Data Analytics	PEC	5	3	0	2	4
26	(PO)	Software Quality and Testing	PEC	5	3	0	2	4
27	1	Advanced Java Programming	PEC	5	3	0	2	4
28		Network Programming and Security	PEC	5	3	0	2	4

AUDIT COURSES (AC)
Registration for any of these courses is optional to students

S1. No.	Course Code	Course Title		eriod Wee		Credits
NO.	Code		L	T	P	
1	23AX4091	English for Research Paper Writing	2	0	0	0
2	23AX4092	Disaster Management	2	0	0	0
3	23AX4093	Constitution of India	2	0	0	0

LIST OF OPEN ELECTIVES FOR PG PROGRAMMES

S1.	Course		Po	eriod	.s	
No.	Code	Course Title	Pe	r We		Credits
140.	Code		L	T	P	
1.	23OE431	Integrated Water Resources Management	3	0	0	3
2.	23OE432	Water, Sanitation and Health	3	0	0	3
3.	23OE433	Principles of Sustainable Development	3	0	0	3
4.	23OE434	Environmental Impact Assessment	3	0	0	3
5.	23OME431	Vibration and Noise Control Strategies	3	0	0	3
6.	23OME432	Energy Conservation and Management in Domestic Sectors	3	0	0	3
7.	23OME433	Additive Manufacturing	3	0	0	3
8.	23OME434	Electric Vehicle Technology	3	0	0	3
9.	23OME435	New Product Development	3	0	0	3
10.	23OBA431	Sustainable Management	3/5	0	0	чомоз 5
11.	23OBA432	Micro and Small Business Management	3	0	0	3
12.	23OBA433	Intellectual Property Rights	3	0	0	3
13.	23OBA434	Ethical Management	3	0	0	3
14.	23ET4251	IoT for Smart Systems	3	0	0	3
15.	23ET4072	Machine Learning and Deep Learning	3	0	0	3
16.	23PX4012	Renewable Energy Technology	3	0	0	3
17.	23PS4093	Smart Grid	3	0	0	3

18.	23DS4015	Big Data Analytics	3	0	0	3
19.	23NC4201	Internet of Things and Cloud	3	0	0	3
20.	23MX4073	Medical Robotics	3	0	0	3
21.	23VE4202	Embedded Automation	3	0	0	3
22.	23CX4016	Environmental Sustainability	3	0	0	3
25.	23BY4016	IPR, Biosafety and Entrepreneurship	3	0	0	3

SUMMARY

1	NAME	OF TH	E PROG	RAMM	E: M.C.	A
Sl.No.	SUBJECT AREA		EDITS I	CREDITS		
	V. V.	Ι	II	III	IV	TOTAL
1.	FC	04	00	00	00	04
2.	PCC	17	20	10	- 00	49
3.	PEC	00	03	10	00	13
4.	RMC	02	00	00	00	02
5.	OEC	00	00	03	00	03
6.	EEC	01	01	00	12	12
7.	7. Non Credit/Audit Course		00	00	00	00
TC	OTAL CREDIT	24	24	23	12	83

MCA - MASTER OF COMPUTER APPLICATIONS (2 YEARS) CHOICE BASED CREDIT SYSTEM SYLLABUS

SEMESTER-I

23MA4151	APPLIED PROBABILITY AND	L	T	P	C
	STATISTICS FOR COMPUTER	3	1	0	4
	SCIENCE ENGINEERS				

COURSE OBJECTIVES:

- To encourage students to develop a working knowledge of the central ideas of Linear Algebra.
- To enable students to understand the concepts of Probability and Random Variables.
- To understand the basic probability concepts with respect to two dimensional random variables along with the relationship between the random variables and the significance of the central limit theorem.
- To apply the small / large sample tests through Tests of hypothesis.
- To enable the students to use the concepts of multivariate normal distribution and principal components analysis.

UNIT I LINEAR ALGEBRA 12

Vector spaces – norms – Inner Products – Eigenvalues using QR transformations – QR factorization – generalized eigenvectors – Canonical forms – singular value decomposition and applications – pseudo inverse – least square approximations.

UNIT II PROBABILITY AND RANDOM VARIABLES 12

Probability – Axioms of probability – Conditional probability – Bayes theorem – Random variables – Probability function – Moments – Moment generating functions and their properties – Binomial, Poisson , Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a random variable.

UNIT	T III TWO DIMENSIONAL RANDOM VARIABLES	12
Joint	distributions - Marginal and conditional distributions - Func	tions
of tw	vo dimensional random variables - Regression curve - Correlat	ion.
UNIT	TIV TESTING OF HYPOTHESIS	12
Sam	pling distributions - Type I and Type II errors - Small and I	arge
-	ples - Tests based on Normal, t, Chi square and F distribution	
	ng of mean, variance and proportions – Tests for independen	ce of
	outes and goodness of fit.	
UNIT	T V MULTIVARIATE ANALYSIS	12
Ranc	dom vectors and matrices – Mean vectors and covariance matri	ces -
	ivariate normal density and its properties - Principal compone	
	ulation principal components - Principal components	from
stand	dardized variables.	
	TOTAL: 60 PERIO	DDS
COU	RSE OUTCOMES:	
į.	After completion of the course, the students will be able	to:
CO1:	Apply the concepts of Linear Algebra to solve practical	
1	problems.	
CO2:	Use the ideas of probability and random variables in solv	ing
	engineering problems.	
CO3:	Be familiar with some of the commonly encountered two)
	dimension random variables and be equipped for a poss	
	extension to multivariate analysis.	
CO4:	Use statistical tests in testing hypothesis on data.	
CO5:	Develop critical thinking based on empirical eviden	ce
	and the scientific approach to knowledge developmen	nt.
REFE	RENCES:	
1	Dallas E Johnson, "Applied multivariate methods for dat	ta
	Analysis", Thomson and Duxbury press, Singapore, 1998	3.
2	Richard A. Johnson and Dean W. Wichern, "Applied	
	multivariate statistical Analysis", Pearson Education, Fif	th
1	Edition, 6th Edition, New Delhi, 2013.	

3	Bronson, R.,"Matrix Operation"Schaum's outline series,
	Tata McGraw Hill, New York, 2011.

- 4 Oliver C. Ibe, "Fundamentals of Applied probability and Random Processes", Academic Press, Boston, 2014.
- Johnson R. A. and Gupta C.B., "Miller and Freund's Probability and Statistics for Engineers", Pearson India Education, Asia, 9th Edition, New Delhi, 2017.

COs						I	POs						PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	2	2	1	2									
2	2	1	2	2	1	1									
3	2	-	2	1	1	2									
4	3	1	2	2	1	2									
5	3	-	2	3	2	3	1				1				
Overall Correlation	3	0.2	2	2	1.2	2.4									

23RM4151	L	RESEARCH METHODOLOGY	L	T	P	C
		AND INTELLECTUAL PROPERTIES	2	0	0	2
		RIGHTS				
COURSE	OBJ	ECTIVES:				
•						
UNIT I	RE	SEARCH DESIGN				6
Overview	of	research process and design, Use of Se	econ	dary	7 aı	nd
explorator	y da	ata to answer the research question, Qualita	ative	res	earc	:h,
Observation	on st	rudies, Experiments and Surveys.				
UNIT II	DA	ATA COLLECTION AND SOURCES				6
Measurem	nents	s, Measurement Scales, Questionnaires and	l Ins	trur	nen	ts,
		methods. Data - Preparing, Exploring, ex				
displaying		1 % 1 %			O	
UNIT III	DA	ATA ANALYSIS AND REPORTING	4			6
	OM	SHEW.			7	
Overview	of N	<mark>Iulti</mark> variate analysis, Hypotheses testing an	d M	east	ıres	of
Associatio	n. Pi	<mark>resen</mark> ting Insights and findings using writte	en re	por	ts aı	nd
oral presen	ntati	on.	1		To be	
UNIT IV	IN	TELLECTUAL PROPERTY RIGHTS				6
T . 11	Was	COLLEGE OF TECH	VO	LO	G)	
		operty – The concept of IPR, Evolution and				
_		IPR, IPR development process, Trade s				-
		& Biodiversity, Role of WIPO and V				
		s, Right of Property, Common rules of		-		
V -		eatures of IPR Agreement, Trademark,	Fun	iCt10	ns	10
		PR maintenance.				
UNIT V	PA	TENTS				6
Patents - o	objec	ctives and benefits of patent, Concept, feat	ıres	of p	ate	nt,
Inventive	step	, Specification, Types of patent application	n, p	roc	ess	E-
filling, Exa	amir	nation of patent, Grant of patent, Revocat	ion,	Equ	iital	ole
Assignme	nts,	Licences, Licensing of related patents, I	oater	nt a	gen	ts,
Registratio	on of	f patent agents.				
		TOTAL: 3	30 P	ERI	OI	S

COU	RSE OU	TC	CON	1ES	:											
	After co	mp	leti	on o	of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	e to):
CO1:	Formula	Formulate and Design research problem														
CO2:	Understand and Comprehend the Data Collection Methods															
CO3:	Perform Data analysis and acquire Insights															
CO4:	Understand IPR and follow research ethics															
CO5:	Unders	Understand and Practice Drafting and filing a Patent in														
	research and development															
REFE	ERENCES:															
1	Cooper Donald R, Schindler Pamela S and Sharma JK,															
	"Busine	"Business Research Methods", Tata McGraw Hill														
	Educati	Education, 11e (2012).														
2	Catherine J. Holland, "Intellectual property: Patents,															
	Tradem	Trademarks, Copyrights, Trade Secrets", Entrepreneur														
	Press, 2007.															
3	David I	Iur	nt, L	ong	, Ng	guy	en,	Ma	tthe	w I	Rodg	gers,	"Pa	iten	t	
	searchin	ng:	tool	ls &	tec	hni	que	s",	Wil	ey,	2007	7.				
4	The Ins	titu	te o	f Co	omp	an	y Se	ecre	tari	es c	f In	dia, S	Statı	ıtor	У	
	body ur	nde	r ar	ı Ac	t of	pai	rliaı	mer	nt, "	Pro	fess	iona	l Pro	gra	ımn	ne
	Intellec	tua	l Pr	ope	rty]	Rig	hts,	La	w aı	nd j	prac	tice"	, Sej	oter	nbe	r
	2013.															
(COs						F	POs						I	PSC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	-	1	-	1									
	2 3 2 - 2 - 1															
	3 3 2 2 2 - 1															
	4 3 2 - 1															
	5 3 3 - 1															
	verall	3	2.4	0.4	1.4	-	0.6									
(Orr	elation		1	l			1 1			l		l	1			, ,

23MC4101	ADVANCED DATA STRUCTURES	L	T	P	C
	AND ALGORITHMS	3	0	0	3

COURSE OBJECTIVES:

- To understand the usage of algorithms in computing
- To learn and use hierarchical data structures and its operations
- To learn the usage of graphs and its applications
- To select and design data structures and algorithms that is appropriate for problems
- To study about NP Completeness of problems.

UNIT I ROLE OF ALGORITHMS IN COMPUTING & 9 COMPLEXITY ANALYSIS

Algorithms - Algorithms as a Technology -Time and Space complexity of algorithms- Asymptotic analysis-Average and worst-case analysis-Asymptotic notation-Importance of efficient algorithms-

Program performance measurement - Recurrences: The Substitution Method - The Recursion-Tree Method- Data structures and algorithms.

UNIT II HIERARCHICAL DATA STRUCTURES

Binary Search Trees: Basics – Querying a Binary search tree – Insertion and Deletion- Red Black trees: Properties of Red-Black Trees – Rotations – Insertion – Deletion -B-Trees: Definition of B - trees – Basic operations on B-Trees – Deleting a key from a B-Tree- Heap – Heap Implementation – Disjoint Sets – Fibonacci Heaps: structure – Mergeable-heap operations- Decreasing a key and deleting a node-Bounding the maximum degree.

UNIT III GRAPHS 9

Elementary Graph Algorithms: Representations of Graphs – Breadth-First Search – Depth-First Search – Topological Sort – Strongly Connected Components- Minimum Spanning Trees: Growing a Minimum Spanning Tree – Kruskal and Prim- Single-Source Shortest Paths: The Bellman-Ford algorithm – Single-Source Shortest paths in Directed Acyclic Graphs – Dijkstra's Algorithm; Dynamic Programming – All-Pairs Shortest Paths: Shortest Paths and Matrix Multiplication – The Floyd-Warshall Algorithm

UNI	T IV ALGORITHM DESIGN TECHNIQUES	9
Dyn	amic Programming: Matrix-Chain Multiplication - Elements	of
Dyn	amic Programming - Longest Common Subsequence- Gree	edy
Algo	orithms: - Elements of the Greedy Strategy- An Activity-Select	ion
	olem - Huffman Coding.	
UNI	T V NP COMPLETE AND NP HARD	9
NP-0	Completeness: Polynomial Time – Polynomial-Time Verificatio	n –
NP-	Completeness and Reducibility - NP-Completeness Proofs - N	NP-
Com	plete Problems.	
	TOTAL: 45 PERIO	DS
SUG	GESTED ACTIVITIES:	
1.	Write an algorithm for Towers of Hanoi problem using	
	recursion and analyze the complexity (No of disc-4)	
2.	Write any one real time application of hierarchical data	>
	structure	_
3.	Write a program to implement Make_Set, Find_Set and	
	Union functions for Disjoint Set Data Structure for a given	n
	undirected graph G(V,E) using the linked list representat	ion
	with simple implementation of Union operation	Y
4.	Find the minimum cost to reach last cell of the matrix from	m
	its first cell	
5.	Discuss about any NP completeness problem	
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able t	o:
CO1:	Design data structures and algorithms to solve computin	g
	problems.	0
CO2:	Choose and implement efficient data structures and appl	y
	them to solve problems.	
CO3:	Design algorithms using graph structure and various	
	string-matching algorithms to solve real-life problems.	
CO4:	Design one's own algorithm for an unknown problem.	
	Apply suitable design strategy for problem solving	
	17 F 17 Summer design strategy for problem solving	

REF	ERENCE	S:														
1	S.Sridha	ar,"	De	sigr	n ar	nd A	nal	ysis	s of	Alg	gorit	hms	", O:	xfo	rd	
	Univers	University Press, 1st Edition, 2014. Adam Drozdex, "Data Structures and Algorithms in C++",														
2	Adam I)ro	zde	x, "	Dat	ta St	ruc	ture	es a	nd	Algo	rith	ms i	n C	++'	,
	Cengage Learning, 4th Edition, 2013.															
3	T.H. Co	rm	en,	C.E	.Lei	isers	son,	, R.I	L. R	ive	st an	d C.	.Stei:	n,		
	"Introduction to Algorithms", Prentice Hall of India, 3rd															
	Edition	Edition, 2012.														
4	Mark Allen Weiss, "Data Structures and Algorithms in															
	C++",]	C++", Pearson Education, 3rd Edition, 2009.														
5	E. Horowitz, S. Sahni and S. Rajasekaran, "Fundamentals of															
	Computer Algorithms", University Press, 2nd Edition,															
	2008.															
6	Alfred '	V. A	\ho	, Jol	nn I	Ξ. Η	opc	rof	t, Je	ffre	y D.	Ullı	man,	, "I)ata	_
	Structu	res	and	Al	gor	ithn	ns",	Pe	arso	n I	Educ	atio	n, Re	pri	nt	
)	2006.		1	10												
	CO.	^		VA			I	POs	. 1				1	I	PSC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	3	2	1	2	EZ		OΕ	тс	cu	NIO	10	C)	
	2	2	1	3	2	2	2	ED TO	D A N	IAU	NIVER	SITY	AUTO	INO	ACOLI	
	3	2	1	3	2	2	2									
	4	3	1	3	2	2	2									
	5	3	1	3	2	2	2									
О	verall	3	1	3	2	1.8	2									
Cor	relation	3	1	3	_	1.0	_									

23MC4101	OBJECT ORIENTED	L	T	P	C
	PROGRAMMING	3	0	0	3

COURSE OBJECTIVES:

- To understand object oriented principles like abstraction, encapsulation, inheritance, and polymorphism and apply them in solving problems.
- To understand the principles of inheritance and polymorphism and demonstrate how they relate to the design of abstract classes.
- To understand the implementation of packages and interfaces.
- To understand the concepts of exception handling, multithreading and collection classes.
- To understand how to connect to the database using JDBC.
- To understand the design of Graphical User Interface using applets and swing controls.

UNIT I INTRODUCTION TO JAVA PROGRAMMING

Java Programming - Java Buzz words, Data types, variables, Constants, Scope and Lifetime of variables, Operators, Type conversion and casting, Enumerated types, Control flow- block scope, conditional statements, loops, break and continue statements, arrays, simple java standalone programs, class, object, and its methods constructors, methods, static fields and methods, access control, this reference, overloading constructors, recursion, exploring string class, garbage collection.

UNIT II INHERITANCE AND INTERFACE 9

Inheritance - Inheritance types, super keyword, preventing inheritance: final classes and methods. Polymorphism - method overloading and method overriding, abstract classes and methods. Interfaces- Interfaces Vs Abstract classes, defining an interface, implement interfaces, accessing implementations through interface references, extending interface, inner class. Packages- Defining, creating and accessing a package, importing packages.

UNIT III EXCEPTION HANDLING AND MULTITHREADING

9

9

Exception handling-Benefits of exception handling, the classification of exceptions - exception hierarchy, checked exceptions and unchecked exceptions, usage of try, catch, throw, throws and finally, creating own exception subclasses. Multithreading - Differences between multiple processes and multiple threads, thread life cycle, creating threads, interrupting threads, thread priorities, synchronizing threads, inter-thread communication, producer consumer problem.

UNIT IV | COLLECTION FRAMEWORK, I/O, GENERIC | PROGRAMMING

Collection Framework in Java – Introduction to java collections, Overview of java collection framework, commonly used collection classes- Array List, Vector, Hash table, Stack, Lambda Expressions. Files- Streams- Byte streams, Character streams, Text input/output, Binary input/output, File management using File class. Generic Programming – Generic classes – generic methods.

UNIT V EVENT HANDLING PROGRAMMING 9

Hierarchy for Swing components, Overview of some Swing components – Jbutton, JLabel, JTextField, JTextArea, simple Swing applications, Layout management – Layout manager types – border, grid and flow. Event Handling- Events, Event sources, Event classes, Event Listeners, Delegation event model, Examples: Handling Mouse and Key events, Adapter classes.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Explain and apply the fundamentals of Java programming, including data types, control structures, arrays, classes, and methods.

	Demonstrate object-oriented programming concepts such																		
CO2:																			
	as inher			-	•	-		m, i	nte	rfac	es, a	ınd p	oack	age	s to)			
	design 1																		
CO3:	Implem	ent	exc	ept	ion	har	ndli	ng a	and	mι	ıltitl	read	ding	to	buil	ld			
	efficient	t an	d e	rror	-res	silie	nt J	ava	pro	ogra	ams.								
CO4:	Utilize]	Java	a Co	ollec	ctio	n Fr	am	ewo	ork,	file	I/C) me	char	nisn	ns,				
	and ger	eri	cs to	o ma	ana	ge a	ınd	pro	oces	s da	ata e	ffect	ivel	y.					
CO5:	Design	gra	raphical user interfaces and handle events using																
	Java Sw	ring	to	crea	ite i	nte	ract	ive	des	kto	p ap	plic	atior	ns.					
REFI	ERENCE	S:																	
1	Herbert	erbert Schildt, "Java: The Complete Reference", 11th																	
	Edition	Edition, McGraw Hill Education, New Delhi, 2019.																	
2	Herbert	bert Schildt, "Introducing JavaFX 8 Programming", 1st																	
	Edition,	tion, McGraw Hill Education, New Delhi, 2015.																	
3	E. Balagurusamy, "Programming with Java", 7th Edition,																		
N.	Mc Grow Hill, 2023.																		
4	Paul De	eitel	, Ha	arve	еу Г	Peite	el, "	Jav	a SI	E 8 :	for p	rogi	ramı	ner	s",				
3	3rd Edi	tior	ı, Pe	ears	on,	201	5.	_											
5	Cay S. I	Ior	stm	ann	, "(Core	. Ja	va I	un	dan	nent	als",	Vol	um	e 1,	12			
	11th Ed	itio	n, F	ren	tice	На	11, 2	2018	3. AN		NIVER					5			
6	R . Nag																		
	Dreamt										Ü								
	COs						I	Os						I	PSC)s			
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	1	3	2	1	-	-	-	-	1	-	-	-	1	2	2	2			
	2	3	2	1	-	-	-	-	1	1	1	-	1	3	3	2			
	3	3	2	1	-	-	-	-	1	1	1	-	1	2 2 3					
	4	3	2	1	1	1	-	-	1	1	1	-	1	3 3 2					
	5	3	2	1	1	1	-	-	1	1	1	-	1	2	3	3			
	verall	3	2	1	1	1			2		1		2	3	3	3			
Corr	Correlation 3 2 1 1 1 - - 2 1 - 2 3 3 3									9									

23MC4103	SOFTWARE ENGINEERING	L	T	P	C
		3	0	0	3
COURSE OBJ	ECTIVES:				
To unde	erstand Software Engineering Process a	nd I	Mod	dels	
	orm software requirements analysis.				
	n knowledge of the System Analysis	and	De	sig	n
-	ts using Design and Data flow model.				
	0	nain	ten	anc	e
approac					
	k on software metrics process.				_
UNIT I SO	FTWARE PROCESS				9
Introduction-	-The software process-software	Eng	gine	erii	ng
	eneric process model-prescriptive pro	_	_		_
_	rocess modelsUnified process-Person				
	dels -process technology - product				
- O LA	Process-Extreme Programming (XP)-		_	-	
Process mode		Oth		6	
	DERSTANDING REQUIREMENTS	-			9
	DEROTAL DITTO REQUIREMENTS	-			,
Requirement	s Engineering -Establishing the Gro	oun	dwo	ork	;; ;;-
Eliciting Req	uirements -Developing Use Cases - 1	Buil	din	g tl	he
Requirement	s Model -Negotiating Requirements	- V	alid	latiı	ng
Requirement	s-Requirements Analysis - Sco	enar	io-l	Base	ed
-	JML Models That Supplement the Use	e Ca	ise	-Da	ta
O	ncepts- Class-Based Modeling.				
_	SIGN CONCEPTS AND PRINCIPLES	S			9
Design withi	n the Context of Software Engineering	- Th	e D	esi	зn
Process - De	sign -The Design Model - Software A	rchi	tect	ture	, -
Architectural	Genres - Architectural Styles -Architec	ctura	al D	esię	зn
-Assessing -	- Alternative Architectural Designs -	Arch	nite	ctur	al
Mapping Usi	ng Data Flow.				
UNIT IV TE	STING				9

A Strategic Approach to Software Testing - Strategic Issues -Test

Strategies for Conventional Software - Test Strategies for Object-Oriented Software - Test Strategies for WebApps - Validation Testing -System - The Art of Debugging- White Box Testing-Basis Path Testing-Control Structure Testing-Black Box Testing-Model Based Testing-Object Oriented Testing Strategies-Object Oriented Testing Methods-Testing Concepts for WebApps-The Testing Process.

UNIT V | SOFTWARE METRICS

9

The Management Spectrum - The People - The Product - The Process - The WHH Principle - Metrics in the Process and Project Domains - Software Measurement - Metrics for Software Quality - Integrating Metrics within the Software - Metrics for Small Organizations - Establishing a Software Metrics Program - Decomposition - Empirical Estimation Models - Specialized Estimation Techniques - The Make/Buy Decision.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Compare various Software Development Lifecycle Models
- CO2: Evaluate project management approaches as well as cost and schedule estimation strategies.
- CO3: Develop formal analysis on specifications.
- CO4: Make use of UML diagrams for analysis and design.
- CO5: Develop architectural styles and design patterns, and test the system

REFERENCES:

- Roger S. Pressman, "Software Engineering: A Practitioners Approach", Sixth Edition, Mc Graw-Hill International Edition, 2017.
- 2 Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Fundamentals of Software Engineering, 2nd edition, PHI Learning Pvt. Ltd., 2010.

3	Bernd E	Brue	egge	e an	d A	ller	ιH.	Dι	ıtoit	t, "C	Objec	t-Oı	rient	ed		
	Softwar	e E	ngi	nee	ring	g: U	sing	g Ul	ML,	Pa	tterr	ıs an	d Ja	va"	,	
	Third E	diti	on,	Pea	arso	n E	duc	atio	on, 2	2009	9.					
4	Craig L	arn	nan,	, Ap	ply	ing	UN	ΛL	and	Pat	tern	s, 3r	d ed	Ι,		
	Pearsor	Ec	luca	atio	n, 2	005.										
5	Len Bas	s, I	ngo	We	ebei	an	d L	imi	ng Z	Zhu	, "D	evO	ps: A	4		
	Softwar	e A	rch	itec	t's l	Pers	spec	ctiv	e", I	Pear	rson	Edu	ıcati	on,	201	6
6	Rajib M	all,	Fu	nda	mei	ntal	s of	So	ftwa	are	Engi	inee	ring,	3rc	1	
	edition,	PH	ΗL	earı	ning	g Pv	t. L	td.,	200	9.	Ü		Ü			
7	Stepher	Stephen Schach, Object-Oriented and Classical Software														
	-	Engineering, 8th ed, McGraw-Hill, 2010.														
	20						I	POs						I	PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	A	-	2	3	1	3	3	1	-
	2	3	2	1	1	1	A	/-	-/	1	2	1	3	3	2	-
	3	3	2	1	1	1	A	×	-\	3	1	1	3	3	1	-
	4	3	2	1	1	3	-	A	N-	3	3	1	2	3	3	<u> </u>
	5	3	2	1	1	3	-	-	-	2	2	1	2	3	2	-
	verall relation	3	2	1	1	2	LAT	EUT	DĀNI	3	3	2	3	3	3	5 -

23MC4202	ADVANCED DATABASE	L	T	P	C
	TECHNOLOGY	3	0	0	3

COURSE OBJECTIVES:

- To understand the working principles and query processing of distributed databases.
- To understand the basics of spatial, temporal and mobile databases and their applications.
- To distinguish the different types of NoSQL databases.
- To understand the basics of XML and create well-formed and valid XML documents.
- To gain knowledge about information retrieval and web search.

UNIT I DISTRIBUTED DATABASES

9

Distributed Systems - Introduction - Architecture - Distributed Database Concepts - Distributed Data Storage - Distributed Transactions - Commit Protocols - Concurrency Control -Distributed Query Processing

UNIT II SPATIAL AND TEMPORAL DATABASES

9

Active Databases Model - Design and Implementation Issues - Temporal Databases - Temporal Querying - Spatial Databases: Spatial Data Types, Spatial Operators and Queries - Spatial Indexing and Mining - Applications -- Mobile Databases: Location and Handoff Management, Mobile Transaction Models - Deductive Databases - Multimedia Databases.

UNIT III NOSQL DATABASES

9

NoSQL - CAP Theorem - Sharding - Document based - MongoDB Operation: Insert, Update, Delete, Query, Indexing, Application, Replication, Sharding-Cassandra: Data Model, Key Space, Table Operations, CRUD Operations, CQL Types - HIVE: Data types, Database Operations, Partitioning - HiveQL - OrientDB Graph database - OrientDB Features

UNIT IV XML DATABASES 9 Structured, Semi structured, and Unstructured Data - XML Hierarchical Data Model - XML Documents - Document Type Definition - XML Schema - XML Documents and Databases -XML Querying - XPath - XQuery UNIT V INFORMATION RETRIEVAL AND WEB 9 **SEARCH** IR concepts - Retrieval Models - Queries in IR system - Text Preprocessing - Inverted Indexing - Evaluation Measures - Web Search and Analytics - Current trends. **TOTAL: 45 PERIODS SUGGESTED ACTIVITIES:** 1. Create a distributed database for any application (ex. book store) and access it using PHP and Python 2. Create spatial database of any place and perform query operations 3. Creating Databases and writing simple queries using MongoDB, DynamoDB, Voldemort Key- Value Distributed Data Store Hbase and Neo4j. 4. Creating XML Documents, Document Type Definition and XML Schema for any e-commerce website and perform XML Querying 5. Perform sentiment analysis for any web document using text preprocessing techniques COURSE OUTCOMES: After completion of the course, the students will be able to: **CO1:** Design a distributed database system and execute distributed queries. CO2: Manage Spatial and Temporal Database systems and

implement it in corresponding applications.

associated with it.

CO3: Use NoSQL database systems and manipulate the data

604		esign XML database systems and validate with XML																	
CO4:	_		IL d	latal	oase	e sy	ster	ns a	and	val	idat	e wi	th XI	ML					
	schema																		
CO5:	Apply l		wle	edge	of	info	rm	atio	n re	etrie	eval	cond	epts	on	we	b			
	databas																		
REFE	ERENCE	S:																	
1	Abraha	m S	Silbe	erscl	hat	z, H	enr	y F	Ko	rth,	S. S	udh	arsh	an,					
	"Databa	ase	Sys	System Concepts", Seventh Edition, McGraw															
	Hill, 201	19.	S.B. Navathe, "Fundamentals of Database																
2	R. Elma	sri,	S.E	B. Ná	ava	the,	"Fu	und	am	enta	als o	f Da	taba	se					
	Systems	s", S	Sev	eventh Edition, Pearson Education/Addison															
	Wesley	. 20																	
3	Guy Ha	rris	son,	"N	ext	Gei	nera	atio	n D	atal	oase	s, No	oSQI	Ĺ ,					
	NewSQ	La	and Big Data", First Edition, Apress publishers,																
	2015		1/00																
4	Jiawei I	Han, Micheline Kamber, Jian Pei, "Data Mining:																	
į.	Concep	ts a	and Techniques", Third Edition, Morgan																
	Kauf <mark>m</mark> a	nn,	, <mark>2</mark> 0	12.					. 1	•						J.			
5	Brad Da	ayle	y, "	'Tea	ch	You	ırse	lf N	IoSC	QL ·	with	Мо	ngol	DB :	in 2	4			
	Hours"	, Sa	ms	Pub	lisł	ning	, Fi	rst	Edi	tior	, 201	14.			G)				
6	C. J. Da	te, 1	A. k	Canr	nan	, S. :	Swa	amy	nat	har	ı, "A	n In	trod	uct	ion				
	to Datal	bas	e Sy	ster	ns"	, Ei	ght	h E	ditio	on,	Pear	son	Edu	cati	on,				
	2006																		
	COs						F	POs						F	SO	s			
	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	1	2	1	2	2	2	2												
	2	2	1	3	2	2	2												
	3	2	1	3	2	2	3												
	4	2	1	3	2	3	3												
	5	2	1	3	2	2	2												
	Overall 2 1 2.8 2 2.2 2.4																		
Corr	orrelation																		

23MC4111	ADVANCED DATA STRUCTURES	L	T	P	C
	AND ALGORITHMS	0	0	4	2
	LABORATORY				

COURSE OBJECTIVES:

- To acquire the knowledge of using advanced tree structures
- To learn the usage of heap structures
- To understand the usage of graph structures and spanning trees
- To understand the problems such as matrix chain multiplication, activity selection and Huffman coding
- To understand the necessary mathematical abstraction to solve problems.

PRACTICALS:

- 1. Implementation of recursive function for tree traversal and Fibonacci
- 2. Implementation of iteration function for tree traversal and Fibonacci
- 3. Implementation of Merge Sort and Quick Sort
- 4. Implementation of a Binary Search Tree
- 5. Red-Black Tree Implementation
- 6. Heap Implementation
- 7. Fibonacci Heap Implementation 8: Graph Traversals
- 8. Spanning Tree Implementation
- 9. Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm)
- 10. Implementation of Matrix Chain Multiplication
- 11. Activity Selection and Huffman Coding Implementation

TOTAL: 60 PERIODS

LABORATORY REQUIREMENT:

HARDWARE: 64-bit Open source Linux or its derivative **SOFTWARE**: Open Source C++ Programming tool like G++/GCC

COURSE OUTCOMES:

After completion of the course, the students will be able to:

n ees ata													
es													
es													
ata													
ata													
ata													
ata													
ata													
ata													
ata													
it													
-4													
Structures and Algorithms", Pearson Education, Reprint 2006.													
nttp://www.coursera.org/specializations/data-structures-													
ith	ms												
GΥ	V.												
SC)s												
2	3												
3 1 3 3 3 3													
—	3 1 3 3 3 3												
	11 3 3 3 3 3 3 3 3 3												
	2												

23MC4113	COMMUNICATION SKILLS	L	T	P	(
	ENHANCEMENT - I	0	0	2	1
COURSE OBJ	ECTIVES:	1			
therebyTo enable with theTo impospeaking	de opportunities to learners to practice make them proficient users of the lange learners to fine-tune their linguistic see help of technology. Prove the performance of students' ling, reading and writing skills and the reer opportunities.	guag kills steni	e. (LS ng,	RW	7)
 Listening Listening Speaking Giving Particip Making Reading Reading Reading Technic Writing 	ng and practicing neutral accents ng to short talks and lectures and comp g comprehension exercises ng to TED Talks one minute talks pating in small Group Discussions g Presentations g Comprehension g subject specific material cal Vocabulary vs Informal Writing			GY	

TOTAL: 30 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Listen and comprehend lectures in English CO2: Articulate well and give presentations clearly

CO3:	Particip	ate	in (Gro	up l	Disc	cuss	sion	s su	ıcce	essfu	lly				
CO4:	Commu	ınic	ate	effe	ctiv	ely	in	forr	nal	anc	l inf	orma	al w	ritir	ng	
CO5:	Write p	Write proficient essays and emails														
	CO ₀						I	POs						PSOs		
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	1	2	2	1	1	1									
	2	1	3	2	1	1	1									
	3	1	2	3	1	1	1									
	4	1	3	2	1	1	1									
	5	1	3	2	1	1	1									
O	verall	1	2.6	2.2	1	1	1									
Correlation		1	∠.0	2,2	1	1	1									

SEMESTER -II

23MC4201	FULL STACK WEB	L	T	P	C
	DEVELOPMENT	3	0	0	3
COURSE OB	JECTIVES:				
 To ur and cl To lea To reference To un SQL co To lea frame 	nderstand the fundamentals of web proleint side scripting. Irn server side development using Node understand API development with ework. Iderstand and architect databases using latabases. Irn the advanced client side scripting awork.	eJS. h NoS	Exp SQL Rea	ores an	ss d
UNIT I IN	TRODUCTION TO CSS AND JAVAS	CRI	PT		9
Structure of F and Images v	to Web: Server - Client - Communication Pro ITML Documents - Basic Markup tags - Wor with CSS- CSS Selectors - CSS Flexbox - Ja uriables - Functions - Events - AJAX: GET ar	rking avaS	g wi crip	th T t: D	ext
	ERVER SIDE PROGRAMMING WITH	NC	DDE	3	9
Introduction	to Web Servers - Javascript in the Desktop				IS -
	ng files with the http module – Introduction				
	Server-side rendering with Templating E			_	
Files - async/	await - Fetching JSON from Express				
UNIT III A	DVANCED NODE JS AND DATABAS	E			9
querying wit NodeJS Mong from NodeJS	to NoSQL databases – MongoDB system or h MongoDB shell – Request body parsing goDB connection – Adding and retrieving da s – Handling SQL databases from Nodel odeJS – Handling User Authentication with	g in ta to [S –	Exp Mo Ha	pres ngo ındl	s - DB
	DVANCED CLIENT SIDE PROGRAM				9
State and L	actDOM - JSX - Components - Properties ifecycleJS Localstorage - Events - Lift and Inheritance				

UNIT V | APP IMPLEMENTATION IN CLOUD

9

Cloud providers Overview – Virtual Private Cloud – Scaling (Horizontal and Vertical) – Virtual Machines, Ethernet and Switches – Docker Container – Kubernetes

TOTAL: 45 PERIODS

SUGGESTED ACTIVITIES:

- 1. Build an online MCQ quiz app. The questions and options should be fetched based on the chosen topic from a NodeJS server. The questions can be stored in a JSON file in the backend. Once the user has answered the questions, the frontend must send the chosen options to the backend and the backend must identify the right answers and send the score back to the front end. The frontend must display the score in a separate neatly designed page.
- 2. Build a blog website where you can add blog posts through a simple admin panel and the users can view the blog posts. The contents of the blog posts can be stored in either MongoDB or MySQL database. The home page should contain the titles of the blog post and the full post can be viewed by clicking the title. Frontend can be built either using React or through template engines served by the NodeJS server.
- 3. Take any ecommerce or social media website/app. Analyze what the API endpoints would have been used for and how the frontend interacts with the backend. The networks tab in the browser's developer tools can be used if required.
- 4. Architect an entire database structure for an E-Commerce application for MongoDB. Discuss how the database would have been structured if you were using a SQL database.
- 5. Build a simple calculator app with React. The user should be able to add numbers and operations to the app by clicking on buttons, just like you would do in a mobile phone. The moment the operation and the two operations are defined, the answer should be displayed

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Write client side scripting HTML, CSS and JS.

CO2:	Implem	ent	ano	d ar	chit	ect	the	ser	ver	sid	e of	the v	web						
	applicat																		
CO3:	Implem	ent	We	eb A	.pp	lica	tion	usi	ing	No	deJS								
CO4:	Archite	ct N	IoS	QL o	data	abas	ses	witl	h M	ong	goDI	3.							
CO5:	Implem	ent	a f	ull-s	tac	k Si	ngl	e Pa	ige .	Ap	plica	tion	usir	ng I	Read	ct,			
	NodeJS		d M	ong	σD	B aı	nd o	lep	loy	on	Clou	ıd.							
REFI	ERENCE	S:																	
1	David Flanagan, "Java Script: The Definitive Guide", O'Reilly Media, Inc, 7th Edition, 2020																		
	·																		
2	Matt Fr													-					
	Wiley P	ubl	ishi	ing,	Inc	, 4tl	h Eo	litio	on, l	[SB]	N: 97	78-1-	-119-	366	556-	0,			
	2019																		
3		Alex Banks, Eve Porcello, "Learning React", O'Reilly Media,																	
	7.2	nc, 2nd Edition, 2020																	
4	A Allendaria Maria	Marc Wandschneider, "Learning Node", Addison-Wesley Professional, 2nd Edition, 2016																	
_ }					10.				_\	A.				-					
5	Joe Bed									- "					etes				
	Up and	_	_		-														
6	Paul Zil	70 (10)	:3 :3.2d				-												
	Konarsl									hou	it Co	mpi	omi	se"	you				
	O'Reilly	/ IVI	ean	a, 18	st ec	11110		202. 'Os							PSO	\			
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	1	1	1	2	2	2	2		0		10	11	14		_	3			
	2	2	1	2	2	2	2												
	3	2	1	3	2	3	2												
	4	2	1	3	2	3	3												
	5	2	1	3	2	3	3												
	verall	1 Q	1	26	2	26	2.4												
Corı	elation 1.8 1 2.6 2 2.6 2.4																		

23MC4202												
	NETWORKS	3	0	0	3							
COURSE OBJ	ECTIVES:											
To foc	cus on information sharing and networ	ks.										
	ntroduce flow of data, categories of	of n	etw	orl	ζ,							
	ent topologies.											
	cus on different coding schemes.		1	1								
	ef the students regarding protocols and											
_	ve a clear idea of signals, transmission m	ieai	a, ei	ror	S							
	a communications.											
UNIT I FU	NDAMENTALS AND LINK LAYER				9							
Overview of	Data Communications- Networks	_	Bui	ldiı	ng							
Network an	d its types- Overview of Internet	_	Pro	otoc	ol							
Layering —	OSI Model – Physical Layer – Overv	view	of	Da	ta							
and Signals.	R DRE			-								
UNIT II MI	EDIA ACCESS AND INTERNETWOR	KIN	1G		9							
Introduction	to Data Link Layer — Link layer Ad	ddre	ssiı	าย								
. 305	ion and Correction – Medium Access	-		_	_							
	2.3) – Wireless LANs – Bluetooth				_							
	er services – Packet Switching – IPV				_							
	er protocols (IP, ICMP, Mobile IP.											
UNIT III RO	<u>`</u>				9							
_	Unicast Routing – Algorithms –											
	uting and its basics — Overview of Intra				ıd							
	protocols – Overview of IPv6 Ac	ldre	ssin	ıg	_							
	om IPv4 to IPv6.											
UNIT IV TR	ANSPORT LAYER				9							
Introduction	to Transport layer -Protocols- Use	er D	ata	gra	m							
	DP) and Transmission Control Protoc			_								
,	Features – TCP Connection – Stat		•	-								
	Flow, Error and Congestion Control –											
avoidance.												

UNI	ΓV D	AT	A L	INK	C LA	AYE	ER	AN	D F	ΉY	SIC	CAL	LAY	ER		9
Apr	olication	Lav	ver	Par	adi	gms	s —	Cli	ent	Sei	rver	Prog	gran	nmi	ng	_
	rld Wide															
	P3, IMAI													`		
	d for Cr															
	,												: 45 I			DS
COU	RSE OU	JTC	ON	1ES	:											
	After co	mp	leti	on (of th	ne c	our	se, t	he	stu	dent	s wi	ll be	abl	e to):
CO1:	Discuss	th	ne (cate	gor	ies	an	d	fun	ctio	ns	of v	ario	us	Da	ıta
	commu	Discuss the categories and functions of various Data communication Networks.														
CO2:	Develo	Develop various error detection techniques and network														
	layer se	layer services.														
CO3:	Explain	Explain the mechanism of Media access control in the data														
	layer.	layer.														
CO4:	Apply of	diffe	erer	nt ro	uti	ng a	algo	rith	ıms	in	Netv	vork	Lay	er		
CO5:	Discuss	th	ne	sigr	ific	anc	e c	of y	vari	ous	s Fl	ow	con	trol	a	nd
	Conges	tior	co.	ntro	ol m	ech	ani	sms	3.			570.				-0
REFI	ERENCE	ES:		N			$\overline{\mathbf{A}}$			A.			18		-1	
1	Kurose												rking	g A	To	p-
	Down A	App	roa	ch.'	′,7t	h E										
2	Behrou	Z	A.	Fo	rou	zan	١.	"Da	ıta	C	omn	nuni	catic	ns	aı	nd
	Networ		\sim													
3	Bhusan								uni	cati	on	and	Ne	two	rks	. ,
	Oxford	Un	iveı	sity	Pr	ess,	201	l6.								
4	Andrev	v S '	Tan	enb	aur	n. "	Coı	npı	ıter	Ne	two	rks."	′, 4th	ı Ec	litic	n,
	Pearson	ı Ed	luca	itioi	n, 20	002.										
5	W. A.		-						\sim					ons	a	nd
	Networ	ks.	", 31	rd E	diti	on,	Ce	nga	ge l	Lea	rnin	g, 20	04.			
,	COs						I	POs						F	PSC)s
'	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-									
	2	3	2	1	1	1	-									
	3	2	1	-	-	1	-									
	4	3 2 1 1 1 -														
	5	2	1	-	-	1	-									
O	verall	2	_	1	1	1										
Corı	elation	3	2	1	1	1	-									

23MC4203	CLOUD COMPUTING	L	T	P	C
	TECHNOLOGIES	3	0	0	3

- To understand the basic concepts of Distributed systems.
- To learn about the current trend and basics of Cloud computing.
- To be familiar with various Cloud concepts.
- To expose with the Server, Network and storage virtualization.
- To be aware of Microservices and DevOps.

UNIT I DISTRIBUTED SYSTEMS

9

Introduction to Distributed Systems - Characterization of Distributed Systems - Distributed Architectural Models - Remote Invocation - Request-Reply Protocols - Remote Procedure Call - Remote Method Invocation - Group Communication - Coordination in Group Communication - Ordered Multicast - Time Ordering - Physical Clock Synchronization - Logical Time and Logical Clocks.

UNIT II BASICS OF CLOUD COMPUTING

9

Cloud Computing Basics - Desired features of Cloud Computing - Elasticity in Cloud - On demand provisioning - Applications - Benefits - Cloud Components: Clients, Datacenters & Distributed Servers - Characterization of Distributed Systems - Distributed Architectural Models - Principles of Parallel and Distributed computing - Applications of Cloud computing - Benefits - Cloud services - Open source Cloud Software: Eucalyptus, Open Nebula, Open stack, Aneka, Cloudsim.

UNIT III | CLOUD INFRASTRUCTURE

9

Cloud Architecture and Design - Architectural design challenges - Technologies for Network based system - NIST Cloud computing Reference Architecture - Public, Private and Hybrid clouds - Cloud Models: IaaS, PaaS and SaaS - Cloud storage providers -

Enabling Technologies for the Internet of Things – Innovative Applications of the Internet of Things.

UNIT IV CLOUD ENABLING TECHNOLOGIES

9

Service Oriented Architecture – Web Services – Basics of Virtualization – Emulation – Types of Virtualization – Implementation levels of Virtualization – Virtualization structures – Tools & Mechanisms – Virtualization of CPU, Memory & I/O Devices – Desktop Virtualization – Server Virtualization – Google App Engine – Amazon AWS - Federation in the Cloud.

UNIT V MICROSERVICES AND DEVOPS

9

Defining Microservices - Emergence of Microservice Architecture - Design patterns of Microservices - The Mini web service architecture - Microservice dependency tree - Challenges with Microservices - SOA vs Microservice - Microservice and API - Deploying and maintaining Microservices - Reason for having DevOps - Overview of DevOps - Core elements of DevOps - Life cycle of DevOps - Adoption of DevOps - DevOps Tools - Build, Promotion and Deployment in DevOps.

TOTAL: 45 PERIODS

SUGGESTED ACTIVITIES:

- 1. Write a client and server program to calculate the value of PI, in which server calls the remote procedure of the client side (C programming)
- 2. Create an word document of your class time table and store locally and also on cloud and share it (use www.zoho.com, docs.google.com)
- 3. Create your resume in a neat format using google and zoho cloud Programs on PaaS
- 4. Discuss processor virtualization, memory virtualization, I/O virtualization in VMWare
- 5. Set up Azure DevOps, Import Code and Create the Azure DevOps build pipeline

COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Use Distributed systems in Cloud Environment.
CO2:	Articulate the main concepts, key technologies, strengths
	and limitations of Cloud computing.
CO3:	Identify the Architecture, Infrastructure and delivery
	models of Cloud computing.
CO4:	Install, choose and use the appropriate current technology
	for the
CO5:	Adopt Microservices and DevOps in Cloud environments.
REFI	ERENCES:
1	Kai Hwang, Geoffrey C. Fox & Jack J.Dongarra,
	"Distributed and Cloud Computing, From Parallel
	Processing to the Internet of Things", Morgan Kaufmann
	Publishers, First Edition, 2012
2	Andrew S. Tanenbaum & Maarten Van Steen, "Distributed
	Systems - Principles and Paradigms", Third Edition,
1	Pearson, 2017.
3	Thomas Erl, Zaigham Mahood & Ricardo Puttini, "Cloud
	Computing, Concept, Technology & Architecture", Prentice
	Hall, SecondEdition, 2013.
4	Richard Rodger, "The Tao of Microservices", ISBN
	9781617293146, Manning Publications, First Edition,
	December 2017.
5	Magnus Larsson, "Hands-On Microservices with Spring
	Boot and Spring Cloud: Build and deploy microservices
	using spring cloud, Istio and kubernetes", Packt Publishing
	Ltd, First Edition, September 2019.
6	Jim Lewis, "DEVOPS: A complete beginner's guide to
	DevOps best practices", ISBN-13:978-1673259148, ISBN-10:
	1673259146, First Edition,2019

COs						I	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	2	2	2	2										
2	2	1	2	2	2	2										
3	3	1	3	2	2	2										
4	2	1	2	2	2	2										
5	2	1	2	2	2	2										
Overall Correlation	2.2	1	2.2	2	2	2										
Correlation																

23MC4204	MOBILE APPLICATION	L	T	P	C
	DEVELOPMENT	3	0	2	4

- To understand the need and characteristics of mobile applications.
- To design the right user interface for mobile applications.
- To understand the design issues in the development of mobile applications.
- To understand the development procedure for mobile applications.
- To develop mobile applications using various tools and platforms.

UNIT I INTRODUCTION

15

Mobile Application Model - Infrastructure and Managing Resources - Mobile Device Profiles - Frameworks and Tools

Installation of necessary components and software

UNIT II USER INTERFACE

15

Generic UI Development - Multimodal and Multichannel UI -Gesture Based UI - Screen Elements and Layouts - Voice XML.

Lab Component:

- i. Implement mobile applications using UI toolkits and frameworks.
- ii. Design an application that uses Layout Managers and event listeners

UNIT III | APPLICATION DESIGN

15

Memory Management – Design Patterns for Limited Memory – Workflow for Application development – Java API – Dynamic Linking – Plugins and rule of thumb for using DLLs – Multithreading in Java - Concurrency and Resource Management.

Lab Component:

- i. Design a mobile application that is aware of the resource constraints of mobile devices.
- ii. Design an application that uses Dynamic Linking

UNIT	ΓIV	MOBILE OS	15
Mobi	le OS	6: Android, iOS – Android Application Architectu	re –
Unde	rstan	ding the anatomy of a mobile application - Android b	oasic
comp	onen	ts -Intents and Services - Storing and Retrieving da	ata –
Packa	aging	and Deployment - Security and Hacking.	
Lab (Comp	onent:	
	-	op an application that makes use of mobile database	
ii. Iı		ment an android application that writes data into the	
UNI		APPLICATION DEVELOPMENT	15
			10
Com	nuni	cation via the Web - Notification and Alarms -	-
Grap	hics	and Multimedia: Layer Animation, Event handling	5
and C	Graph	ics services - Telephony - Location based services	
i. l	Devel	onent: op a web based mobile application that accesses inte	rnet
	1 17	op an android application using telephony to send SMS.	
11.	Dever	TOTAL: 75 PERIO	ODS
SOF	TWA:	RE REQUIREMENTS	
		PSE IDE / equivalent, ANDROID STUDIO	Y
COU	RSE	OUTCOMES:	
		r completion of the course, the students will be able	
CO1:		erstand the basics of mobile application developm	ent
		neworks and tools.	
		elop a UI for mobile applications.	
CO3:		gn mobile applications that manage mem amically.	ory
CO4 :	Build	d applications based on mobile OS like Android, iOs	i
CO5:	Build	d location based services.	
REFE		TCES:	
1		Meier, Ian Lake, "Professional Android", 4th Edit x, 2018.	ion,
2		rd Mednieks, Laird Dornin, G. Blake Meike, Mass	umi
	Nak	amura, "Programming Android", O'Reilly, 2nd Edit	ion,
	2012		

2012.

3	Alasdair Allan, "Learning iOS Programming", O'Reilly,
	Third Edition, 2013.

- 4 Bill Phillips, Chris Stewart, Brian Hardy, and Kristin Marsicano, Android Programming: The Big Nerd Ranch Guide, 4th edition, 2019.
- 5 Christian Keur, Aaron Hillegass, iOS Programming: The Big Nerd Ranch Guide, 6th Edition, O'Reilly, 2016.
- **6** Barry Burd, "Android Application Development All-In-One for Dummies", 3rd Edition, 2021.

COs						I	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	2	2	2	2										
2	2	1	2	2	2	2										
3	2	1	2	2	2	2										
4	3	1	3	3	2	3										
5	3	1	3	3	2	3	4		1		à	N				
Overall Correlation	2.4	1	2.4	2.4	2	2.4								>	ř	

23MC4205	ADVANCED OPERATING	L	T	P	C
	SYSTEMS	3	0	0	3

- To provide a deep understanding of the structure, functions, and design approaches of advanced operating systems including synchronization, deadlocks, and process management.
- To study the fundamentals of distributed operating systems, communication mechanisms, mutual exclusion, deadlock detection, and agreement protocols.
- To analyze the architecture, design issues, and implementation techniques for distributed file systems, shared memory, and scheduling algorithms.
- To gain knowledge about different types of failures, recovery techniques, checkpointing methods, and fault-tolerant strategies in distributed systems.
- To understand the structure, design, synchronization, scheduling, and memory management in multiprocessor systems, and explore concurrency control in distributed database operating systems.

UNIT I INTRODUCTION 9

Overview - Functions of an Operating System - Design Approaches - Types of Advanced Operating System - Synchronization Mechanisms - Concept of a Process, Concurrent Processes - The Critical Section Problem, Other Synchronization Problems - Language Mechanisms for Synchronization - Axiomatic Verification of Parallel Programs - Process Deadlocks - Preliminaries - Models of Deadlocks, Resources, System State - Necessary and Sufficient conditions for a Deadlock - Systems with Single-Unit Requests, Consumable Resources, Reusable Resources.

UNIT II	DISTRIBUTED OPERATING SYSTEMS	9
Introduc	tion - Issues - Communication Primitives - Inher	rent
Limitatio	ns - Lamport's Logical Clock; Vector Clock; Car	usal

Ordering; Global State; Cuts; Termination Detection. Distributed Mutual Exclusion - Non-Token Based Algorithms - Lamport's Algorithm - Token-Based Algorithms - Suzuki-Kasami's Broadcast Algorithm - Distributed Deadlock Detection - Issues - Centralized Deadlock-Detection Algorithms - Distributed Deadlock-Detection Algorithms. Agreement Protocols - Classification - Solutions - Applications.

UNIT III | DISTRIBUTED RESOURCE MANAGEMENT

9

Distributed File systems - Architecture - Mechanisms - Design Issues - Distributed Shared Memory - Architecture - Algorithm - Protocols - Design Issues. Distributed Scheduling - Issues - Components - Algorithms.

UNIT IV FAILURE RECOVERY AND FAULT TOLERANCE

9

Basic Concepts-Classification of Failures – Basic Approaches to Recovery; Recovery in Concurrent System; Synchronous and Asynchronous Checkpointing and Recovery; Check pointing in Distributed Database Systems; Fault Tolerance; Issues - Twophase and Non-blocking Commit Protocols; Voting Protocols; Dynamic Voting Protocols.

UNIT V MULTIPROCESSOR AND DATABASE OPERATING SYSTEMS

9

Structures – Design Issues – Threads – Process Synchronization – Processor Scheduling – Memory Management – Reliability / Fault Tolerance; Database Operating Systems – Introduction – Concurrency Control – Distributed Database Systems – Concurrency Control Algorithms.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Demonstrate an understanding of the core concepts, functions, and design approaches of advanced operating

	systems	systems, including process synchronization and deadlock management.														
CO2:	Analyz	e ar	ıd a	ppl	y sy	/ncl	hroi	niza	itioi	n m	echa	anisı	ns, i	ncl	ıdiı	ng
	the cri	tica	l s	ecti	on	pro	ble	m,	an	d o	desi	gn s	solut	ion	s f	or
	concurr	oncurrent processes and deadlock handling in multi-rocess systems.														
	_															
CO3:		Develop and implement distributed systems solutions,														
		cusing on mutual exclusion algorithms, logical clocks,														
		istributed file systems, and distributed deadlock detection														
		nechanisms.														
CO4:		Evaluate and design fault tolerance and failure recovery														
		strategies in distributed systems, using techniques like														
		checkpointing, recovery protocols, and voting protocols for														
		maintaining system reliability.														
CO5:		Understand and apply concepts related to multiprocessor operating systems and database operating systems,														
	includii														z, ai	na
DEEL	concurr		y co	ontr	OI 11	n a	ISTTI	but	ea (aata	abas	e sys	stem	s.	107	
	ERENCE		- a-la	1 -		NT A		12:		L.i	// A J	·	and (C		. 4.0
1	Mukesh in Oper	1 511	ngn	al a	na .	// \	G. S	MOT	ara	:11 '	Au	van	cea	COI	icep	ots
2	Abraha	aun	c:1	bore	acha	, 1	D	otor	v -1 1	111, 2	C_{0}	rin	C		2000	
	"Opera	tino		veto	m	Cot	2001	eter eter	iΕ	siv	Gar th I	иц, Editi	on.	Δd	dice	ne,
	Wesley	P111	olis!	hina	, Ca	2	003		ANI	JIX	NIVER	SITY	AUTC	NO	uis	511
3	Andrew								der	n (One	ratir	ıσ S	vst	ems	s".
	Second												.6	yse	C1110	,
	I.							Os	_					I	SO	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	2	2	2	2	_		_						_
	2	2	1	2	2	2	2									
	3	2	1	2	2	2	2									
	4	3 1 3 3 2 3														
	5	3	1	3	3	2	3									
O	verall	2.4	1	2.4	2.4	2	2.4									
Corı	relation	2.4	1	2.4	2.4	2	2.4									

23MC4212	FULL STACK WEB DEVELOPMENT	L	T	P	C
	LABORATORY	0	0	4	2

- To implement the client side of the web application using javascript.
- To understand Javascript on the desktop using NodeJS.
- To develop a web application using NodeJS and Express.
- To implement a SPA using React.
- To develop a full stack single page application using React, NodeJS, and a Database (MongoDB or SQL).

PRACTICALS:

- 1. Create a form and validate the contents of the form using JavaScript.
- 2. Get data using Fetch API from an open-source endpoint and display the contents in the form of a card.
- 3. Create a NodeJS server that serves static HTML and CSS files to the user without using Express.
- 4. Create a NodeJS server using Express that stores data from a form as a JSON file and displays it in another page. The redirect page should be prepared using Handlebars.
- 5. Create a NodeJS server using Express that creates, reads, updates and deletes students' details and stores them in MongoDB database. The information about the user should be obtained from a HTML form.
- Create a NodeJS server that creates, reads, updates and deletes event details and stores them in a MySQL database. The information about the user should be obtained from a HTML form.
- 7. Create a counter using ReactJS
- 8. Create a Todo application using ReactJS. Store the data to a JSON file using a simple NodeJS server and retrieve the information from the same during page reloads.

- 9. Create a simple Sign up and Login mechanism and authenticate the user using cookies. The user information can be stored in either MongoDB or MySQL and the server should be built using NodeJS and Express Framework.
- 10. Create and deploy a virtual machine using a virtual box that can be accessed from the host computer using SSH.
- 11. Create a docker container that will deploy a NodeJS ping server using the NodeJS image.

TOTAL: 60 PERIODS

LABORATORY REQUIREMENT:

- NodeJS/Express JS, ReactJS, Docker, any IDE like NOTEPAD++/visualstudio code/sublime text etc.,
- 2. MySQL, MongoDB

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: To implement and deploy the client side of the web application.
- CO2: To develop and deploy server side applications using NodeJS.
- CO3: To use Express framework in web development.
- CO4: To implement and architect database systems in both NoSQL and SQL environments.
- CO5: To develop a full stack single page application using React, NodeJS, and a Database and deploy using containers.

COs					I	POs							P	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	3	2	3	3									
2	2	1	2	2	3	3									
3	2	1	2	2	3	2									
4	2	1	3	2	2	3									
5	2	1	2	2	2	2									
Overall	2.2	1	2.4	2	2.6	2.6									
Correlation	۷,۷	1	∠.4	4	∠.0	∠.6									

23MC4213	COMMUNICATION SKILLS	L	T	P	C
	ENHANCEMENT - II	0	0	2	1

- To provide opportunities to learners to practice their communication skills to make them become proficient users of English.
- To enable learners to fine-tune their linguistic skills (LSRW) with the help of Technology to communicate globally.
- To enhance the performance of learners at placement interviews and group discussions and other recruitment procedures

1. Soft Skills

- People skills
- Interpersonal skills
- Team building skills
- Leadership skills
- Problem solving skills

2. Presentation Skills

- Preparing slides with animation related to the topic
- Introducing oneself to the audience
- Introducing the topic
- Presenting the visuals effectively 5 minute presentation

3. Group Discussion Skills

- Participating in group discussions
- Brainstorming the topic
- Activities to improve GD skills.

4. Interview Skills

- Interview etiquette dress code body language
- Attending job interviews
- Answering questions confidently
- Technical interview telephone/Skype interview
- Emotional and cultural intelligence
- Stress Interview

TOTAL: 30 PERIODS

COU	RSE OU	JTC	ON	1ES	:											
	After co	mp	leti	on (of th	ne c	our	se, t	he	stu	dent	s wi	ll be	abl	e to):
CO1:	Student	s w	ill l	oe a	ble	to 1	mal	ке р	res	enta	atior	ıs an	ıd pa	artio	cipa	ite
	in Grou	p d	iscu	ıssi	ons	wit	h co	onfi	der	ice.						
CO2:	Student	s w	ill k	oe a	ble	to p	erf	orm	we	ell i	n the	inte	ervie	ews		
CO3:	Student	s w	ill r	nak	e ef	fect	tive	pre	eser	ıtati	ons.					
	COs						I	Os						I	PSC	s
\ \ \	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	1	2	1	1	1	1									
	2	1	2	1	1	1	1									
	3	1	2	1	1	1	1									
O	verall															

Correlation

SEMESTER -III

23MC4301	AI & MACHINE LEARNING	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To gain knowledge on foundations of AI, machine learning and apply suitable dimensionality reduction techniques for an application
- To select the appropriate model and use feature engineering techniques
- To gain knowledge on Probability and Bayesian Learning to solve the given problem
- To design and implement the machine learning techniques for real world problems
- To analyze, learn and classify complex data without predefined models also

UNIT I INTRODUCTION

9

Introduction–Definition – Foundation and History of AI - Future of Artificial Intelligence – Intelligent Agents – Environments – Structure of Agents – Typical Intelligent Agents – Problem solving Methods – AI Problems - Search Strategies – Uninformed Search Techniques.

UNIT II MODEL EVALUATION AND FEATURE ENGINEERING

9

Human Learning - Types - Machine Learning - Types - Problems not to be solved - Applications - Languages/Tools- Issues. Preparing to Model: Introduction - Machine Learning Activities - Types of data - Exploring structure of data - Data quality and remediation - Data Pre-processingModel Selection - Training Model - Model Representation and Interpretability - Evaluating Performance of a Model - Improving Performance of a Model - Feature Engineering: Feature

UNIT III BAYESIAN LEARNING

9

Basic Probability Notation- Inference – Independence - Bayes' Rule. Bayesian Learning: Maximum Likelihood and Least Squared error hypothesis-Maximum Likelihood hypotheses for predicting probabilities- Minimum description Length principle -Bayes optimal classifier - Naïve Bayes classifier - Bayesian Belief networks -EM algorithm.

UNIT IV PARAMETRIC MACHINE LEARNING

9

Logistic Regression: Classification and representation – Cost function – Gradient descent – Advanced optimization – Regularization - Solving the problems on overfitting. Perceptron – Neural Networks – Multi – class Classification -

Backpropagation – Non-linearity with activation functions (Tanh, Sigmoid, Relu, PRelu) - Dropout as regularization

UNIT V NON PARAMETRIC MACHINE LEARNING

9

k- Nearest Neighbors- Decision Trees - Branching - Greedy Algorithm - Multiple Branches - Continuous attributes -Pruning. Random Forests: ensemble learning. Boosting -Adaboost algorithm. Support Vector Machines - Large Margin Intuition - Loss Function - Hinge Loss - SVM Kernels

TOTAL: 45 PERIODS

SUGGESTED ACTIVITIES:

- 1. Explore the significant steps involved in data preprocessing in Machine Learning
- 2. Choose a model and train a model in machine learning.
- 3. Explain the application of Bayes Theorem and how it's useful to predict the future
- 4. Make the difference between supervised Learning and unsupervised Learning Techniques
- 5. Differentiate Perceptron, Neural Network, Convolutional Neural Network and Deep Learning

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Unders		d a	bou	ıt	Dat	a .	Pre	pro	cess	sing,	Di	men	sio	nali	ty
	reduction	on														
CO2:	Apply 1	oroj	er	mo	del	for	the	giv	ren	pro	blen	n an	d us	e fe	eatu	re
	enginee	ring	g te	chn	iqu	es										
CO3:	Make 1	ıse	of	Pro	obal	bilit	y [Гесl	nnic	que	to	solv	e tl	ne	giv	en
	problen	n.														
CO4:	Analyz	e th	e w	ork	ing	mo	del	anc	l fea	atuı	es o	f De	cisic	n t	ree	
CO5:	Choose	an	ıd a	app	ly	app	rop	ria	te a	algo	rith	m t	o le	arr	aı	nd
	classify	the	dat	ta												
REFI	ERENCE	S:														
1	Stuart I															
	Moderr	ı A	ppr	oac	h",	Fo	urtl	h E	diti	on,	Pea	arsoı	n Eo	duc	atic	n,
	2022. Ethem Alpaydin, "Introduction to Machine Learning 3e															
2	(Adaptive Computation and Machine Learning Series)",															
	(Adaptive Computation and Machine Learning Series)", Third Edition, MIT Press, 2014															
3	Third Edition, MIT Press, 2014 Tom M. Mitchell, "Machine Learning", India Edition, 1st															
Î	Edition															
4	Saikat 1															
1	Das, "M	Iach	ine	Lea	arni	ing"										n,
	2019	4 (B ()	ALL		. 1	CC							NO			
5	Christo Learnin												and	Ma	ich1	ne
6	Aurelie												y wi	th ^c	Scik	it_
	Learn, I															
								POs						_	PSO	
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	1	1	2	2	2	2									
	2	1	1	2	2	2	2									
	3	2	1	2	2	2	2									
	4	2	1	2	2	2	2									
	5	2	1	2	2	2	2									
		1.6	1	2	2	2	2									
Corr	elation															

23MC4302		\mathbf{L}	T	P	C
	INTERNET OF THINGS	3	0	0	3
COURSE O	BJECTIVES:	9	U	U	3
	erstand the concepts of IoT and its workir	o m	node	ols.	
	w the various IoT protocols	.6	io di		
	erstand about various IoT Physical device	e an	d		
Endpoi	·	s an	iu		
•	w the security and privacy issues connecte	ad w	zith	ΙοΊ	Г
	ly the concept of Internet of Things in a				
scenario		icu	.1 **	011	а
	UNDAMENTALS OF IOT				9
	and Characteristics of IoT, Sensors, Actuat		•		
O	oT - IoT Protocols, IoT communication	- 40			
Communic	ation APIs, IoT enabled Technologies	6	Wi	rele	ess
1/4/19/19/19	works, Cloud Computing, Embedded S	-	-		
Levels and	Te <mark>m</mark> plates, Domain Specific IoTs – l	Hon	ne,	Cit	ty,
Environme	nt, Energy, Agriculture and Industry.	-			
UNIT II I	OT PROTOCOLS	100	0	2	9
Protocol St	andardization for IoT - Efforts - M2N	-	-		INI
	- SCADA and RFIDProtocols - Issue				
	ation – Unified Data Standards –				<i>J</i> 1
	.4-BACNet Protocol- Modbus - KNX				_
		_	Z15	300	e -
	yer - APS layer - Security OT PHYSICAL DEVICES AND ENDPO	TNIT	····	_	0
UNITIII	OI PHISICAL DEVICES AND ENDPO	11/1	.5		9
Introductio	n to Arduino and Raspberry Pi-	Ins	talla	atic	n,
Interfaces (serial, SPI, I2C), Programming - Python p	rogi	am	wi	th
Raspberry	PI with focus on interfacing extern	ıal	gac	lge	ts,
controlling	output, and reading input from pins.		•	-	
UNIT IV I	NTERNET OF THINGS PRIVACY, SEC	URI	TY		9
Δ	ND GOVERNANCE				

Introduction, Overview of Governance, Privacy and Security

Issues, Contribution from FP7 Projects, Security, Privacy and Trust in IoT-Data-Platforms for Smart Cities, First Steps Towards a Secure Platform, Smartie Approach. Data Aggregation for the IoT in Smart Cities, Security

UNIT V APPLICATIONS

9

IOT APPLICATIONS - IoT applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, Smart Applications. Study of existing IoT platforms / middleware, IoT-A, Hydra etc.

TOTAL: 45 PERIODS

SUGGESTED ACTIVITIES:

- 1. Study of 5 different types of sensors and actuators available in Market
- 2. Study of commercial IoT available in any one domain
- 3. Study the recent developments in IoT Protocol
- 4. Implement simple Python programs for IoT
- 5. Study on the latest government policies on IoT security and Privacy
- 6. Study on how to use IoT to solve some problems in your neighborhood.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Define the infrastructure for supporting IoT deployments
- CO2: Understand the usage of IoT protocols for communication between various IoT devices
- CO3: Design portable IoT using Arduino/Raspberry Pi/equivalent boards.
- **CO4:** Understand the basic concepts of security and governance as applied to IoT
- CO5: Analyze and illustrate applications of IoT in real time scenarios

REF	ERENCE	S:														
1	Internet	of	Thi	ngs	- A	На	nds	-on	Ap	pro	ach,	Ars	hde	ep I	3ah	ga
	and V	, ,			iset	ti,	Un	iveı	siti	es	Pre	ss,	2015	5,	ISB	N:
	9788173	_	_													
2	Olivier									-						
	Internet 2012.	tot	Ihı	ngs	– K	ey	app	lıca	t101	ns a	nd I	roto	ocols	", \	V1l€	ey,
3	David 1	Har	206	Go	1172	10	Salo	1110	iro	Pa	trick	Cr	need	toto	R	ah.
3	Barton,															
	Technol	-				-										_
	Things"	_														
4	Dieter											hahe	elles	, F	lori	an
	(Eds), "	Arc	hite	ectir	ng tl	he I	nte	rnet	of	Γhiı	ngs"	, Spı	ringe	er, 2	2011	-
5	Raspberry Pi Cookbook, Software and Hardware Problems															
		and solutions, Simon Monk, O'Reilly (SPD), 2016, ISBN														
	7989352						(T				Г	D		1		1
6	Peter I Innovat															
	пшоча	1011	10	viai	Ket	De		Os	_	KI	vei i	ubi	ishei		2SO	
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	2	2	2	2	1	0	9	10	11	14	1		3
	2	2	1	2	2	2	2	EZ		0.0	TC	CLI	VIO.	-	CV	8
	3	2	1	3	2	2	3	ID TO	N A SU)	NIVER	SITY	ALLTS	LVO	0	
		_	<u> </u>					100	P PAINH	199.37	WAL	2111	CALL S	PI SU	100	
	4	2	1	2	2	2	2									
	5	2	1	3	2	2	3									
	verall	2	1	2.4	2	2	2.4									
Cor	relation															

23IT601	CRYPTOGRAPHY AND SECURITY	L	T	P	C
		3	0	0	3

- Understand the basic categories of threats to computers and networks
- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various symmetric key cryptographic algorithms.
- Describe public-key cryptosystem
- Describe various message authentication models.
- Understand Intrusions and intrusion detection

UNIT I INTRODUCTION

9

Overview of Cryptography and Its Applications - Secure Communications - Cryptographic Applications - Classical Cryptosystems - Shift Ciphers - Affine Ciphers - The Vigenère Cipher - Substitution Ciphers - Sherlock Holmes - The Playfair and ADFGX Ciphers - Enigma - Basic Number Theory - The Extended Euclidean Algorithm - The Chinese Remainder Theorem - Modular Exponentiation - Fermat's Theorem and Euler's Theorem - Primitive Roots.

UNIT II SYMMETRIC KEY CRYPTOGRAPHY

9

Block Cipher and Data Encryption Standards: Block Cipher Principles, Data Encryption Standards, the Strength of DES. Advanced Encryption Standards: Evaluation Criteria for AES, the AES Cipher.

UNIT III | PUBLIC KEY CRYPTOGRAPHY

9

Asymmetric Key Ciphers: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange -ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT IV | MESSAGE AUTHENTICATION AND **INTEGRITY** Authentication requirement - Authentication function - MAC -Hash function - Security of hash function and MAC - SHA -Digital signature and authentication protocols - DSS- Entity Authentication: Biometrics, Passwords, Challenge Response protocols- Authentication applications - Kerberos, X.509. SECURITY PRACTICE AND SYSTEM 9 **SECURITY** Electronic Mail security - PGP, S/MIME - IP security - Web Security - System Security: Intruders - Malicious software viruses – Firewalls. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Infer basic security attacks and services. CO2: Illustrate confidentiality, integrity, authentication and availability concepts CO3: Make use of symmetric key algorithms for cryptography CO4: Make use of asymmetric key algorithms for cryptography and apply the knowledge of Key Management techniques **CO5:** Utilize the Authentication functions the manner in which Message Authentication Codes and Hash Functions works. **CO6:** Examine the issues and structure of Authentication Service and Electronic Mail Security **REFERENCES:** Wade Trappe and Lawrence C. Washington. "Introduction 1 to Cryptography with Coding Theory.", 3rd edition, Pearson, 2020 William Stallings. "Cryptography and Network Security: 2 Principles and Practice.", 8th edition, Pearson Education, India, 2020.

3	Charlie		Ka	ufn	ıan.		"N	letw	vork	(Sec	curit	y:	Р	riva	ıte
	Commu	ınic	atic	n i	n a	Pul	blic	W	orld	l.",	2nd	edi	tion,	Pr	enti	ce
	Hall of	Ind	ia, 2	2002	2.											
4	Atul Ka	aha	te. '	'Cr	ypto	ogra	iph	y aı	nd I	Net	wor	k Se	curi	ty.	, 2ı	nd
	edition,	Ta	ta N	1c C	Grav	vhil	1, 2	008.								
5	Robert	Br	agg	, N	/Iarl	κ F	Rho	des.	. "	Net	wor	k S	ecur	ity:	T	he
	comple	te r	efer	enc	e.",	Tat	a N	Ic C	Grav	vhil	1, 20	04.				
	COs						I	POs						I	SO	s
· '	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-									
	2	2	1	-	-	-	-									
	3	3	2	1	1	-	-									
	4	3	2	1	1	-	-									
	4 5	3	2	1	1	-	1		1	N. S.						

2 1 1

Correlation

23MC4311	AI & MACHINE LEARNING	L	T	P	C
	LABORATORY	0	0	4	2

- To understand about data cleaning and data preprocessing
- To familiarize with the Supervised Learning algorithms and implement them in practical situations.
- To familiarize with unsupervised Learning algorithms and carry on the implementation part.
- To involve the students to practice ML algorithms and techniques.
- Learn to use algorithms for real time data sets.

LIST OF EXPERIMENTS:

- 1. Demonstrate how do you structure data in Machine Learning
- 2. Implement data preprocessing techniques on real time dataset
- 3. Implement Feature subset selection techniques
- 4. Demonstrate how will you measure the performance of a machine learning model
- 5. Write a program to implement the naïve Bayesian classifier for a sample training data set. Compute the accuracy of the classifier, considering few test data sets.
- 6. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using the standard Heart Disease Data Set.
- 7. Apply EM algorithm to cluster a set of data stored in a .CSV file.
- 8. Write a program to implement k-Nearest Neighbor algorithm to classify the data set.
- 9. Apply the technique of pruning for a noisy data monk2 data, and derive the decision tree from this data. Analyze the results by comparing the structure of pruned and unpruned tree.
- 10. Build an Artificial Neural Network by implementing the Backpropagation algorithm and testthe same using appropriate data sets

- 11. Implement Support Vector Classification for linear kernels.
- 12. Implement Logistic Regression to classify problems such as spam detection. Diabetes predictions and so on.

TOTAL: 60 PERIODS

LABORATORY REQUIREMENT:

Python or any ML tools like R

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply data preprocessing technique and explore the structure of data to prepare for predictive modeling
- CO2: Understand how to select and train a model and measure the performance.
- CO3: Apply feature selection techniques in Machine Learning
- CO4: Construct Bayesian Network for appropriate problem
- CO5: Learn about parametric and non-parametric machine Learning algorithms and implement to practical situations

COs		1				PO	S						F	SC)s
COs	<u>^1</u>	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	2	2	2	2			1			1			
2	2	1	2	2	2	2									
3 GINE	2	1	2	2	2	2	G	= () -	IE	CH	NO	L()6	Y
4	2	1	2	2	2	2	10,	KNN	A.U.	IVER	SITY	AUT	ONG	MAD	J.S.
5	2	1	2	2	2	2									
Overall	2	1	2	2	2	2									
Correlation		1		_	2										

23MC4312	INTERNET OF THINGS	L	T	P	C
	LABORATORY	0	0	4	2

- To design applications to interact with sensors
- To design and develop IoT application Arduino/Raspberry pi for real world scenario.
- To enable communication between IoT and cloud platforms
- To develop applications using Django Framework

LIST OF EXPERIMENTS:

- 1. To study various IoT protocols 6LowPAN, IPv4/IPv6, Wifi, Bluetooth, MQTT.
- 2. IoT Application Development Using sensors and actuators (temperature sensor, light sensor, infrared sensor)
- 3. To study Raspberry Pi development board and to implement LED blinking applications.
- 4. To develop an application to send and receive data with Arduino using HTTP request
- 5. To develop an application that measures the room temperature and posts the temperature value on the cloud platform.
- To develop an application that measures the moisture of soil and post the sensed data over Google Firebase cloud platform.
- 7. To develop an application for measuring the distance using ultrasonic sensor and post distance value on Google Cloud IoT platform
- 8. Develop a simple application based on sensors.
- 9. Develop IoT applications using Django Framework and Firebase/ Bluemix platform.
- 10. Develop a commercial IoT application.

TOTAL: 60 PERIODS

LABORATORY REQUIREMENT:

1. The universal microcontroller development board

- 2. 8051 Daughter Board
- 3. Raspberry Pi 3B+ Original
- 4. Arduino Daughter Board
- 5. Humidity + IR Sensor Interface
- 6. Ultrasonic Sensors
- 7. Open source softwares Django Framework
- 8. Open cloud architectures like Bluemix, Development platforms like Firebase

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** To understand the various IoT protocols
- CO2: Test and experiment different sensors for application development
- CO3: To develop applications using Arduino/Raspberry Pi/Equivalent boards.
- CO4: To develop applications that would read the sensor data and post it in Cloud Develop IOT applications with different platforms and frameworks.

CO5: To understand the various IoT protocols

COs	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	2	2	2	2	TO/	NN	A.U.	IVER	SITY	AUT	ONG	MO	Ú5
2	2	1	2	2	2	2									
3	2	1	2	2	2	2									
4	2	1	2	2	2	2									
5	2	1	2	2	2	2									
Overall Correlation	2	1	2	2	2	2									