

REGULATIONS - 2023

CURRICULUM AND SYLLABI

(2023-2024)

B.E. COMPUTER SCIENCE AND ENGINEERING

KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

VISION OF KCG

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

MISSION OF KCG

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

VISION OF COMPUTER SCIENCE AND ENGINEERING

The department of Computer Science and Engineering desires to become a prominent centre of excellence for producing competent IT professionals for providing software and software enabled solutions.

MISSION OF COMPUTER SCIENCE AND ENGINEERING

- Provide quality education in the field of computer science and engineering & related domains
- Facilitate socially responsive research and innovation
- Inculcate professional behaviour, a spirit of entrepreneurship and commitment to the progress of the nation
- Accommodate evolving software development tools and required implementation facilities

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

The graduates will:

PEO 1	Have successful career as software professional (or) entrepreneur (or) researcher in computer science and relevant disciplines.
PEO 2	Analyze, design, develop, test and deploy appropriate solutions for real world computing problems.
PEO 3	Apply software engineering principles at process, project and product levels.
PEO 4	Exhibit ethical attitude and social responsibility in their profession

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

PO 01	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering						
	specialization to the solution of complex engineering problems.						
	0 01						

PO 02	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 03	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 04	Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 05	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 07	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				
PO 08	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.				
PO 09	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.				
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.				
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.				

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 01	Apply knowledge pertaining to software engineering principles, computer hardware and architecture, principles of algorithms & programming skills to analyze complex problems in computer science engineering and related domains.
PSO 02	Use compiler tool, CASE tool, graphic tool, app development tools, network simulator, security and analysis tools, cloud and grid tool kits, database management tools, web development frameworks for providing appropriate solutions.
PSO 03	Demonstrate professional & ethical behavior while providing IT based solutions.

INDEX

S1.No	Description	Page No.
1	Curriculum	1
2	I Semester Syllabus	16
3	II Semester Syllabus	46
4	III Semester Syllabus	76
5	IV Semester Syllabus	104
6	V Semester Syllabus	128
7	VI Semester Syllabus	141
8	VII Semester Syllabus	160
9	VIII Semester Syllabus	172
10	Vertical 1 : Cloud Computing	175
11	Vertical 2 : Full Stack Development	200
12	Vertical 3 :Artificial Intelligence And Data Science	227
13	Vertical 4 : Network And Security	258
14	Vertical 5 : Emerging Technologies	282

KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

REGULATIONS 2023

B.E. COMPUTER SCIENCE AND ENGINEERING CHOICE BASED CREDIT SYSTEM CURRICULA FOR SEMESTERS I TO VIII

SEMESTER-I

C1		Course Course Title	C 1	Periods			Total			
S1. No.			Cate	Per	r W	/eek	Contact	Credits		
110.	Coue		gory	L	T	P	Periods			
	23IP101	rrogramme		-	-	-	-	-		
	THEORY									
1	23HS101	Essential Communication	HSMC	3	0	0	3	3		
2	23MA101	Matrices and Calculus	BSC	3	0	0	3	3		
3	23CS101	Programming in C	ESC	3	0	0	3	3		
4	23HS102	Heritage of Tamils	HSMC	1	0	0	1	1		
	18	THEORY AN	D PRAC	TIC	ΑI	LS				
5	23PH111	Engineering Physics	BSC	3	0	2	IN 5 LO	G 4		
6	23CY111	Engineering Chemistry	BSC	3	0	2	5	4		
		PRAC	CTICALS	,						
7	23CS121	C Programming Laboratory	ESC	0	0	4	4	2		
8	23HS121	Communication Skills Laboratory	HSMC	0	0	2	2	1		
9	23CS122	Computational Thinking	ESC	0	0	2	2	1		
10	23HS122	General Clubs / Technical Clubs / NCC / NSS / Extension Activities	HSMC	0	0	2	2	1*		
		TOTAL		16	0	14	30	22		

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER -II

S1. No.	('ourse l'itle ('atego		Category		rio Pei Vee	•	Total Contact	Credits
					T	P	Periods	
		THE	ORY					
1	23HS201/ 23HS202	Professional English/ Foreign language	HSMC	3	0	0	3	3
2	23MA204	Statistics	BSC	3	1	0	4	4
3	23PH205	Physics for Information Science	BSC	3	0	0	3	3
4	23CS201	Data Structures using C	PCC	3	0	0	3	3
5	23HS203	Tamils and T <mark>ec</mark> hnology	HSMC	1	0	0	1	1
	18	THEORY AND	PRACTI	CA	LS			
6	23EE281	Basic Electrical and Electronics Engineering	ESC	2	0	2	NOLO AUTONOM	GY ₁₀₀ 3
7	23ME211	Engineering Graphics	ESC	3	0	2	5	4
		PRACT	TICALS					
8	23ME221	Engineering Practices Laboratory	ESC	0	0	4	4	2
9	23CS221	Data Structures Using C Laboratory	PCC	0	0	4	4	2
10	23HS221	Soft Skills	EEC	0	0	2	2	1*
		TOTAL		18	1	14	33	25

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER- III

S1. No.	Course code Course Title Category		Category]	rio Per /ee		Total Contact	Credits		
				L	T	P	Periods			
	THEORY									
1	23MA202	Discrete Mathematics	BSC	3	1	0	4	4		
2	23CS301	Object Oriented Programming	PCC	3	0	0	3	3		
3	23CS302	Database Management Systems	PCC	3	0	0	3	3		
4	23HS301	Universal Human Values and Ethics	HSMC	3	0	0	3	3		
1	14	THEORY AND	PRACTIC	CAL	S					
5	23CS311	Digital Principles and System Design	PCC	3	0	2	5	4		
6	23CS312	Design and Analysis of Algorithms	PCC	3	0	2	OL5)G	4		
		PRACT	ICALS	I V EH;	2111		DI ONCOME.	33		
7	23CS321	Object Oriented Programming Laboratory	PCC	0	0	4	4	2		
8	23CS322	Database Management Systems Laboratory	PCC	0	0	4	4	2		
9	23ES391	Presentation Skills	EEC	0	0	2	2	1*		
		TOTAL		18	1	14	33	25		

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-IV

S1.	Course Litle Category			rioc We	-	Total Contact	Credits	
No.	code			L	T	P	Periods	
		TH	IEORY					
1	23MA301	Linear Algebra	BSC	3	1	0	4	4
2	23CS401	Operating Systems	PCC	3	0	0	3	3
3	23CS402	Artificial Intelligence	PCC	3	0	0	3	3
4	23CS403	Theory of Computation	PCC	3	0	0	3	3
5	23CS404	Computer Architecture	PCC	3	0	0	3	3
	POWER	THEORY AN	ID PRAC	ΓICA	LS	P ,		7
6	23CS411	Software Engineering	PCC	3	0	2	5	4
		PRA	CTICALS		3			
7	23CS421	Operating Systems Laboratory	PCC	0	0	4	IOŁOG	Y 2
8	23CS422	Artificial Intelligence Laboratory	PCC	0	0	4	4	2
9	23ES491	Aptitude and Logical Reasoning – 1	EEC	0	0	2	2	1*
		TOTAL		18	1	12	31	24

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-V

Sl. No.	Course Code	Course Title	Category]	rio Per /ee		Total Contact	Credits
110.	Couc			L	T	P	Periods	
		THE	ORY					
1	23RE501	Research Methodology and Intellectual Property Rights	ESC	2	0	0	2	2
2	23CS501	Computer Networks	PCC	3	0	0	3	3
3		Department Elective – 1	DEC	-	-	-	-	3
4	awl E	Department Elective – 2	DEC	-	1	1		3
5		Open Elective - 1 (Emerging Technology)	OEC	3	0	0	3	3
1	1 AT	THEORY AND	PRACTI	CA	LS			
6	23CS511	Compiler Design	PCC	3	0	2	NC ₅ _0	4
		PRACT	ΓICALS					11000
7	23CS521	Computer Networks Laboratory	PCC	0	0	4	4	2
8	23CS522	Mini Project	EEC	0	0	3	3	2
9	23CS523	Summer Internship	EEC	0	0	0	0	1
10	23ES591	Aptitude and Logical Reasoning - 2	EEC	0	0	2	2	1*
		TOTAL		_	-	_	-	23

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VI

S1.	Course				erio		Total	
No.	Code	Course Title	Category	Pe L	r We	eek P	Contact Periods	credits
		Т	HEORY					
1	23CS601	Cryptography and Cyber Security	PCC	3	0	0	3	3
2		Department Elective – 3	DEC	-	-	1	-	3
3		Department Elective – 4	DEC	-	-	1	-	3
4		Open Elective – 2 (Management / Safety Courses)	OEC	3	0	0	3	3
		THEORY A	ND PRAC	TI	CAL	S		
5	23CE611	Environmental Science and Engineering	ESC	3	0	2	5	4
6	23CS611	Internet Programming	PCC	3	0	2	5	4
	100		CTICAL	5	e Tre	-	INOLO	GV
7	23CS621	Project Work - Phase 1	A EEC AN	0	0	4	AL4 ONO	моч2
8	23CS622	Technical Training	EEC	0	0	2	2	1
9	23CS623	Technical Seminar – 1	ESC	0	0	2	2	1
	TOTAL					-	-	24

SEMESTER -VII

S1. No.	Course Code	Course Title	Cate Gory	periods Per Week L T P			Total Contact Periods	Credits		
	THEORY									
1		Open Elective - 3 (Management Courses)	OEC	3	0	0	3	3		
2		Department Elective – 5	DEC	-	_	-	-	3		
3		Department Elective – 6	DEC	-	-	-	-	3		
4	23CS701	Technical Comprehension	EEC	2	0	0	2	2		
		THEORY AND	PRAC	CTIC	AL	S				
5	23CS711	Machine Learning and its Applications	PCC	3	0	2	5	4		
	NU	PRACT	ICAL	S						
6	23CS721	Project Work – Phase 2	EEC	0	0	6	6	3		
7	23CS722	Technical Seminar – 2	ESC	0	0	4	4	2		

SEMESTER -VIII

S1. No.	Course code	Course Title	Category	Periods Per Week L T P		k	Total Contact Periods	
		PRACT	ICALS					
1	23CS821/ 23CS822	Capstone Project / Internship cum project	EEC	0	0	20	20	10
	TOTAL					20	20	10

TOTALCREDITS: 173

DEPARTMENT ELECTIVE COURSES: VERTICALS

VERTICAL 1: CLOUD COMPUTING

S1. No.	Course Code	Course Title	Category		Periods Per Week L T P		Total Contact periods	Credits
1	23IT031	Distributed Computing	DEC	2	0	2	4	3
2	23IT032	Cloud Services Management	DEC	2	0	2	4	3
3	23IT033	Virtualization	DEC	2	0	2	4	3
4	23IT034	Cloud Database Management	DEC	2	0	2	4	3
5	23IT035	Storage Technologies	DEC	2	0	2	4	3
6	23IT036	Security and Privacy in Cloud	DEC	2	0	2	4	3
7	23IT037	Stream Processing	DEC	2	0	2	IN4LO	G 3
8	23IT038	Cloud Web Services	DEC	2	0	2	4	3

VERTICAL 2: FULL STACK DEVELOPMENT

Sl. No.	Course Code	Course Title	Category	Periods Per Week L T P		C	Total Contact periods	Credits
1	23CS031	Java Full Stack Development	DEC	2	0	2	4	3
2	23CS032	Mobile App Development	DEC	2	0	2	4	3
3	23CS033	UI and UX Design	DEC	2	0	2	4	3
4	23CS034	MERN Stack Web Development	DEC	2	0	2	4	3
5	23CS035	DevOps	DEC	2	0	2	4	3
6	23CS036	Web Application Security	DEC	2	0	2	4	3
7	23CS037	Advanced Java Programming	DEC	2	0	2	4	3
8	23CS038	Python Full Stack Development with Machine Learning (Industry Supported Course)	LEGE (2	TE 0	2	HNOLO	GY

VERTICAL 3 : ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

S1. No.	Course Code	Course Title	Category		Periods Per Week L T P		Total Contact periods	Credits
1	23AD040	Natural Language Processing	DEC	2	0	2	4	3
2	23AD045	Data Exploration and Visualization	DEC	2	0′	2	4	3
3	23AD046	Knowledge Engineering	DEC	3	0	0	3	3
4	23IT039	Data Science	DEC	2	0	2	4	3
5	23IT040	Deep Learning	DEC	2	0	2	4	3
6	23IT041	Cognitive Systems	DEC	2	0	2	IN4LO	G 3
7	23IT042	Big Data Analytics	DEC	2	0	2	4 AUTONO	3
8	23IT043	Data Mining and Warehousing	DEC	2	0	2	4	3

VERTICAL 4: NETWORK AND SECURITY

S1. No.	Course Code	Course Title	Category		rioc Per Veel		Total Contact periods	Credits
				L	T	P	perious	
1	23CB031	Ethical Hacking	DEC	2	0	2	4	3
2	23CB034	Security in Computing	DEC	2	0	2	4	3
3	23CS039	Crypto currency and Blockchain Technology	DEC	3	0	0	3	3
4	23EC049	Network Essentials	DEC	2	0	2	4	3
5	23EC050	Network Engineering	DEC	2	0	2	4	3
6	23EC051	Switching, Routing and Wireless Essentials	DEC	2	0	2	4	3
7	23EC052	Enterprise Networking, Security and Automation	DEC	2	0	2	INQLO	3
8	23EC053	Network Design	DEC	3	0	0	3	3

VERTICAL 5: EMERGING TECHNOLOGIES

S1. No.	Course Code	Course Title	Category	V	Periods Per Week L T P		Total Contact periods	Credits
1	23AD043	Intelligent Robots	DEC	3			3	3
2	23CS040	AR VR Technology	DEC	2	0	2	4	3
3	23CS041	Game Development	DEC	2	0	2	4	3
4	23CS042	IoT based Smart Systems	DEC	2	0	2	4	3
5	23CS043	Quantum Computing	DEC	3	0	0	3	3
6	23CS044	Explainable AI	DEC	3	0	0	3	3
7	23CS045	Autonomous Vehicles	DEC	3	0	0	3	3
8	23CS046	AI in Industry	DEC	3	0	0	3	3

MEET LATED TO ANNA IDJIVEDSITY | AUTONOMOLIS

OPEN ELECTIVE - EMERGING TECHNOLOGIES

Sl. No.	Course Code	Course Title	Category	Periods Per Week L T P		C	Total Contact periods	Credits
1	23OAE971	Aviation Management	OEC	3	0	0	3	3
2	23OAS971	Space Engineering	OEC	3	0	0	3	3
3	23OCB971	Cyber Law	OEC	3	0	0	3	3
4	23OEC972	Fundamentals of Wearable Devices	OEC	3	0	0	3	3
5	23OED971	Introduction to Design Thinking	OEC	3	0	0	3	3
6	23OED972	Intellectual Property Law	OEC	3	0	0	3	3
7	23OEE971	Renewable Energy Technologies	OEC	3	0	0	3	3
8	23OEE973	Electric and Hybrid Vehicles	OEC	3	0	0	11/3/20	3
9	23OMA971	Resource Management Techniques	OEC	3	0	0	3	3
10	23OMA972	Graph Theory	OEC	3	0	0	3	3
11	23OMT971	Foundation of Robotics	OEC	3	0	0	3	3

OPEN ELECTIVE - MANAGEMENT COURSES

Sl. No.	Course Code	Course Title	Category	Periods Per Week		er Total		Credits
				L	T	P	remous	
1	23OMG971	Total Quality Management	OEC	3	0	0	3	3
2	23OMG972	Engineering Economics and Financial Accounting	OEC	3	0	0	3	3
3		Engineering Management and Law	OEC	3	0	0	3	3
4	23OMG974	Knowledge <mark>M</mark> anagement	OEC	3	0	0	3	3
5	23OMG975	Industrial Management	OEC	3	0	0	3	3
6	23OMG976	Entrepreneurship and Business Opportunities	OEC	3	0	0	OLOG	3
7	23OMG977	Modern Business Administration and Financing	OEC	3	0	0	3	3
8	23OMG978	Essentials of Management	OEC	3	0	0	3	3

OPEN ELECTIVE - SAFETY RELATED COURSES

Sl. No.	Course Code	Course Title	Category		rio Per Jee	r e k	Total Contact Periods	Credits
1	230AU981	Automotive Safety	OEC	3	0	0	3	3
2	23OCE981	Disaster Management	OEC	3	0	0	3	3
3	23OME981	Industrial Safety	OEC	3	0	0	3	3

SEMESTER-WISE CREDIT DISTRIBUTION

SEMESTER	HSMC	BSC	ESC	PCC	DEC	OEC	EEC	Total
Semester I	5+1*	11	6		,			22
Semester II	4	7	9	5			1*	25
Semester III	3	4	0	18			1*	25
Semester IV		4	OLLE	20	FTEC	HNO	1*	24
Semester V	Red	A	FILIZTED	9 14	UNI'6 RSI	3	3+1*	23
Semester VI			5	7	6	3	3	24
Semester VII			2	4	6	3	5	20
Semester VIII							10	10
Total	12	26	24	63	18	9	21	173

SEMESTER -I

23IP101	INDUCTION PROGRAMME	L	T	P	C
		-	ı	ı	0

COURSE OBJECTIVES:

- This is a mandatory 2 weeks Programme to be conducted as soon as the students enter the institution.
 Normal classes start only after the induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character
- Hence, the purpose of this Programme is to make the

students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature

• Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

• Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

Value Based Communication

This module will focus on improving the communication skills of students

Lectures by Alumni

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

Familiarization to Dept,/Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities

Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests / assessments during this Programme.

REFERENCES:

Guide to Induction program from AICTE

23HS101	ESSENTIAL COMMUNICATION	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

UNIT I FORMATION OF SENTENCES

9

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing- framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development-Parts of Speech, Wh- Questions, yes or no questions, direct and indirect questions. Vocabulary development- prefixes- suffixes-articles – countable and uncountable nouns

UNIT II NARRATION AND DESCRIPTION

9

Reading – Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development – Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing – Write short narrative paragraphs, biographies of friends/relatives - writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures.

UNIT III COMPARING AND CONTRASTING

9

Reading- short texts and long texts -understanding different types of text structures, -coherence-jumbled sentences. Language development- degrees of comparison, concord- Vocabulary development - single word substitutes- discourse markers- use of reference words Writing - comparative and contrast paragraphs writing- topic sentence- main idea, free writing, compare and contrast using some suggested vocabulary and structures.

UNIT IV | SOCIAL MEDIA COMMUNICATION

9

Reading- Reading blogs, social media reviews, posts, comments, process description, Language development - relative clause, Vocabulary development- social media terms-words, abbreviations and acronyms Writing- -e-mail writing- conventions of personal email, descriptions for simple processes, critical online reviews, blog, website posts, commenting to posts.

UNIT V ESSAY WRITING

٩

Reading- Close reading non-technical longer texts Language development - modal verbs, phrasal verbs- Vocabulary development - collocation. Writing- Writing short essays-brainstorming - developing an outline- identifying main and subordinate ideas.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize simple, level-appropriate texts of around 300 words recognizing main ideas and specific details.
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing.
- CO3: Use appropriate expressions to describe, compare and contrast people, things, situations etc., in writing.
- **CO4:** Establish the ability to communicate effectively through emails.

CO5: Determine the language use appropriate for different social media platforms. CO6: Use appropriate expressions for narrative descriptions and process descriptions. **TEXT BOOKS:** Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange Level 2. Cambridge University Press and Assessment Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange Level 3. Cambridge University Press and Assessment **REFERENCES:** Dutt P. Kiranmai and Rajeevan Geeta. Basic Communication Skills, Foundation Books: 2013 Means, L. Thomas and Elaine Langlois. English & Communication for Colleges. Cengage Learning, USA: 2007 POs **PSOs** COs Overall Correlation Recommended by Board of Studies 28-07-2023 Approved 1st ACM 09-09-2023 Date

23MA101	MATRICES AND CALCULUS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

UNIT IV INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques of

Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V | MULTIPLE INTEGRALS

9

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2: Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3: Find the derivative of functions of several variables
- CO4: Examine the application of partial derivatives
- CO5: Compute integrals by different techniques of Integration.
- CO6: Apply the concept of integration to compute multiple integrals.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

REFERENCES:

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2 Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016

- 3 Bali. N., Goyal. M. and Watkins. C., —Advanced Engineering MathematicsII, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- Narayanan. S. and Manicavachagom Pillai.T. K., —Calculus" 4 Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.

COs		POs											PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	ı	-	•	-	-	1	•	1	3	ı	-
2	3	2	1	1	ı	-	•	-	-	1	•	1	3	ı	-
3	3	2	1	1	1	-	•	-	-	1	-	1	3	ı	-
4	3	2	1	1	ı	-	-	-	-	1	-	1	3	ı	-
5	3	2	1	1	ı	-	•	-	-	1	•	1	3	ı	-
6	3	2	1	1		-		1	1		1	1	3	1	-
Overall Correlation	3	2	1	1	1	4	1	-/		1		1	3	7	-
Recommended by Board of Studies 28-07-2023															

1st ACM Date 09-09-202 Approved

24

23CS101	PROGRAMMING IN C	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the basic constructs of C Language.
- To develop C Programs using basic programming constructs.
- To develop C programs using arrays and strings.
- To develop modular applications in C using functions and pointers.
- To develop applications in C using structures and Unions.
- To understand file handling in C.

UNIT I BASICS OF C PROGRAMMING 9

Introduction to programming paradigms – Applications of C Language - Structure of C program - C programming: Data Types

- Constants Enumeration Constants Keywords Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements - Decision making statements
- Switch statement Looping statements Preprocessor directives
- Compilation process.

UNIT II ARRAYS AND STRINGS

5

Introduction to Arrays: Declaration, Initialization – One dimensional array – Two dimensional arrays - String operations: length, compare, concatenate, copy – Selection sort, linear and binary search.

UNIT III | FUNCTIONS AND POINTERS

9

Modular programming - Function prototype, function definition, function call, Built-in functions (string functions, math functions) - Recursion, Binary Search using recursive functions - Pointers - Pointer operators - Pointer arithmetic - Arrays and pointers - Array of pointers - Parameter passing: Pass by value, Pass by reference.

UNI	Γ IV STRUCTURES AND UNION	9
Struc	ture - Nested structures - Pointer and Structures - Arra	v of
	tures - Self-referential structures - Dynamic mem	•
	ation - Singly linked list - typedef - Union - Storage class	-
	Visibility.	3303
	Γ V FILE PROCESSING	9
UNI	I V FILE PROCESSING	9
Files-	Types of file processing: Sequential access, Random Acc	ess-
Sequ	ential access file- Random access file- Command	line
argui	ments.	
	TOTAL: 45 PERIO	DDS
COU	IRSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Describe the basic constructs of C Programming Language	ge.
CO2:	Develop simple applications using C basic constructs.	
CO3:	Construct and Implement applications using Arrays	and
1	Strings.	
CO4:	Develop and Implement applications using Functions	and
CO.	pointers.	
	Construct applications using structures and Unions.	Y
CO6:	Demonstrate File handling concepts and Command	line
TEY	arguments. Γ BOOKS:	
1	Reema Thareja, "Programming in C", Oxford Univer	oitra
1	, 6	Sity
	press, Second Edition, 2016.	• • • •
2	Kernighan B.W and Ritchie D.M, "The C Programm	ung
DEEL	language", Second Edition, Pearson Education, 2015.	
	ERENCES:	
1	Paul Deitel and Harvey Deitel, "C How to program with	
	introduction to C++", Eighth Edition, Pear	son
	Education,2018.	
2	Yashwant Kanetkar, "Let us C", seventeenth Edition, l	3PB
	Publications, 2020.	

3	Anita C	<u>'001</u>	212	1 A	1077	1/1:	++ _~ 1	"('am	2114	or E	und	2220	nto	ام ما	a d
3	Anita G				, ,					-						
	progran	nmi	ng	in (Z" ,]	Firs	t Ec	litic	n, l	Pear	rson	Edu	ıcati	on,	201	3.
4	Byron	S.	Go	tfrie	ed,	"S	cha	umʻ	s (out	line	of	The	eory	aı	nd
	Problem	ns	of	Р	rog	ran	nmi	ng	W	ith	C	",	McC	Grav	w-H	ill
	Educati	on,î	1996	5.												
5	PradipI	Dey,	. M	lana	asG	hos	h, '	"Co	mp	ute	r Fu	ında	mer	ntal	s aı	nd
	Progran	nmi	ng	in	C"	Se	ecor	nd	Edi	tior	ı, O	xfor	d U	Jniv	ersi	ity
	Press, 20		_													,
							I	POs						I	PSO	s
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	-	1	1	1	1	3	1	-
	2	3	2	1	1	1	-	-	-	1	1	1	1	3	1	ı
	3	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-
	4	3	2	1	1	1	-	1	ī	1	1	1	1	3	1	-
	5 .ow	3	2	1	1	1	-2	-	- 7	1	1	1	1	3	1	_
,	6	2	1	10	\ -	1	620	×-	-/	1	1	1	1	3	1	ř-
1	verall relation	3	2	1	1	1	4	-		1	1	1	1	3	1). -
Reco	mmende	d by	Во	ard	of S	Stud	ies	28-	07-2	023						
	G A	ppr	ove	d		00) []	1st	AC	M	TE	Date	NO	09-	09-2	023

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

23HS102	HERITAGE OF TAMILS	L	T	P	С
		1	0	0	1

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil Nadu.

UNIT I LANGUAGE AND LITERATURE 3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism & Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART - SCULPTURE

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

UNIT III	FOL	K AND MAR	ΓIAL A	RTS			3
Therukoot	thu,	Karagattam,	Villu	Pattu,	Kaniyan	Koo	thu,

Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance – Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature – Aram Concept of Tamils – Education and Literacy during Sangam Age – Ancient Cities and Ports of Sangam Age – Export and Import during Sangam Age – Overseas Conquest of Cholas

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine - Inscriptions & Manuscripts - Print History of Tamil Books.

TOTAL: 15 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the evolution of Tamil language and literature, focusing on its cultural, ethical, and secular themes.
- CO2: Outline the making of musical instruments related to Tamil heritage.
- CO3: Discuss the sports and games of Tamils
- **CO4:** Explain the education and literacy during Sangam age.
- CO5: Express the importance and contribution of Tamils to Indian Freedom Struggle
- CO6: Outline the print history of books in Tamil Nadu

TEXT BOOKS:

தமிழக வரலாறு-மக்களும் பண்பாடும்-கே.கேபிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).

கணினித்தமிழ் – முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்). **REFERENCES:** கீழடி- வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு) பொருனை- ஆற்றங்கரை **நாகரிகம்** (**தொல்லியல்** துறை வெளியீடு) POs **PSOs** COs _

1st ACM

Recommended by Board of Studies 28-07-2023

Approved

Overall

Correlation

COLLEGE OF TECHNOLOGY

Date

09-09-2023

23PH111	ENGINEERING PHYSICS	L	T	P	C
		3	0	2	4

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses- factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule – torque –rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

UNIT II | ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

UNIT III	OPTICS AND LASERS	9
Reflection	and refraction of light waves - total internal reflecti	on -

types of optical fiber, Numerical Aperture and acceptance angle - interference -Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating
- 6. Airwedge- Determination of thickness of a thinsheet / wire

- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
 - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Determine the mechanical properties of materials.
- CO2: Apply the principles of electromagnetic waves to real world system.
- CO3: Determine the thickness of thin wire and the characteristic parameter of an optical fiber.
- **CO4:** Apply the principles of lasers to real world application.
- CO5: Organize the quantum mechanical properties of particles and waves.
- CO6: Utilize the quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1 D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", McGraw Hill Education (Indian Edition), 2017.
- 2 Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", McGraw-Hill (Indian Edition), 2017.

REFI	ERENCE	S:														
1	R.Wolfs	son	," E	Esse	ntia	al U	niv	ers	ity	Phy	sics	", V	olur	ne î	1 &	2.
	Pearson	Ed	uca	tion	ı (Ir	ndia	ın E	dit	ion)	, 20	09.					
2	Paul A	. T	iple	r, '	'Ph	ysic	: -	Vo	lun	ne 1	&	2",	CBS	S, (1	Indi	an
	Edition)	, 20	004.													
3	K.Thya	gar	ajar	ı aı	nd	A.C	Gha	tak,	"La	ser	s: F	unda	ame	ntal	s a	nd
	Applica	tion	ıs,"	La	xmi	Pu	blic	atio	ns,	(In	dian	Edi	tion), 20)19.	
4	D.Hallio	day	, R.	Res	nicl	k an	ıd J.	Wa	lke	r, "]	Princ	ciple	es of	Phy	ysic	s",
	Wiley (I	ndi	an l	Edi	tion	1), 2	015									
5	N.Garc	ia, 1	A.D	am	ask	and	1 S.S	Sch	war	z, "	Phy	sics	for (Con	npu	ter
	Science	Stu	den	ıts",	Spı	ring	er V	Ver]	ag,	201	6.					
	COs						I	POs						I	PSC	s
`	COs 1 2 3 4 5 6 7 8 9												12	1	2	3
	1	3	2	1	1	1	-	-	1	1	-	-	1	3	1/	-
	2 POW	3	2	1	1	-	-2	7	-/	9		\$ 2	1	3	9	-
1	3	3	2	1	1	-		<u></u>	-0	-	-	-	1	3	-	ř-
1	4	3	2	1	1	- 8	-	9	-/	F	- 2	-	1	3	, 	-
1	5	3	2	/1	1	-	-		-	1	_	1	1	3	10000	_
	6	3	2	1	1	=	1	1	-	1	÷	1	1	3		-
O,	verall	3	2	1	1	CC	711			0	IE	J	A1 T	3	5	
Corı	relation	<u> </u>		1	1	AFE	E	E.	J.AN	101.0	NI ¥ EB	SITY	ALI II	J	460	_
Reco	mmende	d by	Bo	ard	of S	itud	ies	26-	07-2	2023						
	A	ppr	ove	d				1 st	AC	M		Date	09-09-2023			

23CY111	ENGINEERING CHEMISTRY	L	T	P	C
		3	0	1	4

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

UNIT I WATER AND ITS TREATMENT 9

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical

vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO₂ system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO₂ emission and carbon sequestration, Green Hydrogen.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid battery and lithium-ion battery; Electric vehicles – working

principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2: Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3: Estimate the knowledge of phase rule and composites for material selection requirements
- CO4: Choose a suitable fuel for engineering processes and applications
- CO5: Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6: Explain the different types of batteries, fuel cells and working principles of Electric vehicles

TEX	Т ВООК	S:														
1	P. C. Ja Edition, Delhi, 2	in a	han													
2	Sivasar Publish												Mc(Grav	w-F	Hill
3	S.S. Dar Publish Enginee 44 th Edi	ing, erin tion	, í g M	12th Iath	n nem	Edi	tior	ι,	201	8.C	Grew	al.B	.S.,	"I	High	ner
REF	ERENCE	S:														
1	B. S. Manday Universing Science,	itie	Гех s Р	t bo	ook	of	nar	osc	ien	ce a	and	nan	otecl	hno	log	y",
2	O.G. P	alaı	nna												I	Iill
_	Education (India) Private Limited, 2nd Edition, 2017. Friedrich Emich, "Engineering Chemistry", Scientific															
3		Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014New Delhi, 2018. ShikhaAgarwal, "Engineering Chemistry-Fundamentals and														
5	Shikha Applica Edition, O.V. Ro Book fo	tion 201 ouss	ns", 19 sak	Ca	ımb l H	rid D.	ge] Ges	Uni sser	ver	sity ppl	Pre	chei	Delh mist	ii, S ry- <i>F</i>	eco A To	nd ext
	Busines	s M	edi	a, N	Jew	Yo	rk,	2nc	l Ed	litic	n, 2	013				
١,	COs						1	POs						I	PSC	s
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	3	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	4	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	5	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	6	2	1	-	_	_	-	2	_	-	-	-	1	2	-	_
	verall relation	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
			D	- 1	~ ((111		20	07.3	002						
Reco	mmended	ı by	BO:	ara	01 5	tua	iies	<u> 28-</u>	07-2	.023						

23CS121	C PROGRAMMING	L	T	P	C
	LABORATORY	0	0	4	2

- To familiarize with C programming constructs.
- To develop programs in C using basic constructs.
- To develop programs in C using arrays.
- To develop applications in C using strings, pointers, functions.
- To develop applications in C using structures.
- To develop applications in C using file processing.

PRACTICALS:

- 1. I/O statements, operators, expressions.
- 2. Decision-making constructs: if-else, goto, switch-case, break-continue.
- 3. Loops: for, while, do-while.
- 4. Arrays: 1D and 2D, multi-dimensional arrays, traversal.
- 5. Strings: operations.
- 6. Functions: call, return, passing parameters by (value, reference), passing arrays to function.
- 7. Recursion.
- 8. Pointers: Pointers to functions, Arrays, Strings, Pointers to Pointers, Array of Pointers.
- 9. Structures: Nested Structures, Pointers to Structures, Arrays of Structures and Unions.
- 10. Files: reading and writing, File pointers, file operations, random access, processor directives.

TOTAL: 60 PERIODS

LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS:

HARDWARE: Standalone desktops – 30 No's

SOFTWARE: : C / C++ / Equivalent Compiler

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Demonstrate knowledge on C programming constructs.

CO2:	Develop	pr	ogr	am	s in	Cι	ısin	g b	asic	COI	nstru	ıcts.				
CO3:	Develop	pr	ogr	am	s in	Cι	ısin	g a	rray	s aı	nd s	tring	gs			
CO4:	Develop	ap	plio	cati	ons	in (C us	sing	g fui	ncti	ons	and	poir	nter	s.	
CO5:	Develop	ap	plio	cati	ons	in (Cus	sing	str	uct	ures	and	l uni	on.		
CO6:	Develop	ap	plio	cati	ons	in (C us	sing	g file	e pr	oces	ssing	<u>.</u>			
	COs						I	POs						I	PSO	s
,	LUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 2 1 1 1 - 1 - 2 - 1 2 1 1															
	2	2 3 2 1 1 3 1 - 1 - 2 - 1 3 3 1														1
	3 3 2 1 1 3 1 - 1 - 2 - 1 3 3 1															
	4															
	5	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
	6	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
O	verall	verall														
Corı	relation	3	2	1	1	3	1	4	1		2	-	1	3	3	1
Reco	mmended	l by	Во	ard	of S	tud	ies	28-	07-2	2023				-		e e
Y	A	ppr	ove	d		9		1st	AC	M		Date	A	09-	09-2	2023

23HS121	COMMUNICATION SKILLS	L	T	P	С
	LABORATORY	0	0	2	1
COURSE OBJ	ECTIVES:		I		
• To enab	ole the students to comprehend the mai	in id	ea a	and	
specific	information of the listening passage				
• To hel	p students express themselves cle	early	7, 6	and	
commu	nicate effectively with others				
	oduce authentic language use and conto				
vocabu	lary that might not be encountered in to	extb	ook	S	
Exercise : 1	Listening to conversations set in every	day	SOC	ial	
	context and complete gap-filling exerc	-			
Exercise : 2	Listening to a monologue in everyday		ial		
	context. Diagram labelling and MCQ				
Exercise: 3	Listening to a group conversation in a	cade	emi	2	
I POWE	setting and answer MCQ			A.	
Exercise: 4	Listening to a lecture and answer MC	Q or	gap)	
	filling				
Exercise: 5	Listening to Ted Talks, podcasts, docu	ımeı	ntar	ies	-
	discussion	VIO.	0	CV	10 12
Exercise: 6	Listening to a lecture and reading a te	xt oı	n th	e	
	same subject- compare and contrast	200			
Exercise: 7	Speaking Introducing oneself				
Exercise: 8	Answering questions based on the int	rodı	acti	on	
Exercise: 9	Speaking on a given prompt for 2 min				
Exercise: 10	Answering questions based on the top	oic s	pok	en	
Exercise: 11	Role play- Engaging in conversation				
Exercise: 12	Engaging in Podcast Discussion				
	TOTAL:	25 I	PER	IO	DS
COURSE OU					
	npletion of the course, the students wil				:
	rate fluency in speaking in variety of si				
CO2: Express t	heir knowledge by talking continuousl	y fo	r mo	ore	

than two minutes on a topic

Develop	act	ive	list	enir	ng f	or r	nor	e m	ean	ingf	ul ir	ıtera	ctic	ns	
and conv	vers	atio	ons												
Use a ful	ll ra	nge	e of	strı	ıctu	ıres	nat	ura	lly .	and	app	ropr	iate	ely	
Identify	the	spe	cifi	c in	fori	mat	ion	in (con	versa	atior	ıs, ir	iter	viev	ws,
talks and	d le	ctur	es												
Develop	the	ab	ility	to	con	npa	re a	nd	ana	lyse	diff	eren	t fo	rms	s of
informat	ion	, id	enti	ifyiı	ng k	ey	sim	ilar	itie	s and	d dif	fere	nce	s.	
COs						I	POs						I	PSC	s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
2	ı	1	-	-	1	-	-	-	2	3	-	2	-	-	-
3	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
4	ı	ı	ı	-	-	-	-	-	ı	3	•	2	ı	-	-
5	1	ı	ı	1	-1	1	1_	1	3	3	1	2	1	1	-
6 POW	ER E	Ř	1	-	-	1	1	-7	2	3	-		ŀ	-	-
Overall 1 1 - 3 3 - 2														-	-
	and conv Use a full Identify talks and Develop informat COs 1 2 3 4 5 6 verall	and convers Use a full ra Identify the talks and led Develop the information COs 1 1 - 2 - 3 - 4 - 5 - 6 - verall	and conversation Use a full range Identify the specialks and lectur Develop the abbinformation, identify COs 1 2 1 2 3 4 5 6 verall	and conversations Use a full range of Identify the specificalks and lectures Develop the ability information, identification COs 1 2 3 1 2 3 4 5 6 verall	and conversations Use a full range of structures Identify the specific in talks and lectures Develop the ability to information, identifying COs 1 2 3 4 1	and conversations Use a full range of structu Identify the specific informations and lectures Develop the ability to combine to a second sec	and conversations Use a full range of structures Identify the specific informat talks and lectures Develop the ability to compa information, identifying key COs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 3 4 5 6 1 4 5 6 1 5 6 1 7 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	and conversations Use a full range of structures nat Identify the specific information talks and lectures Develop the ability to compare a information, identifying key sim COS POS 1 2 3 4 5 6 7 1 1 1 2 1 1 4 1 1 5 1 1 6 1 1 verall	and conversations Use a full range of structures natura Identify the specific information in o talks and lectures Develop the ability to compare and information, identifying key similar COS POS	and conversations Use a full range of structures naturally and Identify the specific information in conversations and lectures Develop the ability to compare and analytic information, identifying key similarities COS POS POS	and conversations Use a full range of structures naturally and Identify the specific information in conversatalks and lectures Develop the ability to compare and analyse information, identifying key similarities and POs TOS POS 1 2 3 4 5 6 7 8 9 10 1 1 1 - 2 3 2 1 1 - 2 3 3 1 1 - 2 3 4 1 1 - 2 3 5 1 1 - 2 3 6 1 1 - 2 3	and conversations Use a full range of structures naturally and approach approach talks and lectures Develop the ability to compare and analyse diffinformation, identifying key similarities and diffinformation, identifying key similarities and diffing to the second s	Second Property Second Pro	and conversations Use a full range of structures naturally and appropriate Identify the specific information in conversations, intertalks and lectures Develop the ability to compare and analyse different for information, identifying key similarities and differences COS POS	Use a full range of structures naturally and appropriately Identify the specific information in conversations, interview talks and lectures Develop the ability to compare and analyse different forms information, identifying key similarities and differences. POS POS PSC 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 1 1 - 2 3 - 2 2 2 1 1 - 2 3 - 2 5 3 1 1 - 2 3 - 2 5 4 1 1 - 3 3 - 2 6 5 1 1 - 2 3 - 2 7 6 1 1 - 2 3 7 verall

Date

09-09-2023

1st ACM

Approved

23CS122	COMPUTATIONAL THINKING	L	T	P	C
		0	0	2	1

- To formulate problems in a way that enables the use of a computer to solve them.
- To logically organize and analyze data.
- To automate solutions through algorithmic thinking.
- To identify and implement possible solutions with the goal of achieving the most efficient and effective combination of steps and resources.
- To generalize and transfer this problem solving process to wide variety of problems

MODULE I INTRODUCTION TO ALGORITHMS 10

Algorithmic thinking - Data abstraction and representation - Abstraction and translation of everyday data for use on a computer - Decomposing a complex problem.

Suggested Activities:

- Explore algorithm design by creating oral algorithms.
- Abstract the essential details of everyday objects.
- Translate the description of everyday objects into data types and variables.
- Decompose a complex problem into discrete steps.

Suggested Evaluation Methods:

Evaluation of the oral algorithms and computer data.

MODULE II PROGRAMMING 10

Strategies for decomposition and algorithm design - Divide and Conquer - Simple program implementations - Overall data representation, abstraction and algorithm design - Program implementations.

Suggested Activities:

- Design a simple algorithm for solving the problem.
- External learning: Study of different strategies for decomposition and algorithm design.
- Examine sample input and expected output and develop strategies to decompose the problem.
- Use decomposition to break the problem into smaller problems and algorithmic design to plan a solution strategy.
- External learning: Simple program implementations.
- Examples of Data representation, abstraction, analysis and algorithm design.

Suggested Evaluation Methods:

- Whiteboard presentations of the decomposition and algorithm.
- Evaluation of the developed strategies.
- Whiteboard presentations of the Data analysis and Algorithm design.
- Demonstration of the implemented programs.

MODULE	COMPUTATIONAL THINKING	10
III		

Application of computational thinking to simple real world problems - program implementation of decomposed modules.

Suggested Activities:

Application to simple real-world problems.

Suggested Evaluation Methods:

Evaluation of the solutions to the real world problems.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Formula	to 1	arol	alon	ac it	1 2 1	(A72)	v, th	at o	າກາ	hloc	tho:	1160	of a		
CO1.	compute	_					wa	y ti	iai (-11 0	ibies	uic	use	OI a	L	
COL	_						- 1		1	1 - 1						
	Identify,											1				
	Utilize a															
CO4:	-	Identify and implement possible solutions with the goal of														
		achieving the most efficient and effective combination of														
	-	steps and resources.														
CO5:	Apply a	Apply and transfer the problem solving process to wide														
	variety o	variety of problems.														
CO6:	Apply al	Apply algorithmic strategies to real-world problems using														
	basic pro	basic programming techniques.														
REF	ERENCES	RENCES:														
1	Explorin	Exploring Computational Thinking.														
	https://edu.google.com/resources/programs/exploring-															
2	https://	edı	ı.go	ogle	e.co	m/	res	our	ces	/p:	rogra	ams/	exp/	olor	ing-	
2	https://computa						res	our	ces	/p:	rogra	ams/	exp'	olor	ing-	
2							Å			/p:	rogra	ams/	exp			
		tio	nal-	thir	nkin	g/	I	POs				•			PSC	s
	computa COs	tio 1	nal-	thir	nkin 4	g/ 5	Å			/p	rogra 10	11	12	1	PSC 2	
	computa COs 1	1 3	nal- 2 2	3 1	4 1	g/ 5 1	I	POs 7				•	12 1	1 3	PSC 2 1	s
	COs 1 2	1 3 3	2 2 2	3 1	4 1	5 1	I	POs 7 -	8		10	11 -	12 1	1 3 3	PSC 2 1 1	s
	computa COs 1	1 3	nal- 2 2	3 1	4 1	g/ 5 1	I	POs 7				•	12 1	1 3	PSC 2 1	s
	COs 1 2	1 3 3	2 2 2	3 1	4 1	5 1	I	POs 7 -	8		10	11 -	12 1	1 3 3	PSC 2 1 1	s
	COs 1 2 3	1 3 3	2 2 2 2	3 1 1	4 1 1	5 1 1	I	POs 7 -	8		10	11 -	12 1 1 1	3 3 3	PSC 2 1 1 1 1	s
	COs 1 2 3 4	1 3 3 3	2 2 2 2	3 1 1 1	4 1 1 1	g/ 5 1 1 1	I	POs 7 -	8		10	11 -	12 1 1 1 1	3 3 3 3	PSC 2 1 1 1 1 1 1	s
	COs 1 2 3 4 5	1 3 3 3 3 3	2 2 2 2 2 2 2	3 1 1 1 1 1	4 1 1 1 1 1	g/ 5 1 1 1 1 1	I	POs 7 -	8		10	11 -	12 1 1 1 1 1	3 3 3 3 3	PSC 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s
O	COs 1 2 3 4 5 6 everall relation	1 3 3 3 3 3 3	2 2 2 2 2 2 2 2	3 1 1 1 1 1 1	4 1 1 1 1 1	5 1 1 1 1 1	6	7	8 - - -	9	10 - - 1 E	11 -	12 1 1 1 1 1	1 3 3 3 3	PSC 2 1 1 1 1 1 1 1 1	s
O	COs 1 2 3 4 5 6 Overall relation mmended	1 3 3 3 3 3 3 by	2 2 2 2 2 2 2 2	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 1	5 1 1 1 1 1	6	7 28-0	8 - - -	9	10 - - - - -	11 -	12 1 1 1 1 1	3 3 3 3 3 3 3	PSC 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 - - - -

SEMESTER - II

23HS201	PROFESSIONAL ENGLISH	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

UNIT I WORKPLACE COMMUNICATION

9

Reading - Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing - Writing emails -emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development- Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary - One-word substitutes; Abbreviations & Acronyms as used in technical contexts and social media.

UNIT II EXPRESSING CAUSE AND EFFECT

9

Reading - Reading longer technical texts- Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development- Active, Passive and Impersonal Passive Voice transformations, Infinitive and Gerunds Vocabulary - Synonyms- contextual meaning of

words, Same word acting as different parts of speech, causal expressions.

UNIT III | PROVIDING SOLUTIONS TO PROBLEMS

9

Reading - Case Studies, editorials, news reports etc. Writing - Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional sentences Vocabulary - Compound Words, discourse markers.

UNIT IV | INTERPRETATION OF GRAPHICS

9

Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. Language development-Possessive & Relative pronouns, numerical adjectives, Vocabulary Homonyms and Homophones, sequence words.

UNIT V REPORT WRITING AND RESUME WRITING

9

Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing
- CO3: Use appropriate expressions to describe process and product, compare and contrast data, analyze problems, provide solutions and prove an argument in writing

ability to communicate **CO4:** Establish the effectively in professional environment through emails and reports CO5: Determine the language use appropriate for different social media platforms used for digital marketing CO6: Convert skills to assets and position themselves in job market through their own professional narratives TEXT BOOKS: V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 1 Priyadharshini, Veena Selvam, English for Science & Technology I, Cambridge University Press and Assessment V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 2 Priyadharshini, Veena Selvam, English for Science & Technology II, Cambridge University Press and Assessment **REFERENCES:** Business Correspondence and Report Writing by Prof. R.C. 1 Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi. Developing Communication Skills by Krishna Mohan, Meera 2 Bannerji- Macmillan India Ltd. 1990, Delhi. **POs PSOs** COs 2 5 6 9 12 2 1 3 4 7 8 10 11 1 2 2 3 1 1 1 2 2 3 2 3 1 2 3 2 4 2 3 2 2 3 2 5 1 6 2 3 3 **Overall**

2 | 3

28-07-2023 1st ACM 3

09-09-2023

Date

1 | 1

Correlation

Recommended by Board of Studies

Approved

23MA204	PROBABILITY AND STATISTICS	L	T	P	C
		3	1	0	4

- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To acquaint the knowledge of Estimation Theory for small and large samples this plays an important role in real life problems.
- To provide required advanced statistical tools in solving engineering problems
- To introduce the basic concepts of classifications of statistical quality control this plays very important roles in the field of agricultural engineering

UNIT I PROBABILITY AND RANDOM VARIABLES 9+3

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

UNIT II TWO- DIMENSIONAL RANDOM 9+3 VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Curve Fitting-Method of Least Squares-Central limit theorem (for independent and identically distributed random variables, without proof)-Simple problems.

UNIT III ESTIMATION THEORY

9+3

Unbiased estimators - Efficiency - Consistency - Sufficiency - Robustness - Method of moments - Method of maximum Likelihood - Interval estimation of Means - Differences between means.

UNIT IV NON- PARAMETRIC TESTS

9+3

Introduction - The Sign test - The Signed - Rank test - Rank - sum

tests - The U test - The H test- Tests based on Runs - Test of randomness - The Kolmogorov Tests.

UNIT V | STATISTICAL QUALITY CONTROL

9+3

Control charts for measurements (\bar{X} and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the fundamental knowledge of the concepts of probability and one dimensional random variables in engineering.
- CO2: Apply standard probability distributions to real life phenomenon.
- CO3: Apply the basic concepts of two dimensional random variables in engineering applications.
- CO4: Apply the concept of estimation theory for small and large samples in real life problems.
- CO5: Apply the notion of sampling distributions and statistical techniques used in engineering and management problems.
- CO6: Apply the basic concepts of classifications of statistical quality control in the field of engineering.

TEXT BOOKS:

- Johnson. R.A., Miller. I.R and Freund. J.E, "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.
- Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata Mc Graw Hill, 4th Edition, 2007.

REFERENCES:

- 1 Dr.P. Sivaramakrishna Das, C. Vijayakumari, —A text book of probability and statistics!, Pearson Publications.
- 2 Gupta. S.C. and Kapoor. V. K., —Fundamentals of Mathematical Statistics, Sultan Chand & Sons, New Delhi, 12th Edition, 2020.

	Devore. J.L., "Probability and Statistics for Engineering and															
3	Devore	. J.I	١١٠, ١١	Pro	bab	oilit	y aı	nd S	Stat	isti	cs fo	r Er	ngin	eeri	ng a	ınd
	the Scie	enc	esI,	Ce	nga	ıge	Lea	arni	ng,	Ne	ew I	Delh	i, 8t	h E	diti	on,
	the Sciences ^I , Cengage Learning, New Delhi, 8th Edition, 2014.															
4	Ross. S.M., "Introduction to Probability and Statistics for															
	Engineers and Scientists", 5thEdition, Elsevier, 2014.															
	POs												PSC)s		
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	1	-	-	-	-	1	3	ı	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	1	1	1	-	-	-	1	3	ı	-
	5	3	2	1	1	-	1	ı	-	1	1	-	1	3	ı	ı
	6	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
O	verall	3	2	1	1								1 -	3		
Cor	relation	5	1	7	1		Ľ,	J	-	Ā	1	-	1	3	41	P

Recommended by Board of Studies

Approved

COLLEGE OF TECHNOLOGY

Date

09-09-2023

28-07-2023 1st ACM

23PH205	PHYSICS FOR INFORMATION	L	T	P	C
	SCIENCE	3	0	0	3

- To make the students understand the importance in studying electrical properties of materials.
- To enable the students to gain knowledge ir semiconductor physics
- To instill knowledge on magnetic properties of materials.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement, ensuing nano device applications and quantum computing.

UNIT I ELECTRICAL PROPERTIES OF MATERIALS 9

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Wiedemann-Franz law - Success and failures - electrons in metals - Particle in a three-dimensional box - degenerate states - Fermi- Dirac statistics - Density of energy states - Electron in periodic potential - Energy bands in solids - tight binding approximation - Electron effective mass - concept of hole.

UNIT II SEMICONDUCTOR PHYSICS 9

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – variation of Fermi level with temperature and impurity concentration – Carrier transport in Semiconductor: random motion, drift, mobility and diffusion (qualitative) – Hall effect and devices – Ohmic contacts – Schottky diode – introduction to solid state drive (SSD)

UNIT III | MAGNETIC PROPERTIES OF MATERIALS

9

Magnetic dipole moment – atomic magnetic moments- magnetic permeability and susceptibility - Magnetic material classification: diamagnetism – paramagnetism – ferromagnetism – antiferromagnetism – ferrimagnetism – Ferromagnetism: origin and exchange interaction- saturation magnetization and Curie temperature – Domain Theory- M versus H behaviour – Hard and soft magnetic materials – examples and uses-– Magnetic principle in computer data storage – Magnetic hard disc (GMR sensor).

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques.

UNIT V NANODEVICES AND QUANTUM COMPUTING

9

Introduction - quantum confinement - quantum structures: quantum wells, wires and dots -- band gap of nanomaterials. Tunneling - Single electron phenomena: Coulomb blockade - resonant- tunneling diode - single electron transistor - quantum cellular automata - Quantum system for information processing - quantum states - classical bits - quantum bits or qubits -CNOT gate - multiple qubits - Bloch sphere - quantum gates - advantage of quantum computing over classical computing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the knowledge of classical and quantum electron theories to energy band structures.
- CO2: Utilize the basics of intrinsic and extrinsic semiconductor physics and its application in various devices.
- CO3: Apply the knowledge of magnetic properties of materials in data storage.

CO4: Explain the electro optical properties and optoelectronic devices. CO5: Explain the quantum structures, quantum confinement and Nano devices. CO6: Explain the role of quantum structures in information processing technique. **TEXT BOOKS:** Jasprit Singh, "Semiconductor Devices: Basic Principles", Wiley (Indian Edition), 2007. S.O. Kasap. Principles of Electronic Materials and Devices, McGraw-Hill Education (Indian Edition), 2020. Parag K. Lala, Quantum Computing: A Beginner's Introduction, McGraw-Hill Education (Indian Edition), 2020. **REFERENCES:** Charles Kittel, Introduction to Solid State Physics, Wiley 1 India Edition, 2019. Y.B.Band and Y.Avishai, Quantum Mechanics with Applications to Nanotechnology and Information Science, Academic Press, 2013. V.V.Mitin, V.A. Kochelap and M.A.Stroscio, Introduction to 3 Nanoelectronics, Cambridge Univ. Press, 2008. G.W. Hanson, Fundamentals of Nanoelectronics, Pearson 4 Education (Indian Edition) 2009. 5 B.Rogers, J.Adams and S.Pennathur, Nanotechnology: Understanding Small Systems, CRC Press, 2014. **POs PSOs COs** 1 6 8 10 11 12 1 1 3 2 1 1 1 3 2 3 2 1 1 3 1 3 3 2 1 1 1 4 2 1 1 2 5 2 1 _ 1 _ _ 6 2 1 1 2 Overall 3 2 1 1 3 1 Correlation Recommended by Board of Studies 28-07-2023

1st ACM

Date

09-09-2023

Approved

23CS201	BCS201 DATA STRUCTURES USING C L T P C							
		3	0	0	3			
COURSE OBJ	ECTIVES:							
• To und	erstand the concepts of ADTs.							
	n linear data structures – lists, stacks, a	nd q	ueu	es.				
• To und	erstand non-linear data structures – tre	es ai	nd g	grap	hs.			
• To und	erstand sorting, searching and hashing	algo	oritl	nms	S.			
	y Tree and Graph structures.							
UNIT I LIS	STS				9			
Abstract Dat	a Types (ADTs) – List ADT – .	Arra	y-b	ase	d			
implementation	on – Linked list implementation – Singly	y lin	ked	list	ts			
- Circularly 1	inked lists – Doubly-linked lists –App	olica	tio	ns c	of			
lists - Polynor	mial ADT.							
UNIT II ST	ACKS AND QUEUES	100			9			
Ct. 1 ADT	P Dos in the little P D I in	4	_					
	Operations – Applications – Balancing	_	-		-			
	ithmetic expressions- Infix to Postfix o				r.			
100	- Operations - Circular Queue -	DeÇ	ueı)	ıe	Η.			
Applications of								
UNIT III TR	EE STRUCTURES			G١	9			
Tree ADT -	Гree Traversals - Binary Tree ADT -	Exp	ores	sio	n			
trees - Binar	y Search Tree ADT -Priority Queue	e (H	[eap	s)	_			
Binary Heap-	Multiway Search Trees - B-Tree - B+	Tre	e.					
UNIT IV SO	RTING AND SEARCHING				9			
Sorting - Bubl	ole sort - Selection sort - Insertion sort	-Me	rge	Son	rt			
- Quick Sort -	Shell sort — Radix sort. Searching – Lin	ear	Sea	rch	_			
Binary Search	•							
UNIT V GR	RAPH STRUCTURES				9			
Graph Definit	ion - Representation of Graphs - Type	s of	Gra	ıph	_			
-	raversal –Depth-first traversal – Bi-co			-				
	fort – Dijkstra's algorithm – Minimus			•				
					\circ			

											TO	ΓAL	: 45	PEF	RIO	DS
COU	RSE OU	TC	ON	1ES	:											
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to):
CO1:	Make u	se c	of va	rio	us l	ink	ed 1	ist (pe	ratio	ons t	o so	lve t	he g	give	n
	problen															
CO2:		Apply linear data structures stack and queue for real time														
	applications.															
CO3:	Utilize the non-linear data structure tree for real world															
COA	applications Apply various continual apprint for the given scenario															
	Apply various sorting algorithms for the given scenario															
	Apply various searching algorithms for the given scenario															
	Apply graph algorithms for graph applications															
1 E X	Mortle A		. 147		D	2 to (Char		***	212	1 1 1		h	Λ 12.0	1	:
1	Mark A in C, 2n										•	_	лип.	AH	пуs	15
2	Kamtha												1 1ct	Fd	itio	n
_	Pearsor							Jute		uct	arcs	ш	, 100	Lu	itioi	,
REFI	ERENCE		1	N			П		- (A			T A		-10	
1	Langsa	m,	Au	gen	stei	n a	nd	Ta	ner	ıbaı	ım,	Dat	a St	ruc	ture	es
1	Using (an	d C	++,	. 2n	d E	diti	on,	Pea:	rsoı	ı Ed	ucat	ion,	201	5.	
2	Thomas															
	Clifford								Algo	ritl	nms'	', Fo	urth	Ed	itio	n,
	Mcgrav								J-JAN	UNION	OUVE		AUT	C.	oritin in	7
3	Alfred												-		.Dat	ta
	Structu	res	ana	AI	gor	ıtnr		on of the second		tion	, Pea	arso	n, 20		PSC)c
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	2	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	3	3	2	1	1	1	1	1	1	2	2	3	3	3	1	1
	4	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	5	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	6	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	verall	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	elation											,	J	J		_
Reco	mmende				of S	stud	lies		07-2			D (00	00.5	.000
	Approved 1st ACM Date 09-09-2023															

23HS203	TAMILS AND TECHNOLOGY	L	T	P	C
		1	0	0	1

- To summarize the weaving industry and ceramic technology during Sangam Age
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola,Pallava and Pandya period
- To Explain about the water bodies of Sangam age and relate it to the agricultural usage
- To Outline to students the agriculture and irrigation technology during the Chola Period
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software

UNIT IWEAVING AND CERAMIC TECHNOLOGY3Weaving Industry during Sangam Age - Ceramic technology --Black and Red Ware Potteries (BRW) - Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III | MANUFACTURING TECHNOLOGY 3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV | AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use -Agriculture and Agro Processing - Knowledge of Sea - Fisheries -Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3 Development of Scientific Tamil -Tamil computing Digitalization of Tamil Books -Development of Tamil Software -Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize the weaving industry and ceramic technology during Sangam Age CO2: Explain the design and construction of houses during Sangam Age CO3: Explain the sculptures and temples of Chola, Pallava and Pandya period. **CO4:** Explain about the water bodies of Sangam age and relate it to the agricultural usage CO5: Outline the agriculture and irrigation technology during the Chola Period. **CO6:** Explain the digitalization of tamil books and development of Tamil software **TEXT BOOKS:** Dr.K.K.Pillay ,"Social Life of Tamils", A joint publication of 1 TNTB & ESC and RMRL

REFERENCES: 1 Dr.S.Singaravelu ,"Social Life of the Tamils - The Classical																
1	Dr.S.Sir	ngai	rave	elu	"'So	ocia	l Li	fe o	of tl	ne 🛚	[ami	ils -	The	Cla	issio	cal
	Period"	, F	ubl	ish	ed	by:	In	teri	nati	ona	l In	stitu	ıte	of	Tan	nil
	Studies.															
2	Dr.S.V.Subatamanian , Dr.K.D. Thirunavukkarasu,															
	"Historical Heritage of the Tamils", Published by:															
	International Institute of Tamil Studies												,			
	POs PSOs															
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	_	_	_	_	_	1	1	1	_	_	_	_	_	_	_
	2	_	_		_		1	1	1	_	_	_	_		_	_
	3	_	_	_	_	_	1	1	1	_	_	_		_	_	_
	4	_	-	_	_	_	1	1	1	_	-	_	_	_	_	-
	-	_	-	-	-	-		-		-	-	-	-	-	-	-
	5	1	-	-	-	i	1	1	1	d	_	-		-	1	-
	6 00W	(A)	į	1	1	-	1	1	1				6	-	7	-
	verall relation	1.0	11	6	\-	-	1	1	1	-	•	-	-	-	-	1
	mmende	d by	Во	ard	of S	Stud	lies	28-	07-2	023						
1	Approved 1st ACM Date 09-09-2023															

23EE281	BASIC ELECTRICAL AND	L	Т	P	C
23LL201	ELECTRONICS ENGINEERING	2	0	2	3
COURSE OF			U	_	-
	ntroduce the basics of electric circuits and ar	21270	ic		
	mpart knowledge in the basics of working p			an	đ
	lication of electrical machines	111101	Picc	, 411	•
	ntroduce analog devices and their characteri	stics			
	educate on the fundamental concepts of digit				
	ctional elements and working of measuring i				
	lemonstrate the load test on DC machines, w	orki	ng (of P	N
	ction diodes, Zener diodes and rectifiers. LECTRICAL CIRCUITS			1	6
ONITI	LECTRICAL CIRCUITS				O
DC Circuits:	Circuit Components: Conductor, Resist	or,	Ind	ucto	or,
Capacitor- O	hm 's Law-Kirchhoff's Laws -Nodal Ar	alys	sis,	Me	sh
analysis wi	th independent sources only (Ste	ady	S	tate	e)-
3	to AC Circuits -Steady state analysis of	5			,
400 / 400	(Simple problems only).	Y		133	
Annual LC	LECTRICAL MACHINES				6
	SECTION IN TERM (ES		-		
Construction	and Working principle of DC Gene	erato	rs,	EN	1F
equation, Ty	pes and Applications- Working Prin	ciple	e 0	fΓ	C
motors, Torq	ue Equation, Types and Applications C	Cons	stru	ctic	n,
Working prir	nciple and Applications of Single-Phase	Trar	sfo	rm	er.
UNIT III A	NALOG ELECTRONICS				6
DATE C 1		. 1		•	
-	Diodes, Zener Diode-Characteristics & A				
-	tion Transistor, JFET, SCR, MOSFET,	- 1y	pes	s, 1	- V
	cs and Applications – Rectifier.				
UNIT IV D	IGITAL ELECTRONICS				6
Review of r	number systems, Combinational logic	(ad	der	aı	nd
subtractor) -	representation of logic functions-SOP and	d PC	OS f	orn	ıs,
K-map repre	sentations and minimization using K-m	aps	(սյ	to	3
variables).	_				
UNIT V M	EASUREMENTS AND INSTRUMENT	ГАТ	IOI	1	6
Functional el	ements of an instrument, Standards and	d ca	libr	atic	n,

Operating Principle, types- Moving Coil and Moving Iron meters, Instrument Transformers- CT and PT, DSO-Block Diagram

Total: 30 PERIODS

LAB COMPONENT

- 1. Verification of Ohms and Kirchhoff's Laws.
- 2. Load test on DC Shunt Motor.
- 3. Characteristics of PN and Zener Diodes
- 4. Design and analysis of Half wave and Full Wave rectifiers
- 5. Implementation of Binary Adder and Subtractor
- 6. Study of DSO

Total : 30 + 30 = 60 Periods

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply fundamental laws to DC electric circuits and demonstrate it experimentally.
- CO2: Explain the steady state AC circuits with RL, RC, and RLC circuits
- CO3: Identify the working principle and applications of electrical machines with experimental results
- CO4: Demonstrate the characteristics of various analog electronic devices
- CO5: Experiment with the basic concepts of digital electronics and demonstrate the implementation of Binary Adder and Subtractor
- **CO6:** Illustrate the operating principles of measuring instruments and demonstrate DSO for the basic measurements.

TEXT BOOKS:

- 1 Kothari D P and I.J Nagrath,—Basic Electrical and Electronics Engineering, Second Edition, McGraw Hill Education, 2020
- 2 Sedha R. S.,—A textbook book of Applied Electronics, S. Chand & Co.,2008

3	A.K. Sawhney, Puneet Sawhney _A Course in Electrical &																
	Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2015.										LI						
DEE	FERENCES:																
				1 т	T N T		.1			171		1 1	, .				
1	Kothari D P and I.J Nagrath, —Basic Electrical Engineering,																
	Fourth Edition, Mc Graw Hill Education, 2019.																
2		K. Bhattacharya —Basic Electrical and Electronics															
	Engineering, Pearson Education, Second Edition, 2017.																
3	Thomas L. Floyd, Digital Fundamentals',																
	11thEdition,Pearson Education,2017.																
4	Albert Malvino, David Bates, _Electronic Principles,																
	McGraw Hill Education; 7th edition, 2017.																
5	Mahmood Nahvi and Joseph A. Edminister, —Electric																
	Circuits, 86 Schaum 'Outline Series, McGraw Hill, 2002.																
6	H.S. Kalsi, Electronic Instrumentation', Tata McGraw-Hill,										i11,						
,	New Delhi, 2010																
7	James A. Svoboda, Richard C. Dorf,—Dorf's Introduction to																
	Electric	Cir	cuit	sl, '	Wil	ey,	201	8.	h	1			-		1		
	POs PSO													s			
$COs_{G_{ \mathcal{N}_{E} }}$		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1		3	2	1	1	AFF	LIAI	(U.1)	1	1	1	511 Y	1	3	MON	1	
2		2	1	-	_	-	-	-	1	1	1	-	1	2	-	1	
3		3	2	1	1	-	1	1	1	1	1	-	1	3	-	1	
4							_	1	1	1	1		1	2		1	
	4	2	1	-	-	-	1	1	1		_	-	T	2	-	1	
	4 5	2	2	1	- 1	-	1 -	-	1	1	1	-	1	3	-	1	
					1							-					
O	5	3	2	1	-		-	-	1	1	1	-	1	3	-	1	
	5	3	2	1	- 1 - 1		-	-	1				1	3	-	1	
Cor	5 6 verall	3 2 3	2 1 2	1 - 1	1	-	- - 1	- - 1	1	1 - 1	1 - 1	-	1	3	-	1	

23ME211	ENGINEERING GRAPHICS	L	T	P	C
		3	0	2	4

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

UNIT II	PROJECTION OF POINTS, LINES AND	9+6
	PLANE SURFACE	

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method. Projection of planes (hexagonal and pentagonal planes

only) inclined to both the principal planes by rotating object method.

LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

UNIT III PROJECTION OF SOLIDS AND FREE HAND 9+6 SKETCHING

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

ND 9+6

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section plane inclined to the horizontal plane

UNIT V ISOMETRIC PROJECTION 9+6

Principles of isometric projection - Isometric scale - Isometric view - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions.

LIST OF EXERCISES:

- 1. Drawing Isometric view and projection of simple solids.
- 2. Drawing three dimensional modeling of isometric projection of combination of solids.

TOTAL: 75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Construct the conic curves, involutes and cycloids.
- CO2: Develop and Sketch the orthographic projections of points, lines and plane surfaces.
- CO3: Develop and Sketch the orthographic projections of simple solids.
- **CO4:** Construct the projections of sectioned solids and development of the lateral surfaces of solids.
- CO5: Develop and Sketch the isometric sections of solids.
- CO6: Develop and Sketch the orthographic projection 2D and 3D objects using Auto CAD.

TEXT BOOKS:

- Bhatt N.D. and Panchal V.M., —Engineering Drawingl, Charotar Publishing House, 53rd Edition, 2019.
- 2 Basant Agarwal and Agarwal C.M.,—Engineering Drawingl, McGraw Hill, 2nd Edition, 2019

REFERENCES:

- 1 Natrajan K.V., —A Text Book of Engineering Graphicsl, Dhanalakshmi Publishers, Chennai, 2018.
- 2 Gopalakrishna K.R., —Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition, 2017.

3	Luzzad	er,	Wa	rre	n.J.	and	d D	uff,	, Jo	hn	M., ·	–Fu	nda	mei	ntals	s of
	Engine	erin	g I	Ora	win	ıg v	with	n aı	n ir	ntro	duc	tion	to	Inte	eract	ive
	Computer Graphics for Design and Production, Eastern															
	Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi,															
	2005.															
4	Parthasarathy N. S. and Vela Murali, -Engineering															
	Graphic	Graphics, Oxford University, Press, New Delhi, 2015. 5.														
	Shah M	Shah M.B., and Rana B.C., —Engineering Drawing, Pearson														
	Education India, 2nd Edition, 2009.															
5	Venugo	pal	K.	and	d Pı	rabl	าน I	Raja	ı V.	, —l	Engi	neer	ing	Gra	phi	cs",
	New A	ge I	nte	rna	tior	nal ((P)	Lim	ite	d, 2	008.		Ü		-	
							I	POs	,						PSC)s
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	_	-	1	-	3	2	2	2	2	-
	2 .ow	3	2	1	1	2	-	4	1	A	3	2	2	2	2	P
	3	3	2 1 1 2 1 - 3 2 2 2									2	2	i-		
	4	3	2	1	1	2	-		1	(A)	3	2	2	2	2	-
	E VI	0	_	4	1	_		W	1	. 1	^	_	0	_	_	Jan. 1

Correlation								CT. 150	2000	0.1.000160	2000.00			TO THE OWNER.	
Recommended	by	Boa	rd (of S	tud	ies	28-	07-2	2023	}					
A	ppr	ove	d				1st	AC	M		Date	į	09	-09-2	2023

3 2

2 2 2

2

1 1

23ME221	ENGINEERING PRACTICES	L	T	P	C
	LABORATORY	0	0	4	2

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work;
 Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment; Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

GROUP A (CIVIL and MECHANICAL)

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK

- a) Sawing
- b) Planning
- c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture
- b) Study of common industrial trusses using models.

PART II MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

BASIC MACHINING PRACTICE

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

SHEET METAL WORK

- a) Forming and Bending
- b) Making of a square Tray

MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.

pre	eparation.	
	TOTAL: 30 PERI	ODS
	GROUP B (ELECTRICAL & ELECTRONICS)	
PART III	ELECTRICAL ENGINEERING PRACTICES	15
1 Res	idential House wiring using Switches Fuse Indic	ators

- Lamp and Energy Meter.
- 2. Staircase Wiring.

- 3. Fluorescent Lamp Wiring with Introduction to CFL and LED Types.
- 4. Measurement of Energy using Single Phase Energy Meter.
- 5. Study of Iron Box Wiring and Assembly
- **6.** Study of Fan Regulator Electronic Type

PART IV | ELECTRONICS ENGINEERING PRACTICES | 15

- 1. Study of Electronic components and equipment Resistors, Colour coding measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.

and Smart phone.

- 4. Soldering simple electronic circuits and checking continuity.
- 5. Study the elements of smart phone
- 6. Study of LED TV (Block diagram

COU	RSE OUTCOMES:
3	After completion of the course, the students will be able to:
CO1:	Plan the pipeline layout for common household plumbing work.
CO2:	Make use of welding equipment and carpentry tool for
	making joints.
CO3:	Demonstrate on centrifugal pump, air conditioner and
	foundry operations.
CO4:	Demonstrate the electrical wiring connections for
	household applications and study the working of iron box
	and fan regulator.
CO5:	Identify the basic electronic components and explain the
	gates and soldering methods.
CO6:	Examine the performance and operation of CRO, LED TV

COs						I	POs	,]	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-		
2	3	2	1	1	1	1	1	•	-	2	2	2	2	1	-		
3	3	2	1	1	1	1	1	•	-	2	2	2	2	1	-		
4	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-		
5	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-		
6	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-		
Overall	•	2	1	1	1	1	1			2	2	2	2	1			
Correlation	3	-	1	1	1	1	1	-	_	_	2	_	2	1	-		
Recommended	l by	Во	ard	of S	Stuc	lies	26-	07-2	2023	,							
Approved								AC	CM		Date	9	09-	-09-2	2023		

23CS221	DATA STRUCTURES USING C	L	T	P	C
	LABORATORY	0	0	4	2

- To demonstrate array implementation of linear data structure algorithms.
- To implement the applications using Stack.
- To implement the applications using Linked list
- To implement Binary search tree algorithms.
- To implement the Heap algorithm.
- To implement Dijkstras algorithm.
- To implement Prims algorithm
- To implement Sorting, Searching algorithms.

PRACTICALS:

- Array implementation of Stack, Queue and Circular Queue ADTs.
- 2. Implementation of Singly Linked List.
- 3. Linked list implementation of Stack and Linear Queue ADTs.
- 4. Implementation of Polynomial Manipulation using Linked list.
- 5. Implementation of Evaluating Postfix Expressions, Infix to Postfix conversion.
- 6. Implementation of Heaps using Priority Queues.
- 7. Implementation of Linear Search and Binary Search.
- 8. Implementation of Insertion Sort and Selection Sort.
- 9. Implementation of Quick Sort.
- 10. Implementation of Binary Search Trees.
- 11. Implementation of Dijkstra's Algorithm.
- 12. Implementation of Prim's Algorithm.

TOTAL: 60 PERIODS

LABORATO	RY	RE	QU	IRE	EMI	ENT	FC)R	BA	ГСН	OF	30				
STUDENTS:																
HARDWARI	E: S	tan	dal	one	des	sktc	ps	- 30) No	o's	SOF	TW	AR	E: (C /	
C++ / Equiva	len	t Co	omp	oile	r											
COURSE OU	TC	ON	1ES	:												
After co	mp	leti	on o	of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to):	
CO1: Construc	O1: Construct linear data structure algorithms.															
CO2: Develop	Develop applications using Stacks and Queue.															
CO3: Develop	apj	olic	atic	ns	usir	ng I	ink	ed	lists	S.						
CO4: Construc	ct b	inaı	y s	earc	ch t	ree										
CO5: Construct Prim's and Dijkst								ra's graph algorithms.								
CO6: Analyze the various searchin							g a	nd s	sort	ing a	algo	rithr	ns.			
COs						I	Os						I	PSC	s	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1 POW	3	2	1	1	2	-2	F	1	1	1	-	1	3	2	1	
2	3	2	1	1	2	4	-	-	1	1	-	-	3	2	ř-	
3	3	3	3	2	2	-	B	-/	4	1	-	1	3	2	-	
4	3	2	1	1	2	-	_	-	-	1	_	-7	3	2	-	
5	3	2	1	1	2	-	-	1	1	1		- 0	3	2	1	
6 GINE	3	3	2	2	2	71	Ę	1	<u>U</u> 1	1	5	NO	3	2	1	
Overall Correlation	3 3 3 2 2 2 2 2 2 2							1	1	1	511Y	1	3	2	1	
Recommended	Recommended by Board of Studies					lies										
Approved					1st ACM Date 09-09-20						2023					

23HS221	SOFT SKILLS	L	T	P	С
		0	0	2	1

- To help learners improve their interpersonal skills and critical thinking
- To familiarize learners with the attributes of a leader to enhance team performance
- To prepare students to face job interviews
- To help learners to know the importance of ethics in work place

UNIT I INTERPERSONAL COMMUNICATION

6

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

UNIT II TEAM WORK AND LEADERSHIP

6

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

UNIT III TIME MANAGEMENT AND STRESS MANAGEMENT

(

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self- awareness and regulation.

UNIT IV CRITICAL THINKING AND WORK ETHICS

6

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance, attitude, character, organizational skills, productivity, respect.

UNI	I V INTERVIEW SKILLS AND RESUME BUILDING TECHNIQUES
Telep	phonic interview, online interviews, f2f interviews, FAQ so
skills	interview questions, drafting error-free CVs/ Resumes an
Cove	er Letters, selecting the ideal format for resume, conter
draft	ing along with sequencing, art of representing one
quali	fications and most relevant work history, video resume
webs	ite resume.
	TOTAL: 30 PERIOD
COL	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Express their thoughts, opinions and ideas confidently to
	one or more people in spoken form
CO2:	Develop evolving competences required for professional
	success
CO3:	Demonstrate knowledge and skills in a group as team play
	and leader
CO4:	Compose a comprehensive resume reflecting qualifications
	exposure and achievements
CO5:	Exhibit knowledge and skills confidently during job
	interviews
CO6:	Demonstrate ethical and professional behaviour at
	workplace in all situations
TEX	F BOOKS:
1	Soft Skills: Key to Success in Workplace and Life b
	Meenakshi Raman & Shalini Upadhyay. Cengage
REF	ERENCES:
1	English for Job Seekers (Language and Soft Skills for the
	Aspiring) by Geetha Rajeevan, C.L.N. Prakash) Cambridg
	University Press pvt, Ltd.
2	Business Benchmark by Norman Whitby. Cambridge

University Press pvt, Ltd.

COs						I	POs	,					F	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	1	-	-	-	-	-	-	2	2	-	-	-	-	-
2	-	•	-	-	-	2	2	2	3	3	2	2	-	-	2
3	-	•	-	-	-	-	-	-	3	3	-	-	-	-	-
4	-	•	-	-	-	-	-	-	3	3	-	-	-	-	-
5	-	ı	-	-	-	-	-	-	3	3	-	-	-	-	-
6	-	ı	ı	-	-	-	-	3	3	3	-	-	-	1	3
Overall Correlation	-	1	-	-	-	2	2	2	3	3	2	2	-	-	2
Recommended	Recommended by Board of Studies												_		
Approved						1st ACM Date				?	09-09-2023				

SEMESTER -III

23MA202	DISCRETE MATHEMATICS	L	T	P	C
		3	1	0	4

COURSE OBJECTIVES:

- To develop student's logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science related courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures
- To understand the concepts and significance of Lattices and Boolean algebra which are widely used in computer science and engineering.

UNIT I LOGIC AND PROOFS

9+3

Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.

UNIT II | COMBINATORICS

9+3

Mathematical induction - The basics of counting - Well ordering - Strong induction - The pigeonhole principle - Permutations and Combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.

UNIT III GRAPHS

9+3

Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV | ALGEBRAIC STRUCTURES

9+3

Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets -

Lagrange's theorem - Definitions and examples of Rings and Fields. UNIT V LATTICES AND BOOLEAN ALGEBRA 9+3Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra -Boolean Homomorphism. **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply the concepts of propositional and predicate calculus to the given logical statements. CO2: Apply the idea of combinatorial techniques to various engineering problems. CO3: Find the solutions for technical problems using graphs. CO4: Apply the concepts and properties of algebraic structures in computational theory. CO5: Apply the lattice structure and its properties to engineering problems. CO6: Apply Boolean expressions in areas like computational theory. TEXT BOOKS: Rosen. K.H., "Discrete Mathematics and its Applications", 1 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2017. Tremblay. J.P. and Manohar. R, "Discrete Mathematical 2 Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011. **REFERENCES:**

Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari,

Mathematics Pearson Publications.

Discrete

- Grimaldi. R.P. "Discrete and Combinatorial Mathematics:
 An Applied Introduction", 5thEdition, Pearson Education
 Asia, Delhi, 2013

 Koshy. T. "Discrete Mathematics with Applications",
 - 3 Koshy. T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.
 - 4 Lipschutz. S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.

COs						I	POs							PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	1	-	-	ı	-	1	3	-	-
2	3	2	1	1	-	1	ı	-	-	ı	1	1	3	-	-
3	3	2	1	1	-	-	ı	•	-	ı	-	1	3	-	-
4	3	2	1	1	-	ē-	- 1	-	- 1	į	1	1	3	1	_
5 100W	3	2	1	1	-	-,	9	۲.	A	-		1/	3	4	e _
63/6	3	2	1	\1	-	4	-	-	-	ı	1	1	3	-	1
Overall Correlation	3	2	1	1	-	-		-		1		1	3	-	- 1
ecommended by Board of Studies							08-04-2023								

Recommended by Board of Studies 08-04-2023

Approved by Academic 2nd ACM Date 25-05-2025

23CS301	OBJECT ORIENTED	L	T	P	C
	PROGRAMMING	3	0	0	3

- To understand Object Oriented Programming concepts and basics of Java Programming language
- To know the principles of packages, inheritance and interfaces
- To develop a Java application with threads and generics classes
- To define exceptions and use I/O streams
- To design and build Graphical User Interface Application using JAVAFX

UNIT I INTRODUCTION TO OOP AND JAVA 9

Overview of OOP - Object Oriented Programming paradigms - Features of Object Oriented Programming - Java Buzzwords - Overview of Java - Data Types, Variables and Arrays - Operators - Control Statements - Programming Structures in Java - Defining classes in Java - Constructors-Methods - Access specifiers - Static members- Java Doc comments

UNIT II INHERITANCE, PACKAGES AND 9 INTERFACES

Overloading Methods – Objects as Parameters – Returning Objects –Static, Nested and Inner Classes. Inheritance: Basics – Types of Inheritance -Super keyword -Method Overriding – Dynamic Method Dispatch –Abstract Classes – final with Inheritance. Packages and Interfaces: Packages – Packages and Member Access –Importing Packages – Interfaces.

UNIT III	EXCEPTION HANDLING AND	9
	MULTITHREADING	

Exception handling basics – Multiple catch Clauses – Nested try Statements – Java's Built-in Exceptions – User defined Exception.

Multithreaded Programming: Java Thread Model-Creating a Thread and Multiple Threads - Priorities - Synchronization - Inter Thread Communication - Suspending -Resuming, and Stopping Threads - Multithreading. Wrappers - Auto boxing.

UNIT IV I/O, GENERICS, STRING HANDLING 9

I/O Basics - Reading and Writing Console I/O - Reading and Writing Files. Generics: Generic Programming - Generic classes - Generic Methods - Bounded Types - Restrictions and Limitations. Strings: Basic String class, methods and String Buffer Class.

UNIT V JAVAFX EVENT HANDLING, CONTROLS, 9
COMPONENTS

JAVAFX Events and Controls: Event Basics – Handling Key and Mouse Events. Controls: Checkbox, ToggleButton – RadioButtons – ListView – ComboBox – ChoiceBox – Text Controls – ScrollPane. Layouts – FlowPane – HBox and VBox – BorderPane – StackPane – GridPane. Menus – Basics – Menu – Menu bars – MenuItem.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the concepts of classes and objects to solve simple problems
- **CO2:** Develop programs using packages and interfaces
- CO3: Construct programs using inheritance concepts.
- CO4: Apply exception handling mechanisms and multithreaded model to solve real world problems
- CO5: Construct Java applications with I/O packages, string classes, Collections and generics concepts
- CO6: Apply the concepts of event handling and JavaFX components and controls for developing GUI based application

TEX	TEXT BOOKS:															
1	Herbert	So	chile	dt,	"Ja	va:	Tł	ne '	Cor	npl	ete	Refe	eren	ce",	11	th
	Edition, McGraw Hill Education, New Delhi, 2019															
2	Herbert	Herbert Schildt, "Introducing JavaFX 8 Programming", 1st														
	Edition, McGraw Hill Education, New Delhi, 2015															
REFI	ERENCE	ERENCES:														
1	Cay S.	Cay S. Horstmann, "Core Java Fundamentals", Volume 1,														
	11th Ed	itio	n, P	ren	tice	На	11, 2	2018	3.							
	COs						I	POs						I	PSC)s
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	4	3	2	1	1	1	-	-	1	-	_	-	1	3	1	1
	5 00W	3	2	1	1	2	-2	4	1	4		<u></u>	1	3	2	1

2

2

1

1 | 1

6

Overall

Correlation

3

3 2

Recommended by Board of Studies

Approved

RESILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

1

1

08-04-2024

2nd ACM

1

1

2 1

25-05-2024

23CS302	DATABASE MANAGEMENT	L	T	P	C
	SYSTEMS	3	0	0	3

- To learn the fundamentals of data models, conceptualize and depict a database system using ER diagram.
- To study the principles to be followed to create an effective relational database and write SQL queries to store/retrieve data to/from database systems.
- To know the fundamental concepts of transaction processing, concurrency control techniques and recovery procedure.
- To learn about the internal storage structures using different file and indexing techniques and the basics of query processing and optimization.
- To study the basics of distributed databases, semistructured and un-structured data models.

UNIT I RELATIONAL DATABASES

9

Purpose of Database System - Views of Data - Data Models - Database System Architecture - Introduction to Relational Databases - Relational Model - Keys - Relational Algebra - Relational Calculus - SQL Fundamentals - Advanced SQL features - Triggers - Embedded SQL

UNIT II DATABASE DESIGN

9

Mapping Entity-Relationship Model – ER Diagrams – Functional Dependencies – Non-Loss Decomposition Functional Dependencies – First Normal Form – Second Normal Form – Third Normal Form – Dependency Preservation – Boyce/Codd Normal Form – Multi-Valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form.

UNIT III TRANSACTION MANAGEMENT

9

Transaction Concepts - ACID Properties - Serializability - Transaction Isolation Levels - Concurrency Control - Need for

Conc	rurrency – Lock-Based Protocols – Deadlock Handling	g -
Reco	very System – Failure Classification – Recovery Algorithm	١.
UNI	Γ IV IMPLEMENTATION TECHNIQUES	9
Over	view of Physical Storage Media - RAID - File Organizatio	n -
Orga	nization of Records in Files - Indexing and Hashing	5 -
Orde	red Indices - B+ tree Index Files - Static Hashing - Dynar	nic
Hash	ing - Query Processing Overview - Catalog Information	for
Cost	Estimation - Query Optimization.	
UNI	T V NOSQL DATABASE	9
Over	view of Distributed Databases – Data Fragmentation	۱ –
	cation – NOSQL Database: Characteristics – CAP theorem	
_	ne of NOSQL Datastores: Column Oriented, Document, K	
	e and Graph Types - Applications - CRUD Operations.	Cy
Vara	TOTAL: 45 PERIO	nns
COL	RSE OUTCOMES:	D 5
COU	After completion of the course, the students will be able to	0.
CO1.	N - W	
COI:	Explain the concepts of Database Management Systems a Apply SQL Queries Using Relational Algebra	ma
CO2:	Apply conceptual modeling to real world applications a	nd
	design database schemas	
CO3:	Apply the knowledge of normalization theory to normal	
	database.	
CO4:	Explain the concepts of Transaction Processing and maint	ain
	consistency of the database.	
CO5:	Explain basic database storage structures, access technique	ues
COC	and query processing.	1
CO6:	Illustrate distributed, semi-structured and unstructured database systems	rea
TEY	database systems. Γ BOOKS:	
1	Abraham Silberschatz, Henry F. Korth, S. Sudharsh	an
2	Ramez Elmasri, Shamkant B. Navathe, "Fundamentals	
_		
	Database Systems", Seventh Edition, Pearson Education	υπ,
	2021.	

REFI	ERENCE	S:														
1	C. J. Da	te, A	4. K	anı	nan	, S.	Swa	amy	mat	har	ı, "A	n Ir	ntroc	luct	ion	to
	Databas	se Sy	yste	ms	", E	igh	th E	diti	ion,	Pea	arsoı	n Ed	lucat	ion	, 200	06.
2	Raghu	Ra	ama	kri	shn	an,	J	oha	nne	es	Gel	ırke	., "	Dat	taba	ise
	Manage	eme	nt S	Syst	em	s",	Fou	rth	Ed	itio	n, T	ata 1	McG	raw	νН	ill,
	2010.															
3	G. K.	Gu	pta	, "	Dat	aba	ise	Ma	ana	gen	nent	Sy	stem	ıs",	Ta	ata
	McGrav	McGraw Hill, 2011.														
4	Carlos	Co	ror	el,	St	eve	n	Mo	rris	, 1	Peter	r R	Rob,	"I)esi	gn
	Implementation and Management", Ninth Edition, Cengage															
	Learning, 2011.															
								POs						I	PSC	s
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1/2	1	-	1		7	-	2	1	1	2	2	1	1
	2	3	2	1	1	1	A	N.	-/	2	1	1	2	3	1	-
)	3	3	2	1	1	1	A	M	-\	2	1	1	2	3	1	-
	4	2	1	7-	1	-	-	1	-	2	1	1	1	2	-	M
	5	2	1	Æ.	//-	_	-		-	1	1	-	1	2	-	
	6 2 1 1						EL	E(ΞE	O-F	1	CH	2	2	(1)	_
_	Overall Correlation 3 2 1 1 1 - - - 2 1 1 2 3 1									- 183						
Reco	mmende	d by	Во	ard	of S	tud	ies	08-	04-2	024			•		•	
Approved							2 nd ACM Date 25-05-20							2024		

23HS301	UNIVERSAL HUMAN VALUES	L	T	P	C
	AND ETHICS	3	0	0	3

- To develop a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- To understand (or developing clarity) the harmony in the human being, family, society and nature/existence.
- To strengthen the self-reflection.
- To develop commitment and courage to act.

UNIT I	COURSE INTRODUCTION	9

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration - Continuous Happiness and Prosperity- A look at basic Human Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority -Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

	· · · · · · · · · · · · · · · · · · ·	
UNIT II	UNDERSTANDING HARMONY IN THE	9
	HUMAN BEING	

Harmony in Myself- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body'- Sukh and Suvidha- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Harmony in Human-Human Relationship -Understanding Harmony in the family – the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust(Vishwas) and Respect as the foundational values of relationship -Understanding the meaning of Vishwas; Difference between intention and competence -Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family)-Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order- from family to world family.

UNIT IV ENGINEERING ETHICS

9

9

Senses of <u>_Engineering</u> Ethics, - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

UNIT V | SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination-Moral Leadership -Code of Conduct - Corporate Social Responsibility.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Explain the need of value education.

CO2: Interpret the difference between self and body.

CO3: Demonstrate the need to exist as a unit of Family and society. CO4: Classify Harmony at all levels. CO5: Apply the values acquired in the professional front. CO6: Identify appropriate technologies for ecofriendly production systems. **TEXT BOOKS:** 1 R R Gaur, R Sangal, G P Bagaria, Human Values and Professional Ethics, Excel Books, New Delhi, 2010 3. Mike W. Martin and Roland Schinzinger, -Ethics in 2 Engineering, Tata McGraw Hill, New Delhi, 2003. 3 Govindarajan M, Natarajan S, Senthil Kumar V. S, -Engineering Ethics, Prentice Hall of India, New Delhi, 2004 **REFERENCES:** Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya 1 Prakashan, Amarkantak, 1999. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004. The Story of Stuff (Book). 3 The Story of My Experiments with Truth - by Mohandas 4 Karamchand Gandhi AICTE Model Curriculum in Humanities, Social Science and Management Courses (UG Engineering & Technology) 169 | Page . Small is Beautiful - E. F Schumacher. Slow is Beautiful - Cecile Andrews. 6 7 Economy of Permanence - J C Kumarappa 8. Bharat Mein Angreji Raj - Pandit Sunderlal. 8 Rediscovering India - by Dharampal. 9 Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi. 10 India Wins Freedom - Maulana Abdul Kalam Azad. Vivekananda - Romain Rolland (English) 13. Gandhi -11 Romain Rolland (English). Charles B. Fleddermann, —Engineering Ethics, Pearson 12 Prentice Hall, New Jersey, 2004.

13	Charles E. Harris, Michael S. Pritchard and Michael J.																		
	Rabins,													-					
	Cengag		\sim		_	,				1				•					
WEE	SOURC	CES	:																
1	www.onlineethics.org																		
2	www.nspe.org																		
3	www.globalethics.org																		
	CO-	POs														PSOs			
, '	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	1	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3			
	2	-	-	-	-	-	3	3	3	3	3	-	1	-	-	3			
	3	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3			
	4	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3			
	5	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3			
	6	1 F J		-	-	-	3	3	3	3	3	10	Y	-	1	3			
Overall Correlation		-	1	0	-	_	3	3	3	3	3	- -	E	-	-	3			
Reco	mmende	d by	Во	ard	of S	Stud	lies	08-	04-2	024			1						
	Approved									2nd ACM Date					25-05-2024				

COLLEGE OF TECHNOLOGY

22CC211	DICITAL DDINCIDLES AND	Т	23CS311 DIGITAL PRINCIPLES AND L T P C												
25C5511	SYSTEM DESIGN	3	0	2	$\frac{c}{4}$										
COURSE OBJ		3	U												
-	n digital circuits using simplified Boole	ean f	11100	tio	ne										
To analyze and design combinational circuits															
To analyze and design synchronous and asynchronous															
sequential circuits															
To understand Programmable Logic Devices															
 To understand Programmable Logic Devices To write HDL code for combinational and sequential circuits 															
UNIT I BOOLEAN ALGEBRA AND LOGIC GATES 9															
CNII I BO	OLEAN ALGEBRA AND LOGIC GA	LIL			9										
Number Syste	ms - Arithmetic Operations - Binary Co	odes.	- Bo	ole	an										
Algebra and I	Logic Gates - Theorems and Propertie	es of	Во	ole	an										
Algebra - Boo	lean Functions - Canonical and Stand	dard	Fo	rms	s -										
Simplification	of Boolean Functions using Karnaugh	Ma	p -	Log	gic										
Gates - NANI	and NOR Implementations.			-											
UNIT II CO	MBINATIONAL LOGIC	L			9										
Combinationa	l Circuits - Analysis and Design Proced	lure	s - E	ina	ry										
Adder-Subtrac	ctor - Decimal Adder - Binary	Mul	tipl	ier	-										
Magnitude Co	omparator - Decoders - Encoders - M	Iulti	ple	xer	s -										
Introduction to	o HDL - HDL Models of Combination	al cii	cui	ts.											
UNIT III SY	NCHRONOUS SEQUENTIAL LOGIC	С			9										
Sequential Cir	rcuits - Storage Elements: Latches ,	Flip	5-F1	ops	; -										
_	Clocked Sequential Circuits - State Re			_											
Assignment -	Design Procedure - Registers and Cou	ınte	rs -	НІ	DL										
	uential Circuits.														
UNIT IV AS	YNCHRONOUS SEQUENTIAL LOG	IC			9										
Analysis and	Design of Asynchronous Sequentia	al C	ircı	iits	-										
-	State and Flow Tables - Race-free State														
- Hazards.			-												
UNIT V ME	EMORY AND PROGRAMMABLE LO	GIO	2		9										
RAM – Memor	ry Decoding - Error Detection and Corr	ectio	on -	RO	M										

- Programmable Logic Array - Programmable Array Logic - Sequential Programmable Devices.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- 1. Design of adders and subtractors.
- 2. Design of code converters.
- 3. Design of Multiplexers & Demultiplexers.
- 4. Design of Encoders and Decoders.
- 5. Design of Magnitude Comparators
- 6. Design and implementation of counters using flip-flops
- 7. Design and implementation of shift registers.

TOTAL: 45 +30 =75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Solve K-map functions, Boolean algebra functions and simplification, procedures relevant to digital logic
- CO2: Analyse the combinational Logic circuit with adders and subtractors
- CO3: Examine the combinational Logic circuit with multiplexer, demultiplexer, encoder and decoder
- CO4: Infer a Synchronous Sequential Circuit
- CO5: Develop an Asynchronous Sequential Circuit
- CO6: Outline a logic gates using various memory and PLD's

TEXT BOOKS:

- M. Morris R. Mano, Michael D. Ciletti, "Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog", 6th Edition, Pearson Education, 2017.
- **2** G. K. Kharate, "Digital Electronics", Oxford University Press, 2010

REFERENCES:

1 John F. Wakerly, "Digital Design Principles and Practices", Fifth Edition, Pearson Education, 2017.

2	Charles	H.	Rot	h Jr	, La	rry	L. I	Kin	ney	, "F	und	ame	ntal	s of	Log	gic	
	Design"	', Si	xth	Edi	itio	n, C	EN	GA	GE	Lea	arnir	ng, 2	013.				
3	Donald	D. (Giv	one	, "I	Digi	tal l	Prir	ıcip	les	and	Des	ign"	, Ta	ıta N	Лc	
	Graw Hill, 2003.																
	COs						I	Os						PSOs			
· '			2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	1	-	-	-	-	1	-	-	2	1	-	
	2	3	2	1	1	1	ı	-	ı	ı	1	-	-	3	1	-	
	3	3	2	1	1	2	ı	-	ı	2	1	-	-	3	1	-	
	4	3	2	1	1	2	ı	-	ı	2	1	-	-	3	1	-	
	5	2	1	-	-	1	ı	-	ı	2	1	-	-	2	1	-	
	6	2	1	-	-	1	1	-	1	1	1	-	-	2	1	-	
	verall relation	3	2	1	1	2	-	-	-	2	2	-	1	3	2	-	

Recommended by Board of Studies 08-04-2024

COLLEGE OF TECHNOLOGY

Date

25-05-2024

2nd ACM

23CS312 DESIGN AND ANALYSIS OF L T P C
1
ALGORITHMS 3 0 2 4
COURSE OBJECTIVES:
To understand and apply the algorithm analysis technique
on searching and sorting algorithms
To critically analyze the efficiency of graph algorithms To analyze additional algorithms decises to decise to the investment of the control of the co
 To understand different algorithm design techniques To solve programming problems using state space tree
 To solve programming problems using state space tree To understand the concepts behind NP Completenes
Approximation algorithms and randomized algorithms
UNIT I INTRODUCTION 9
Time and space complexity - Asymptotic Notations - Solving
Recurrences: substitution method - Lower bounds - hash function
- searching: linear search, binary search and Interpolation Search
String Matching: The naïve string - matching algorithm - Rabin-
Karp algorithm - Sorting: Insertion sort, heap sort
UNIT II GRAPH ALGORITHMS
Representations of graphs - Graph traversal: DFS - BFS - Minimum
spanning tree: Kruskal's and Prim's algorithm - Shortest path
Bellman - Ford algorithm - Dijkstra's algorithm - Maximum flow
Flow networks - Ford-Fulkerson method - Maximum bipartite
matching.
UNIT III ADVANCED DESIGN AND ANALYSIS
TECHNIQUES
Divide and Conquer methodology: Merge sort - Quick sort-
Dynamic programming: Elements of dynamic programming -
Matrix-chain multiplication - Multi stage graphs. Greedy
Technique: Elements of the greedy strategy - Activity-selection
problem - Huffman Trees

Backtracking: n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem - Graph colouring problem Branch and

UNIT IV STATE SPACE SEARCH ALGORITHMS

Bound : Solving 15-Puzzle problem - Assignment problem - Knapsack Problem - Travelling Salesman Problem.

UNIT V NP-COMPLETE AND APPROXIMATION ALGORITHM

Tractable and intractable problems: Polynomial time algorithms - Venn diagram representation - Non Deterministic algorithms - NP-hardness and NP-completeness - Problem reduction: TSP - 3 CNF problem. Approximation Algorithms: Bin Packing problem - Randomized Algorithms: concept and application - primality testing - randomized quick sort.

TOTAL: 45 PERIODS

9

PRACTICAL EXERCISES: 30 PERIODS

- 1. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted. The elements can be read from a file or can be generated using the random number generator.
- 2. Implement a Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted. The elements can be read from a file or can be generated using the random number generator.
- 3. (A) Obtain the Topological ordering of vertices in a given digraph. (B) Compute the transitive closure of a given directed graph using Warshall's algorithm.
- 4. Implement 0/1 Knapsack problem using Dynamic Programming.
- 5. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijikstra's algorithm
- 6. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.

- 7. (A) Print all the nodes reachable from a given starting node in a digraph using BFS method. (B) Check whether a given graph is connected or not using DFS method.
- 8. Find a subset of a given set $S = \{s1, s2,, sN\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and d = 9 there are two solutions $\{1,2,6\}$ and $\{1,8\}$. A suitable message is to be displayed if the given problem instance doesn't have a solution.
- 9. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.
- 10. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 11. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.
- 12. Implement N Queen's problem using Back Tracking.

COURSE OUTCOMES:

- After completion of the course, the students will be able to:
- CO1: Apply recursive and non-recursive algorithms to solve problem.
- CO2: Apply appropriate framework to meet algorithm's efficiency.
- CO3: Apply graph algorithms to solve problems and analyze their efficiency.
- **CO4:** Solve problems using algorithm design techniques like divide and conquer, dynamic programming and greedy techniques.
- CO5: Apply State Space Tree Analysis for Problem-Solving.
- CO6: Solve problems using approximation algorithms and randomized algorithms

	T BOOK	S:														
1	Thoma	s H	. Co	orm	en,	Ch	arle	es E	. Le	eise	rson	, Ro	nalo	dL.		
	Rivest a	and	Cli	ffo	rd S	Steiı	n, "	Intı	odi	ucti	on t	o A	lgor	ithı	ns"	,
	3rd Edi	tion	1, P	ren	tice	На	all c	f Ir	ıdia	, 20	009.					
2	Ellis Ho	orov	witz	z, S	arta	ijSa	hni	, Sa	ngı	ıthe	evar	Raja	sek	ara	n	
	Compu	ıter	Alو	gori	ithr	ns/	C+	+ O	riei	nt B	lack	swa	ın, 2	nd		
	Edition, 2019.															
REFERENCES:																
1	Anany Levitin, "Introduction to the Design and Analysis															
	of Algorithms", 3rd Edition, Pearson Education, 2012.															
2	Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman,															
	"Data Structures and Algorithms", Reprint Edition,															
	Pearson Education, 2006.															
3	S. Sridl	ar,	"D	esi	gn a	and	An	aly	sis (of A	Algo	rith	ms"	, O:	xfoı	d
	univers	sity	pre	ess,	201	4.	- 2					Þ	1			
	CO		1	6	1		I	POs					PSOs			s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	7	_	1	_	-		3	2	
	2		100	//		_										-
	No. of the last	3	2	1	1	2	-	-	-	-	ı	-	1	3	2	-
	3 G/NE	3	2	1	1	2	νįι	EC	a E	0]-	1	CH	1 10	3	2	1 2 2
	The same of		- 4	7.0			LIAT	ED TO	E ANI	O.F	I E	CH	1 10	_	_	
	3 CANEL	3	2	1	1	2	JĒL Uģi	EC	E	OJ-	I E	CH	NO	3	2	
	3 GAE	3	2	1	1	2	JLL LIAT	EC) E)	OF	NIVER	CH	NO	3	2	1 1
0	3 4 5	3 3 3 3	2 2 2 2	1 1 1 1	1 1 1 1	2 2 2 2	-	EC	JE /	OI-	NIVER	CH	1	3 3 3	2 2 2 2	
_	3 4 4 5 6	3 3	2 2 2	1 1 1	1 1 1	2 2 2	-	EC	ANI	OI-	II C	CH sily	NO	3 3 3	2 2 2	1 1
Cor	3 4 5 6 verall	3 3 3 3	2 2 2 2 2	1 1 1 1	1 1 1 1 1	2 2 2 2 2	-	- - - - 08-	- - - - 04-2	- - - - 2024	T E	CH sup	1 - 1	3 3 3 3	2 2 2 2	-

23CS321	OBJECT ORIENTED	L	T	P	C
	PROGRAMMING LABORATORY	0	0	4	2

- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, inheritance, exception handling and file processing.
- To develop applications using generic programming and event handling

LIST OF EXPERIMENTS:

- 1. Solve problems by using sequential search, binary search, and quadratic sorting algorithms (selection, insertion)
- 2. Develop stack and queue data structures using classes and objects.
- 3. Develop a java application with an Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club funds. Generate pay slips for the employees with their gross and net salary.
- 4. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea() that prints the area of the given shape.
- 5. Solve the above problem using an interface.

- 6. Implement exception handling and creation of user defined exceptions.
- 7. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.
- 8. Write a program to perform file operations.
- 9. Develop applications to demonstrate the features of generics classes.
- 10. Develop applications using JavaFX controls, layouts and menus.
- 11. Develop a mini project for any application using Java concepts.

1	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Develop java programs using object oriented programming
	concepts
CO2:	Construct the java program in inheritance concepts.
CO3:	Develop simple applications using object oriented concepts
	such as package, exceptions
CO4:	Solve multithreading, and generics concepts in Java
	programming
CO5:	Create GUIs and event driven programming applications
	for real world problems
CO6:	Construct and deploy web applications using Java

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1	
2	3	2	1	1	2	ı	ı	1	1	1	-	1	3	2	1	
3	3	2	1	1	2	ı	ı	1	1	1	•	1	3	2	1	
4	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1	
5	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1	
6	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1	
Overall Correlation	3	2	1	1	2	-	ı	1	1	1	-	1	3	2	1	
Recommende	d by	Во	ard	of S	tud	ies	08-	04-2	2024					•		
A	ppr	ove	d				2nd ACM				Date	25-05-2024				

23CS322	DATABASE MANAGEMENT	L	T	P	C
	SYSTEMS LABORATORY	0	0	4	2

- To learn and implement important commands in SQL.
- To learn the usage of nested and join queries.
- To understand functions, procedures and procedural extensions of databases.
- To understand design and implementation of typical database applications.
- To understand design of NoSQL
- To be familiar with the use of a front end tool for GUI based application development and its integration with databases

LIST OF EXPERIMENTS:

- Create a database table, add constraints (primary key, unique, check, Not null), insert rows, update and delete rows using SQL DDL and DML commands.
- 2. Create a set of tables, add foreign key constraints and incorporate referential integrity.
- 3. Query the database tables using different 'where' clause conditions and also implement aggregate functions.
- 4. Query the database tables and explore sub queries and simple join operations.
- 5. Write user defined functions and stored procedures in SQL.
- 6. Create View and index for database tables with a large number of records.
- 7. Write row level and statement level SQL Triggers.
- 8. Create Document, column and graph based data using NOSQL database tools.
- 9. Add Implement CRUD operation using NOSQL Database.
- 10. Develop a simple GUI based database application and incorporate all the above mentioned features

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Create databases with different types of key constraints.																
CO2:	Create j	oin	que	eries	s an	d e	xplo	ore	sub	qu	eries	5.					
CO3:	Implem	ent	que	erie	s us	sing	agg	greg	gate	fuı	nctio	ns.					
CO4:	Use advanced features such as stored procedures and																
	triggers and incorporate in GUI based application																
	development.																
CO5:	Create and manipulate data using NOSQL database.																
CO6:	Develop	ap	plic	catio	ons	tha	t re	qui	re a	Fro	nt-e	end [Γool	lin	ked		
	Develop applications that require a Front-end Tool linked with database																
	POs													PSOs			
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1	
	2	3	2	1	1	2	1	-	1	1	1	-	1	3	2	1	
	3	3	2	1	1	2	1		1	1	1	1	1	3	2	1	
	4 DOW	3	2	1	1	2	-	F	1	1	1	-	1	3	2	1	
8	5	3	2	1	1	2		ķ-	1	1	1	-	1	3	2	1	
Î	6	3	2	1	1	2	-		1	1	1	7	1	3	2	1	
- 3	verall relation	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1	
Reco	mmende	d by	Во	ard	of S	tud	ies	08-	04-2	2024	TE	CH	NO	LO	(a)		
	A	ppr	ove	d		AFF	LIAT	2nd	1 A(M	NIVER	Date	AUTO	25-0)5-20	024	

23ES391	PRESENTATION SKILLS	L	T	P	C
		0	0	2	1*

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

UNIT I BRAINSTORMING AND OUTLINING

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

UNIT II | STRUCTURING THE PRESENTATION | 6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

UNIT III DELIVERY TECHNIQUES 6

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language- eye contact, gestures, movement on stage.

UNIT IV USE OF TECHNOLOGICAL AIDS

6

Use of presentation software like MS Power Point, Google Slides etc, incorporating images, graphs, charts and videos, using interactive tools like quizzes and polls, using remote presentation tools like zoom, MS Teams, WebEx for screen sharing, virtual whiteboards and chat functionalities, incorporating AR/VR for more immersive presentations.

UNIT V HANDLING QUESTIONS AND FEEDBACK

6

Audience engagement through questions, PAR (Point, Answer, Redirect) strategy for structuring responses to questions. Understanding feedback process - Receiving, interpreting and evaluating constructively, active listening techniques for processing feedback, responding to feedback- acknowledging, clarifying and appreciating, Dealing with challenging feedback.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Construct ideas for presentation through mind mapping techniques
- CO2: Organize ideas and structure the presentation with captivating introduction, body paragraphs illustrated with examples and reasons and compelling conclusion
- CO3: Apply vocal variety and body language techniques to enhance delivery
- CO4: Prepare engaging presentations by integrating multimedia elements
- CO5: Demonstrate proficiency in delivering presentations in remote platforms utilizing various technological tools and strategies to engage audience in Virtual environments
- CO6: Exhibit active listening skills by responding to questions with clarity and confidence and incorporating constructive feedback for professional development

TEXT BOOKS:

1 Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.

2 Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

REFERENCES:

1 Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
2	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
3	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
4	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
5	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
6	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
Overall	2	•	1	1				1	1	1		1	•	_	1	
Correlation	2	2	1	1	_	-	4	1	1	1	-	1	2	2	1	
Recommended	nended by Board of Studies 08-04-2024															
A	ppr	proved 2nd ACM Date											25-05-2024			

COLLEGE OF TECHNOLOGY

SEMESTER -IV

23MA301	LINEAR ALGEBRA	L	T	P	С
		3	1	0	4
COURSE OB	JECTIVES:				
To test	the consistency and solve system of li	near	equ	ıatio	ons
To fine	d the basis and dimension of vector sp	ace			
	tain the matrix of linear transform	atio	n a	nd	its
O	ralues and eigenvectors				
	d orthonormal basis of inner product	-			
	d eigenvalues of a matrix using numer	ical t	ech	niqı	ues
	erform matrix decomposition.				
	TRICES AND SYSTEM OF LINEAR	2		٩	9+3
~	UATIONS				
	Row echelon form - Rank - Syst				
	Consistency - Gauss elimination me	etho	d -	Ga	uss
	od - Gauss Seidel Method	1		4	
1/4/4/1/4/4/	CTOR SPACES				9+3
	<mark>es -</mark> Subspace - Linear indepe				ind
- 1 Table 10	– Linear Span - Basis and dimension	on -	Ma	axir	nal
	ependent Subsets.				
4/35	NEAR TRANSFORMATION	iN()L(9+3
	ormation - Rank space and null spa				
	ension theorem - Matrix representa				
	on - Eigenvalues and eigenvecto				
	on - Invertibility and Isomorphisms	- Dt	ıalS		
	NER PRODUCT SPACES				9+3
	act and norms - Properties -				
	vectors - Gram Schmidt orthog				
	joint of Linear operator - Normal ar				
-	Unitary and orthogonal operato	rs	and	th	ıeir
Matrices					
	GEN VALUE PROBLEMS AND MA	IRL	X] 9	9+3
	COMPOSITION			.,	
	Problems - Power method, Jacobi rot				
_	value decomposition - QR deco	omp	OS1	ion	_
Generalized	Inverse - Least square solution				

TOTAL: 60 PERIODS																
COL	RSE OU	TT(ЛEG	2.						10)1 A	L: OL	PE	KIC	פענ
COU	After co					ho o	2011	rco	the	\ ctı	ıdon	tc TA	7;11 h	no a1	ala t	0:
CO1·	Solve th											us w	/111 0	e ai	ne t	0.
	Find th														1	its
CO3:	Find the matrix of linear transformation and its eigenvalues and eigenvectors.															
COA											1					
	Find or									1				1		
	Find eigenvalues of a matrix using numerical techniques															
	Find Matrix Decomposition using different techniques															
	XT BOOKS:															
1													near	Alg	gebr	'n",
	Prentic															
2	Faires	-														
	Brooks		ole	(Tł	non	1SO1	n Pı	ubl	icat	ion	s), N	Jew	Del	lhi,	200	2.
REFE	ERENCE							. 4	7							
1	Kumar														roac	h",
	Prentic	e E	Iall	of :	Ind	ia, I	Nev	wΣ)ell	i, F	Repr	int,	2010).	7	
2	P.S.Das	s –	"I	Vur	ner	ical	l A	nal	ysi	s",	Pea	rsoı	n E	duc	atio	ns,
	New D	elh	i, 2	002				7		1			V			
3	Richard	1 B	ran	sor	ı, "I	Mat	rix	Op	era	itio	ns",	Sch	aun	n's	outl	ine
	series,			8				_			c Ti					V
	COs	RR	EV					POs			is no		11.00		PSC)s
(LUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	-	-	-	1	1	1	3	1	-
	3	3	2	1	1	-	-	-	-	-	1	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	-	_	_	_	-	-	1	3	-	-
	6	3	2	1	1	-	-	-	-	-	_	-	1	3	-	_
O	erall	_	_	1	4								4	_		
Corr	Correlation 3 2 1 1 - - - - - - 1 3 - -															
	Recommended by Board of Studies 08-04-2024 Approved 2nd ACM Date 25-05-2024															

23CS401	OPERATING SYSTEMS	L	T	P	С
		3	0	0	3

- To understand the basics and functions of operating systems.
- To understand processes and threads
- To analyze scheduling algorithms and process synchronization.
- To understand the concept of deadlocks.
- To analyze various memory management schemes.
- To be familiar with I/O management and file systems.
- To be familiar with the basics of virtual machines and Mobile OS like iOS and Android.

UNIT I INTRODUCTION

10

Introduction to Operating Systems – Views of Operating system, Computer System organization, Computer System Architecture; Operating System Structures – Operating System Services - User Operating System Interface - System Calls – System Programs - Structuring methods; Processes - Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication – Shared Memory Systems, Message Passing Systems, Threads - Multithread Models.

UNIT II PROCESS MANAGEMENT

9

CPU Scheduling - Basic Concepts, Scheduling criteria - Scheduling algorithms; **Process Synchronization** - The Critical-Section problem, Synchronization hardware, Mutex Locks, Semaphores, Monitors, Classic problems of synchronization; **Deadlock** - Deadlock Characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

UNIT III MEMORY MANAGEMENT

9

Main Memory - Address Binding, Logical and Physical Address

-	e, Contiguous Memory Allocation, Segmentation, Paging,
Struc	ture of the Page Table; Virtual Memory - Demand Paging,
Copy	on Write, Page Replacement, Thrashing.
UNI	Γ IV STORAGE MANAGEMENT 8
Mass	S Storage system -Disk Scheduling and Management; I/O
	ems - I/O Hardware, Kernel I/O subsystem; File-System
Inter	face - File concept, Access methods, Directory Structure, File
syste	m mounting - File Sharing and Protection; File System
Impl	ementation - File System Structure - Directory
impl	ementation - Allocation Methods - Free Space Management;
UNI	T V VIRTUAL MACHINES AND MOBILE OS 9
Virtu	al Machines - Benefits and Features, Building Blocks, Types
of Vi	rtual Machines and their Implementations, Virtualization and
Oper	rating-System Components; Mobile OS - iOS and Android
	TOTAL: 45 PERIODS
COU	URSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain operating system structures and various services
	provided by operating systems
CO2:	Apply Process synchronization, process scheduling, and
	deadlocks concepts in the given scenario to solve the
	problems.
CO3:	Apply algorithms and suitable techniques for memory
	management.
CO4:	Apply disk scheduling algorithm and explain the
	management schemes for storage systems such as file and
	I/O systems.
CO5:	Explain the concept of Virtual machines
CO6:	Explain the functionalities of iOS and Android Operating
	Systems.

TEXT BOOKS:

Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 10th Edition, John Wiley and Sons Inc., 2018.

REFERENCES:

- 1 Ramaz Elmasri, A. Gil Carrick, David Levine, "Operating Systems A Spiral Approach", Tata McGraw Hill Edition, 2010.
- William Stallings, "Operating Systems: Internals and Design Principles", 7th Edition, Prentice Hall, 2018.
- Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016.

COs						I	POs		- 32				PSOs								
COS	11	2	3	4	5	6	7	8	9	10	11	12	1	2	3						
10	2	1	0	1	-	A	_	-/	-	-	-	-	2	-	17-						
2	3	2	1	1	- (4	9	-/	1	. - .	-	-	3	-	-						
3	3	2	1	1	_	-	7		1	-	<u> -</u>	-7	3	-	_						
4	2	1	5	1	-	-	-	-	-	-	-	-	2	-	-						
5 CINE	2	1		1	C		_E(υĒ	01	TE	G-	MC	2)G	(-						
6	2	1	-	1	AFF	ILLAT	EDT	O An	NAI	NIVE	ISITY	AUT	2	MEN	5						
Overall	2	2	1	1									2								
Correlation	3		1	1	_	_	_	1	-	1	-	-	3	1	1						
Recommended	d by	Во	ard	of S	Stud	lies	08-	04-2	2024												

Approved

2nd ACM

Date

25-05-2024

23CS402	ARTIFICIAL INTELLIGENCE	L	T	P	C
COLIDGE OD	TOTAL INC.	3	0	0	3
COURSE OB	<u> </u>				
	nderstand the various characteristics	ot in	itell	iger	nt
ager		т			
	earn the different search strategies in A learn to represent knowledge in		zino	- 1	\ T
	learn to represent knowledge in	SOL	عاتده	, <i>-</i>	71
_	nderstand the different ways of design	ino	soft	wai	re
ager	,		0016		
	TRODUCTION				6
Introduction-	Definition - Future of Artificial I	ntell	ige	nce	_
Characteristic	s of Intelligent Agents- Typical Intelli	gent	Ag	ent	s –
Problem Solvi	ng Approach to Typical AI problems.				
UNIT II PR	OBLEM SOLVING METHODS				12
Search Strate	egies: Uninformed search - Inform	ned	sea	rch	1 -
7,000,000,000	nctions - Local Search Algorithms and		-		
264	Constraint Satisfaction Problems	-			
Propagation -	Backtracking Search				
1 0	OGICAL REASONING	NO	LO	MDU	10
First Order I	Predicate Logic: syntax and semanti	cs -	- us	sage	e -
knowledge r	epresentation - Inference in First	ord	ler	log	gic:
Unification -	- Forward Chaining - Backward	Ch	aini	ng	_
Resolution.	Ç				
UNIT IV KN	NOWLEDE REPRESENTATION AND)			9
RE	ASONING				
T/ 1 1 5			<u> </u>		
_	epresentation: Ontological Engineering				
,	- Events - Mental Events and Me			-	
	stems for Categories - Reasoning	with	ı D	eta	ult
Information.					
UNIT V M	ULTI AGENT SYSTEMS				8
Architecture	for Intelligent Agents - Agent com	mun	icat	ion	-

Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the typical AI problems to identify the suitable Intelligent agents and apply the problem-solving approach on them.
- CO2: Implement and compare different search strategies to solve AI problems.
- CO3: Design and apply local search algorithms and constraint satisfaction techniques.
- CO4: Interpret the problem and represent it using first order predicate logic.
- **CO5:** Describe the ontological engineering and reasoning systems.
- CO6: Illustrate the architecture of Intelligent agents, agent communication and Multi agent systems.

TEXT BOOKS:

- S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Third Edition, 2009.
- 2 Gerhard Weiss, "Multi Agent Systems", Second Edition, MIT Press, 2013.
- Michael Wooldridge, "An Introduction to MultiAgent Systems". Second Edition, Chichester: Wiley, 2009.
- 4 Gerhard Weiss, "Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence". Cambridge: MIT Press, 1999.

REFERENCES:

Bratko, "Prolog: Programming for Artificial Intelligence", Fourth edition, Addison Wesley Educational Publishers Inc., 2011.

	1																	
2	M. Tim	Jor	ies,	"A	rtif	icia	l In	telli	gei	ice:	A S	Syste	ms .	App	oroa	ich		
	(Compu	ıter	Sci	enc	e)",	Jon,	es a	ınd	Baı	tlet	t Pu	blisł	ners,	Inc	:.; Fi	rst		
	Edition	, 20	08.															
3	Nils J.	Ni	lssc	n,	"T	he	Qu	est	for	: A	rtifi	cial	Inte	ellig	enc	e",		
	Cambri	dge	Ur	nive	rsit	уР	ress	s, 20	09.									
4	William	1]	F.	Clo	ock	sin	a:	nd	С	hris	stop	her	S.	N	Ielli	sh,		
	"Progra	mn	ning	g ir	ı Pı	rolo	g: 1	Usiı	ng	the	ISC	Sta	ında	rd"	, Fi	fth		
	Edition	, Sp	ring	zer,	200	03.	Ü		Ü									
5	David	L.	Po	ole	aı	nd	Ala	an	K.	M	ackv	wort	h,	"Ar	tific	ial		
	Intellige	ence	e:	Fοι	ınd	atic	ns	of	(Con	nput	atio	nal	Αş	gent	s",		
	_										1				,			
						<u> </u>		s, 2010.							PSOs			
							I	POs]	PSC)s		
•	COs	1	2	3	4	5	6	Os 7	8	9	10	11	12	1	PSC 2)s 3		
•	COs	1 3	2	3	4	5 2				9	10	11	12 1					
		_			_	_	6				10 - 2	11		1	2	3		
	1	3	2	2	-	_	6				_	11	1	1 3	2	3		
	1 2 00W	3	2	2	- 2	2	6 -			1	2	11 - - 1	1	1 3 3	2 2	3 -		
	1 2 3	3 3	2 3 3	2 2 3	2	2	6 -			1 - 2	2 2	1	1 1 1	1 3 3 3	2 2 2 3	3		
	1 2 3	3 3 3 2	2 3 3 3	2 2 3 3	2	2 - 2 -	6			1 - 2 2	- 2 2 2	1	1 1 1	3 3 3 3	2 2 2 3 3	3		
	1 2 3 4 5	3 3 2 2 2	2 3 3 2 2	2 2 3 3 1	- 2 2 3 -	2 - 2 - 2 1	6 1 1	7		1 - 2 2 1 1	2 2 2 2 2 1	1	1 1 1 -	1 3 3 3 2 2	2 2 3 3 1 1	3		
0	1 2 3 4 5 6	3 3 3 2 2	2 3 3 3 2	2 2 3 3	2	2 - 2 - 2	6 1			1 - 2 2 1	2 2 2 2	- 1	1 1 1	1 3 3 3 3 2	2 2 2 3 3	3		
O	1 2 3 4 5 6 verall	3 3 2 2 2 2	2 3 3 2 2 3	2 2 3 3 1 1	- 2 2 3 - -	2 - 2 - 2 1	6 - - - 1 1	7 - - - -	8 	1 - 2 2 1 1	2 2 2 2 2 1	1	1 1 1 -	1 3 3 3 2 2	2 2 3 3 1 1	3		

23CS403	THEORY OF COMPUTATION	L	T	P	C
		3	0	0	3
COURSE OB	JECTIVES:				
To und	derstand the language hierarchy				
To cor	nstruct automata for any given pattern	and	fin	d it	S
	llent regular expressions				
	sign a context free grammar for any give			ıag	e
	derstand Turing machines and their cap		_		
	nderstand undecidable problems and	1 N	Р	clas	S
proble UNIT I AU	JTOMATA FUNDAMENTALS				9
	DIOMATA FUNDAMENTALS				J
Introduction	to formal proof - Additional forms	of	Pr	oof	_
Inductive Pr	oofs -Finite Automata - Determi	nisti	C	Fin	ite
Automata - N	Non-deterministic Finite Automata – Ed	quiv	aleı	nce	of
NFA and DFA	A - Finite Automata with Epsilon Trans	itior	ns.		
UNIT II RE	EGULAR EXPRESSIONS AND LANG	UAC	GES	3	9
Regular Expr	essions - FA and Regular Expression	ns -	Pr	ovi	ng
Languages n	ot to be regular – Closure Propertie	es of	Re	gul	ar
Languages - I	Equivalence and Minimization of Autor	nata			
UNIT III CO	ONTEXT FREE GRAMMAR AND	NO	LU	C	9
LA	ANGUAGES AFFILIATED TO ANNA UNIVERSITY			40U	
CFG - Parse	Trees - Ambiguity in Grammars and	Lan	gua	ges	-
Definition of t	he Pushdown Automata – Languages of	f a Pı	ısh	dov	vn
Automata -	Equivalence of Pushdown Automat	a aı	nd	CF	G,
Deterministic	Pushdown Automata.				
UNIT IV PR	OPERTIES OF CONTEXT FREE				9
LA	ANGUAGES				
Normal Form	ns for CFG - Pumping Lemma for Cl	FL -	Cl	osu	re
	CFL - Turing Machines- Programmin				
for TM.		_		1	
UNIT V UN	NDECIDABILITY				9
Non-Recursiv	re Enumerable (RE) Language -	Uno	leci	dak	ole

Problem with RE - Undecidable Problems about TM - Post's Correspondence Problem, The Class P and NP. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply mathematical proofs such as deductive proof, proof by contradiction and proof by induction. CO2: Construct a finite state automaton for a given regular language. CO3: Develop a normalized context free grammar for a given context free language. CO4: Construct a pushdown automaton for a given context-free language CO5: Construct a Turing machine for deciding a given problem. CO6: Explain the decidability or undecidability of various problems. **TEXT BOOKS:** J.E.Hopcroft, R.Motwani and J.D Ullman, "Introduction to 1 Automata Theory", Languages and Computations, Third Edition, Pearson Education, 2008. John C Martin, "Introduction to languages and the Theory of Computation", 4th Edition, Tata McGraw Hill, 2011. **REFERENCES:** 1 H.R.Lewis and C.H.Papadimitriou, "Elements of the theory of Computation", Second Edition, PHI, 2015. Peter Linz, "An Introduction to Formal Language and 2 Automata", 6th Edition, Jones & Bartlett, 2016. 3 K.L.P. Mishra and N Chandrasekaran, "Theory of Computer

Science: Automata Languages and Computation", 3rd

"Introduction of the

Theory

and

Edition, Prentice Hall of India, 2006.

Computation", Thomson Brokecole, 1997.

Sipser,

4

Micheal

COs						I	POs						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	-	-	1	1	1	2	3	-	-
2	3	2	1	1	-	ı	ı	ı	2	2	2	2	3	ı	-
3	3	2	1	1	-	-	-	-	2	2	1	2	3	-	-
4	3	2	1	1	-	-	-	-	2	2	2	2	3	-	-
5	3	2	2	2	-	-	-	-	2	1	1	2	3	-	-
6	2	1	1	1	-	-	-	-	1	1	1	2	2	-	-
Overall Correlation	3	2	2	2	-	ı	ı	ı	2	2	2	2	3	ı	_
Recommended	Recommended by Board of Studi									es 08-04-2024					
A		2nd ACM Date						25-05-2024							

23CS404	COMPUTER ARCHITECTURE	L	T	P	C					
		3	0	0	3					
COURSE OBJ	ECTIVES:	· ·								
To learn	n the basic structure and operations of a	a coi	npı	ıter						
• To lear	n the arithmetic and logic unit and imp	plen	nent	atio	n					
of fixed	-point and floating point arithmetic un	it.								
• To learn	n the basics of pipelined execution.									
• To und	erstand the memory hierarchies, cacl	ne n	nem	ori	es					
and vir	tual memories.									
To introduce the parallel processing technique.										
UNIT I BAS	SIC STRUCTURE OF A COMPUTER				9					
SYS	STEM									
	nits – Basic Operational Concepts – Po		_							
	anguage of the Computer - Operations	4000		7.0						
/ / / / / / -	presentation – Logical operations decis	ion 1	mak	cing	, –					
MIPS Address					L					
UNIT II AR	RITHMETIC FOR COMPUTERS				9					
10 PV7800000	Subtraction - Multiplication - Division	on –	Flo	atii	ng					
Point Represe	ntation - Floating Point Operations	ALLTO	INON	arous						
UNIT III PR	OCESSOR AND CONTROL UNIT				9					
Basic MIPS in	mplementation - Building a Datapat	th -	С	ontr	ol					
	on Scheme - Pipelining - Pipelined o									
=	dling Data Hazards & Control Hazards	_								
	EMORY AND I/O ORGANIZATION				9					
Memory hiera	rchy, Memory Chip Organization, Ca	che	mei	nor	v.					
	nory. Parallel Bus Architecture			tern						
	on Methodologies, Serial Bus Archite									
	and Output Devices.		-,	. •	-					
0 1	OVANCED COMPUTER ARCHITEC	TU	RE		9					
D 11 1	. 1., , 1 1 1	т.		1						
-	essing architectures and challenges									
multithreadin	g, Multicore and shared memory mu	ıtıpr	oce	SSO	rs,					

	duction to Graphics Processing Units, Clusters and
Ware	chouse scale computers, Introduction to Multiprocessor
netw	ork topologies.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Apply the basics structure of computers, operations and
	instructions.
CO2:	Apply arithmetic and logic unit.
CO3:	Explain pipelined execution and control unit.
CO4:	Identify the various memory systems and I/O
	communication.
CO5:	Apply parallel processing architectures.
CO6:	Apply the hardware interface for real time applications.
TEX	T BOOKS: DREAM
1	David A. Patterson and John L. Hennessy, Computer
Í	Organization and Design: The Hardware/Software
1	Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.
2	Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig
	Manjikian, Computer Organization and Embedded Systems,
	Sixth Edition, Tata McGraw Hill, 2012.
	ERENCES:
1	William Stallings, Computer Organization and Architecture
	- Designing for Performance, Eighth Edition, Pearson
	Education, 2010.
2	John P. Hayes, Computer Architecture and Organization,
	Third Edition, Tata McGraw Hill, 2012.
3	Govindarajalu, "Computer Architecture and Organization,
	Design Principles and Applications", Second edition,
	McGraw-Hill Education India Pvt Ltd, 2014.

Cos						I	POs						I	PSO	s	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	-	-	-	-	1	1	1	2	3	-	-	
2	3	2	1	1	-	ı	ı	ı	2	2	2	2	3	ı	-	
3	2	1	ı	-	-	ı	ı	ı	2	2	1	2	2	ı	-	
4	3	2	1	1	-	-	-	-	2	2	2	2	3	-	-	
5	3	3	2	2	-	-	-	-	2	1	1	2	3	-	-	
6	3	2	-	1	-	-	-	-	1	1	1	2	2	-	-	
Overall Correlation	3	2	1	2	-	1	1	1	2	2	2	2	3	1	_	
Recommended	Recommended by Board of Studio									es 08-04-2024						
A	Approved								2nd ACM Date					25-05-2024		

23CS411	SOFTWARE ENGINEERING	L	T	P	C
		3	0	2	4

- To make the student understand the software process with different models.
- To familiarize the student with requirements engineering and software design concepts.
- To impart knowledge to the student in various software testing techniques and product metrics.
- To make the student recognize the significance of software quality and project management.
- To acquaint the student with the software maintenance and reengineering process

UNIT I SOFTWARE PROCESS

Introduction to software engineering – Layers in software engineering – Generic process framework – Software general principles and myths – Process models: Waterfall model, Incremental process model, Evolutionary process models, Concurrent models, Specialized process models, Unified process, Personal and Team process models – Process assessment and improvement approaches – Agile process models.

UNIT II REQUIREMENTS AND SOFTWARE DESIGN 9

Introduction to Requirements engineering: Functional and Nonfunctional requirements – Requirement specification template – Eliciting requirements – Requirements analysis – Requirements modeling: Class-based modeling, Flow-oriented model, Behavioral model – Design process – Design concepts – Design model dimensions – Software architecture – Architectural styles – Architectural mapping using data flow – User interface analysis and design.

UNIT III | SOFTWARE TESTING AND METRICS

9

Testing strategies for: Conventional software, Object-oriented software, Web-apps – Strategic issues – Software testing fundamentals – Validation testing – System testing – White-box testing – Black-box testing – Debugging – SCM process – Metrics for requirements model – Metrics for design model: Architectural design metrics, Lorenz and Kidd OO Metrics, Component-level design metrics – Metrics for source code – Metrics for testing and maintenance.

UNIT IV SOFTWARE QUALITY AND PROJECT MANAGEMENT

9

Elements of SQA – SQA Tasks, Goals, Metrics – Statistical SQA – Software Reliability – ISO 9000 Quality Standards – SQA Plan – Project management spectrum – People – Product- Process – Project – W⁵HH Principle – Critical Practices.

UNIT V MAINTENANCE AND REENGINEERING

9

Software Maintenance – Software Supportability - Reengineering – Business process reengineering – Software Reengineering - Reverse Engineering – Restructuring – Forward Engineering – Economics of Reengineering.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES:

TOTAL: 30 PERIODS

- 1. Identify the problem statement to define a given project within the bounded scope of the project.
- 2. Select relevant process model to define activities and related tasks set for an assigned project.
- 3. Gather application specific requirements to assimilate into requirements engineering model.
- 4. Prepare a broad SRS for a given project.
- 5. Develop DFD model (level-0, level-1 DFD and data dictionary) for a given project.

- 6. Write test cases to validate requirements of an assigned project from a SRS document.
- 7. Evaluate size of the project using function point metric for an assigned project.
- 8. Prepare SQA plan that facilitates various attributes of quality of a product.
- 9. Estimate the cost of a given project by using the COCOMO model.
- 10. Use CPM/PERT for scheduling an assigned project.

TOTAL: 45+30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Make use of the appropriate process model to develop a project. ER DRS
- CO2: Analyze the software requirements specification document and software design.
- CO3: Develop various testing strategies and techniques and their role in testing phase.
- CO4: Analyze different product metrics of SCM.
- CO5: Apply the role of SQA in software engineering and the benefits of project management.
- CO6: Apply different concepts and aspects of software maintenance and reengineering methods.

TEXT BOOKS:

- Roger S. Pressman, "Software Engineering: A Practitioner's Approach", McGraw Hill Education, 7th Edition, New Delhi, 2009.
- 2 Ian Sommerville, "Software Engineering", Pearson Education, 10th Edition, India, 2017.

REFERENCES:

1 James F. Peters, Witold Pedrycz, "Software Engineering, and Engineering Approach", John Wiley, New Delhi, 2000.

2	K. K. A	K. K. Aggarwal, Yogesh Singh, "Software Engineering",														
	New Ag	ge I	nte	rnat	tion	al I	ub	lish	ers,	3rc	d Ed	itior	ı, Ne	ew i	Dell	hi,
	2007.															
3	Rajib M	[all,	"F	unc	lam	ent	als	of :	Soft	twa	re E	ngir	eeri	ng"	, P	HI
	Learnin	Learning Private Limited, 4th Edition, New Delhi, 2014.														
	COs	POs PSOs														
`	COS	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
	1	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
	2	3	3 2 1 1 2 1 1 1 2 2 2 1 3 2 1													
	3	3	2	1	1	2	1	1	1	2	2	1	1	3	2	1
	4	3	2	1	1	2	1	1	1	2	2	2	1	3	2	1
	5	3	2	1	1	2	1	1	1	2	1	1	1	3	2	1
	6	3	2	1	1	2	1	1	1	1	1	1	1	3	2	1
O.	verall	3 2 1 1 2 1 1 2 2 2 2														
Cor	relation															
Reco	mmended	d by	Во	ard	of S	Stud	ies	08-	04-2	024						i.

Approved

Date

25-05-2024

2nd ACM

23CS421	OPERATING SYSTEMS	L	T	P	C
	LABORATORY	0	0	4	2

- To install windows operating systems.
- To understand the basics of Unix command and shell programming.
- To implement various CPU scheduling algorithms.
- To implement Deadlock Avoidance Algorithms.
- To be familiar with File Organization and File Allocation Strategies.
- To understand the working of virtual machines.

LIST OF EXPERIMENTS:

- 1. Installation of windows operating system.
- 2. Illustrate UNIX commands and Shell Programming.
- 3. Process Management using System Calls: Fork, Exit, Getpid, Wait, Close.
- 4. Write a C program to implement various CPU Scheduling Algorithms.
- 5. Write a C program to simulate the concept of Dining-Philosophers problem.
- 6. Write a C program to implement inter process communication.
- 7. Implement a C program to avoid Deadlock using Banker's Algorithm.
- 8. Write a C program to Implement the concept of threading.
- 9. Write a C program to Implement single level and two-level directory structure.
- 10. Write C programs to implement the following Memory Allocation Methods a. First Fit b. Worst Fit c. Best Fit
- 11. Write C programs to implement the various Page Replacement Algorithms.
- 12. Implement various disk scheduling algorithms.
- 13. Install any guest operating system like Linux using VMware

TOTAL: 45 PERIODS

COU	COURSE OUTCOMES:																	
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	11 be	abl	le to):		
CO1:	Apply b	oasi	c U	NIX	(co	mn	nano	ds a	nd	she	ll pr	ogra	mm	ing				
CO2:	Constru	ıct v	ari	arious CPU Scheduling Algorithms.														
CO3:	Constru	ıct t	he concept of interprocess communication.															
CO4:	Build va	ario	us j	pag	e re	pla	cen	nent	tale	gori	thm	s.						
CO5:	Interpre	et oj	pera	atio	ns c	on c	lire	ctor	ies.									
CO6:	Build Li	uild Linux OS using VMware.																
	COs						I	POs	,		PSOs							
,	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	3	2	1	1	3	2	1	1	2	2	-	1	3	3	1		
	2	3	2	1	1	3	2	1	1	2	2	-	1	3	3	1		
	3	3	2	1	1	3	2	1	1	2	2	-	1	3	3	1		
	4	3	2	1	1	3	2	1	1	2	2	1	1	3	3	1		
	5,100	2	1	1	g -	3	2	1	1/	2	2	7	1	2	3	1		
· ·	6	3	2	1	1	3	2	1	1	2	2		1	3	3	1		
//	verall relation	3	2 1 1 3 2 1 1 2 2 - 1 3 3 1															
Reco	mmended	d by	Во	ard	of S	Stud	lies	08-	04-2	2024	TE	CH	NO	10	ig)	12		
	Approved					LIAT	2nd ACM Date 25-05-2024							2024				

23CS422	ARTIFICIAL INTELLIGENCE	L	T	P	C
	LABORATORY	0	0	4	2

- Develop descriptions and specifications for the behavior of intelligent agents across various AI tasks, enabling agents to make decisions and interact with their environment autonomously.
- Apply and implement basic search strategies such as breadth-first search (BFS) and depth-first search (DFS), as well as heuristic search techniques like A* and its memory-bounded variants, to efficiently explore problem spaces.
- Implement and apply genetic algorithms and simulated annealing techniques to solve optimization problems
- Design and implement backtracking algorithms and local search strategies to solve CSPs, enabling students to navigate large solution spaces and handle constraints efficiently.
- Implement propositional and first-order logic-based inference techniques, including resolution methods, to enable machines to draw conclusions and make decisions based on a set of given facts.

LIST OF EXPERIMENTS:

- Construct descriptions of agent behavior for various AI tasks
- 2. Implement basic search strategies for selected AI applications
- 3. Implement A* and memory bounded A* algorithms
- 4. Implement genetic algorithms for AI tasks
- 5. Implement simulated annealing algorithms for AI tasks
- 6. Implement alpha-beta tree search
- 7. Implement backtracking algorithms for CSP
- 8. Implement local search algorithms for CSP
- 9. Implement propositional logic inferences for AI tasks
- 10. Implement resolution based first order logic inferences for AI tasks

TOTAL:45 PERIODS

COU	OURSE OUTCOMES:															
	After co	mp	letio	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to) :
CO1:	Develop) c	lear	de	escr	ipti	ons	aı	nd	bel	navio	or f	or i	ntel	lige	ent
	agents															
CO2:	Demons				abil	ity	to s	solv	e p	rob	lem	s us	ing s	seaı	chi	ng
	and bac			$\overline{}$												
CO3:		Develop programs to implement simulated annealing and														
	0	genetic Algorithm Implement Backtracking and Local Search Algorithm for														
CO4:	-					_	_				Searc	ch A	Algo	rith	m i	or
	Constra															
CO5:		Implement propositional logic-based inference engines that														
		acilitate reason and decision-making in AI applications apply resolution-based inference in first-order logic,														
CO6:	117												-ord	er	log	ic,
	enabling	g th	e aı	atoı	mat	ion				ng '	tasks	3				
(COs PSOs								s							
	200	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 POW	3	2	1	1	3	1	1	1/	2	1	1	1	3	3	1
)	2	3	2	1	\1	3	1	1	1	2	1	1	1	3	3	1
Ý	3	3	2	1	1	3	1	1	1	2	1	1	1	3	3	1
1	4	3	2	1	1	3	1	1	1	2	1	1	1	3	3	1
	5	3	2	1	1	3	1	1	1	2	2	1	1	3	3	2
	6 NEE	3	2	1	1	3	1	1	1	2	1	1	1	3	3	1
O	verall	0														
Corr	elation	3	2	1	1	3	2	2	1	2	1	1	1	3	3	1
Reco	mmended	l by	Во	ard	of S	Stud	ies	08-	04-2	2024						
	A	ppr	ove	d				2nd	1 A(CM		Date	9	25-05-2024		

23ES49	1	A]		UDE A			GICA	L	L	T	P	C
				ASON	NIN	G - 1			0	0	2	1
COURS												
	-	rove th	-	blem s	solv	ing a	nd log	gical tl	ninki	ng	abil	ity
		tudents										
	-	uaint st			-		-	-				
	attern	s in qua	antita	tive a	ptitu	ıde a	nd lo	gical r	easoı	ning	3.	
UNIT I												4
Numbe		M, HC	F, Av	erage	es, R	atio 8	& Pro	portio	n, M	lixtı	ares	3 &
Allegat												
UNIT I												4
Percent	ages, [Γime an	nd wo	rk, Pij	pes	and (Cister	n, codi	ing a	nd		
decodi	<u> </u>											
UNIT I												4
Time S ₁		Distance	e, Trai	in, Boa	ats a	nd St	ream	s, Ana	logy			
UNIT I					- 2							4
Data In	terpre	tation (BAR,I	PIE,LI	INE)	, Sea	ting a	rrange	emer	ıt.	4	
UNIT			6	1			1					4
Simple	Intere	st and C	Comp	ound	Inte	erest,	Profit	loss a	nd I	Disc	our	ıt,
Partner	ship.	N.			- 7					3		M.
A.	12	1					T	OTAL	: 20 1	PER	IOI	DS
COURS	100 A A 7000		2,507	601		CE	OFT	ECH	NO	0	GV	107
		mpletic										
CO1 : A	nalyse	e and s	solve	comp	plex	prob	olems	, and	fost	er (criti	cal
tł	ninking	g and lo	ogical	reaso	ning	g skil	ls.					
CO2: S	olve f	undam	ental	math	nema	atical	prob	olems,	and	er	ıhaı	nce
tł	neir co	mputat	ional	skills	and	num	erical	abilit	y.			
CO3: D												
aı	nd en	courage	e the	use	of 1	multi	ple a	pproa	ches	to	so	lve
		ns effici										
CO4: A	nalyse	e and so	olve d	liffere	ent d	ata a	nalys	is prol	olem	s fo	r ti	me
aı	nd dist	tance, a	nd int	terpre	et da	ta an	alysis	for a	case	stu	dy.	
CO5: D	erive i	informa	ation 1	from	grap	hs, a	nd so	olve qu	ıesti	ons	bas	sed
O	on mathematical operations such as ratios, proportions, basic											
al	lgebra,	and sta	atist <u>i</u> c	al esti	imat	ion.						
CO6: S	olve q	uestion	ns in	a frac	ction	n of	a mi	nute ı	ısing	sh	ort	cut
m	ethod	s										

TEX	TEXT BOOK:									
1	Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.									
2	Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand									
	Publishing.									

REFERENCES:

1 Agarwal, R.S. "A Modern Approach to Verbal & Non-Verbal Reasoning." 2nd ed., S. Chand Publishing

Cos						I	Os						I	s	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	-	-	2	1	1	2	1	2	3	1	-	3
2	2	3	3	-	-	2	-	1	3	2	2	3	2	1	3
3	3	3	3	-	-	2	-	1	2	2	2	3	2	-	3
4	2	3	2	3	-	2	1	2	3	3	2	3	1	2	3
5	3	2	2	-	1	3	-	2	2	3	3	3	3	1	3
6	3	3	3	3	2	3	1	3	3	2	3	3	3	1	3
Overall	E:	RE	1			- 4		1				1		400	
Correlation	3	3	3	1	1	3	1	2	3	3	3	3	2	1	3
Recommended by Board of Studies								08-04-2024							
Approved							2nd	d A(M		Date		25-	05-2	2024

COLLEGE OF TECHNOLOGY

SEMESTER -V

	SEMESTER -V										
23RE501	RESEARCH METHODOLOGY	L	T	P	C						
	AND INTELLECTUAL PROPERTY	2	0	0	2						
	RIGHTS										
COURSE	OBJECTIVES:										
• To	provide an overview on selection of resear	ch p	orol	olen	n						
bas	ed on the Literature review	_									
	enhance knowledge on the Data collection			naly	sis						
	outline the importance of ethical principle	s to	be								
followed in Research work and IPR UNIT I INTRODUCTION TO RESEARCH											
UNIT I INTRODUCTION TO RESEARCH											
	FORMULATION										
Meaning	of research problem, Sources of resear	ch	pro	ble:	m,						
_	ood research problem, and selecting a resea		_								
	d objectives of research problem. D	-	_								
/APC 33P	g the research problem - Necessity of		_								
problem - 1	Importance of literature review in defining	дар	rob	lem	ı						
	LITERATURE REVIEW				6						
Literature	review - Primary and secondary source	es -	rev	viev	vs,						
treatise, m	onographs-patents - web as a source - s	searc	hir	g t	he						
web - Cri	tical literature review - Identifying gap	ar	eas	fro	m						
literature r	eview - Development of working hypothe	sis									
UNIT III	DATA ANALYSIS				6						
Execution	of the research - Data Processing and Analy	sis s	stra	tegi	ies						
- Data An	alysis with Statistical Packages - Genera	aliza	tio	ı aı	nd						
Interpretat											
UNIT IV	REPORT, THESIS PAPER, AND RESEA	RC	Η		6						
	PROPASAL WRITING										
Structure a	and components of scientific reports - Type	es o	f re	por	t –						
	reports and thesis - Significance - Differen										
	n – Layout, structure and Language of typ		_								
	as and tables - Bibliography, types of		_								
<u> </u>					_						

citati	ons- index and footnotes, how to write report- Paper
Deve	loping,- Plagiarism- Research Proposal- Format of research
prop	osal- a presentation - assessment by a review committee
UNI	TV INTELLECTUAL PROPERTY AND PATENT 6
	RIGHTS
Ethic	al principles- Plagiarism, Nature of Intellectual Property
Pater	nts, Designs, Trade and Copyright- patent search, Process of
Pater	ating and Development: technological research, innovation,
pater	ating, and development. International Scenario: International
coop	eration on Intellectual Property. Procedure for grants of
Pater	t Rights - Scope of Patent Rights, Geographical Indications
	TOTAL: 30 PERIOD
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Analyze the literature to identify the research gap in the
)	given area of research.
	Identify and formulate the research Problem
CO3:	Analyze and synthesize the data using research methods and
	knowledge to provide scientific interpretation and
	conclusion.
CO4:	Prepare research reports and proposals by properly
	synthesizing, arranging the research documents to provide
	comprehensive technical and scientific report
CO5:	Conduct patent database search in various countries for the
	research problem identified.
CO6:	Apply ethical principles in research and reporting to
	promote healthy scientific practice
	BOOKS:
1	Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K.,
	2002. An Introduction to Research Methodology, RBSA
	Publishers.
2	Kothari, C.R., 1990. Research Methodology: Methods and
	Techniques. New Age International. 418p.

3	Sinha,	S.C.	. an	d D	hin	nan,	, A.l	K., 2	2002	2. R	esea	rch l	Meth	nod	olog	gy,
	Ess Ess	Pu	blic	atio	ons.	2 v	olu	me	s.							
4	Trochi	m,	W.I	M.K	., 2	2005	5. F	Rese	earc	h N	Meth	ods	: the	e co	onc	ise
	knowle	edge	e ba	ise,	Ato	omi	c D	og I	Pub	lish	ing.	270	p.			
5	Wadeh	ra,	B.L	. 20	00.	Lav	w re	elat	ing	to j	pate	nts,	Trac	le N	/lar	ks,
	Copy r	ight	t de	sigi	ns a	nd (Geo	gra	phi	cal	indi	catio	ns.	Uni	ver	sal
	Law Pı	ıbli	shiı	ng												
REFI	REFERENCES:															
1	Anthony, M., Graziano, A.M. and Raulin, M.L., 2009.															
	Research Methods: A Process of Inquiry, Allyn and Bacon.															
2	Carlos, C.M., 2000. Intellectual property rights, the WTO															
	and developing countries: the TRIPS agreement and policy															
_	options. Zed Books, New York.															
3	Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing",															
4	Sage Publications. Day P. A. 1992 How to Write and Publish a Scientific															
-	Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press.															
5	Fink, A., 2009. Conducting Research Literature Reviews:															
,	From the Internet to Paper. Sage Publications															
6	Leedy, P.D. and Ormrod, J.E., 2004 Practical Research:															
	Plannin		7.37						_						_	1
7	Satarka						lect	ual	pro	pe	rty r	ight	s and	d cc	ру	
	right. E	55 I	ub.	ııca	tior	ıs.	T	POs						1	PSC	10
(COs	1	2	3	4	5	6	7	8	9	10	11	12		2	3
	1		2	1	1	1			_	1	2		1		2	1
	2	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	3	3			1	1	-	-	_	1	2	-	1		2	1
	_	3	2	1		1	-	-	1			-		3		
4		3	2	1	1		-	-	1	1	2	-	1	3	2	1
5		3		1		1	-	-	1	1	2	-	1			1
6 Orrowell		2	2	1	1	1	-	_	1	1	2	-	1	3	2	1
Overall Correlation		3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	mmended	l by	Bo	ard	of S	tud	lies	13-	11-2	2024	<u> </u>		<u> </u>	<u> </u>	<u> </u>	i .
									Date	2	30-	11-2	2024			
							3 .10.1/1					JU 11-2024				

			1										
23CS501		COMPUTER NETWORKS	L	T	P 0	C 3							
	3 0												
COURSE OBJECTIVES:													
 To understand the concept of layering in networks 													
 To know the functions of protocols of each layer of TCP/IP 													
pro	protocol suite.												
• To v	visu	alize the end to end flow of information	n.										
• To 1	und	erstand the components required to be	uild	dif	fere	nt							
type	es of	networks.											
 To 	lear	n concepts related to network add	lress	sing	aı	nd							
Rou	ıting												
UNIT I	IN	TRODUCTION AND APPLICATION	J LA	YE	R	9							
Building	net	work - Network Edge and Core	-	La	yer	ed							
Architectu	ıre	- OSI Model - Internet Architectu	ire ((TC	P/1	IP)							
Networkin	ng I	Devices: Hubs, Bridges, Switches, 1	Rout	ers	, aı	nd							
Gateways	- I	Performance Metrics - Introduction	to S	Sock	cets	-							
Application	on La	<mark>ayer protocols –</mark> HTTP – FTP Email Pro	toco	ls –	DN	JS.							
UNIT II	TR	ANSPORT LAYER				9							
Transport	Lav	er functions - Multiplexing and Dem	ulti	olex	ing	<u> </u>							
-	-	n Protocol - Transmission Control Pro				_							
	-	ansmission Strategies - Congestion Co											
		TWORK LAYER				9							
Switching	con	cepts - Internet Protocol - IPV4 Packe	t For	rma	<u> </u>	IP							
O		Subnetting - Classless Inter Dom											
	_	able Length Subnet Mask (VLSM) - Dl				_							
Network Address Translation (NAT) – ICMP – Concept of SDN.													
UNIT IV	RO	UTING	_=_			9							
Routing P	rinc	iples – Distance Vector Routing – Link	State	e Ro	uti	ng							
_		- BGP - IPV6 - Introduction to Qual				_							
		201 II to Introduction to Quan	, 0		V . V .								

(QoS).

UNI	T V DATA LINK LAYER AND PHYSICAL LAYER	9
Data	Link Layer - Framing - Flow control - Error control - Med	lia
Acce	ss Control - Ethernet Basics - CSMA/CD - Virtual LAN	· –
Wire	less LAN (802.11) - Physical layer - Signals - Bandwidth ar	nd
Data	Rate – Encoding – Multiplexing – Transmission Media.	
	TOTAL: 45 PERIO	DS
COU	IRSE OUTCOMES:	
	After completion of the course, the students will be able to	:
CO1:	Explain the introduction about the computer networks.	
CO2:	Identify the devices and protocols to design a network ar	nd
	implement it.	
CO3:	Build network applications using the right set of protoco	ols
	and estimate their performances.	
	Explain trace packet flows and interpret packet formats.	
CO5:	Apply addressing principles such as subnetting and VLS	M
· V	for efficient routing.	
	Explain media access and communication techniques.	
TEX	T BOOKS:	
1	James F. Kurose, Keith W. Ross, "Computer Networking:	
	Top-Down Approach", Seventh Edition, Pearson Educatio	n,
	2017.	
2	Larry L. Peterson, Bruce S. Davie, "Computer Networks:	
	Systems Approach", Fifth Edition, Morgan Kaufmar	nn
	Publishers Inc., 2012.	
	ERENCES:	
1	William Stallings, "Data and Computer Communications	3″,
	Tenth Edition, Pearson Education, 2013.	
2	Nader F. Mir, "Computer and Communication Networks	3″,
	Second Edition, Prentice Hall, 2014.	
3	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Comput	
	Networks: An Open Source Approach", McGraw Hill, 201	2.

COs						I	POs						PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	2	1	-	-	-	-	-	1	-	-	-	1	2	-	1		
2	3	2	1	1	2	-	•	1	1	-	•	1	3	-	1		
3	3	2	1	1	2	1	ı	1	1	1	1	1	3	2	1		
4	2	1	-	-	2	-	ı	1	1	•	•	1	2	2	1		
5	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1		
6	2	1	-	-	-	1	-	1	1	1	1	1	2	-	1		
Overall	,	•	1	1	1	1		1	1	1	1	1	•	1	1		
Correlation	3	2	1	1	1	1	-	1	1	1	1	1	3	1	1		
Recommende	d by	Во	ard	of S	Stud	lies	13-	11-2	2024	:							
Approved							3rd ACM Date				9	30-11-2024					

23CS511	COMPILER DESIGN	L	T	P	С					
		3	0	2	4					
COURSE OB	JECTIVES:			Į.						
• To	learn the various phases of compiler.									
• To	learn the various parsing techniques.									
	understand intermediate code generati e environment.	on a	ınd	run						
	learn to implement front-end of the co	npil	er.							
	learn to implement code generator.	Г								
	INDAMENTALS OF COMPILATION	1			9					
Introduction	Modules and Interfaces - Tools and So	oftw	are	- Da	ata					
structures for	Tree Languages. The Phases of Com	pile	r: I	exi	cal					
	Role of Lexical Analyzer - Input	_								
	of Tokens - Recognition of Tokens. Le			_						
Automata -	Regular Expressions to Automata I	NFA	, I	FA	-					
Minimizing I	DFA.									
UNIT II SY	NTAX ANALYSIS	1			12					
Parser: Role o	f Parser - Grammars - Error Handling	- Co	nte	xt-f1	ee					
grammars -	Writing a grammar - Top Down Pars	sing	G	ene	ral					
Strategies: R	ecursive Descent Parser Predictive P	arse	r -	LL	(1)					
Parser - Shift	Reduce Parser - LR Parser - LR(0) Item.	Cor	ıstr	ucti	on					
of SLR Parsi	ng Table - Introduction to LALR Pa	arse	r –	Erı	or					
Handling and	l Recovery in Syntax Analyzer - YACC									
UNIT III IN	TERMEDIATE CODE GENERATION	1			8					
Syntax Dire	cted Definitions: Syntax Directed	De	efin	itioı	าร-					
-	rders for Syntax Directed Definitions,									
	ntermediate Languages - Syntax Tree, T									
	and Declarations, Translation of Expr									
Checking.										
UNIT IV R	JN-TIME ENVIRONMENT AND CO	DE			8					
G	ENERATION									
Runtime En	vironments: Source language issue	es -	S	tora	ge					

organization - Storage Allocation Strategies: Static, Stack and Heap allocation - Parameter Passing-Symbol Tables - Dynamic Storage Allocation - Code Generation: Issues in the Design of a code generator - Basic Blocks and Flow graphs -Design of a simple Code Generator - Optimal Code Generation for Expressions-Dynamic Programming Code Generation.

UNIT V | CODE OPTIMIZATION

8

Principal Sources of Optimization - Peep-hole optimization - DAG- Optimization of Basic Blocks - Global Data Flow Analysis - Efficient Data Flow Algorithm - Recent trends in Compiler Design.

TOTAL: 45 PERIODS

PRACTICALS:

TOTAL: 30 PERIODS

- Develop a lexical analyzer to recognize a few patterns in C. (Ex. identifiers, constants, comments, operators etc.).
 Create a symbol table, while recognizing identifiers.
- 2. Implement a Lexical Analyzer using Lex Tool
- 3. Implement an Arithmetic Calculator using LEX and YACC
- 4. Generate three-address code for a simple program using LEX and YACC.
- 5. Implement simple code optimization techniques (Constant folding, Strength reduction and Algebraic transformation)
- 6. Implement back-end of the compiler for which the three address code is given as input and the 8086 assembly language code is produced as output.

TOTAL: 45+30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply front end and back end phases of compilation process and passes of compiler.
- CO2: Construct a lexical analyzer for a sample language using LEX tool.
- CO3: Develop a Parser using different parsing algorithms.
- **CO4:** Construct Syntax Directed Translation Scheme (SDT) for semantic rules and apply intermediate code generation algorithm to generate code sequence.

CO5:	Solve run	time environmer	nt and issues	in code	generation.
-	DOI'VE TUIL	tillic citvilorillici	it arra robacc	, III COGC	Scriciation.

CO6: Apply the Code Optimization Techniques to improve the performance of the code.

TEXT BOOKS:

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Sornav Bansal, "Compilers: Principles, Techniques and Tools", Second Edition, Pearson Education, 2023.

REFERENCES:

- 1 Randy Allen, Ken Kennedy, "Optimizing Compilers for Modern Architectures: A Dependence based Approach", Morgan Kaufmann Publishers, 2002
- 2 Steven S. Muchnick, "Advanced Compiler Design and Implementation", Morgan Kaufmann Publishers Elsevier Science, India, Indian Reprint 2003.
- 3 Keith D Cooper and Linda Torczon, "Engineering a Compiler", Morgan Kaufmann Publishers Elsevier Science, 2004.
- 4 V. Raghavan, "Principles of Compiler Design", Tata McGraw Hill Education Publishers, 2010.

COs	RR	EAL	A. C.		C	ΣĻ	Os	υE	O	1 E	CH	NC	Ly	PSC	PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	-	-	-	1	2	-	-	3	3	-	1	
2	3	2	1	1	3	-	-	2	3	-	-	2	3	3	2	
3	3	2	1	1	3	1	-	1	3	1	1	2	3	3	1	
4	3	2	1	1	3	-	-	2	3	1	1	2	3	3	2	
5	3	2	1	1	-	-	-	1	2	-	-	1	3	-	1	
6	3	2	1	1	3	1	-	1	3	1	1	1	3	3	1	
Overall	3	2	1	1	2	1		2	3	1	1	2	3	2	2	
Correlation	3		1	1		1	-		3	1	1		3			

Recommended by Board of Studies 13-11-2024

Approved 3rd ACM Date 30-11-2024

23CS521	COMPUTER NETWORKS	L	T	P	C
	LABORATORY	0	0	4	2

COURSE OBJECTIVES:

- To learn and use network commands
- To learn socket programming
- To implement and analyze various network protocols.
- To learn and use simulation tools.
- To use simulation tools to analyze the performance of various network protocols.

PRACTICALS

- 1. Learn to use networking commands like tcpdump, netstat, ifconfig, nslookup and traceroute. Capture ping, trace route PDUs using a network protocol analyzer, and examine.
- 2. Write a HTTP web client program to download a web page using TCP sockets.
- 3. Applications using TCP sockets like: a) Echo client and echo server b) Chat.
- 4. Simulation of DNS using UDP sockets.
- 5. Use a tool like Wireshark to capture packets and examine the packets.
- 6. Write a code simulating ARP / RARP protocols.
- 7. Study of Network simulator (NS) and Simulation of Congestion Control Algorithms using NS.
- 8. Study of TCP/UDP performance using Simulation tool.
- Simulation of Distance Vector/ Link State Routing algorithm.
- 10. Simulation of an error correction code (like CRC).

TOTAL: 30 PERIODS

LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS:

HARDWARE: Standalone desktops - 30 No's

SOFTWARE: C / C++ / Java / Python / Equivalent Compiler | Network simulator like NS2/Glomosim/OPNET/ Packet Tracer/Equivalent

COURSE OUTCOMES:																
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to):
CO1:	Demons	stra	te t	he 1	basi	ic la	yer	's aı	nd i	its f	unct	ions	s in (com	ıpu	ter
	network	ζS.														
CO2:	Constru	ıct	data	a fl	ow	fro	m (one	no	de	to a	noth	ner r	node	e ir	a
	network	ζ.														
CO3:	Demons	stra	te r	out	ing	alg	orit	hm	s.							
CO4:	Apply the various functions of protocols in computer															
	networks.															
CO5:	5: Demonstrate the working of various application layer															
	protocols.															
CO6:	CO6: Apply Error Correction and Detection Technique															
	COs POs PSOs														s	
	200	1	2	3	4	5	7 8 9 10 11 12 1 2								3	
	1 POW	3	2	1	1	3	-	-	1	2	(-	P -	3	2	3	1
N	2	3	2	1	_1	3	-	-	2_	3	-	-	2	3	3	2
Ì	3	3	2	1_	1	3	1		1	3	1	1	2	3	3	1
1	4	3	2	1	_1	3	-	_	2	3	1	1	2	3	3	2
W	5	3	2	1	1	3	-	_	1	2	-		1	2	3	1
	6 SINE	3	2	1	1	3	1	E.	1	3	1	1	1	3	3	1
_	verall	3	2	1	1	2	1	11.11	2	3	1	1	2	3	2	2
	relation											•	_	J	_	_
Reco	Recommended by Board of Studies 13-11-2024															
	Recommended by Board of Studies 13-11-2024 Approved 3 rd ACM Date 30-11-2024															

23ES	591	APTITUDE AND LOGICAL	L	T	P	C
		REASONING -2	0	0	2	1
COU	RSE OF	BJECTIVES:	ı			
•	To im	prove the problem solving and logi	cal	thin	king	7
		of the students.				
•	To acq	uaint the student with frequently aske	d pa	tteri	ns ir	ı
	quanti	tative aptitude and logical reasor	ning	du	ring	5
		s examinations and campus interviews	S			
UNI	ГΙ					4
Prob	ability, I	Permutation & Combination, Algebra,	Prob	olem	s or	ì
ages						
UNI	ГΙΙ					4
Mens	suration	, Logarithms, inequalities and modulu	s, Sy	llog	ism	
UNI	ГШ					4
Dire	ctions, 1	ogical sequence words, number ser	ies,	Ana	alyt	ical
Reas	oning	THE COLUMN TWO IS NOT	- 4		4	96
UNI	ΓΙΥ	71,00		- 1		4
Blood	d relat <mark>io</mark>	n, Clock and Calendar, Picture puzzles	3 \		1	
UNI				4		4
Data	sufficie	ncy, cube and cuboids, odd man out				
	ONE	FA REPUTOTA	L: 20	PE	RIO	DS
COU		JTCOMES: AFFILIATED TO ANNA UNIVERSITY	AU	TONO	MOU	5
		empletion of the course, the students w		e ab	le to):
CO1:		concepts of probability, permutation, a	ind			
		ation to solve real-world problems.				
CO2:		lgebraic problems and age-related pro	blen	ns us	sing	
)	approaches and techniques.				
CO3 :	-	e and solve problems in mensuration,	loga	rith	ms,	
604		equalities.				
CO4:	-	et and solve problems related to direct	ions	, log	ical	
COF		ce, and number series.	·	1		
CU5:		y and solve problems in logical reason	_	such	as	
COG		sm, blood relations, clock and calendar		al-	20	
CU6:		y and solve problems in logical reason		ucn	as	
	synogis	sm, blood relations, clock and calendar	•			

TEXT BOOK:																
1	Smith,	Joh	n. ".	AP	ГІРЕ	EDL	4. " <i>2</i>	2nd	ed.	, W	iley	Pub	lish	ers,	202	20.
2	Agarw	Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand														
	Publish	Publishing.														
REFI	RENCES:															
1	Agarw	Agarwal, R.S. "A Modern Approach to Verbal & Non-														
	Verbal	Rea	asor	ning	g." 21	nd e	ed.,	S. C	haı	nd I	Publ	ishiı	ng.			
	Verbal Reasoning." 2nd ed., S. Chand Publishing. POs PSOs															
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	3	2	2	2	1	3	1	2	3	2	2
	2	3	2	2	2	3	2	3	2	1	2	1	2	3	2	3
	3	3	3	2	2	2	2	2	2	1	3	1	2	3	3	2
	4	2	3	2	1	2	3	1	2	3	3	2	3	2	2	3
	5	2	3	3	2	2	2	2	3	2	2	2	3	3	3	3
	6	3	3	2	2	3	2	3	3	2	2	1	2	3	3	2
O	verall	Eid.	PRE	De.			- 4	1,7	- 4				10		4	

3 3

3 3 2

Recommended by Board of Studies

Approved

Correlation

COLLEGE OF TECHNOLOGY

13-11-2024

Date

3 3 3

30-11-2024

3 2

3rd ACM

SEMESTER -VI

		SEMESTER - VI				
23CS601		CRYPTOGRAPHY AND CYBER	L	T	P	C
		SECURITY	3	0	0	3
COURSE	OBJ	ECTIVES:				
•]	Го le	arn to analyze the security of in-built o	rypt	tosy	ste	ms.
•]	Γo kr	now the fundamental mathematical co	ncep	ots r	ela	ted
t	o sec	curity.	_			
•]	Γo de	evelop cryptographic algorithms for in	forn	nati	on	
s	secur	rity.				
• 7	Го сс	omprehend the various types of data ir	ıtegr	ity	anc	1
ä	authe	entication schemes				
•]	Γo uı	nderstand cyber-crimes and cyber secu	ırity			
UNIT I	IN	TRODUCTION TO SECURITY				9
Computer	Sec	urity Concepts - The OSI Security A	rchi	itect	hire	
460	1000	ks – Security Services and Mechanism	1000			
/ 400 807 . 4		Security - Classical encryption				
5.0		chniques, Transposition techniques, St	10000			
110000		s of modern cryptography: Perfec	0	_	-	-
1,46,5,30		neory – Product Cryptosystem – Crypt			-	
UNIT II		MMETRIC CIPHERS	AUTO	ONO		9
Number t	hoor	y - Algebraic Structures - Modular	Δri	thm	oti	
		ithm - Congruence and matrices - C				
	0	Fields, Symmetric Key Ciphers: SI		-	•	
		ES, Strength of DES - Differential				
_		- Block cipher design principles - Block				
		- Evaluation criteria for AES - Ps	-			
_		rators - RC4 - Key distribution.				
		YMMETRIC CRYPTOGRAPHY				9
Mathana	<u> </u>	of Agreementain Voy Curveta arealy	. т	Duite	200	
		of Asymmetric Key Cryptography				-
Frimanty	res	ting – Factorization – Euler's totic	ent	run	CTIC	m,

Fermat's and Euler's Theorem - Chinese Remainder Theorem - Exponentiation and logarithm. Asymmetric Key Ciphers: RSA

cryptosystem – Key distribution – Key management – Diffie Hellman key exchange – Elliptic curve arithmetic – Elliptic curve cryptography.

UNIT IV INTEGRITY AND AUTHENTICATION ALGORITHMS

9

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function: HMAC, CMAC – SHA – Digital signature and authentication protocols – DSS – Schnorr Digital Signature Scheme – ElGamal cryptosystem – Entity Authentication: Biometrics, Passwords, Challenge Response protocols – Authentication applications – Kerberos, Mutual Trust: Key management and distribution – Symmetric key distribution using symmetric and asymmetric encryption – Distribution of public keys – X.509 Certificates.

UNIT V | CYBER CRIMES AND CYBER SECURITY

9

Cyber Crime and Information Security - Classifications of Cyber Crimes - Tools and Methods - Password Cracking, Keyloggers, Spywares, SQL Injection - Network Access Control - Cloud Security - Web Security - Wireless Security

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the fundamentals of networks security, security architecture, threats and vulnerabilities.
- CO2: Explain different cryptographic operations of symmetric cryptographic algorithms.
- CO3: Apply the different cryptographic operations of public key cryptography.
- **CO4:** Apply the various Authentication schemes to simulate different applications.
- CO5: Apply various signature scheme using Digital signature standard.

CO6:	Explain	various	types	of	cyber-crimes	and	cyber	security
	features.							

TEXT BOOKS:

- William Stallings, "Cryptography and Network Security Principles and Practice", Seventh Edition, Pearson Education, 2017.
- Nina Godbole, Sunit Belapure, "Cyber Security: Understanding Cyber crimes, Computer Forensics and Legal Perspectives", First Edition, Wiley India, 2011.

REFERENCES:

- 1 Behrouz A. Ferouzan, Debdeep Mukhopadhyay, "Cryptography and Network Security", 3rd Edition, Tata Mc Graw Hill, 2015.
- Charles Pfleeger, Shari Pfleeger, Jonathan Margulies, "Security in Computing", Fifth Edition, Prentice Hall, New Delhi, 2015.

COs	A		A	N.	P	I	POs	. 1	A.	. 2	_		I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	•	/-	1	-	-	1	-	-	-	1	2	-	1
2 CINE	2	1	diam'r.	-	S) LI	Ė	1	1	LE	H	1	2	5	1
3	3	2	1	1	2	1	D.T	1	1	1	1	1	3	2	1
4	3	2	1	1	2	-	-	1	1	-	-	1	3	2	1
5	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1
6	2	1	-	-	-	1	-	1	1	1	1	1	2	-	1
Overall Correlation	3	2	1	1	1	1	-	1	1	1	1	1	3	1	1
Recommended	d by	Во	ard	of S	Stud	ies	13-	11-2	024						
Α		3rd ACM Date				9	30-11-2024								

23CE611	ENVIRONMENTAL SCIENCE	L	T	P	C
	AND ENGINEERING	3	0	2	4

COURSE OBJECTIVES:

- To provide basic knowledge on environment impact assessment
- To create an awareness on the pollutants in the environment
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products
- To develop simple climate models and evaluate climate changes using models

UNIT I INTRODUCTION TO ENVIRONMENT IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework

UNIT II MOVEMENT OF POLLUTANTS IN 9 ENVIRONMENT

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

UNIT III | ECOLOGICAL RESTORATION 9

Wastewater treatment: anaerobic, aerobic process, methanogenesis, treatment schemes for waste water: dairy, distillery, tannery, sugar, antibiotic industries; solid waste treatment: sources and management (composting, vermiculture

and 1	methane production, landfill. hazardous waste treatment).
UNI	T IV ECOLOGICALLY SAFE PRODUCTS AND	9
	PROCESSES	
Biofe	ertilizers, microbial insecticides and pesticides, bio-contr	ol of
	t pathogen, Integrated pest management; developmen	
stres	s tolerant plants, biofuel; mining and metal biotechnol	ogy:
	obial transformation	.
UNI	T V CLIMATE CHANGE MODELS	9
Cons	structing a climate model – climate system modeling – cli	mate
simu	lation and drift - Evaluation of climate model simulati	on -
regio	onal (RCM) - global (GCM) - Global average respons	se to
warr	ning -climate change observed to date	
	TOTAL: 45 PERI	ODS
LIST	OF EXPERIMENTS: TOTAL: 30 PERI	ODS
1	. Determination of Bio fuel parameters such as flash po	oint
1	an <mark>d fire po</mark> int.	
2	. Determination of density of biofuels.	
3	. Determination of BOD/COD in water.	
4	CER REIO	
	geographic conditions. A TENTO ANNA UNIVERSITY AUTONOM	
5	. Measurement of Pollutant in environment by Gaussia	an
	Plume model.	
	TOTAL: 45+30 PERI	ODS
COU	IRSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Explain the importance of the process of Environmental	
	impact assessment and its types.	
CO2:	Illustrate the chemical processes and pollutant chemistr	y
CO3:	Identify the methods to solve environmental problems	
	Apply the knowledge to develop ecofriendly products.	
CO5:	Construct the various simple climate models for simular	tion

CO6:	O6: Apply the climate model simulation to monitor climate															
	change															
TEX	Г ВООК	S:														
1	David .l	EΝ	eeli	n "(Clin	nate	e Cł	nang	ge a	nd	Mod	lellir	ng",			
	Cambri								_				0 .			
2	Evans, 0	_														
	Biotechi	nol	ogy	: Th	eor	y aı	nd A	App	olica	tio	n (2r	nd e	ditio	n).		
	Wiley-Blackwell Publications.															
3	Pani, B. 2007. Textbook of Environmental Chemistry. IK international Publishing House															
	internat	ion	al F	ubl	ishi	ing	Ho	use								
4	N.S. Raman , A.R. Gajbhiye & S.R. Khandeshwar, Environmental Impact Assessment, 2014,IK International															
	Environ	ıme	nta	l Im	ıpac	t A	sse	ssm	ent	, 20	14,II	< Int	erna	tio	nal	
	Pvt Ltd.															
REFI	ERENCES:															
1	Carson (1907-1964). Environment Conservation-book															
2	Encyclopaedia of Environmental Issues by Craig W. Allin															
1	&Probe.															
3	Encyclopaedia of Environmental studies by William															
1	Ashwor	th.	4	62					ne gen		-					
4	Climate	Ch	ang	ge a	nd (Clir	nat	e M	ode	eling	g- Ki	indle	e Edi	itio	n.	
5	Environ	me	nta	lly-	Frie	end	ly I	roc	luct	de	velo	pme	nt -	JIN O	NOO	3
	Eberhar	nd A	Abil	e ,R	Rein	er A	And	lerl,	200	5						
(COs						I	POs						I	PSC	s
`		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	1	-	-	-	-	-	2	-	-
	2	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	Overall relation 3 2 1 1 - 3 2 -															
Reco	mmended	l by	Во	ard	of S	tud	ies	07-	11-2	024	1	1	1			
	A	ppı	ove	d				3rd	AC	CM		Date	•	30-	11-2	2024

23CS611	INTERNET PROGRAMMING	L	T	P	С
		3	0	2	4

COURSE OBJECTIVES:

- To understand different Internet Technologies.
- To learn java-specific web services architecture
- To construct a basic website using HTML and Cascading Style Sheets.
- To build dynamic web page with validation using Java Script objects and by applying different event handling mechanisms.
- To develop server side programs using Servlets and JSP.

UNIT I WEBSITE BASICS, HTML 5, CSS 3, WEB 2.0 9

Web Essentials: Clients, Servers and Communication – The Internet – Basic Internet protocols – World wide web – HTTP Request Message – HTTP Response Message – Web Clients – Web Servers – HTML5 – Tables – Lists – Image – HTML5 control elements – Semantic elements – Drag and Drop – Audio – Video controls – CSS3 – Inline, embedded and external style sheets – Rule cascading – Inheritance – Backgrounds – Border Images – Colors – Shadows – Text – Transformations – Transitions – Animations.

UNIT II | CLIENT SIDE PROGRAMMING

9

Java Script: An introduction to JavaScript-JavaScript DOM Model-Date and Objects,-Regular Expressions- Exception Handling-Validation-Built-in objects-Event Handling- DHTML with JavaScript- JSON introduction – Syntax – Function Files – Http Request – SQL.

UNIT III SERVER SIDE PROGRAMMING

9

Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session Handling- Understanding Cookies-

Installing and Configuring Apache Tomcat Web Server- Database Connectivity: JDBC perspectives, JDBC program example – JSP: Understanding Java Server Pages-JSP Standard Tag Library (JSTL)-Creating HTML forms by embedding JSP code.

UNIT IV PHP and XML

9

An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions- Form Validation- Regular Expressions – File handling – Cookies – Connecting to Database. XML: Basic XML- Document Type Definition- XML Schema DOM and Presenting XML, XML Parsers and Validation, XSL and XSLT Transformation, News Feed (RSS and ATOM).

UNIT V INTRODUCTION TO AJAX and WEB SERVICES

9

AJAX: Ajax Client Server Architecture-XML Http Request Object-Call Back Methods; Web Services: Introduction- Java web services Basics - Creating, Publishing, Testing and Describing a Web services (WSDL)-Consuming a web service, Database Driven web service from an application -SOAP.

TOTAL: 45 PERIODS

PRACTICALS:

TOTAL: 30 PERIODS

- Create a web page with the following using HTML (A) to embed a map in a web page (B) To fix the hot spots in that map (C) Show all the related Information when the hot spots are clicked.
- 2. Create a web page with the following. a. Cascading style sheets. b. Embedded style sheets. c. Inline style sheets. Use our college information for the web pages
- **2.** Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.

- **3.** Write programs in Java using Servlets: (A) To invoke servlets from HTML forms (B) Session tracking using hidden form fields and Session tracking for a hit count.
- **4.** Write programs in Java to create three-tier applications using servlets for conducting online examination for displaying student mark list. Assume that student information is available in a database which has been stored in a database server.
- 5. Install TOMCAT web server. Convert the static web pages of programs into dynamic web pages using servlets (or JSP) and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.
- 6. Redo the previous task using JSP by converting the static web pages into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database.
- 7. Create and save an XML document at the server, which contains 10 users Information. Write a Program, which takes user Id as an input and returns the User details by taking the user information from the XML document.
- **8.** i. Validate the form using PHP regular expression. ii. Store the form data into database using PHP.
- **9.** Write a web service for finding what people think by asking 500 people's opinion for any consumer product.

TOTAL:45+30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Construct a basic website using HTML and Cascading Style Sheets.
- CO2: Build dynamic web page with validation using Java Script objects and by applying different event handling mechanisms.

CO3:	Develo	o se	rve	r sic	de r	rog	ran	ns t	ısin	σ S	ervle	ets a	nd IS	SP.		
	Constru	-								_					ata	in
	XML fo		-	JIC .	VV CL	, pu	SCS	111.		uı	ia to	rcp.	COCI	iii a	ata	111
CO5:				/II . :	sche	-ma	ıs. r	ars	ers	and	l XSI	ſ.				
	Develop an XML schemas, parsers and XSL Make use of AJAX and web services to develop interactive															
CO0.	web applications															
TEX	XT BOOKS:															
1	Deitel and Deitel and Nieto, "Internet and World Wide Web															
	- How to Program", Prentice Hall, 5th Edition, 2011															
REFI	FERENCES:															
1	Stephen Wynkoop and John Burke "Running a Perfect															
	Website", QUE, 2nd Edition, 1999.															
2	Chris Bates, "Web Programming – Building Intranet															
	Applications", 3rd Edition Wiley Publications, 2009.															
3	Jeffrey C and Jackson, "Web Technologies A Computer															er
	Science Perspective", Pearson Education, 2011.															
	Science	Per	spe	Ctiv	<i>'</i> e ,	rea	arso	n E	auc	catio)n, 2	UII.				1
4	Gopalar		- 11	- 1			- L		_					nol	ogy	,",
4	Gopalar Prentice	n N e Ha	I.P.	an f In	d <i>A</i> idia	Akil , 20	and)11.	lesv	vari	J.,	"W	eb '	Tech			P
5	Gopalar Prentice UttamK	n N e Ha C.Ro	J.P. all o	an f In	d <i>A</i> idia	Akil , 20	and)11.	lesv	vari	J.,	"W	eb '	Tech			P
	Gopalar Prentice	n N e Ha C.Ro	J.P. all o	an f In	d <i>A</i> idia	Akil , 20	and 011. nol	lesv ogie	vari	J.,	"W	eb '	Tech	ity	Pres	ss,
5	Gopalar Prentice Uttamk 2011.	n N e Ha C.Ro	I.P. all o	an of In We	d Andia	Akil , 20 ech	and 011. nol	lesv ogie	vari	Ox.	"W ford	Veb Uni	Tech	ity I	Pres PSO	ss,
5	Gopalar Prentice Uttamk 2011.	n N e Ha Ro	1.P. all o	an of In We	d Andia	Akil , 20 ech	and 011. nol	lesv ogie	vari	Ox. 9	"W ford	Uni	vers	ity I	Pres PSO 2	ss, s
5	Gopalar Prentice Uttamk 2011.	n Ne Ha	1.P. all o y, " 2 2	an of In We	d Andia	Akil, 20 ech	and 011. nol	lesv ogie	vari	9 1	"W ford 10 1	Veb Uni 11 1	vers	ity F	Pres 2 2	ss, 9s 1
5	Gopalar Prentice Uttamk 2011. COs	n N e Ha C.Ro 1 3	2 2 2	an of Irr We	d Andia	Akil, 20 ech 5 2	and 011. nole I 6	lesv ogie	es", 8 1	9 1	"W ford 10 1	Uni 11 1	Tech vers 12 1 1	ity F 1 3 3	Pres 2 2 2	SS, SS 1 1
5	Gopalar Prentice Uttamk 2011. COs 1 2 3	1 3 3	2 2 2 2	3 1 1	d <i>A</i> dia	5 2 2 2	and 011. nol	lesv ogie	8 1 1	9 1 1	"W ford 10 1 1 1	Uni 11 1 1 1	12 1 1 1	Ity : 1 3 3 3 3	Pres 2 2 2 2	ss, 3 1 1
5	Gopalar Prentice Uttamk 2011. COs 1 2 3 4	1 3 3 3	2 2 2 2 2	3 1 1 1	4 1 1 1	5 2 2 2 2	I 6	lesv ogie	8 1 1 1	9 1 1 1	"W ford 10 1 1 1 1	Uni 11 1 1 1 1	Tech vers 12 1 1 1 1	Ity 1 3 3 3 3 3	Pres 2 2 2 2 2	SS, 3 1 1 1 1
5	Gopalar Prentice Uttamk 2011. COs 1 2 3 4 5	1 3 3 3 3 3	2 2 2 2 2 2	3 1 1 1 1	4 1 1 1	5 2 2 2 2	I 6	lesv ogie	8 1 1 1	9 1 1 1 1	"W ford 10 1 1 1 1 1	Uni 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 1 1 1 1 1	Iity 1 3 3 3 3 3 3 3	Pres 2 2 2 2 2 2	SS, 3 1 1 1 1 1 1 1 1 1
5	Gopalar Prentice Uttamk 2011. COs 1 2 3 4 5	1 3 3 3	2 2 2 2 2	3 1 1 1	4 1 1 1	5 2 2 2 2	I 6	lesv ogie	8 1 1 1	9 1 1 1	"W ford 10 1 1 1 1	Uni 11 1 1 1 1	Tech vers 12 1 1 1 1	Ity 1 3 3 3 3 3	Pres 2 2 2 2 2	SS, 3 1 1 1
5 Or Corn	Gopalar Prentice Uttamk 2011. COs 1 2 3 4 5 6 verall relation	1 3 3 3 3 3	2 2 2 2 2 2 2 2	3 1 1 1 1 1	4 1 1 1 1	5 2 2 2 2 2 2	In 6	ogie 'Os	8 1 1 1 1 1	9 1 1 1 1 1	"W ford 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Uni 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 1 1 1 1 1	Iity 1 3 3 3 3 3 3 3	Pres 2 2 2 2 2 2	SS, 3 1 1 1 1 1 1 1 1 1
5 Or Corn	Gopalar Prentice Uttamk 2011. COs 1 2 3 4 5 6 verall relation	1 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 8 8	3 1 1 1 1 1 1	4 1 1 1 1	5 2 2 2 2 2 2	In 6	POs 7 13-	8 1 1 1 1 1	9 1 1 1 1 1 1 2024	"W ford 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Uni 11 1 1 1 1 1 1 1 1 1 1	12	1 3 3 3 3 3	Pres 2 2 2 2 2 2 2 2 2	SS, 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

23CS621	PROJECT WORK PHASE-1	L	T	P	C
		0	0	4	2

COURSE DESCRIPTION:

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

COURSE OBJECTIVES:

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

PROJECT OUTLINE:

Week 1	Orientation and course overview. Formation of project
	teams and approval of topics by HoD.
Week 2	Initial meeting with supervisors. Define problem
	statement and objectives
Week 3	Literature review: Research methodologies and topic-
	specific studies.
Week 4	Zeroth Review.

Week 5	Refinement of literature review and identification of
	research gaps.
Week 6	Identification of Base Paper.
Week 7	First Review.
Week 8	Conceptual design discussions and brainstorming
	solutions.
Week 9	Narrowing done on the exact work.
Week 10	Completion of first stage of the Project.
Week 11	Development of detailed conceptual design and
	methodology.
Week 12	Incorporation of feedback and refinement of design
	and methodology.
Week 13	Second Review.
Week 14	Compilation of Phase 1 results, report writing, and
- 18	presentation preparation.
Week 15	Final Viva Voce Presentations.
Individual	meetings will be set up on a need's basis in conjunction

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is required to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDG-aligned goals.

Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written communication, ensuring effective delivery of technical content. **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Develop feasible solutions by analyzing complex engineering problems using foundational knowledge, mathematics, and science. **CO2:** Survey literatures to identify gaps, define research questions, and propose designs and methods for solving engineering problems. CO3: Make use of modern tools to check the feasibility of the solutions effectively. **CO4:** Evaluate societal and environmental impacts of solutions while incorporating sustainability and ethical practices. CO5: Combine in teams to plan, manage, and lead projects within professional and economic constraints. CO6: Formulate technical reports, deliver presentations, and engage in lifelong learning to adapt to new technologies.

COs	R R	ALI	No.		CC	⁾⁻ I	POs	JE.	Or	1E	CH	NO	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3	
5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Overall	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Correlation	3	_			1		_	3	3	3	3	3	3	1	3	
Recommende	d by	Во	ard	of S	Stud	ies	13-	11-2	2024							
A		3rd ACM Date 30-11						11-2	2024							

23CS622	TECHNICAL TRAINING	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

COURSE OBJECTIVES:

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

COURSE OUTCOMES:

A	fter completion of the course, the students will be able to:
CO1:	Identify specific domain from the enrolled branch and to
	get training preferable in computer-oriented platform.
CO2:	Survey and apprehend the learning modules in the
	training program and to become expert in the specific
	domain.

CO3:	Apply theoretical learning in the practical environment
	and enhance the skillset of learner.
CO4:	Estimate the learning using available data.
CO5:	Defend a presentation about the learning done in the
	specified skillset.
CO6:	Construct a technical report about the training.

GUIDELINES:

- More than one training program may be given depending on availability and interest of the students. One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

EVALUATION PATTERN:

Training Coordinator:

50 marks (Training Manual - 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall

approve the entries in the Training Manual during the weekly meeting with the student), Attendance – 10,).

Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

							-	Гrаi	niı	ng di	urati	on ·	- 30	Но	urs	
COs		POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	2	1	-	-	1	§ •	3	3	1	-	
2	3	3	2	1	- >	2	1	-	7	,	-	3	3	-	-	
3	3	3	3	3	3	•	N	1	1	2		3	3	3	1	
4	3	3	3	2	2	-	1	1		3	-	3	3	2	- 1	
5 G _{M50}	3	3	3	2	(10	2	E	2	0	2	GH	2	3	(1)	2	
6	3	3	3	3	2	2	EPT	2	4	3	RSHY	3	3	2	2	
Overall	2	3	2	2	•	2	1	2		3		2	2	•	,	
Correlation	3	•	3	3	2	2	1	2	-	3	1	3	3	2	2	
Recommended	l by	Boa	ard	of S	tud	ies	13-	11-2	2024							
$\mathbf{A}_{\mathbf{I}}$	ppr	ove	d			3rd ACM Date 30-11-202								2024		

23CS623	TECHNICAL SEMINAR - 1	L	T	P	С
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every

member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

the student), Attendance - 10).

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Identify	aca	adei	mic	do	cun	nen	ts fr	om	the	lite	ratu	re w	hicl	h ar	e
	related t	to h	er/	his	are	as c	of in	itere	est.							
CO2:	Survey and apprehend an academic document from the															
	literature which is related to her/ his areas of interest.															
CO3:	Compile a presentation about an academic document.															
CO4 :	Estimate the Contents using available literature.															
CO5:	Defend a presentation about an academic document.															
CO6:	Construct a technical report.															
	COs PSOs															s
•	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
- 0	verall relation	3	3	2	1	1	1	1	2	3	3	2	2	3	2	2
Reco	mmended	d by	Во	ard	of S	tud	lies	13-	11-2	024						
	A	ppr	ove	d		00	MI	3rd ACM Date 30-11-20							2024	

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

SEMESTER - VII

23CS	701	TECHNICAL COMPREHENSIO	N	L	T	P	C
2000	701	TECHNICIE COMI REHENOIC		2	0	0	2
PUR	POSE:				Ū		_
		a complete review of the topics	CO.	vere	d i	n t	he
	-	semesters, to ensure that a					
1		ing of the subjects is achieved. The		1			
		per the guidelines given by					
		ns like GATE, TANCET etc. It will al					
		nterviews and competitive examina		-	o ca	acı	100
		гсомея:					
		npletion of the course, the students	3A7i1	1 he	ahl	e to	·
CO1·		the phenomena involved in the con					
COI.	and solv		icer.	iieu	pre	DIC	111
CO2	- 11/1	rinciples to new and unique circum	otor	1000		-	
	7.2				27.7		-
CO3:		concepts and principles of concern	ea I	oran	ich (of	
604	engineer						
CO4:		ish between facts and opinion in th	e er	ngin	eeri	ng	
	field.	COLLEGE OF TEC	Н	VO	LO	G)	P.
		rause-and-effect relationships of any				iip.	
CO6:	_	data from charts and graphs and ju	ıdg	e th	e		
	relevanc	e of information.					
GUII	DELINES	:					
•	The D	epartment shall form an Interi	nal	Ass	sess	me	nt
	Comm	ittee for the Comprehension v	with	n A	Acac	lem	nic
	coordin	nator for that class as the Comprehe	ensi	on I	nstr	uct	or
	and Cla	ass coordinator as member.					
•	Instruc	tor shall provide required input t	o th	neir	stu	der	ıts

Periodic tests can be conducted to assess students.

regarding the overview of all topics covered in the previous

semesters.

COs						I	POs						I	PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2	1	-	2	1	-	-	-	-	1	3	-	-	
2	3	2	1	1	-	1	1	ı	-	•	-	1	3	1	-	
3	3	3	3	3	3	-	-	3	-	3	-	3	3	3	3	
4	3	2	1	1	2	-	-	1	-	3	-	3	3	2	1	
5	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2	
6	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2	
Overall	3	2	3	2	2	2	1	2		2		3	2	2	2	
Correlation	3	3	3	3	3		1		_	3	-	3	3	3	2	
Recommende	d by	Во	ard	of S	Stud	ies	13-	11-2	024							
Approved							3rd ACM Date				?	30-11-2024				

23CS711	MACHINE LEARNING AND ITS	L	T	P	C
	APPLICATIONS	3	0	2	4

COURSE OBJECTIVES:

- To understand the concepts of machine learning
- To appreciate supervised learning and their applications.
- To understand unsupervised learning like clustering and EM algorithms.
- To provide foundational knowledge of neural networks, including their biological inspiration, architecture, and components such as neurons, layers, weights, and biases.
- To learn about Specialized Neural Network Architectures.

UNIT I INTRODUCTION TO MACHINE LEARNING 9

Machine Learning – Types of Machine Learning – Supervised Learning – Unsupervised Learning – Machine Learning Process – Terminologies used in Machine learning – Testing Machine Learning Algorithms - Training, Testing, and Validation Sets – The Confusion Matrix - Accuracy Metrics - The Receiver Operator Characteristic (ROC) Curve.

UNIT II SUPERVISED LEARNING

9

Linear Models for Regression – Linear Basis Function Models – The Bias-Variance Decomposition – Bayesian Linear Regression – Common Regression Algorithms – Simple and Multiple Linear Regression – Linear Models for Classification – Discriminant Functions – Probabilistic Generative Models – Probabilistic Discriminative Models – Bayesian Logistic Regression – Common Classification Algorithms – k-Nearest Neighbors – Decision Trees – Random Forest model – Support Vector Machines.

UNIT III UNSUPERVISED LEARNING

9

Mixture Models and Expectation Maximization -Clustering Techniques - K-Means Clustering - Dirichlet Process Mixture Models - Spectral Clustering - Hierarchical Clustering - Dimensionality Reduction - The Curse of Dimensionality -

Dimensionality Reduction Technique - Principal Component Analysis - Latent Variable Models(LVM) - Latent Dirichlet Allocation (LDA).

UNIT IV | FUNDAMENTALS OF NEURAL NETWORKS

9

9

Introduction – Architecture - Single-layer vs. Multi-layer Neural Networks - Feedforward Neural Networks (FNNs) - Activation Functions – Sigmoid – ReLU – Tanh - Learning in Neural Networks - Forward Propagation – Backpropagation - Loss Functions - Optimization Techniques - Challenges in Training Neural Networks - Simple Neural Network Implementation.

UNIT V CLASSICAL NEURAL NETWORKS AND THEIR APPLICATIONSIN MACHINE LEARNING

Perceptrons and Multilayer Perceptrons (MLP) - Radial Basis Function (RBF) Networks - Self-Organizing Maps (SOM) and Adaptive Resonance Theory (ART) - Hopfield Networks and Recurrent Networks - Competitive Neural Networks - Fuzzy Neural Networks - Reinforcement Learning in Traditional Neural Networks-Genetic Algorithms for Neural Network Optimization.

TOTAL: 45 PERIODS

PRACTICALS:

TOTAL: 30 PERIODS

- 1. Implement a simple linear regression model using Python
- 2. Build a classification model using the k-NN algorithm and understand its working mechanism.
- 3. Implement a decision tree algorithm for classification tasks and understand the decision-making process.
- 4. Understand the concept of support vector machines and implement them for classification tasks.
- 5. Implement the K-Means clustering algorithm to group similar data points and understand unsupervised learning.
- 6. Build a basic feed forward neural network and implement the back propagation algorithm to adjust weights.

- 7. Use CNNs to classify images and learn about convolution operations, pooling, and feature extraction
- 8. Implement an RNN to process sequential data such as time series or text data.
- 9. Apply PCA for dimensionality reduction to simplify data without losing significant information.

TOTAL: 45+30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basics of machine learning.
- CO2: Apply Supervised Learning Algorithms to Real-World Problems.
- CO3: Build Unsupervised-learning models for K-means, KNN.
- **CO4:** Apply the basics and fundamentals of Neural Networks.
- CO5: Build the basics of classical neural network.
- CO6: Analyze the Neural Networks and Deep Learning models.

TEXT BOOKS:

- 1 Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, Prentice Hall of India, 2015.
- 2 Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 3 Simon Haykin, "Neural Networks and Learning Machines", Pearson Education, 2009

REFERENCES:

- 1 Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 2 Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, CRC Press, 2014.
- 3 Tom Mitchell, "Machine Learning", McGraw-Hill, 2017.
- 4 Fabio Nelli, "Python Data Analytics with Pandas, Numpy, and Matplotlib", Second Edition, 2018.
- 5 S. Rajasekaran, G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications", Prentice Hall of India, 2010.
- **6** J.S.R. Jang, C.T. Sun, E. Mizutani, "Neuro-Fuzzy and Soft Computing", Pearson Education, 2004.

7	Kevin	rin Gurney, "Artificial Neural Networks: An																	
	Introdu	ctio	'n",	CR	C F	res	s, 19	997											
8	B. Yegnanarayana, "Artificial Neural Networks, Prentice																		
	Hall India", 2009																		
9	Christopher M. Bishop,"Neural Networks for Pattern																		
	Recognition", Oxford University Press, 1995																		
10	Raúl Ro	ojas	, "I	ntr	odu	ctio	n t	:o <i>P</i>	\rti	ficia	ıl N	eura	1 N	etw	ork	s",			
	Springe	r, 1	996																
11	S. Sumathi, S. N. Sivanandam, "Fuzzy Neural Networks:																		
	Fundamentals and Applications", Springer, 2006																		
-	70-						I	POs	,				PSOs						
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	1	2	1	1	-	-	-	-	2	1	2	2	3	2	-	2			
	2	3	2	1	1	1	-	-	2	1	2	1	3	3	1	2			
	3	3	2	1	1	1	-	-	1	2	1	1	3	3	1	1			
	4	3	2	2	1	1	- 3	A	2	2	1	2	1	3	1	2			
	5	3	2	1	1	2	A	-	2	2	1	2	3	3	2	2			
7	6	3	3	2	2	1	4	1	2	2	1	1	1	3	1	2			
9.0	verall elation	3	2	2	1	1	-	Ī	2	2	2	2	2	3	1	2			
Recor	mmended	l by	Во	ard	of S	tud	ies	13-	11-2	024	TE	CH	NO	LO	G)	1			
Approved					3 rd ACM Date 30-11-2024														

23CS721	PROJECT WORK PHASE-2	L	T	P	C
		0	0	4	3

COURSE DESCRIPTION:

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through fabrication, simulation, or experimental validation. Students will refine their designs, validate test problems, and commission setups for final testing. This phase emphasizes hands-on application, calibration, and demonstration of results, culminating in a final presentation and report submission.

COURSE OBJECTIVES:

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

PROJECT OUTLINE:

Week 1	Review of Phase 1 outcomes and refinement of proposed methodology.
Week 2	Material procurement/ software setup for simulation, and initiation of fabrication/simulation work.
Week 3	Intermediate fabrication/simulation work and initial testing or calibration, troubleshooting challenges.

Week 4	Second Review.
Week 5	Validation of test problem or refinement of
	prototype/simulation
Week 6	Optimisation of the test setup or solution trials, Data
	curation / uncertainty analysis
Week 7	Final testing of setup or simulation outcomes,
	Validation of Data .
Week 8	Third Review
Week 9	Demonstration of the solution with high level of data
	accuracy and precision.
Week 10	Compilation of Phase 2 results, report writing, and
	presentation preparation.
Week 11	Preparing or publishing of research article/ Filing or
8	Grant of Patent
Week 12	Final Viva Voce Presentations.
T 1: :1 1	e 111 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.

 Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply appropriate methodologies to implement solutions for complex engineering problems identified in phase -1 using hardware / software or both systems.
- CO2: Develop existing functional prototypes or simulations models by integrating theoretical and practical knowledge.
- **CO3:** Evaluate solutions ensuring compliance with design specifications.
- **CO4:** Appraise the performance of solutions by refining designs or improving algorithms for enhanced outcomes.
- CO5: Collaborate effectively with team members to plan, manage, and execute engineering projects adhering to ethical principles and professional standards.
- CO6: Prepare technical reports, impactful presentations that communicate solutions effectively.

The second secon								-							
CO	X	1	0	7	cc	ar I	POs	TP.	OF	TE	CH	NIO	J	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3
5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
Overall Correlation	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
Recommended	Recommended by Board of Studies 13-11-2024														

Approved 3rd ACM Date 30-11-2024

23CS722	TECHNICAL SEMINAR - 2	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar 2' is intended to be continuation of Technical Seminar 1. It enables a B.E./B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10).

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

COURSE OUTCOMES:																
COUR	SE OU	JTC	ON	1ES	:											
A	fter co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	e to):
CO1: Id	dentify	aca	ade	mic	do	cun	nen	ts fr	om	the	lite	ratu	re w	hicl	n ar	e
re	elated	to h	er/	his	are	as c	of in	iter	est.							
CO2: S	urvey	and	lap	pre	hen	d a	n ac	cade	emi	c do	ocun	nent	fror	n th	ie	
li	teratuı	re w	hic	h is	rel	ate	d to	he	r/	nis a	reas	of i	nter	est.		
CO3: C	Compile a presentation about an academic document.															
	Estimate the Contents using available literature.															
	O5: Defend a presentation about an academic document.															
	76: Construct a technical report.															
POs														Ī	PSC)s
CC)s	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		_						<u> </u>	Ľ	_					_	_
		3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
2		3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
3	Wo	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
4	1	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
5	16	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
6	V	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
Ove: Correl		3	3	2	1	1	1	1	2	3	3	2	2	3	2	2
Recomi	nende	d by	Во	ard	of S	tud	ies	13-	11-2	2024	NIVER	SITY	AUT	ONO	MOU	5
	Approved							3rc	A(\mathbf{M}		Date	9	30-	11-2	2024

SEMESTER-VIII

23CS821	CAPSTONE PROJECT	L	T	P	C
		0	0	20	10

COURSE DESCRIPTION:

Prerequisites:

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

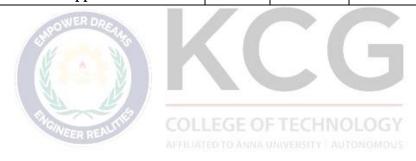
Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

COURSE OBJECTIVES:

The Capstone Project should demonstrate the depth and extent of knowledge of students


During this course, students will

- Investigate and evaluate prominent literature connected to your CP.
- Present a clearly articulated investigative framework, while situating projects within established academic

- practices and/ or ideas.
- Develop and create practical resources (either computational or experimental) for the concerned area of interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

PROJECT OUTLINE: Identification problem. Week 1 Week 2 Literature review. Week 3 Preliminary work. Week 4 First review. Completion of first stage of the Project methodology. Week 5 Development. Week 6 Testing & Validation. Week 7 Second review. Week 8 Week 9 Repeatability. Report correction and Documentation Week 10 Week 11 Third review-Submission of paper for conference/journal Thesis Correction and Submission Week 12 Individual meetings will be set up on a need's basis in conjunction with developing work **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Take part in challenging practical problems and find solutions by formulating proper methodology. CO2: Plan research methodology to tackle a specific problem. CO3: Construct extensive study on particular research projects. CO4: Develop experimental and computational studies on innovative research projects. **CO5:** Estimate incremental study on existing research projects.

CO6:	Take pa	rt i	t in real life engineering challenges and propose														
	approp	riat	ate solutions.														
	Os						P	Os]	PSC)s	
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3														
	2	3	3 2 3 3 2 3 2 3 2 3 2 3 3 2 3														
	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	
	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
	5	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	
	6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Ov	erall	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Corr	elation)	3))	3	3	3	3	3))	3	3	3	3	
Recor	nmende	d by	Во	ard	of S	07-	11-2	2024	ļ.			•	•				
	Approved								3rd ACM Date 30-11						-11-2	2024	

VERTICAL 1: CLOUD COMPUTING

23IT031	DISTRIBUTED COMPUTING	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To introduce the computation and communication models of distributed systems
- To illustrate the issues of synchronization and collection of information in distributed systems
- To describe distributed mutual exclusion and distributed deadlock detection techniques
- To elucidate agreement protocols and fault tolerance mechanisms in distributed systems
- To implement security Mechanisms for Distributed Systems

UNIT I	INTRODUCTION	6
	OWER DAY	P

Introduction: Relation to Computer System Components – Message -Passing Systems versus Shared Memory Systems – Primitives for Distributed Communication – Synchronous versus Asynchronous Executions –A Model of Distributed Computations and Communication Networks - Logical Clocks – Scalar Time and Vector Time - Message Ordering and Group Communication - Causal Order and Total Order - Global State and Snapshot Recording Algorithms.

UNIT II LOGICAL TIME AND GLOBAL STATE 6

Logical Time: Physical Clock Synchronization: NTP - A Framework for a System of Logical Clocks - Paradigms - Asynchronous Execution with Synchronous Communication - Synchronous Program - Order on Asynchronous System - Group Communication - Causal Order - Total Order; Global State and Snapshot Recording Algorithms: Introduction - System Model and Definitions - Snapshot Algorithms for FIFO Channels.

UNIT III | DISTRIBUTED MUTEX AND DEADLOCK

6

Distributed Mutual exclusion Algorithms: Introduction – Preliminaries – Lamport's algorithm – Ricart- Agrawala's Algorithm – Token-Based Algorithms – Suzuki-Kasami's Broadcast Algorithm; Deadlock Detection in Distributed Systems: Introduction – System Model – Preliminaries – Models of Deadlocks – Chandy-Misra-Haas Algorithm for the AND model and OR Model.

UNIT IV | CONSENSUS AND RECOVERY

6

Consensus and Agreement Algorithms: Problem Definition – Overview of Results – Agreement in a Failure-Free System(Synchronous and Asynchronous) – Agreement in Synchronous Systems with Failures; Checkpointing and Rollback Recovery: Introduction – Background and Definitions – Issues in Failure Recovery – Checkpoint-based Recovery – Coordinated Checkpointing Algorithm – Algorithm for Asynchronous Checkpointing and Recovery

UNIT V FAULT TOLERANCE AND SECURITY

6

Types of Faults and Failure Models - Fault Detection and Failure Recovery Techniques - Byzantine Fault Tolerance (BFT) - Replication Strategies for Fault Tolerance - Network Partitioning and Partition Tolerance - Security Mechanisms - Intrusion Detection and Prevention - Data Privacy and Confidentiality - Checkpointing and Logging - Self-Stabilization and Resilient Algorithms - Partition Tolerance and CAP Theorem - Blockchain Security.

TOTAL: 30 PERIODS

PRACTICALS:

- 1. Install Virtualbox/VMware Workstation with different flavours of linux or windows OS.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs.
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- 5. Use fault injection techniques (e.g., Chaos Monkey) to simulate failures in a distributed environment.
- 6. Develop a small-scale MapReduce application (e.g., word count, log processing).
- 7. Implement a mini version of a distributed file system (similar to HDFS or GFS).
- **8.** Simulate load-balancing techniques (e.g., round robin, least connections) across multiple servers.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the concept of computation and communication models of distributed systems.
- CO2: Apply the issues of synchronization.
- CO3: Experiment with virtualization of hardware resources and Docker.
- CO4: Develop the concept of distributed mutual exclusion and distributed deadlock detection techniques.
- CO5: Develop fault detection and failure recovery techniques.
- **CO6:** Apply security mechanisms.

TEXT BOOKS:

1 George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair, "Distributed Systems: Concepts and Design", Pearson Publishers, 2011.

2	James	Turnbull,	"The	Docker	Book",	O'Reilly	Publishers,
	2014.						

REFERENCES:

- James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 2 Sukumar Ghosh, "Distributed Systems: An Algorithmic Approach", CRC Press, 2014

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	ı	ı	ı	2	3	1	3	3	1	-	
2	3	2	1	1	1	ı	ı	ı	1	2	1	3	3	2	-	
3	3	2	1	1	1	-	-	1	3	1	1	3	3	1	-	
4	3	2	1	1	3	-	Į.	1	3	3	1	2	3	3	-	
5 pow	3	2	1	1	3	-2		- 7	2	2	1	2	3	2	-	
6	2	1	0	-	3	4	2	-/	2	2	1	2	3	3	i-	
Overall Correlation	3	2	1	1	2	-		1	3	3	2	3	3	2	-	

23IT032	CLOUD SERVICES	L	T	P	C
	MANAGEMENT	2	0	2	3

- To understand the principles of cloud architecture, models and infrastructure.
- To explore and experiment with various Cloud deployment environments.
- To learn about the security issues in the cloud environment.
- To Introduce Cloud Service Management terminology, definition & concepts
- Compare and contrast cloud service management with traditional IT service management
- Identify strategies to reduce risk and eliminate issues associated with adoption of cloud services

UNIT I CLOUD ARCHITECTURE MODELS AND 6 INFRASTRUCTURE

Cloud Architecture: System Models for Cloud Computing – NIST Cloud Computing Reference Architecture – Cloud deployment models – Cloud service models; Cloud Infrastructure: Architectural Design of Compute and Storage Clouds – Design Challenges

Challenges UNIT II CLOUD DEPLOYMENT ENVIRONMENT 6

Google App Engine – Amazon AWS – Microsoft Azure; Cloud Software Environments – Eucalyptus – OpenStack.

UNIT III | CLOUD SERVICE MANAGEMENT | 6 | FUNDAMENTALS

Cloud Ecosystem, Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.

UNIT IV | CLOUD SERVICES STRATEGY

6

Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture

UNIT V | CLOUD SERVICE MANAGEMENT

6

Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Services, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
- 2. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 3. Find a procedure to launch virtual machine using trystack (Online Openstack Demo Version)
- 4. Install Hadoop single node cluster and run simple applications like word count.
- Create a Cloud Organization in AWS/Google Cloud/or any equivalent Open Source cloud softwares like Openstack, Eucalyptus, OpenNebula with Role-based access control
- 6. Create a Cost-model for a web application using various services and do Cost-benefit analysis
- 7. Create alerts for usage of Cloud resources
- 8. Create Billing alerts for your Cloud Organization
- 9. Compare Cloud cost for a simple web application across AWS, Azure and GCP and suggest the best one.

TOTAL: 30 PERIODS

COU	OURSE OUTCOMES:															
	After co					ne c	our	se, i	the	stud	dent	s wi	ll be	abl	e to):
CO1:	Explair															
	Develo												set u	ра	clo	ud
	enviro			1	,									1		
CO3:	Build	and	d a	auto	ma	te	bus	sine	ss	sol	utio	ns	usin	ıg	clo	ud
	technologies.															
CO4:	Explain the cloud service strategies including management															
	framework and cloud policies.															
CO5:	Solve the real world problems using Cloud services and															
COC	technologies															
	Explain security challenges in the cloud environment.															
-	ГВООК		T T.	~		Cla				:	1.1			L		1
1	Enamu Goverr															nd 201
						51 V I	CC I	viai	age	inc	111 11	CIC	iuu 1	ыа	, 151	ici
2		Publications, 2017. Thomas Frl. Ricardo Puttini, Zaigham Mahmood, "Cloud.														
_		Thomas Erl, Ricardo Puttini, Zaigham Mahmood, "Cloud Computing: Concepts, Technology & Architecture",														
Î	Prentice Hall, 2013.															
REFI	ERENCI	ES:	. 1	y)	1			1		-			7		(September 1)	
1	Pravee															\ P
	Lambe															
2	Rajkun															
	"Maste															nd
	Application 2013.	atio	ns .	Prog	gran	nmı	ng	, IV	iorg	gan	Kau	ıma	nn i	ub.	usn	er,
							p	Os						I	PSO)s
(COs	1	2	3	4	5	6		8	9	10	11	12	1	2	3
	1	3	2	1	1		-	-	-	2	2	3	1	3		-
	2	3	2	1	1	2	-	-	-	2	2	3	3	2	3	-
	3	3	2	1	1	3	-	-	-	2	2	1	2	2	3	-
	4	2	1	-	-	3	-	-	-	2	2	3	2	3	3	-
	5	3	2	1	1	3	-	-	-	3	1	3	2	3	2	-
	6	2	1	-	-	3				3	1	3	2	3	2	
Ov	verall 3 2 1 1 3 3 2 3 2 3 3 -															
Corr	elation)	1	•	*)	_		_			

23IT033	VIRTUALIZATION		L	T	P	C
			2	0	2	3
COURSI	OBJECTIVES:					
•	To understand the basic concepts of r	ietwo	orks.			
•	To explore various technologies in the	e wir	eless	s do	mai	in.
•	To study about 4G and 5G cellular ne	twor	ks.			
•	To learn about Network Function Vir	tuali	zatio	n.		
•	To understand the paradigm of	Softv	vare	de	efin	ed
	networks.					
UNIT I	INTRODUCTION TO VIRTUALIZ	ATIO	ON			6
Vintualia	 ation and cloud computing - Need (of rri	utuo 1	lizat	ion	
	1					
	inistration, fast deployment, reduce in					
	ns- Types of hardware virtualization: F					
-	rtualization – Paravirtualization-Type: SERVER AND DESKTOP VIRTUA				SOFS	-
UNITH	SERVER AND DESKTOP VIRTUA	LIZP	XIIC	JΙΝ		6
Virtual m	achine basics-Types of virtual machin	es- U	nde	rsta	ndi	ng
Server V	irtualization- types of server virtua	lizati	on-	Bus	sine	ess
Cases fo	or Server Virtualization - Uses o	f Vi	irtua	1 5	erv	er
Consolid	ation – Selecting Server Virtualization	Platf	orm	-De	skt	op
Virtualiz	ation-Types of Desktop Virtualization.					
UNIT III	NETWORK FUNCTIONS VIRTUA	LIZA	ATIC	ΟN		6
Virtual 1	l Machines –NFV benefits-requiremen	ts -	arcl	hite	ctui	re-
	rastructure - Virtualized Network					
	nent and Orchestration- NFV Use Cas					
O	k virtualization – VLAN and VPN.					
UNIT IV	STORAGE VIRTUALIZATION					6

Memory Virtualization-Types of Storage Virtualization-Block, File-Address space Remapping-Risks of Storage Virtualization-

SAN-NAS-RAID.

UNIT V VIRTUALIZATION TOOLS

6

VMWare-Amazon AWS-Microsoft HyperV- Oracle VM Virtual Box – IBM PowerVM- Google Virtualization- Case study.

TOTAL: 30 PERIODS

PRACTICALS EXCERCISES:

- 1. Create type 2 virtualization in VMWARE or any equivalent Open Source Tool. Allocate memory and storage space as per requirement. Install Guest OS on that VMWARE
- 2. Create, Manage, Configure and schedule snapshots.
- 3. Desktop Virtualization using Chrome Remote Desktop.
- 4. Create type 2 virtualization on ESXI 6.5 server.
- 5. Create a VLAN in CISCO packet tracer.
- 6. Install KVM in Linux.
- 7. Create Nested Virtual Machine (VM under another VM)

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build a Virtualization network.
- CO2: Apply the virtualization techniques.
- CO3: Illustrate the Network function Virtualization.
- CO4: Develop SDN based applications.
- **CO5:** Explain the concepts of storage virtualization.
- **CO6:** Build a Nested VM and explain about Virtualization tools.

TEXT BOOKS:

- 1 Cloud computing a practical approach Anthony T.Velte, Toby J. Velte Robert Elsenpeter, TATA McGraw-Hill, New Delhi – 2010
- 2 Cloud Computing (Principles and Paradigms), Edited by Rajkumar Buyya, James Broberg, Andrzej Goscinski, John Wiley & Sons, Inc. 2011

REFERENCES:

1 P Chris Wolf, Erick M. Halter. "Virtualization: From the Desktop to the Enterprise". APress, 2005.

2	P James E. Smith, Ravi Nair. "Virtual Machines: Versatile
	Platforms for Systems and Processes". Elsevier/Morgan
	Kaufmann, 2005.

3 David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications, 2006.

COs						F	Os						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	2	-	-	1	-	-	-	1	3	1	1
2	3	2	1	1	2	-	-	1	-	-	-	1	3	1	1
3	2	1	-	-	2	-	-	1	-	-	-	1	3	1	1
4	3	2	1	1	2	-	-	1	-	-	-	1	3	2	1
5	2	1	-	-	1	-	-	1	-	-	-	1	3	1	1
6	3	2	1	1	2	-	Ы	1	- 1	1	-	1	3	2	1
Overall Correlation	3	2	15	1	2	V	-	2	7	(-		2	3	2	2

23IT034	CLOUD DATABASE	L	T	P	C							
	MANAGEMENT	2	0	2	3							
COURSE	OBJECTIVES:			',								
• Unc	lerstand the fundamental concepts of o	clou	d d	atal	oase							
mar	agement.											
 Exp 	lore various cloud database services and	thei	r fea	ture	es.							
• Lear	n to design, deploy, and manage databas	es i	n the	e clo	oud							
• Gair	n insights into security and compliance a	spe	cts c	of cl	oud							
data	bases.											
• Dev	elop skills to optimize and troubleshoot cl	louc	d dat	taba	ıses							
UNIT I	INTRODUCTION TO CLOUD DATAB.	ASI	3		6							
]	MANAGEMENT											
Basics of c	loud computing-Cloud database archited	tur	e-Tv	pes	of							
	bases (SQL, NoSQL, NewSQL)-Cloud da		-	-								
- 40	BaaS)- Benefits and challenges of cloud da											
1 All	CLOUD DATABASE SERVICES				6							
		ATA	IC.	A								
	of major cloud database providers (
(30.7) 730	oud)- Comparing cloud database serv	DEC 10 AM										
	re SQL Database, Google Cloud SQL)- odels-Use cases for different cloud data											
	base platforms.	Dase	e se.	rvic	es-							
	DESIGNING AND DEPLOYING CLOU	<u> </u>										
	DESIGNING AND DEFLOTING CLOU DATABASES	עי			6							
	DATADASES											
Database	design principles for the cloud-Data n	node	ellin	g a	nd							
schema de	esign-Deployment strategies and auton	natio	on-B	ack	up							
and recov	ery in cloud databases-High availability	an	d d	isas	ter							
recovery.												
LINIT IV	SECURITY AND COMPLIANCE IN CL	OU	D		6							
CIVITIV	SECURITY AND COMPLIANCE IN CLOUD 6											

Security principles for cloud databases-Data encryption (at rest and in transit)-Identity and access management-Compliance standards (GDPR, HIPAA, etc.)-Auditing and monitoring

UNIT V OPTIMIZATION AND TROUBLESHOOTING OF CLOUD DATA

Performance tuning techniques-Indexing and query optimization-Scaling databases (vertical and horizontal scaling)-Monitoring and diagnostics tools-Common troubleshooting scenarios and solutions

TOTAL: 30 PERIODS

6

PRACTICALS EXPERIMENTS:

- 1. Create Amazon AWS EC2 Linux instance with conceptual understanding of SSH client software protocol and keys.
- 2. Create Amazon AWS EC2 Windows server instance with conceptual understanding of RDP (Remote Desktop Protocol).
- 3. Create cloud storage Bucket using Amazon Simple Storage Service (S3). Perform the following operations:
- Create a folder within a S3 Bucket.
- 5. Upload content to S3
- 6. Create a cloud storage Bucket using Amazon Simple Storage Service (S3). Perform the following operations:
- 7. Change permissions to allow public access of contents.
- 8. Set MetaData on an S3 Bucket.
- 9. Delete an S3 Bucket and its content.
- 10. Launch and connect to an Amazon Relational DataBase (RDS) Service using MySQL
- 11. Launch and connect to an Amazon Relational DataBase (RDS) Service using Oracle.
- 12. Launch and connect to an Amazon Relational DataBase (RDS) Service using postgre SQL DataBase engines.
- 13. Launch and connect to an Amazon Relational DataBase (RDS) Service using SQL Server.

TOTAL: 30 PERIODS

COURSE OUTCOMES:																
	After co					ne co	our	se. 1	he	stuc	lent	s wi	II be	abl	e to):
CO1·	Apply 1	-														
CO1.	databas		ıuıı	uai	IICI	ıtaı	COI	ccp	, 13 6	iiia	arcı	iiicc	turc	OI	CIO	uu
CO2:	Explain		e fea	atur	es a	nd	ber	efit	s of	dif	fere	nt cl	oud	dat	aba	se
	services			ııuı			201		01		1010		ouu	uu.		
CO3:	Summa		e t	he	pro	oces	SS	of	des	sign	ing	an	d d	lepl	ovi	ng
	databas									0	0	-		- 1	-)	0
CO4:	Explain	th	e s	ecu	rity	aı	nd	con	npli	anc	e co	onsi	dera	tior	ıs f	or
	cloud databases.															
CO5:	Illustrate the techniques for optimizing cloud database															
	performance.															
CO6:	Interpret common troubleshooting methods for cloud															
	database issues.															
TEX	T BOOKS:															
1		Thomas Erl . "Cloud Computing: Concepts, Technology &														
	Archite			_					_						4	
2	Carlos											-				•
	Implem															ng
D = 1	and Da		tora	age	Inte	egra	tio	າ)."	, Ce	nga	age I	Lear	ning	, 20	20.	
	ERENCE			4	/ A	1.0			.1	<u>C1</u>	- 1	D		_		
1	Michael															
	for Clo			-					e IV.	loae	eis (Saas	5, P	aaS	, aı	na
2	IaaS)",		_								212	1 0	hah	<u> </u>	Lat	-: c
2	Tim M "Cloud									-						
	Risks an			-				•			-		-			
		la	CO11	.ipii	aric	,		POs		icai	и, т	, La	11101		SO	
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	1	-	1	1	1	2	1	1
2 2 1 1								1	-	1	1	1	3	1	1	
	3	2	1	-	-	1	-	-	1	-	1	1	1	3	1	1
	4	2	1	-	-	1	-	-	1	-	1	1	1	3	1	1
	5	2	1	-	-	1	-	-	1	-	1	1	1	3	1	1
	6	2	1	-	_	1	-	_	1	-	1	1	1	3	1	1
O	verall	3	2	1	1	2			2		2	2	2	3	2	2
Corı	elation	3		1	1		_	_		_				3		

23IT035	STORAGE TECHNOLOGIES	L	T	P	C
		2	0	2	3

- Characterize the functionalities of logical and physical components of storage
- Describe various storage networking technologies
- Identify different storage virtualization technologies
- Discuss the different backup and recovery strategies
- Understand common storage management activities and solutions

UNIT I STORAGE SYSTEMS 6

Introduction to Information Storage: Digital data and its types - Information storage - Key characteristics of data center and Evolution of computing platforms - Information Lifecycle Management - Third Platform Technologies: Cloud computing and its essential characteristics - Cloud services and cloud deployment models - Big data analytics - Social networking and mobile computing - Characteristics of third platform infrastructure and Imperatives for third platform transformation - Data Center Environment: Building blocks of a data center - Compute systems and compute virtualization and Software-defined data center.

UNIT II	INTELLIGENT STORAGE SYSTEMS AND	6
	RAID	

Components of an intelligent storage system, - Components, addressing, and performance of hard disk drives and solid-state drives - RAID - Types of intelligent storage systems - Scale-up and scale-out storage Architecture.

UNIT III	STORAGE NETWORKING TECHNOLOGIES	6

Block-Based Storage System - File-Based Storage System - Object-Based and Unified Storage - Fibre Channel SAN: Software-defined networking - FC SAN components and architecture - FC SAN

topologies - link aggregation, and zoning - Fibre Channel over Ethernet SAN: Components of FCoE SAN - FCoE SAN connectivity - Converged Enhanced Ethernet - FCoE architecture.

UNIT IV | BACKUP, ARCHIVE AND REPLICATION

6

Introduction to Business Continuity - Backup architecture - Data deduplication - Cloud-based and mobile device backup - Data archive - Compute based, storage-based, and network-based replication - Data migration, - Disaster Recovery as a Service (DRaaS).

UNIT V | SECURING STORAGE INFRASTRUCTURE

6

Information security goals - Storage security domains - Threats to a storage infrastructure - Security controls to protect a storage infrastructure - Governance, risk, and compliance - Storage infrastructure management functions - Storage infrastructure management processes.

TOTAL: 30 PERIODS

PRACTICALS:

LIST OF EXPERIMENTS

- 1. For any storage documentation, plan storage requirements based on performance and cost considerations such as Fibre Channel.
- 2. Install the iSCSI target feature and create/configure an iSCSI target.
- 3. Self-directed remote lab for advanced HPE storage solutions.
- 4. Design backup, recovery, and archive strategies for various customer scenarios.
- 5. Create a persistent disk and attach it to a virtual machine.
- 6. Create a storage bucket and upload objects to the bucket using google cloud console.
- 7. Create folders and subfolders in the bucket using google cloud console.
- 8. Make objects in a storage bucket publicly accessible using google cloud console.
- 9. Create an Image-backed Dataset from a Node-local Dataset.

10.	10. Create a Remote Dataset and use it on a Single Node.															
											TO	ΓAL	: 30	PEI	RIO	DS
COU	RSE OU	TC	ON	1ES	:											
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	ab	le to):
CO1:	Explain	. 1	the	fι	ınd	am	enta	als	of	f i	info	mat	ion	Si	tora	ge
	manage							noc	dels	of	Clo	ud i	infra	str	ıctu	ıre
	services															
	Illustrate and RA	ID														
CO3:	Interpre													es -	SA	N,
604	including storage subsystems and virtualization Examine the different role in providing disaster recovery.															
CO4:	Examine the different role in providing disaster recovery and remote replication technologies															
COS	and remote replication technologies Utilize the security needs and security measures to be															
CO3.	employed in information storage management															
CO6:	: Model the backup, archiving with regard to recovery and															
	business continuity.															
TEX	ГВООК	S:	1	Y			A							1		
1	EMC C	orp	ora	tion	, "I	nfo	rma	tio	n St	ora	ge aı	nd N	I ana	ger	nen	t",
1	Wiley, 1									-			-		- Carrie	
2	Jon Tate															
	Kumara													_		
DEEL	Networe RENCE		, IN:	ıntr	1 Ec	litio	n, I	BIVI	- K	ear	юок	s, 20	17.	JNO	MOR	3
1	Hubber		Smit	h	″1	Dat	a (en!	ter	Sto	rage	<u>'</u> 1	Firet	F	litic	m
1	Auerba								ıcı		ruge	, , ,	1130		<i>A</i> 1(1(,,,
								POs	,					I	PSO	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	_	_	3	_	-	_	1	1	1	3	3	2	-
	2	2	1	_	_	3	_	-	_	3	2	3	2	2	3	-
	3	2	1	-	-	2	-	-	-	3	1	1	2	2	3	_
	4	3	3	2	2	2	-	-	-	1	1	3	1	3	2	-
	5	3	2	1	1	2	-	-	-	1	2	3	1	3	2	-
	6	3	2	1	1	1	-	-	-	2	2	2	2	2	2	-
O	verall	2	2	1	1	2				2	2	2	2	2	2	
Corr	relation	3	2	1	1	3	-	-	-	2	2	3	2	3	2	-

23IT036	SECURITY AND PRIVACY IN	L	T	P	С
	CLOUD	2	0	2	3

- To introduce Cloud Computing terminology, definition & concepts
- To understand the security design and architectural considerations for Cloud
- To understand the Identity, Access control in Cloud
- To follow best practices for Cloud security using various design patterns
- To be able to monitor and audit cloud applications for security

UNIT I FUNDAMENTALS OF CLOUD SECURITY 6 CONCEPTS

Overview of cloud security- Security Services - Confidentiality, Integrity, Authentication, Non- repudiation, Access Control - Basic of cryptography - Conventional and public-key cryptography, hash functions, authentication, and digital signatures.

UNIT II SECURITY DESIGN AND ARCHITECTURE 6 FOR CLOUD

Security design principles for Cloud Computing - Comprehensive data protection - End-to-end access control - Common attack vectors and threats - Network and Storage - Secure Isolation Strategies - Virtualization strategies - Inter-tenant network segmentation strategies - Data Protection strategies: Data retention, deletion and arching procedures for tenant data, Encryption, Data Redaction, Tokenization, Obfuscation, PKI and Key.

UNIT III	ACCESS CONTROL AND IDENTITY	6
	MANAGEMENT	

Access control requirements for Cloud infrastructure - User Identification - Authentication and Authorization - Roles-based

Access Control - Multi-factor authentication - Single Sign-on, Identity Federation - Identity providers and service consumers - Storage and network access control options - OS Hardening and minimization - Verified and measured boot - Intruder Detection and prevention.

UNIT IV CLOUD SECURITY DESIGN PATTERNS

6

Introduction to Design Patterns, Cloud bursting, Geo-tagging, Secure Cloud Interfaces, Cloud Resource Access Control, Secure On-Premise Internet Access, Secure External Cloud.

UNIT V MONITORING, AUDITING AND MANAGEMENT

6

Proactive activity monitoring - Incident Response, monitoring for unauthorized access, malicious traffic, abuse of system privileges - Events and alerts - Auditing - Record generation, Reporting and Management, Tamper-proofing audit logs, Quality of Services, Secure Management, User management, Identity management, Security Information and Event Management

TOTAL: 30 PERIODS

PRACTICALS EXERCISES:

LIST OF EXPERIMENTS

- 1. Simulate a cloud scenario using Cloud Sim and run a scheduling algorithm not present in Cloud Sim
- 2. Simulate resource management using cloud sim
- 3. Simulate log forensics using cloud sim
- 4. Simulate a secure file sharing using a cloud sim
- 5. Implement data anonymization techniques over the simple dataset (masking, k- anonymization, etc)
- 6. Implement any encryption algorithm to protect the images
- 7. Implement any image obfuscation mechanism
- 8. Implement a role-based access control mechanism in a specific scenario.
- 9. Implement an attribute-based access control mechanism based on a particular scenario
- 10. Develop a log monitoring system with incident management in the cloud.

	TOTAL: 30 PERIODS															
COU	RSE OU	TC	ON	1ES	:											
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	ab	le to):
CO1:	Utilize	the	clo	ıd o	cond	cept	ts a	nd 1	fund	dan	nenta	als.				
CO2:	Explain	the	e se	curi	ty c	hal	len	ges	in t	he o	clou	d.				
CO3:	Make	use	O	f c	lou	d 1	poli	су	an	d]	lden	tity	and	1 /	\cce	ess
	Manage	eme	nt.													
CO4:	Experin	nen	t w	ith	vai	riou	ıs r	isks	an	ıd a	nudit	an	d m	oni	tori	ng
	mechar	isn	ns ir	ı th	e cl	oud	l.									
CO5:	Analyz	Analyze the various architectural and considerations for														
	security in the cloud.															
CO6:	Illustrate the privacy issues in cloud environment															
TEXT	Γ BOOKS:															
1		Raj Kumar Buyya, James Broberg, Andrzej Goscinski,														
	"Cloud Computing", Wiley, 2013.															
2	Dave	sha	ckle	efor	d,	"V	irtu	aliz	zatio	on	Sec	urity	7: F	rot	ecti	ng
Î	Virtuali	zec	l En	vir	onn	nen	ts",	Syl	эeх,	20	13.					
REFI	ERENCE	S:	d					1		W			7		1000	
1	Mark C	. Cl	nu-(Carı	oll,	."C	ode	in	the	Clo	ud"	, CR	C Pr	ess	, 201	11.
2	Rajkum	ar	Buy	ya,	Cł	nris	tian	V	echl	hiol	a, S	. Th	ama	rai	Sel	vi,
	"Maste	ring	5	Clo	oud		Co	mp	utin	ıg	Fo	und	atio	ns	a	nd
	Applica	tio	ns	Pr	ogra	amı	min	g",	N	1cG	raw	-Hill	l E	duc	atio	n,
	2013.															
(COs		1	1	1	1		POs		1	ı		ı		PSC	
		1	2	3	4	5	6	7	8	9	10	11		1	2	3
	1	3	2	1	1	2	-	-	-	1	1	1	3	3	3	-
	2	2	1	-	-	1	-	-	-	2	2	3	2	3	3	-
	3	3	2	1	1	2	-	-	-	3	1	1	2	2	3	-
	4	3	2	1	1	3	-	-	-	3	2	3	3	1	1	-
	5	3	3	2	2	1	-	-	-	2	3	3	2	2	3	-
	6	2	1	-	-	1	-	-	-	2	3	3	2	2	3	-
	verall	3	2	1	1	2	_	_	_	3	2	3	3	3	3	_
Cori	relation															

23IT037	STREAM PROCESSING	L	T	P	C
		2	0	2	3

- To Introduce Data Processing terminology, definition & concepts
- To Define different types of Data Processing
- To Explain the concepts of Real-time Data processing
- To Select appropriate structures for designing and running real-time data services in a business environment
- To Illustrate the benefits and drive the adoption of realtime data services to solve real world problems

UNIT I FOUNDATIONS OF DATA SYSTEMS 6

Introduction to Data Processing - Stages of Data processing - Data Analytics, Batch Processing - Stream processing - Data Migration - Transactional Data processing, Data Mining - Data Management Strategy - Storage, Processing - Integration - Analytics - Benefits of Data as a Service - Challenges.

UNIT II REAL-TIME DATA PROCESSING 6

Introduction to Big data - Big data infrastructure - Real-time Analytics - Near real-time solution - Lambda architecture - Kappa Architecture - Stream Processing, Understanding Data Streams - Message Broker - Stream Processor - Batch & Real-time ETL tools - Streaming Data Storage.

UNIT III DATA MODELS AND QUERY LANGUAGES 6

Relational Model - Document Model - Key-Value Pairs - NoSQL - Object-Relational Mismatch - Many to-One and Many-to-Many Relationships - Network data models, Schema Flexibility - Structured Query Language - Data Locality for Queries - Declarative Queries - Graph Data models - Cypher Query Language - Graph Queries in SQL, The Semantic Web - CODASYL, SPARQL.

UNIT IV EVENT PROCESSING WITH APACHE KAFKA Apache Kafka - Kafka as Event Streaming platform - Events, Producers - Consumers, Topics - Partitions, Brokers - Kafka APIs -Admin API - Producer API - Consumer API - Kafka Streams API -Kafka Connect API. UNIT V **REAL-TIME PROCESSING USING SPARK** 6 **STREAMING** Structured Streaming - Basic Concepts, Handling Event-time and Late Data - Fault-tolerant Semantics - Exactly-once Semantics -Creating Streaming Datasets - Schema Inference - Partitioning of Streaming datasets - Operations on Streaming Data - Selection, Aggregation - Projection - Watermarking - Window operations -Types of Time windows - Join Operations - Deduplication. **TOTAL: 30 PERIODS** PRACTICALS EXERCISES: Install MongoDB 1. Design and Implement Simple application using 2. MongoDB Query the designed system using MongoDB 3. Create a Event Stream with Apache Kafka 4. Create a Real-time Stream processing application 5. using Spark Streaming Build a Micro-batch application 6. 7. Real-time Fraud and Anomaly Detection 8. Real-time personalization, Marketing, Advertising **TOTAL: 30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Apply the applicability and utility of different streaming algorithms. CO2: Apply current research trends in data-stream processing.

CO3: Analyze the suitability of stream mining algorithms for data

stream systems.

001	D '11 (1 1
(()4:	Build stream	processing systems,	services and	l applications
CO 1.	Dana Sacam	processing by sterner	bei viceb arie	applications.

- CO5: Solve problems in real-world applications that process data streams.
- CO6: Solve problems in Event Processing with Apache Kafka

TEXT BOOKS:

- 1 Karau, Holden, and Matei Zaharia. "Learning Spark: Lightning-Fast Data Analytics." 2nd Edition. O'Reilly Media, 2023.
- Wampler, Dean, and Jason Decremer. "Programming Scala: Scalability = Functional Programming + Objects." 3rd Edition. O'Reilly Media, 2023.

REFERENCES:

- **1** Gualtieri, Mike, et al. "Streaming Data: Understanding the Real-Time Pipeline." 1st Edition. O'Reilly Media, 2023.
- 2 Shukla, Bhavuk, and Pradeep Pujari. "Stream Processing with Apache Kafka." Apress, 2023.
- 3 Akidau, Tyler, Slava Chernyak, and Reuven Lax. "Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing." 1st Edition. O'Reilly Media, 2018.

COs	R R	ALI	No.		CC	Ήŀ	Os	3E	UI-	TE	CH	NO	H	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	-	-	1	2	1	3	2	2	1	1
2	3	2	1	1	2	-	-	1	1	2	3	1	2	2	1
3	3	3	2	2	3	-	-	1	3	3	1	1	3	2	1
4	3	2	1	1	3	ı	1	1	2	3	3	1	1	1	1
5	3	2	1	1	2	ı	ı	1	1	3	1	2	1	3	1
6	3	2	1	1	1	ı	1	1	1	1	1	1	1	1	1
Overall Correlation	3	3	2	2	2	-	-	2	2	2	2	2	2	2	2

23IT038	CLOUD WEB SERVICES	L	T	P	C
		2	0	2	3

- Introduction to cloud computing and Amazon web services.
- Understanding and using EC2 instances.
- Deploying and managing applications on AWS cloud.
- Using AWS security services.
- Implementing the networking concepts on AWS cloud.
- Analyze the requirements for developing and migrating applications to Web and Cloud Services.

UNIT I INTRODUCTION TO CLOUD COMPUTING 6 AND AMAZON WEB SERVICES

Introduction to Cloud Computing - Cloud Service Delivery Models (IAAS, PAAS, SAAS) - Cloud Deployment Models (Private, Public, Hybrid and Community) - Introduction to Amazon Web Services - Why Amazon? Use Cases - AWS Storage Options - AWS Compute Options - AWS Database Options - AWS Workflow Automation and Orchestration Options - AWS Systems Management and Monitoring Options - AWS Virtual Private Cloud Introduction, Pricing Concepts.

UNIT II INTRODUCTION TO EC2 6

Introduction To EC2 - Instance Types And Uses - Auto scaling Instances - Amazon Machine Images (AMIS) - Modifying Existing Images - Creating New Images of Running Instances - Converting An Instance Store AMI To An EBS AMI - Instances Backed By Storage Types - Elastic IPS - Elastic Load Balancing.

UNIT III WEB APPLICATIONS AND SECURITY 6

Introduction to Elastic Beanstalk - Deploying Scalable Application On AWS - Selecting And Launching An Application Environment - Provisioning Application Resources with Cloud formation - Introduction to Cloud Lookout - Describe Amazon Cloud Watch metrics and alarms - AWS Messaging Services Introduction to

AWS Security - Describe Amazon Identity and Access Management (IAM) - AWS Directory Service - AWS Key Management Service.

UNIT IV STORAGE

6

Amazon Storage - S3 Storage Basics - Buckets and Objects - Creating A Web Server Using S3 Endpoints - Managing Voluminous Information with EBS - Glacier Storage Service - Describe Amazon Dynamo - Understand key aspects of Amazon RDS - Launch an Amazon RDS instance

UNIT V | NETWORKING

6

Introduction to AWS Networking - Access Control Lists (ACLs) - Setting Up a Security Group- Setting Up VPC And Internet Gateway-Setting Up A VPN- Setting Up A Customer Gateway For VPN- Setting Up Dedicated Hardware For VPC-Route53 for DNS System - Cloud front.

TOTAL: 30 PERIODS

PRACTICALS EXERCISES:

- 1. Study of CloudSim, set up CloudSim environment.
- 2. Virtual Machine (VM) creation, Running VMs on CloudSim.
- 3. Allocate different Cloudlets to VMs and Data Centers using different Cloud based scheduling algorithms
- 4. Create different Data Centers, VM allocation and provisioning on Data Centers, and analysis of outcomes
- 5. Assigning cloudlets and analysing the scheduling parameters for various scenarios
- **6.** Apply and evaluate the performance of various Cloud based Web Services

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the process of cloud computing and Amazon web services.
- CO2: Summarize the concept of EC2

CO3: Apply knowledge on Deploying and managing applications

	on AWS															
CO4:	Interpret the use of AWS security service															
CO5:	Explain the networking concepts on AWS															
CO6:	Interpret the migrate applications to Web and Cloud															
	Services.															
TEX	TEXT BOOKS:															
1	Joe Baron, Hisham Baz , Tim Bixler , Biff Gaut , Kevin E.															
	Kelly, Sean Senior, John Stamper, "AWS Certified Solutions															
	Architect Official Study Guide: Associate Exam, John Wiley															
	and Sons Publications, 2017															
2	Cloud Computing: A Hands-On Approach Book by															
	Arshdeep Bahga and Vijay K. Madisetti,CreateSpace															
	Independent Publishing Platform,2013															
REFE	EFERENCES:															
1	Yohan	Wa	dia	, "A	W	S C	erti	fied	So	luti	ons	Arc	hited	t C	ffic	ial
,	Study (Gui	de:	Asso	ocia	te E	Exai	n, J	ohn	l Pa	ckt I	Publ	ishii	ng,	201	6
2	Bernald	d C	old	en,	"A	maz	zon	W	eb :	Ser	vices	s fo	r Dı	ımı	nie	s",
1	John W	iley	<i>y</i> &	Son	s, 20	013		4	h. '				-		Total Control	
	018		4		/		P	Os						I	SC	s
	COs ONE	1.	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	ı	-	2	UAL	U. II	2	1	1	1	2	2	2	2
	2	2	1	-	-	1	-	-	-	2	1	1	2	2	3	-
	3	3	2	1	1	2	1	1	-	1	2	1	3	2	2	ı
	4	2	1	-	-	2	-	-	-	1	1	2	2	3	3	-
	5	2	1	-	-	2	-	-	-	1	1	1	2	2	2	-
	6	2	1	-	ı	2	-	-	-	1	1	1	2	2	2	_
	erall elation	3	2	1	1	2	1	1	1	2	2	2	2	2	2	-

VERTICAL 2: FULL STACK DEVELOPMENT

23CS031	JAVA FULL STACK	L	T	P	C
	DEVELOPMENT	2	0	2	3

COURSE OBJECTIVES:

- To understand and familiarize with JavaScript and NodeJS environments.
- To learn about NoSQL database and basics of MongoDB.
- To acquire knowledge of the ReactJS frontend.
- To acquire knowledge of the ExpressJS backend.
- To acquire knowledge of how to develop and create real time web applications.

UNIT I INTRODUCTION TO JAVA SCRIPT 6

Introduction to JavaScript- Brief history of NodeJS and its alternatives- Installing and setting up NodeJS environment - Introduction to NPM package manager and registry - Introduction to callbacks and events -File system access and handling streams-Introduction to common utility modules (OS, Path).

UNIT II INTRODUCTION TO NOSQL DATABASE 6 WITH MONGODB

Introduction to NoSQL -Benefits and disadvantages of NoSQL databases -Introduction to MongoDB - Installing and setting up MongoDB environment -Data model design (Embedded and Normalized) -Database manipulation (Create, Drop, Create and Drop Collections) -Document manipulation (Insert, Delete, Update, Query (Limit, Sort, Aggregation)) -Projection Introduction and setting up Mongoose ORM -Handling models and queries with Mongoose.

UNIT III FRONTEND DEVELOPMENT WITH REACT JS 6

Introduction to ReactJS -Installation and creating a basic React application -Introduction to JSX- Components and props- State and lifecycle -Events and effects -Conditional rendering - Introduction to HTTP requests and fetch -Making HTTP GET and POST requests- Handling data from API.

UNIT IV BACKEND DEVELOPMENT WITH EXPRESS 6 JS

Introduction to ExpressJS- Separating the tasks of frontend and backend -Installing and setting up ExpressJS environment-Introduction to APIs -Routing and URL building -Error handling-Project directory structuring - Handling form data and request data -Handling and serving files -Authentication using session keys- Handling request of multiple methods and their placement (GET, POST, DELETE, PATCH) -Documenting an API.

UNIT V CREATING A FULL STACK WEB APPLICATION 6

React page with input fields -Extracting and validating data from input field(s)- Making a HTTP request with data from input field(s) Using Mongoose with an ExpressJS application -Inserting document with data from HTTP request -Writing, handling URL query parameters and using its values to write queries with Mongoose -Displaying data returned from backend- Handling errors in API requests.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Develop a Life Line A Health Assistance Web Application
- 2. Develop Employee Timesheet Management System
- 3. Build Paytm clone Page
- 4. Build Portfolio page
- 5. Creating a simple College website using HTML, CSS, and JS.
- 6. Develop a Hospital Management System
- 7. Develop an Online Banking Application

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain concepts of JavaScript and its environment.
- CO2: Apply NoSQL databases and develop deeper into it using MongoDB and performing basic database operations in it.

602	A 1	.1					TC3		-			, ,	1.	1		1
CO3:	Apply the concepts of JSX and ReactJS to display and manipulate data in a webpage and to make basic HTTP															
								oag	e a	na	to n	nake	e bas	51C	HI	ΙΡ
CO4:	request							1		J 1.	1	1	1	La		1.
CO4:		Compare the roles of frontend and backend, and to work with ExpressJS.														
COE	Develop complete API and interact with it from the ReactJS															
CO3.	frontend.															
CO6:	Develop and create real time web applications.															
	TEXT BOOKS:															
1																
1	Herbert Schildt, "Java: The Complete Reference", 11 th															
2	Edition, McGraw Hill Education, New Delhi, 2019 Bradshaw, Shannon., Brazil, Eoin., Chodorow, MongoDB:															
_	The Definitive Guide: United States: O'Reilly Media, 2019.															
3	Herbert Schildt, "Introducing JavaFX 8 Programming", 1 st															
	Edition, McGraw Hill Education, New Delhi, 2015.															
4	Chris Northwood, 'The Full Stack Developer: Your Essential															
	Guide to the Everyday Skills" APress; 1st ed. Edition (20															
y	November 2018).															
REFI	ERENCE	S:	- 3	W	1	1	A		1	A	2 55	_				
1	'Expect	ed (of a	Mo	ode	rn I	Full	Sta	ıck	We	b De	evelo	oper	', A	pre	ss;
1	1st edit												•		•	-
2	Cay S. I															11
	th Editi	on,	Pre	ntic	e F	Iall,	201	18.	D ÄN	NA U	NIVER	SITY	AUTO	ONO	иои	5
3	Nichola									sio	nal	Jav	a f	or	W	eb
	Applica	tio	ns",	, W1	rox	Pre										
	COs						I	POs						I	PSC	s
·		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	3	-	-	1	-	-	-	1	2	3	1
	2	3	2	1	1	1	-	-	1	ı	-	-	2	3	1	1
	3	3	2	1	1	2	-	-	1	-	-	-	2	3	2	1
	4	3	2	1	1	2	-	-	1	ı	1	ı	1	2	2	1
	5	3	2	1	1	2	-	-	1	-	-	-	1	3	2	1
	6	3	2	1	1	2	-	-	1	-	-	-	1	3	2	1
O	verall	2	2	1	1	_			1				_	2	_	1
Cor	relation 3 3 1 1 2 - - 1 - - - 2 3 2 1															

23CS	5032	MOB	ILE APP D	EVE	LOPMENT	L	T	P	C	
						2	0	2	3	
COURSE OBJECTIVES:										
•	To 1	understand	the need	and	characteristic	S O	f n	nob	ile	

- To understand the need and characteristics of mobile applications
- To design the right user interface for mobile applications.
- To understand the design issues in the development of mobile applications
- To understand the development procedure for mobile applications forms
- To develop mobile applications using various tools and platform

UNIT I INTRODUCTION TO ANDROID OS 6

Android: An Open Platform for Mobile Development-Introducing the Open Handset Alliance- Introducing the Development Framework- Developing for Android-Developing for Mobile and Embedded Devices- Android Development Tools-Introducing the Application Manifest File -The Android Application Lifecycle.

UNIT II BUILDING USER INTERFACE AND INTENT 6 CREATIONS

Fundamental Android UI Design- Android User Interface Fundamentals- Introducing Layouts- The Android Widget Toolbox- Introducing Intents- Creating Intent Filters and Broadcast Receivers- Using Internet Services-Connecting to Google App Engine.

UNIT III DATABASES AND CONTENT PROVIDERS 6

Introduction on SQLite-Working with SQLite Databases- Creating Content Providers Native Android Content Providers-Introducing Services -Using Background Threads- Using Alarms-Creating and Using Menus and Action Bar Action Items.

UNIT IV LOCATION-BASED SERVICES AND WIRELESS SERVICES 6

Using Location-Based Services-Using the Emulator with Location-Based Services-Selecting a Location Provider- Finding Your Current Location- Using Bluetooth-Managing Network and Internet Connectivity- Managing Wi-Fi.

UNIT V TELEPHONY AND SMS, PUBLISHING 6 APPLICATIONS 6

Using Telephony - Introducing SMS and MMS - Distributing Applications-Introducing the Google Play - Getting Started with Google Play-Publishing Applications.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Develop an application that uses GUI components, Font and Colours
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Write an application that draws basic graphical primitives on the screen.
- 4. Develop an application that makes use of databases
- 5. Develop an application that makes use of Notification Manager
- 6. Implement an application that uses Multi-threading
- 7. Develop a native application that uses GPS location information
- 8. Implement an application that writes data to the SD card
- 9. Implement an application that creates an alert upon receiving a message
- 10. Write a mobile application that makes use of RSS feed

TOTAL: 30 PERIODS

COURSE OUTCOMES:																
	After completion of the course, the students will be able to:															
CO1:	Develop an application using Android development environment															
CO2:	Develop mobile application development frameworks and tools															
	Build a mobile application that manages Database operations															
CO4:	Develop location based services and wireless environments															
	Develop Telephony Applications for introducing SMS and MMS															
	6: Develop applications based on Android OS															
TEX	TEXT BOOKS:															
1	Lauren Darcey and Shane Conder, "Android Wireless															
	Application Development", Pearson Education, 2nd ed.															
	(2011) VER DRE															
REFI	REFERENCES:															
1	Reto	Mei	ier,	"	Pro	fess	sion	al	A	ndr	oid	4	Ar	pli	cati	on
	Develo	ome	ent"	, W	lley	z, Fi	irst	Edi	tior	n, 20)12		1			
2	Zigurd	Μe	edn	ieks	s, L	airc	l D	orn	in,	G.	Blak	e N	ſike,	Ma	asu	mi
	Nakam	ura	, "P	rog	ran	nmi	ng .	And	droi	id",	O'R	eilly	, 2n	dEc	litic	n,
	2012.															
3	Alasdai	r A	Alla	n,	"iP	hor	ne]	Pro	grai	mm	ing"	, C)'Rei	11v,	Fi	rst
	Edition								0		O			<i>J</i> .		
							I	POs	,					I	PSO	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	ı	1	-	•		1	3	2	1
	2	3	2	1	1	2	1	-	1	1	-	1	1	3	2	1
	3	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1
	4	3	2	1	1	2	1	-	1	-	1	1	1	3	2	1
	5	3	2	1	1	2		-	1	-	-	-	1	3	2	1
	6	3	2	1	1	2	1	_	1	1	_	1	1	3	2	1
	Overall							2	1							

23CS033	UI AND UX DESIGN	L	T	P	C
		2	0	2	3

- To provide a sound knowledge in UI & UX.
- To understand the need for UI and UX.
- To understand the various Research Methods used in Design.
- To explore the various Tools used in UI & UX.
- To create a wireframe and prototype.

UNIT I FOUNDATIONS OF DESIGN 6

UI vs. UX Design - Core Stages of Design Thinking - Divergent and Convergent Thinking - Brainstorming and Game storming - Observational Empathy.

UNIT II FOUNDATIONS OF UI DESIGN 6

Visual and UI Principles - UI Elements and Patterns - Interaction Behaviors and Principles - Branding - Style Guides.

UNIT III FOUNDATIONS OF UX DESIGN 6

Introduction to User Experience - Why You Should Care about User Experience - Understanding User Experience - Defining the UX Design Process and its Methodology - Research in User Experience Design - Tools and Method used for Research - User Needs and its Goals - Know about Business Goals.

UNIT IV WIREFRAMING, PROTOTYPING AND TESTING 6

Sketching Principles - Sketching Red Routes - Responsive Design - Wireframing - Creating Wireflows - Building a Prototype - Building High-Fidelity Mockups - Designing Efficiently with Tools- Interaction Patterns - Conducting Usability Tests - Other Evaluative User Research Methods - Synthesizing Test Findings - Prototype Iteration.

UNIT V RESEARCH, DESIGNING, IDEATING, & 6 INFORMATION ARCHITECTURE

Identifying and Writing Problem Statements - Identifying Appropriate Research Methods - Creating Personas - Solution Ideation - Creating User Stories - Creating Scenarios - Flow Diagrams - Flow Mapping - Information Architecture.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Designing a Responsive layout for an societal application
- 2. Exploring various UI Interaction Patterns
- 3. Developing an interface with proper UI Style Guides
- 4. Developing Wireflow diagram for application using open source software
- 5. Exploring various open source collaborative interface Platform
- 6. Hands on Design Thinking Process for a new product
- 7. Brainstorming feature for proposed product
- 8. Defining the Look and Feel of the new Project
- 9. Create a Sample Pattern Library for that product (Mood board, Fonts, Colors based on UI principles)
- 10. Identify a customer problem to solve.
- 11. Conduct end-to-end user research User research, creating personas, Ideation Process (User stories, Scenarios), Flow diagrams, Flow Mapping.
- 12. Sketch, design with popular tool and build a prototype and perform usability testing and Identify improvements.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build UI for user Applications.
- CO2: Apply UX design in any product or application.
- **CO3:** Apply UX Skills in product development.

CO4:	Apply	Ske	tchi	ng	prir	ncip	les.									
CO5:	Develo	рW	Vire	fran	ne a	ınd	Wi	refl	ows	S.						
CO6:	Develo	p P	roto	typ	е Т	esti	ng 1	or l	Hig	h-F	ideli	ty N	lock	ups	S.	
TEXT	ГВООК	S:														
1	Joel M	arsl	n, "l	UX	for	Beg	inn	ers	", O	'Re	illy,	2022	2 Edi	itio	n	
2	Jon Ya	blo	nsk	i, "I	Law	s of	U)	(us	ing	Psy	ycho	logy	to I	Desi	ign	
	Better Product & Services" O'Reilly,2020.															
REFE	ERENCES:															
1	Jenifer Tidwell, Charles Brewer, Aynne Valencia,															
	"Designing Interface" 3 rd Edition, O'Reilly 2020.															
2	Steve Schoger, Adam Wathan "Refactoring UI", 2018.															
3	Steve Krug, "Don't Make Me Think, Revisited: A															
	Commonsense Approach to Web & Mobile", Third Edition,															
	2015 WER DREAM															
4	Jenifer Tidwell, Charles Brewer, and Aynne Valencia,															
	"Designing Interfaces: Patterns for Effective Interaction															
1	Design" O'Reilly Media ,2020.															
5	https:/	//w	ww	nn.	gro	up.	con	n/a	rtic	les/	TE	CH	NO	LO	G\	1
6	https:/	'/w	ww	int	tera	ctio	n-d	esi	gn.c	org	/lite	ratui	re.	ONC	MOU	5
								Os		<i>O</i> ,				I	PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	1	3	3	2	1	3	1	1
	2	3	2	1	1	2	-	-	1	1	2	2	2	3	2	1
	3	3	2	1	1	2	-	-	-	2	3	1	2	3	2	1
	4	3	2	1	1	1	-	-	1	3	2	1	3	3	1	1
											1	1				
	6	3	2	1	1	1	-	-	1	2	1	1	1	3	1	1
	rerall elation	3	2	1	1	2	_	_	1	3	2	2	2	3	2	1
Corr	eration															

23CS034	MERN STACK WEB	L	T	P	C
	DEVELOPMENT	2	0	2	3

- To understand MERN stack architecture
- To enrich the knowledge of different JavaScript libraries and frameworks
- To understand how Javascript libraries can be used in front end and backend process
- To understand NoSQL databases
- To build web applications using MERN Stack

UNIT I INTRODUCTION TO MERN STACK 6

MERN Stack Overview, Modular Architecture, MERN support for modular architecture- Component-Based Frontend Development-Modular Server-Side Development - Separation of Concerns-Dependency Management- Testing and Deployment, Benefits/Features of Using Modular Architecture in MERN App.

UNIT II JAVA SCRIPT AND ECMA SCRIPT 6

JavaScript Fundamentals, Grammar and types, Control flow and error handling, Loops, Function, Objects, Arrays, Promises,ES6 Let and const, Template literals, Arrow Function, Default parameter, Async Await.

UNIT III BACKEND DEVELOPMENT USING Node.js AND Express.js with MONGO DB

Node.js overview, Node.js - basics and setup, Node.js console, Node.js command utilities, Node.js modules, concepts, Node.js events, database access , Node.js with Express.js, Express.js Request/Response, Express.js Get, Express.js Post, Express.js Routing, Express.js Cookies, Express.js File Upload, Middleware, Express.js Scaffolding, Template, Migration of data into MongoDB, MongoDB with Node.js, Services offered by MongoDB.

UNIT IV FRONTEND DEVELOPMENT with ReactJS

6

Introduction to React: Components, Props, and State, JSX Syntax, Functional Components vs. Class Components; Advanced React Concepts: React Hooks: useState, useEffect, useContext. Component Lifecycle and State Management, Forms and Controlled Components, React Router and Single Page Applications (SPA): Setting up React Router for Navigation, Building a Single Page Application with Multiple Routes.

UNIT V CREATING A WEB APPLICATION USING MERN STACK

6

Integrating Frontend and Backend, State Management with Redux, Deployment of Apps, Authentication and Security, WebSocket and Real-Time Applications, Performance Optimization.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Create a simple calculator application using React.js
- 2. Create a simple login form using React.js
- 3. Write a node.js program to replace strings using Regular expression.
- 4. Create http server interacting with client using Node.js
- 5. Perform CRUD operations using MongoDB
- 6. Build migration of data using MongoDB
- 7. Create a REST backend API Using Express
- 8. Build an web application using React, Node, Express and MongoDB.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Apply the basic components of MERN stack architecture.

CO2: Apply the basic fundamentals of javascript and ECMA Script.

- CO3: Build robust server-side applications with Node.js and Express.js.
- **CO4:** Build and interacting with MongoDB databases.
- CO5: Construct dynamic and responsive user interfaces using React.js.
- **CO6:** Develop a full stack application using MERN stack.

TEXT BOOKS:

- 1 Nabendu Biswas ,"Ultimate Full-Stack Web Development with MERN: Design, Build, Test and Deploy Production-Grade Web Applications with MongoDB, Express, React and NodeJS", Orange Education ,2023
- 2 Herbert Schildt, "The Complete Reference-Java", Tata Mcgraw- Hill Edition, Eighth Edition, 2014.

REFERENCES:

- Adam Freeman," Mastering Node.js Web Development: Go on a comprehensive journey from the fundamentals to advanced web development with Node.js", Packt Publishing, 2024.
- Greg Lim ," Beginning MERN Stack: Build and Deploy a Full Stack MongoDB, Express, React, Node.js App", Kindle Edition, 2021.
- 3 Shama Hogue," Full-Stack React Projects: Learn MERN stack development by building modern web apps using MongoDB, Express, React, and Node.js", second edition, Packt Publishing 2020.

COs						I	POs						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	ı	ı	1	ı	•	1	2	3	ı	1
2	3	2	1	1	1	ı	ı	1	ı	•	1	2	3	ı	1
3	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1
4	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1
5	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1
6	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1
Overall Correlation	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1

23CS035	DEVOPS	L	T	P	C
		2	0	2	3

- To introduce DevOps terminology, definition & concepts
- To understand the different Version control tools like Git, Mercurial
- To understand the concepts of Continuous Integration/ Continuous Testing/ Continuous Deployment)
- To understand Configuration management using Ansible
- To illustrate the benefits and drive the adoption of cloudbased Devops tools to solve real world problems

UNIT I	INTRODUCTION TO DEVOPS	6
1 -	ssentials - Introduction to AWS, GCP, Azure - Verstems: Git and Github.	sion
UNIT II	COMPILE AND BUILD USING MAVEN & GRADLE	6

Introduction, Installation of Maven, POM files, Maven Build lifecycle, Build phases(compile build, test, package) Maven Profiles, Maven repositories(local, central, global), Maven plugins, Maven create and build Artificats, Dependency management, Installation of Gradle, Understand build using Gradle

UNIT III | CONTINUOUS INTEGRATION USING | 6 | JENKINS | 6

Install & Configure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job, Configuring a Jenkins job, Introduction to Plugins, Adding Plugins to Jenkins, Commonly used plugins (Git Plugin, Parameter Plugin, HTML Publisher, Copy Artifact and Extended choice parameters). Configuring Jenkins to work with java, Git and Maven, Creating a Jenkins Build and Jenkins workspace.

UNIT IV CONFIGURATION MANAGEMENT USING 6 **ANSIBLE** Ansible Installation, Introduction, Ansible master/slave configuration, YAML basics, Ansible modules, Ansible Inventory files, Ansible playbooks, Ansible Roles, adhoc commands in ansible UNIT V **BUILDING DEVOPS PIPELINES USING** 6 **AZURE** Create Github Account, Create Repository, Create Organization, Create a new pipeline, Builda sample code, Modify azure-pipelines.yaml file. **TOTAL: 30 PERIODS** PRACTICAL EXERCISES: LIST OF EXPERIMENTS Create Maven Build pipeline in Azure. Run regression tests using Maven Build pipeline in Azure. 3. Install Jenkins in Cloud. 4. Create CI pipeline using Jenkins. 5. Create a CD pipeline in Jenkins and deploy in Cloud. 6. Create an Ansible playbook for a simple web application infrastructure. 7. Build a simple application using Gradle. 8. Build Devops Pipelines using Azure. **TOTAL: 30 PERIODS COURSE OUTCOMES:**

After completion of the course, the students will be able to:

- **CO1:** Explain different actions performed through Version control tools like Git.
- CO2: Apply Continuous Integration and Continuous Testing and Continuous Deployment using Jenkins by building and automating test cases using Maven & Gradle
- CO3: Deployment using Jenkins by building and automating test cases using Maven & Gradle.

CO4:	Develop	o Pi	pel	ine	in J	enk	ins	anc	l de	plo	y in	clou	d.			
CO5:	Apply A	Aut	oma	atec	l Co	nti	nuo	us	Dep	oloy	men	ıt.				
CO6:	Constru	ıct o	conf	igu	rati	on	mar	nag	eme	ent 1	usin	g Ar	rsibl	e.		
TEX	г воок	S:														
1	Roberto	Vo	rm	itta	g, ".	A P	ract	ical	Gu	ide	to C	Git ar	nd G	itH	ub 1	for
	Window	vs l	Use	rs:]	Fro	m B	Begi	nne	r to	Ex	pert	in 1	Easy	Ste	ep-E	By-
	Step Ex	erci	ses'	", S	ecoı	nd I	Edit	ion	, Ki	ndl	e Ed	itior	ı, 201	16.		
2	Jason C	anr	ion,	"L	inu	x fo	r Be	egir	nneı	's: <i>I</i>	\n Ir	ntro	ducti	ion	to t	he
	Linux Operating System and Command Line", Kindle Edition, 2014															
	Edition, 2014 ERENCES:															
REF	FERENCES: Mitesh Soni "Hands-On Azure Devops: Cicd															
1	Mitesh Soni ,"Hands-On Azure Devops: Cicd															
	Implementation For Mobile, Hybrid, And Web Applications															
	Using Azure Devops And Microsoft Azure: CICD															
	Implementation for DevOps and Microsoft Azure", BPB															
1	Publications, 2020															
2	Jeff Geerling, "Ansible for DevOps: Server and configuration															
	management for humans", Midwestern Mac, LLCFirst															
	Edition, 2015.															
3	David Johnson, "Ansible for DevOps: Everything You Need															
	to Kno										_	ps",	Cr	eate	espa	ice
	Indeper															
4	https://	/wı	WW.	jen	kins	s.io,				lbo	ok.p	df		1		
	COs			I _				Os							PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	2	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
	3	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
	4	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
	5 3 2 1 1 3 2 3 3											2				
0	6 verall	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	elation	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
	CIMUIOII															

23CS036	WEB APPLICATION SECURITY	L	T	P	C
		2	0	2	3

- To understand the fundamentals of web application security.
- To focus on wide aspects of secure development and deployment of web applications.
- To learn how to build secure APIs.
- To learn the basics of vulnerability assessment and penetration testing.
- To get an insight about Hacking techniques and Tools.

UNIT I	FUNDAMENTALS OF WEB APPLICATION	6
	SECURITY	

The history of Software Security-Recognizing Web Application Security Threats, Web Application Security, Authentication and Authorization, Secure Socket layer, Transport layer Security, Session Management-Input Validation.

UNIT II SECURE DEVELOPMENT AND 6 DEPLOYMENT 6

Web Applications Security - Security Testing, Security Incident Response Planning, The Microsoft Security Development Lifecycle (SDL), OWASP Comprehensive Lightweight Application Security Process (CLASP), The Software Assurance Maturity Model (SAMM).

UNIT III | SECURE API DEVELOPMENT | 6

API Security- Session Cookies, Token Based Authentication, Securing Natter APIs: Addressing threats with Security Controls, Rate Limiting for Availability, Encryption, Audit logging, Securing service-to-service APIs: API Keys, OAuth2, Securing Microservice APIs: Service Mesh, Locking Down Network Connections, Securing Incoming Requests.

UNIT IV VULNERABILITY ASSESSMENT AND PENETRATION TESTING

6

Vulnerability Assessment Lifecycle, Vulnerability Assessment Tools: Cloud-based vulnerability scanners, Host-based vulnerability scanners, Network-based vulnerability scanners, Database- based vulnerability scanners, Types of Penetration Tests: External Testing, Web Application Testing, Internal Penetration Testing, SSID or Wireless Testing, Mobile Application Testing.

UNIT V HACKING TECHNIQUES AND TOOLS

6

Social Engineering, Injection, Cross-Site Scripting(XSS), Broken Authentication and Session Management, Cross-Site Request Forgery, Security Misconfiguration, Insecure Cryptographic Storage, Failure to Restrict URL Access, Tools: Comodo, OpenVAS, Nexpose, Nikto, Burp Suite, etc.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Install wireshark and explore the various protocols
 - a) Analyze the difference between HTTP vs HTTPS
 - b) Analyze the various security mechanisms embedded with different protocols.
- 2. Identify the vulnerabilities using OWASP ZAP tool
- 3. Create simple REST API using python for following operation
 - a) GET
 - b) PUSH
 - c) POST
 - d) DELETE
- 4. Install Burp Suite to do following vulnerabilities:
 - a) SQL injection
 - b) cross-site scripting (XSS)
- 5. Attack the website using Social Engineering method

TOTAL:30 PERIODS

COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the basic concepts of web application security
CO2:	Identify the process for secure development and
	deployment of web applications
CO3:	Develop and design Secure Web Applications that uses
	secure APIs
CO4:	Apply vulnerability assessment and penetration testing
	methods using various tools and its types.
CO5:	Experiment with hacking techniques for secure social
	engineering
CO6:	Apply hacking Tools like Comodo, OpenVAS, Nexpose,
	Nikto, Burp Suite, etc.
TEXT	T BOOKS:
1	Andrew Hoffman, Web Application Security: Exploitation
	and Countermeasures for Modern Web Applications, First
1	Edition, 2020, O'Reilly Media, Inc
2	Bryan Sullivan, Vincent Liu, Web Application Security: A
	Beginners Guide, 2012, The McGraw-Hill Companies.
3	Neil Madden, API Security in Action, 2020, Manning
	Publications Co., NY, USA.
REFE	ERENCES:
1	Michael Cross, "Developer's Guide to Web Application
	Security", Syngress Publishing, Inc., 2007.
2	Ravi Das and Greg Johnson, "Testing and Securing Web
	Applications", Taylor & Francis Group, LLC, 2021,
3	Prabath Siriwardena," Advanced API Security", Apress
	Media LLC, USA, 2020.
4	Malcom McDonald, "Web Security for Developers", No
	Starch Press, Inc, 2020,

5 Allen Harper, Shon Harris, Jonathan Ness, Chris Eagle, Gideon Lenkey, and Terron Williams "Grey Hat Hacking: The Ethical Hacker's Handbook", The McGraw-Hill Companies, Third Edition, 2011,

COs						I	POs						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-		-	-	-	-	-	-	2	-	-
2	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
3	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
4	3	1	-	-	-	-	-	-	-	-	-	-	3	1	-
5	3	2	1	1	1	-	-	1	-	1	-	-	3	1	1
6	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
Overall Correlation	3	2	1	1	2	-	-	1	- 1	1	1	1	3	2	1

COLLEGE OF TECHNOLOGY

		_		_									
23CS037	ADVANCED JAVA	L	T	P	C								
	PROGRAMMING	2	0	2	3								
COURSE OBJ	ECTIVES:												
 To learn 	n the advanced concepts in J2SE.												
• To und	erstand server side programming using	g Sei	vle	t.									
 To learn 	n the Java server pages and implement	atior	١.										
• To und	erstand the Model View Controller Arc	hite	ctu	re.									
• To learn	n to develop web-based applications ι	ısing	st:	ruts	3								
hibernate Frameworks.													
UNIT I IN	TRODUCING JAVA ENTERPRISE E	DIT	IOI	1	6								
Entorprise Is	ava, Basic Application Structure,	Lloi	200	147	oh.								
Containers,				vle									
•	g HTTP methods, Using Parameters a												
	sions, Using Init parameters, File Uploa			-	_								
2 000	VA SERVER PAGES	idiff	5, JI		6								
ONII II JA	VA SERVER I AGES				ľ								
Creating JSPs	, Using Java within JSP, Combining	Serv	/let	s aı	nd								
JSPs, maintair	ning State using Sessions, JSP C	usto	m	T	ag								
Library, Integ	grating Servlets and JSP: Model View	w C	ont	rol	er								
Architecture.	RREALTH COLLEGE OF TECH												
UNIT III ST	RUTS FRAMEWORK	AUT	NUI	aut	6								
Introduction t	to Struts - Building a Simple Struts A	\ nn	licat	tion	1								
	g Model, View and Controller Layer-												
Tiles.	g Woder, view and Controller Layer-	Ove	51 V I	CVV	OI								
	VA SERVER FACES (JSF)				6								
UNII IV JA	VA SERVER PACES (ISP)				U								
Introduction	to Java Server Faces (JSF)- JSF	Αp	plio	cati	on								
Architecture -	- Building a simple JSF Application -	JSF	Re	que	est								
Processing Life	ecycle - The Facelets View Declaration	n La	ngu	age	<u> </u>								
User Interface	Component Model- JSF Event Model.												
UNIT V SP	RING FRAMEWORK AND HIBERN	ATE			6								
l l													
MVC pattern	n for Web Applications, Spring	Fra	me	WOI	tk,								

framework, Configuring Spring framework, Data Persistence, Object/relational Mapping, Hibernate ORM, Mapping Entities to Tables.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Deploy a basic web application on a web container like Apache Tomcat.
- 2. Develop a servlet to handle file uploads.
- Implement a simple application combining servlets and JSPs.
- 4. Implement session management in JSP.
- 5. Develop a simple form-based application using Struts.
- 6. Develop JSP pages as the view layer in Struts.
- 7. Develop a simple form-based application using JSF.
- 8. Develop JSF views using Facelets.
- 9. Implement the MVC pattern using Spring MVC.
- 10. Implement database operations using spring and Hibernate.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the advanced Java concepts to solve complex problems.
- **CO2:** Develop server side programs using Servlets and JSP.
- CO3: Develop an application using Java Server Faces and Struts Framework.
- CO4: Apply cutting-edge frameworks in web application development.
- **CO5:** Develop a web application using Hibernates.
- CO6: Develop a web application using Spring framework.

TEX	Г ВООК	S:														
1	Anil H	em	raja	ni,	"A	gile	Ja	va	De	velo	opm	ent	with	ı S	prir	ıg,
	Hiberna	ate a	and	Ec	lips	e",	San	ns P	ubl	ishi	ing,	2006) .			
2	Herbert Schildt, "The Complete Reference-Java", Tata															
	Mcgraw- Hill Edition, 2022.															
REFI	EFERENCES:															
1	Christian Bauer, Gavin King, Gary Gregory, "Java															
	Persistence with Hibernate", Manning Publications, 2015.															
2	Craig Walls, "Spring in Action", Manning Publications,															
	2014.															
3	Ed Burns, Chris Schalk, "JavaServer Faces 2.0, The Complete															
	Reference", McGraw-Hill Publishers, 2010.															
	COs						I	POs	,					I	PSO	s
\ \ \ \ \	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 LOW	3	2	1	1	2	-2	7	1	-	-	<u>-</u>	1	3	2	1
	2	3	2	1	1	2		<u></u>	1	1	-	-	1	3	2	1
1	3	3	2	1	1	2	1	ð	1	1	1	1	1	3	2	1
	4	3	2	1	1	2			1	1	•	1	1	3	2	1
The state of the s	5	3	2	1	1	2	1	1	1	1	1	1	1	3	2	1
	6 GINE	3	2	1	1	2	1	Ŀ	1	1	1	1	1	3	2	1
O.	verall	3	3	1	1	3	1	ED T	JAN 1	NA U	NIVER 1	511Y	AUTO	3	3	1
Cor	relation	3)	1	1)	+	_	+	1	1	1	1	3)	1

23CS038	PYTHON FULL STACK	L	T	P	C
	DEVELOPMENT WITH MACHINE	2	0	2	3
	LEARNING				

- To learn foundational backend development concepts using Python's Flask for API development
- To integrate advanced backend features to ensure secure, efficient, and scalable APIs.
- To build and train machine learning models using Scikit-Learn, focusing on data preprocessing, model evaluation, and tuning
- To integrate machine learning models within backend APIs to enable real-time predictions
- To deploy machine learning applications on Render with CI/CD pipelines and monitoring for production stability

UNIT I PYTHON FOR BACKEND DEVELOPMENT 6

Backend Fundamentals and REST API Concepts – RESTful architecture, HTTP methods (GET, POST, PUT, DELETE), resource-based endpoint design, best practices for REST API design; **Flask Essentials** – Setting up Flask, routing and request handling, working with JSON, custom error handling; **Building CRUD APIs:** Implementing create, read, update, and delete operations using Flask-Introduction to database interactions using SQLite or in-memory data handling for testing.

UNIT II	ADVANCED BACKEND TECHNIQUES	6

API Security and Authentication – JWT authentication, Flask-JWT-Extended, role based access control;

Data Processing and Serialization - Handling large datasets in FLASK, using JSON and XML data serialization formats;

Implementing Caching and Redis- Introduction to Redis, Flask-

Redis integration, managing cache expiry and invalidation.

UNIT III | MACHINE LEARNING FUNDAMENTALS

6

Types of Machine Learning – Supervised, unsupervised, and reinforcement learning, Supervised Learning Models; Data Preprocessing and Feature Engineering– Data cleaning techniques, Scaling and Normalization, Feature Selection and Engineering; Building Machine Learning Models – Linear regression and decision trees, Random Forest and SVM; Model Evaluation and Optimization – Metrics for evaluation, cross-validation techniques, hyperparameter tuning.

UNIT IV MACHINE LEARNING MODEL INTEGRATION

6

Exposing ML Models through APIs - Creating prediction endpoints in Flask, Formatting input data for predictions and handling JSON requests; **Data Processing for Model Inference** - Data Formatting and Validation , Batch Processing for Efficiency: **Optimizing and Scaling Model Serving-** Techniques for faster inference, asynchronous processing for handling large volumes of requests; **Monitoring and Logging Predictions** - Logging incoming prediction requests and analyzing data distribution, Health Checks and Error Tracking.

UNIT V DEPLOYMENT AND PRODUCTION READINESS

6

Render Deployment Essentials – Setting up a Render account and deploying Flask applications, Environment Configuration; Preparing ML Models for Deployment – Packaging models and dependencies for production, Creating Docker containers for scalable deployments; CI/CD with GitHub Actions – Setting up GitHub Actions for automated builds and deployments,

Monitoring and Logging for Production APIs- Real-time Logging, Error Handling and Alerting.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Basic CRUD API Creation: Develop a CRUD API for managing a library of books with operations for adding, viewing, editing, and deleting records.
- 2. Implementing JWT Authentication: Set up JWT authentication to secure the library API.
- 3. Using Redis Caching: Add Redis caching to cache frequently accessed endpoints, such as the "View All Books" endpoint
- 4. Data Cleaning and Feature Engineering: Clean a housing dataset and create engineered features to improve predictive performance.
- 5. Model Building and Evaluation: Train a classification model using a dataset, evaluating it with accuracy and F1 score metrics.
- 6. Model Prediction API: Develop a Flask API to serve predictions from a trained ML model.
- 7. Prediction Logging: Set up basic logging to track incoming requests and analyze prediction patterns.
- Deploying Flask API on Render: Deploy a Flask-based API on Render, including environment configuration and monitoring setup.
- 9. CI/CD Setup with GitHub Actions: Automate deployment of the API with CI/CD, ensuring consistent updates on each code commit

Mini Projects

1. Book Recommendation API: Build an API using Flask that

- provides book recommendations based on genre and author. Integrate data validation to ensure API requests have the required fields.
- User Profile API with JWT and Redis: Create a Flask API where users can view and update their profiles. Implement JWT-based authentication and use Redis to cache user data for improved performance.
- Movie Rating Predictor: Develop a regression model to predict user ratings for movies based on genre, director, and other features. Tune the model using cross-validation to optimize accuracy.
- 4. Spam Detection API: Develop an API using a pre-trained spam detection model to classify messages. Implement logging to track prediction accuracy over time.
- Sentiment Analysis API with CI/CD on Render: Develop and deploy a sentiment analysis API, set up CI/CD on Render to automate redeployment, and implement monitoring.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Design and implement RESTful APIs using Python and Flask framework.
- CO2: Apply authentication, authorization, and caching mechanisms to secure and optimize backend applications.
- CO3: Preprocess data and build machine learning models using Scikit-Learn for regression and classification tasks.
- CO4: Integrate trained machine learning models into Flask APIs for real-time prediction and analysis.
- CO5: Monitor and log backend systems to ensure robustness and performance in API services.

CO6:	Deploy full-stack machine learning applications using Render and GitHub Actions with CI/CD practices															
	Render	ar	nd C	GitH	ub .	Acti	ons	s wi	th (CI/	CD p	oract	ices			
TEX	T BOOKS: Miguel Grinberg, Flask Web Development, 2nd Edition,															
1	Miguel	G	rinl	oerg	, F	lask	W	7eb	De	vel	opm	ent,	2nd	l E	ditic	on,
	O'Reill	y N	1ed	ia, 2	.018											
2	Aurélie	en (Gér	on,	Haı	nds-	-On	M	ach	ine	Lea	rnin	g w	ith	Scik	cit-
	Learn,	Ke	ras,	and	l Te	nso	rFlo	ow,	2nd	l Ec	ditio	n, O'	Reil	ly, 2	2019).
3	Sebasti	an	Ras	schk	a, F	yth	on	Ma	chii	ne i	Lear	ning	, 3rc	d E	ditio	on,
	Sebastian Raschka, Python Machine Learning, 3rd Edition, Packt Publishing, 2019.															
REFI	RENCES:															
1	Mark Bates, Programming Flask, Pragmatic Bookshelf, 2022.															
2	Jason Brownlee, Machine Learning Mastery With Scikit-															
	Learn, 2021.															
3	GitHul	o D	ocs:	htt	ps:/	//de	ocs.	gitl	nub	.CO1	m/					
4	Flask I	oc	s: h	ttps	://f	flasl	c.pa	allet	spr	oje	cts.co	om/	A		W	
5	Render	Do	ocs:	http	os:/	/re	nde	er.co	om/	'do	CS			1		
	COs	٨		V			F	POs	1				1	I	PSO	s
	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1		//-	1		H	į,	1	1	1	1.5	2	ц	-
	2 S/NE	3	2	1	1	1	<i>7</i> <u>L</u>	-51	1	Ų.	1	CH.	1	3	1	1
	3	3	2	1	1	1	-	SM. S	1	99.3	1	5111	1	3	1	1
	4	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	5	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	6	3	2	1	1	1	ı	-	1	-	1	-	1	3	1	1
	verall				ĺ											
	elation	3	2	1	1	1		_	1		1	_	1	3	1	1

VERTICAL 3: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

23AD040	NATURAL LANGUAGE	L	T	P	C
	PROCESSING	2	0	2	3

COURSE OBJECTIVES:

- Explain fundamental tasks in NLP, including syntax, semantics, and pragmatics, along with associated challenges.
- Explore word-level syntax through N-grams, smoothing techniques.
- Explain context-free grammars and parsing techniques.
- Demonstrate linguistic meaning using first-order predicate calculus, syntax-driven semantic analysis, word sense disambiguation.
- Examine language generation frameworks and machine translation approaches.
- Analyze discourse structures, reference resolution, and the architecture of conversational agents for effective natural language communication.

UNIT I OVERVIEW AND MORPHOLOGY 6

Introduction – Models -and Algorithms - -Regular Expressions Basic Regular Expression Patterns – Finite State Automata Understand the wireless sensor network principles. Morphology -Inflectional Morphology - Derivational Morphology. Finite-State Morphological Parsing -- Porter Stemmer.

UNIT II WORD LEVEL AND SYNTACTIC 6 ANALYSIS

N-grams Models of Syntax - Counting Words - Unsmoothed N-grams. Smoothing- Back-off Deleted Interpolation - Entropy - English Word Classes - Tag sets for English Part of Speech Tagging-Rule Based Part of Speech Tagging - Stochastic Part of Speech Tagging - Transformation-Based Tagging.

UNIT III | CONTEXT FREE GRAMMARS

6

Context Free Grammars for English Syntax- Context-Free Rules and Trees -Understand the network simulation tools. Sentence-Level Constructions-Agreement - Sub Categorization, Parsing - Top-down - Early Parsing -feature Structures - Probabilistic Context-Free Grammars.

UNIT IV | SEMANTIC ANALYSIS

6

Representing Meaning-Meaning Structure of Language-First Order Predicate Calculus Representing Linguistically Relevant Concepts -Syntax-Driven Semantic Analysis - Semantic Attachments -Syntax-Driven Analyzer. Robust Analysis - Lexemes and Their Senses - Internal Structure - Word Sense Disambiguation -Information Retrieval.

UNIT V LANGUAGE GENERATION AND DISCOURSE ANALYSIS

6

Discourse -Reference Resolution - Text Coherence -Discourse Structure - Coherence. Dialog and Conversational Agents - Dialog Acts - Interpretation -Conversational Agents. Language Generation-Architecture-Surface Realizations - Discourse Planning. Machine Translation -Transfer Metaphor- Interlingua - Statistical Approaches

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Implement basic text preprocessing steps such as tokenization, lowercasing, removing punctuation and stop word removal.
- 2. Build an N-gram language model using a text corpus, calculate probabilities, and generate text.
- 3. Use regular expressions to find patterns in text, such as identifying dates, phone numbers, or specific words.
- 4. Implement part-of-speech tagging on a text corpus using

- NLTK's pre-trained POS tagger.
- 5. Perform word sense disambiguation using WordNet to identify the correct meaning of ambiguous words.
- 6. Implement syntactic parsing using a context-free grammar and visualize the resulting parse tree.
- 7. Use a pre-trained NER model to identify and classify named entities like names, locations, and dates in text.
- 8. Implement a basic morphological parser to analyze word structures and identify morphemes, including prefixes, suffixes, and roots.
- 9. Build a simple sentiment analysis model to classify text as positive, negative, or neutral using a predefined dataset and basic machine learning techniques.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Outline the internal structure of a word of the natural language.
- CO2: Apply N-grams rules to identify word patterns.
- CO3: Explain the context free grammar.
- CO4: Compare and contrast the meaning of the word.
- CO5: Utilize syntax driven semantic analysis.
- **CO6:** Demonstrate automatic machine translation procedure.

TEXT BOOKS:

- 1 C. Manning and H. Schutze, Statistical Natural, "Foundations of Language Processing. C", 1st Edition, MIT Press Cambridge, MA:1999
- Daniel Jurafsky and James H Martin," Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Prentice Hall, 2nd Edition, 2008

REF	ERENCE	S:														
1	Bharati	Α	., (San	gal	R.	, (Cha	itan	ya,	"N	Jatu	ral	lan	gua	ge
	process	ing	: a I	ani	inia	n p	ersp	ect	ive	", 1	st Ec	litio	n, Pl	НΙ,	2000	0.
2	Siddiqu	Siddiqui T., Tiwary U. S. "Natural language processing and														
	Information retrieval", 1st Edition, OUP, 2008.															
	POs													PSOs		
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	1	-	2	-	1	-	1	2	-	2
	2	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3
	3	2	1	-	-	1	2	-	3	-	1	-	-	2	1	3
	4	2	1	-	-	1	2	-	3	-	1	-	-	2	1	3
	5	3	2	1	1	-	3	3	3	3	3	3	-	3	-	3
	6	2	1	-	_	_	3	3	3	3	2	3	_	2	-	3

1 3

3 1

Overall

23AD04	5 D.	ATA	EXPL	ORATION	I ANI	L	T	P	C
	\mathbf{V}	ISUA:	LIZAT	ION		2	0	2	3
COURS	E OBJEC	TIVES	5 :			•			
• I	Understa	nd th	e core	principles	of Exp	orate	ory	Da	nta
]	Analysis	(EDA)							

- Analysis (EDA)
- Utilize various EDA tools and techniques to perform descriptive statistics, data transformation, and time series analysis.
- Analyze univariate, bivariate, and multivariate data using appropriate statistical and visualization methods to understand relationships and patterns.
- Implement 2D and 3D data visualization techniques
- Design interactive visualizations for text and document data VER DRS

UNIT I	THE FUNDAMENTALS OF EXPLORATORY	6
	DATA ANALYSIS	

Overview of EDA - Identifying Data quality - Missing values - Irregular Cardinality - Outliers - handling data Quality - Describing Data, Preparing Data Tables, Understanding Relationships Identifying and Understanding Groups, Building Models from Data.

UNITII EDA TOOLS AND DESCRIPTIVE STATISTICS 6

Significance of EDA - Comparing EDA with classical and Bayesian analysis - Software tools for EDA - Visual Aids for EDA - EDA with Personal Email - Data Transformation -Descriptive Statistics - Grouping Datasets Correlation - Time Series Analysis.

UNIT III UNIVARIATE, BIVARIATE, MULTIVARIATE 6 DATA ANALYSIS

Univariate Data Analysis - Bivariate Association Regression Analysis - Cluster Analysis - Visualization Design Principles - Tables - Univariate Data Visualization - Bivariate Data Visualization - Multivariate Data Visualization - Visualizing Groups - Dynamic Techniques.

UNIT IV DATA VISUALIZATION (2D/3D)

6

Simple Line Plots - Simple Scatter Plots - Visualizing Errors - Density and Contour Plots - Histograms, Binnings, and Density - Customizing Plot Legends - Customizing Colorbars - Multiple Subplots - Text and Annotation - Customizing Ticks - Customizing Stylesheets - Three-Dimensional Plots - Geographic Data with Basemap - Visualization with Seaborn.

UNIT V INTERACTIVE DATA VISUALIZATION

6

Text and Document Visualization - Levels of Text Representations -Single Document Visualizations - Document Collection Visualizations- Interaction Concepts and Techniques - Designing Effective Visualizations - Comparing and Evaluating Visualization Techniques - Visualization Systems - Systems based on Data Type - Systems based on Analysis Type - Text Analysis and Visualization - Modern Integrated Visualization Systems.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- Generate the data quality report in terms of identifying missing values, irregular cardinality and outliers for an insurance company.
- 2. Descriptive feature identification for predicting a target feature by visualizing relationships.
- 3. Data preparation for Exploration using normalization, binning and sampling methods.
- 4. Design and create data visualizations.

- 5. Conduct exploratory data analysis using visualization.
- 6. Craft visual presentations of data for effective communication.
- 7. Use knowledge of perception and cognition to evaluate visualization design alternatives.
- 8. Design and evaluate color palettes for visualization based on principles of perception.
- 9. Apply data transformations such as aggregation and filtering for visualization.
- 10. Develop data exploration and visualization for an application Mini Project

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Illustrate fundamentals of exploratory data analysis and its commonly used techniques.
- CO2: Apply statistical concepts to analyze data and explore the tools used for EDA.
- CO3: Develop multivariate data visualization and analysis.
- CO4: Interpret results of exploratory data analysis using stylesheets
- CO5: Build and Implement visualization techniques in web for applications
- **CO6:** Apply exploratory data analysis methods using Python.

TEXT BOOKS:

- 1 Suresh Kumar Mukhiya, Usman Ahmed, "Hands-On Exploratory Data Analysis with Python",1st Edition, Packt Publishing, 2020.
- **2** Jake VanderPlas, "Python Data Science Handbook", O'Reilly Media, 1st Edition, December 2016.

REF	ERENCE	S:														
1	Thomas	s Cl	eff	, "E	xpl	ora	tory	z Da	ata	Ana	alysi	s in	Busi	ines	s a	nd
	Econon	nics	", S	prii	nge	r In	terr	atio	ona	1, 20)13.					
2	Matthe	W	O.	W	ard	, C	Geoi	ges	; C	Frin	steir	1, I)anie	el	Kei	m,
	"Interac	ctiv	еΣ	ata	Vi	sua	liza	tion	n: F	our	ndati	ions	, Te	chn	iqu	es,
	and Ap	plic	catio	ons'	', 2ı	nd I	Edit	ion	, CI	RC 1	ores	s, 20°	15.			
3	Glenn J	. M	yat	t, W	/ayı	ne I	P. Jo	hn	son	," N	/laki	ng S	Sense	e Oi	Da	ata
	I", John	Wi	iley	& 5	Sons	s, 21	nd I	Edit	ion	, 20	14.					
4	Claus C	Claus O. Wilke, "Fundamentals of Data Visualization", 1st														
	Edition, O'reilly publications, 2019															
5	Andy 1	Andy Kirk," Data Visualisation: A Handbook for Data														
	Driven	Driven Design", Second Edition, Sage Publications Ltd,														
	2020.	2020.														
6	Mike 1	Mike Kahn, "Data Exploration and Preparation with														
	BigQuery: A practical guide to cleaning, transforming, and															
1	analyzing data for business insights", 1st Edition, Kindle															
	Edition					•	_			A	. 3					
7	Dursun	De	elen	, "P	red	ictiv	ve A	\na	lyti	cs: I	Data	Mir	ing,	Ma	ichi	ne
	Learnin	ig a	ind	Da	ta S	Scie	nce	for	r Pr	acti	ition	ers"	, 1st	Ec	litic	n,
	Pearson	ı Bu	ısin	ess	An	alyt				202	1.	CH	NO	LO	(g)	
(COs					AFE	LIA	POs	D AN	NA.U	NIVER	SHY	AUTO	INCI	PSC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	2	1	1	1	-	1	3	2	1	1
	2	3	2	1	1	1	2	1	1	1	-	1	3	3	1	1
		3 3 2 1 1 1 2 1 1 1 - 1 3 3 1 1 1														
	4															
	5	3	2	1	1	1	2	1	1	1	-	1	3	3	1	1
	6	3	2	1	1	1	2	1	1	1	1	1	3	3	1	1
_	verall	3	2	1	1	1	2	1	1	1	1	1	3	3	1	1
Cor	relation		_	-	-	•	_	-	*	-	1	1			1	-

23AD046	KNOWLEDGE ENGINEERING	L	T	P	C
		3	0	0	3

- Understanding Fundamental Concepts Knowledge Engineering.
- Develop Logical Reasoning Skills
- Explore Semantic Networks and Ontologies
- Apply Advanced Reasoning Techniques
- Integrate Knowledge Representation with AI Systems

UNIT I INTRODUCTION

9

Introduction: Definition and Importance, Types of Knowledge: Declarative Knowledge, Procedural Knowledge, Meta-Knowledge, Historical Background: Evolution of Knowledge Representation in AI, Key Concepts: Ontology, Epistemology, and the Role of Logic in Knowledge Representation, Applications: Real-world Examples and Applications in AI Systems.

UNIT II LOGIC-BASED REPRESENTATION

9

Propositional Logic: Syntax, Semantics, and Inference, First-Order Logic (FOL): Syntax and Semantics, Quantifiers, and Inference Mechanisms, Resolution and Unification: Techniques and Algorithms, Knowledge Bases: Structure, Creation, and Querying, Automated Reasoning: Tools and Techniques for Logical Inference.

UNIT III | SEMANTIC NETWORKS AND FRAMES

9

Semantic Networks: Concepts, Nodes, Arcs, and Types of Relationships, Frame-Based Systems: Definition, Structure, and Examples, Inheritance: Types, Mechanisms, and Issues, Conceptual Graphs: Basics and Usage in Representing Knowledge, Applications: Use Cases in Natural Language Processing and Expert Systems

UNIT IV ONTOLOGIES AND DESCRIPTION 9 LOGICS

Ontologies: Definition, Components, and Development Processes, Concepts and Instances – Generalization Hierarchies – Object Features – Defining Features – Representation, Description Logics: Basics, Syntax, Semantics, and Reasoning, Ontology Engineering: Tools, Methodologies, and Best Practices, Case Studies: Real-world Applications and Success Stories.

UNIT V ADVANCE TOPICS IN KNOWLEDGE 9 REPRESENTATION 9

Probabilistic Reasoning: Bayesian Networks and Markov Models, Temporal and Spatial Representation: Methods and Applications, Non-Monotonic Reasoning: Default Logic, Circumscription, and Belief Revision, learning from Knowledge: Integrating Machine Learning with Knowledge Representation, Ethical and Practical Considerations: Challenges, Limitations, and Future Trends in Knowledge Representation in AI

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain Knowledge Representation Techniques.
- CO2: Solve complex AI problems through logical inference.
- CO3: Identify uncertainty in AI systems effectively.
- CO4: Develop Ontologies and represent domain-specific knowledge in AI applications.
- CO5: Construct Knowledge Representation in AI Systems.
- **CO6:** Apply Ethical and Practical Considerations to develop AI systems.

TEXT BOOKS:

1 Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach, 4th Edition, Pearson, 2021.

- 2 John F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/Cole, Thomson Learning, 2000
- Ronald J. Brachman, Hector J. Levesque: Knowledge Representation and Reasoning, Morgan Kaufmann, 2004.
- 4 Michael Genesereth, Nils J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1987.

REFERENCES:

- 1 Dean Allemang, James Hendler. Semantic Web for the Working Ontologist, 2nd Edition, Morgan Kaufmann, 2011.
- 2 Judea Pearl. Probabilistic Reasoning in Intelligent Systems, 2nd Edition, Morgan Kaufmann, 1988.

COs		POs													PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
10//	2	1	2	\ -	-	420	-	1	Y-	-	-	1	2	-	1			
2	3	2	1	1	- 8	-	3	1	7		-	1	3	-	1			
3	3	2	1	1	-	-	1	1	1	1	1	1	3	100	1			
4	3	2	1	1	1	2	3	1	2	1	1	2	3	-	1			
5 CINE	3	2	1	1	0	1	Ŀί	2	U)	LE	UH.	2	3	9	2			
6	3	2	1	1	MFE	1	2	3	NA.U	NIVER	SHIY	2	3	40n	3			
Overall Correlation	3	2	1	1	-	1	1	2	1	1	1	2	3		2			

23IT039	DATA SCIENCE	L	T	P	C
		2	0	2	3

- To understand the data science fundamentals and process.
- To learn to describe the data for the data science process.
- To learn to describe the relationship between data.
- To utilize the Python libraries for Data Wrangling.
- To present and interpret data using visualization libraries in Python

UNIT I INTRODUCTION

6

Data Science: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals – Retrieving data – Data preparation - Exploratory Data analysis – build the modelpresenting findings and building applications - Data Mining -Data Warehousing – Basic Statistical descriptions of Data.

UNIT II DESCRIBING DATA

6

Types of Data - Types of Variables -Describing Data with Tables and Graphs -Describing Data with Averages - Describing Variability - Normal Distributions and Standard (z) Scores

UNIT III DESCRIBING RELATIONSHIPS

6

Correlation –Scatter plots –correlation coefficient for quantitative data –computational formula for correlation coefficient – Regression –regression line –least squares regression line – Standard error of estimate – interpretation of r2 –multiple regression equations –regression towards the mean.

UNIT IV PYTHON LIBRARIES FOR DATA WRANGLING

6

Basics of Numpy arrays –aggregations –computations on arrays – comparisons, masks, boolean logic – fancy indexing – structured arrays – Data manipulation with Pandas – data indexing and selection – operating on data – missing data – Hierarchical indexing – combining datasets – aggregation and grouping – pivot tables.

UNIT V DATA VISUALIZATION

6

Importing Matplotlib - Line plots - Scatter plots - visualizing errors - density and contour plots - Histograms - legends - colors - subplots - text and annotation - customization - three dimensional plotting - Geographic Data with Basemap - Visualization with Seaborn

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- Download, install and explore the features of NumPy, SciPy, Jupyter, Statsmodels and Pandas packages.
- 2. Working with Numpy arrays.
- 3. Working with Pandas data frames.
- Reading data from text files, Excel and the web and exploring various commands for doing descriptive analytics on the Iris data set.
- 5. Use the diabetes data set from UCI and Pima Indians Diabetes data set for performing the following:
 - Univariate analysis: Frequency, Mean, Median,
 Mode, Variance, Standard Deviation, Skewness and Kurtosis.
 - b. Bivariate analysis: Linear and logistic regression modeling
 - c. Multiple Regression analysis
 - d. Also compare the results of the above analysis for the two data sets.
 - 6. Apply and explore various plotting functions on UCI data sets.
 - a. Normal curves
 - b. Density and contour plots
 - c. Correlation and scatter plots
 - b. Histograms
 - c. Three dimensional plotting
- 7. Visualizing Geographic Data with Basemap.

											тот	ГАТ	. 20.1	DET) I ()	DC
COL	RSE OU	ITC	'ON	/FS	\ <u>.</u>						TO	IAL	: 30 1	rer	ao	υs
	After co					ne c	011r	Se ·	the	Still	dent	s wi	11 be	ahl	e to	٠.
CO1:	Explain	-								o ca	derit			ub.		·
	Compa						-			escr	intio	n fo	r dat	ta se	cier	ice
	process				ic cy	PCS	OI.			JOC1	Puo	1110	1 00		cici	icc
CO3:	Apply 1		wle	dge	e on	rel	atio	nsh	ips	bet	twee	n da	ata			
	Make u								•					ng		
	Apply				,										t a	nd
	explore									5				1		
CO6:	Analyze different plots for basic exploratory data analysis															
TEX	BOOKS:															
1	David	David Cielen, Arno D. B. Meysman, and Mohamed Ali,														
	"Introducing Data Science", Manning Publications, 2016.															
2	Robert S. Witte and John S. Witte, "Statistics", Eleventh															
	Edition	Edition, Wiley Publications, 2017.														
REFI	ERENCE	S:		Λ	ì	ľ			. 1	Ø.			1			
1	Allen B			-					-	olor	atory	y Da	ta A	nal	ysis	in
Y	Python									0.0						
2	Newell						Tł	neoi	ies	of	Cog	gniti	on."	На	rva	rd
	Univers	sity	Pre	ess,	199	0.	0.000	1.10	37(1)	INDA. C	TOVE	51111	10000	2180	1100	-
	COs		1	1	1		I	POs		1	1		ı		PSC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	-	-	1	1	1	1	2	2	2	1
	2	2	1	-	-	1	-	-	1	2	1	1	2	2	3	1
													1			
	4	3	2	1	1	2	-	-	2	1	1	2	2	3	3	2
	5	3	2	1	1	2	-	-	1	1	1	1	2	2	2	1
	6 verall	3	3	2	2	2	-	-	1	1	1	1	2	2	2	1
		3	2	1	1	2	1	1	2	2	2	2	3	3	3	2
COL	rrelation 3 2 1 1 2 1 1 2 2 2 2															

23IT040	DEEP LEARNING	L	T	P	C
		2	0	2	3
COURSE OBJECTIVES:					
 To understand the basics of deep neural networks 					
• To understand CNN of architectures of deep neural					
netwo	orks				
• To u	inderstand the concepts of Artific	cial	Nε	eura	al
Netw	orks				
• To lea	rn the basics of Data science in Deep le	earn	ing		
• To lea	arn about applications of deep learnin	ıg in	ΑI	an	d
Data Science.					
UNIT I DE	EP NETWORKS BASICS				6
Probability Distributions - Gradient based Optimization - Linear					
Algebra: Scalars Vectors Matrices and tensors - Machine					
Learning Basics: Capacity Overfitting and underfitting					
Hyperparameters and validation sets Estimators Bias and					
variance Stochastic gradient descent Challenges motivating					
deep learning; Deep Networks: Deep feedforward networks.					
UNIT II CONVOLUTIONAL NEURAL NETWORKS 6					
Convolution Operation Sparse Interactions Parameter Sharing					
Equivariance Pooling Convolution Variants: Strided Tiled					
Transposed and dilated convolutions; CNN Learning:					
Nonlinearity Functions Loss Functions Regularization					
-	Gradient Computation.				
	EP LEARNING ALCORITHMS FOR	ΛT			6

UNIT III DEEP LEARNING ALGORITHMS FOR AI

6

Artificial Neural Networks - Linear Associative Networks - Perceptrons - The Backpropagation Algorithm - Hopfield Nets - Boltzmann Machines - Deep RBMs - Variational Autoencoders - Deep Backprop Networks- Autoencoders.

UNIT IV DATA SCIENCE AND DEEP LEARNING

6

Fundamentals of Data science and responsibilities of a data scientist - life cycle of data science - Data science tools - Data

modeling, and featurization - How to work with data variables and data science tools - How to visualize the data.

UNIT V | APPLICATIONS OF DEEP LEARNING

6

Object detection and classification -RGB and depth image fusion - NLP tasks - dimensionality estimation - time series forecasting - building electric power grid for controllable energy resources - guiding charities in maximizing donations and robotic control in industrial environments.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- Design a single unit perceptron for classification of a linearly separable binary dataset without using pre-defined models. Use the Perceptron() from sklearn.
- Identify the problem with single unit Perceptron. Classify using Or-, And- and Xor-ed data and analyze the result.
- Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Vary the activation functions used and compare the results.
- Build a Deep Feed Forward ANN by implementing the Backpropagation algorithm and test the same using appropriate data sets. Use the number of hidden layers >=4.
- Design and implement an Image classification model to classify a dataset of images using Deep Feed Forward NN. Record the accuracy corresponding to the number of epochs. Use the MNIST, CIFAR-10 datasets.
- Design and implement a CNN model (with 2 layers of convolutions) to classify multi category image datasets. Record the accuracy corresponding to the number of epochs. Use the MNIST, CIFAR-10 datasets.

- 6. Design and implement a CNN model (with 4+ layers of convolutions) to classify multi category image datasets. Use the MNIST, Fashion MNIST, CIFAR-10 datasets. Set the No. of Epoch as 5, 10 and 20. Make the necessary changes whenever required. Record the accuracy corresponding to the number of epochs. Record the time required to run the program, using CPU as well as using GPU in Colab.
- 7. Design and implement a CNN model (with 2+ layers of convolutions) to classify multi category image datasets. Use the concept of padding and Batch Normalization while designing the CNN model. Record the accuracy corresponding to the number of epochs. Use the Fashion MNIST/MNIST/CIFAR10 datasets.
- 8. Design and implement a CNN model (with 4+ layers of convolutions) to classify multi category image datasets. Use the concept of regularization and dropout while designing the CNN model. Use the Fashion MNIST datasets. Record the Training accuracy and Test accuracy corresponding to the following architectures:
 - a. Base Model
 - b. Model with L1 Regularization
 - c. Model with L2 Regularization
 - d. Model with Dropout
 - e. Model with both L2 (or L1) and Dropout
- 9. Use the concept of Data Augmentation to increase the data size from a single image.
- 10. Design and implement a CNN model to classify CIFAR10 image dataset. Use the concept of Data Augmentation while designing the CNN model. Record the accuracy corresponding to the number of epochs.

TOTAL: 30 PERIODS																
COL	COURSE OUTCOMES:															
COC	After co					3 0.6	0111	60	tho	ctii	dont	C 1471	11 bo	ahl	o to	
CO1·	Explain												11 00	abi	e ic	,.
	Apply												. 12110	200	oin	
	Explain															-
CO3.	learning		ie i	Jasi	CS	OI	ΑIι	IIIC.	lai	11110	emge	ence	usi	nıg	ue	ep
COA	: Apply deep learning algorithms for data science.															
	Apply deep learning algorithms for data science. Apply deep learning algorithms for variety applications.															
	Discuss a real world application using suitable deep neural															
COo.	networks.															
TEY	networks. T BOOKS:															
1	T BOOKS: Ian Goodfellow, Yoshua Bengio, Aaron Courville. "Deep															
_	Learning.", MIT Press, 2016.															
2	Stone, James. "Artificial Intelligence Engines: A Tutorial															
	Introduction to the Mathematics of Deep Learning", Sebtel															
3	Press, United States, 2019.															
REFI	ERENCE		1	7	227	-01	•	100		-					No.	-
1	Vance,		liar	n. "	Dat	a So	cien	ce:	A C	Com	prel	nens	ive I	Begi	inne	ers
	Guide t			N. 100							-			LÖ	G)	
2	Wani,					4					Dou.		4114	Lea	rni	ng
	Applica	atio	ns."	, V	oluı	ne (3, S	prir	ngei	· Pu	blica	atior	ns,20	22.		Ü
	20-						I	POs	;					I	PSC	s
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	1	-	1	1	1	2	1	1
	2	3	2	1	1	2	-	-	1	1	1	1	1	2	2	1
	3	3	2	1	1	1	-	-	1	1	1	1	1	2	1	1
	4	3	2	1	1	1	-	-	1	1	1	1	1	2	1	1
	5	3	2	1	1	1	-	-	1	1	1	1	1	3	1	1
	6	2	1	-	-	2	-	-	1	-	-	1	1	2	2	1
	verall	3	2	1	1	2	_	_	2	1	1	1	2	3	2	2
Corı	relation	,		_	_	_			_	_	1	1	_	,	_	_

23IT041	COGNITIVE SYSTEMS	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To familiarize Use the Innovation Canvas to justify potentially successful products.
- To learn various ways in which to develop a product idea.
- To understand about how Big Data can play vital role in Cognitive Computing.
- To know about the business applications of Cognitive Computing.
- To get into all applications of Cognitive Computing

UNIT I FOUNDATION OF COGNITIVE COMPUTING 6

Foundation of Cognitive Computing: cognitive computing as a new generation - the uses of cognitive systems - system cognitive

- understanding cognition Design Principles for Cognitive Systems: Components of a cognitive system - building the corpus
- bringing data into cognitive system machine learning hypotheses generation and scoring presentation and visualization services.

UNIT II NATURAL LANGUAGE PROCESSING IN COGNITIVE SYSTEMS 6

Natural Language Processing in support of a Cognitive System: Role of NLP in a cognitive system, semantic web - Applying Natural language technologies to Business problems - Representing knowledge in Taxonomies and Ontologies: Representing knowledge - Defining Taxonomies and Ontologies - knowledge representation - models for knowledge representation - implementation considerations.

UNIT III | BIG DATA AND COGNITIVE COMPUTING | 6

Relationship between Big Data and Cognitive Computing: Dealing with human-generated Big data - analytical data warehouses,

Hadoop, data in motion and streaming data - integration of big data with traditional data Applying Advanced Analytics to cognitive computing: Advanced analytics is on a path to cognitive computing - using advanced analytics to create value - Impact of open source tools on advanced analytics.

UNIT IV BUSINESS IMPLICATIONS OF COGNITIVE COMPUTING

O

Knowledge meaning to business - Difference with a cognitive systems approach - Meshing data together differently - Using business knowledge to plan for the future - Answering business questions in new ways - Building business specific solutions , Making cognitive computing a reality - Cognitive application changing the market - The process of building a cognitive application: defining the objective and domain - Understanding the intended users and their attributes - questions and exploring insights - Training and testing.

UNIT V APPLICATION OF COGNITIVE COMPUTING

Building a cognitive health care application: Foundations of cognitive computing for healthcare - Building on a foundation of big data analytics - Cognitive applications across the health care eco system - Using a cognitive application to enhance the electronic medical record Using cognitive application to improve clinical teaching

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Build a simple cognitive system that can process text input and generate insights. Use Watson's Natural Language Understanding (NLU) API to analyze text data.
- Create a basic neural network to classify images or text. Experiment with training the model and observe how it learns from data.

- 3. Set up a Hadoop cluster, upload a large dataset, and perform basic Map Reduce operations to analyze the data.
- 4. Perform advanced data analysis on a big dataset using Spark. Implement machine learning algorithms to predict trends or classify data.
- 5. Analyze a case study where cognitive computing disrupted a traditional business model. Discuss the benefits and challenges faced during the implementation
- Develop a cognitive customer support chatbot that can understand and respond to customer queries using Watson Assistant.
- 7. Create user personas, define the domain, and design the application interface.
- 8. Create a cognitive simulation tool that presents medical scenarios to trainees and provides feedback based on data patterns and best practices.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain applications in Cognitive Computing.
- CO2: Implement Natural language API.
- CO3: Develop a Hadoop Cluster to Perform Map Reduce operations.
- CO4: Apply the process of taking a product to market.
- **CO5:** Build an application involved in cognitive domain.
- **CO6:** Summarize the foundation of big data analytics.

TEXT BOOKS:

Vijay V Raghavan, Venkat N.Gudivada, VenuGovindaraju, C.R. Rao. "Cognitive Computing: Theory and Applications: (Handbook of Statistics 35).", Elsevier publications, 2016

2	Judith	Hurwitz,	Marcia	Kaufman,	Adrian	Bowles.
	"Cognit	tive Compu	iting and	Big Data	Analytics."	, Wiley
	Publica	tions, 2015				

REFERENCES:

- 1 Robert A. Wilson, Frank C. Keil, "The MIT Encyclopedia of the Cognitive Sciences.", The MIT Press, 1999.
- 2 Noah D. Goodman, Joshua B. Tenenbaum. "Probabilistic Models of Cognition.", The ProbMods Contributors, Second Edition, 2016.

COs						I	POs	,					I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
2	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
3	3	2	1	1	3	-	1	2	-	_	_	- 5	3	3	2
4w	3	2	1	1	3	-2	-	2	4	-	<u></u>	A	3	3	2
5	3	2	1	1	3	620	×-	2	Y_	-	-	-	3	3	2
6	2	1	<i>)</i> -	1	- 8	4	À	-\	1	₉₉	1	(E)	2	-	-
Overall Correlation	3	2	1	1	2	-	-	2	1	-	_	-	3	2	2
*G _{INE}	R R	ALI	No.		C(DLL		JE DAN	OF NA U			NO		MOU	5

23IT042	BIG DATA ANALYTICS	L	T	P	C
		2	0	2	3
COURSE OBJE	ECTIVES:				
Unders	stand the fundamental concepts of Big	Da	ta.		
• Apply	MapReduce algorithms to distri	bute	ed	file	<u>)</u>
system	ıs				
• Explor	e various Big Data technologies and u	ınde	erst	and	
workfl	ow management				
• Implen	nent streaming analytics techni	ique	S	for	•
process	sing and analyzing stream data				
• Analyz	ze recommender systems and socia	l n	etw	ork	
mining	techniques				
UNIT I INT	RODUCTION TO BIG DATA				6
Introduction to	Big Data - Need for processing Big Da	ta -	Ne	ed f	or
	acteristics of big data, Domain-specific			-97	
	ata Stack – Introduction to Hadoop – S		10.00		9 .
Hadoop.		1	0		
-	PREDUCE AND NEW SOFTWARE S	STA	CK		6
Distributed F	ile System - MapReduce, algori	thm	S	11511	าσ
	Extensions to MapReduce - Commu				_
_	lexity Theory for MapReduce -Overvie				
	-DATA TECHNOLOGY OVERVIEW		- 0		6
- C	ction Systems - Apache Flume - Big d			_	
•	– Pig and Hadoop – Grunt – Data Mod		_		
	ew – Hive QL – Overview of HBase -				
	Vorkflow and Scheduling using Apa		O	ozie	-
	NoSQL Databases - Basics of Mongol	DB.			
	EEAMING ANALYTICS AND LINK				6
I ANA	ALYSIS			1	
	Stream analytics - Stream data mode	1 – S	Sam	ıpliı	ng

Counting ones, Estimating moments - Decaying windows - Link Analysis - PageRank Computation - Market Basket model -Limited pass algorithms for Frequent Item sets.

UNIT V RECOMMENDER SYSTEMS AND SOCIAL NETWORK MINING

6

Advertising on the Web - Online Algorithms - Matching problem - Adwords problem and Implementation - recommendation systems - Collaborative filtering - Dimensionality reduction - Mining Social Network graphs - Clustering of social network graphs - Partitioning of graphs - Simrank - Counting Triangles - Neighborhoods properties of Graphs.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Study: Installation and Setting up Hadoop
- 2. Write a map reduce program to compute and measure the runtime and study its scaling behaviour for the following:
 - a. Compute descriptive statistics such as mean, median, mode, standard deviation from a large dataset.
 - b. Compute box-plots and histograms of all the numerical variables in a large multi -variate dataset.
 - c. Compute correlation metrics between pairs of all the numerical variables in a large multi - variate dataset.
 - d. Perform clustering of a large multi-variate dataset.
 - e. Perform classification of a large multi-variate dataset into two or more classes.
- 3. Write a spark program to compute and measure the runtime and study its scaling behaviour for the following:

- a. Box-plots and histograms of all the numerical variables in a large dataset.
- b. Perform classification in a large dataset.
- c. Perform regression in a large dataset.
- 4. Write, run and debug Map reduce programs
 - a. To analyse and build models from streaming data efficiently using systems like Apache Spark.
 - b. To analyse and build models from non-streaming data efficiently using systems like Apache Spark.
- 5. Use graph dataset and perform the following:
 - a. Perform basic analysis such as calculating node degree centrality, identifying important nodes using between-ness centrality.
 - b. Find communities by using graph clustering.

TOTAL: 30 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: **CO1:** Explain the basics of Big Data. CO2: Develop MapReduce program to compute and measure the runtime and **CO3:** Apply HDFS concepts and interfacing with HDFS. CO4: Apply Big Data Technology, Tools, and Algorithms. CO5: Analyze the stream data and Link analysis. **CO6:** Apply big data in Recommender systems. **TEXT BOOKS:** 1 Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Third Edition, Cambridge University Press, New Delhi.2014 Arshdeep Bagha and Vijay Madisetti, "Big Data Science & 2 Analytics - A Hands-on Approach", New Delhi, 2016.

REFERENCES:																	
1	Sadalag	ge, I	rar	nod	l J. '	'Nc	SQ	L d	istil	leď	", 2 0	13					
2	E. Capr	iolo	, D	. W	am	plei	r, ar	nd J	. Rı	ıthe	ergle	n, "l	Prog	ran	nmi	ng	
	Hive", 0	Hive", O'Reilley, 2012.															
3	Lars Ge	Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.															
4	Eric Sar	Eric Sammer, "Hadoop Operations", O'Reilley, 2012.															
5	Alan Ga	Alan Gates, "Programming Pig", O'Reilley, 2011.															
	POs POs													PSOs			
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	1	-	-		-	1				1	2	-	1	
	2	3	2	1	1	2		ı	1	1			1	3	2	1	
	3	3	2	1	1	2	1	ı	1	1	1	1	1	3	2	1	
	4	3	2	1	1	2		ı	1	1			1	3	2	1	
	5	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1	
	6 POW	3	2	1	1	2	1		1	1	1	1	1	3	2	1	
	verall relation	3	3	1	1	3	1	1	1	1	1	1	1	3	3	1	

COLLEGE OF TECHNOLOGY

23IT043	DATA MINING AND	L	T	P	C
	WAREHOUSING	2	0	2	3

COURSE OBJECTIVES:

- To understand data warehouse concepts, architecture, business analysis and tools.
- To understand data pre-processing and data visualization techniques.
- To study algorithms for finding hidden and interesting patterns in data.
- To understand and apply various classification and clustering techniques using tools.
- Apply data mining techniques for real-world problem solving.

UNIT I BUSINESS ANALYSIS AND ON-LINE 6 ANALYTICAL PROCESSING

Basic Concepts - Data Warehousing Components - Building a Data Warehouse - Database Architectures for Parallel Processing - Parallel DBMS Vendors - Multidimensional Data Model - Data Warehouse Schemas for Decision Support, Concept Hierarchies - Characteristics of OLAP Systems - Typical OLAP Operations, OLAP and OLTP.

UNIT II DATA MINING INTRODUCTION 6

Introduction to Data Mining Systems - Knowledge Discovery Process - Data Mining Techniques Issues -applications- Data Objects and attribute types, Statistical description of data, Data Pre-processing - Cleaning, Integration, Reduction, Transformation and discretization, Data Visualization, Data similarity and dissimilarity measures.

UNIT III	DATA MINING - FREQUENT PATTERN	6
	ANALYSIS	

Mining Frequent Patterns, Associations and Correlations - Mining

Methods- Pattern - Evaluation Method -Pattern Mining in Multilevel, Multi-Dimensional Space -Constraint Based Frequent Pattern Mining, Classification using Frequent Patterns - Mining associations in real time data sets using WEKA / R.

UNIT IV | CLASSIFICATION

6

Decision Tree Induction - Bayesian Classification - Rule Based Classification Classification by Backpropagation - Support Vector Machines -- Lazy Learners - Model Evaluation and Selection-Techniques to improve Classification Accuracy - Classification of real time data sets using WEKA / R.

UNIT V | CLUSTERING

6

Clustering Techniques – Cluster analysis-Partitioning Methods – Hierarchical Methods – Density Based Methods – Grid Based Methods – Evaluation of clustering – Clustering high dimensional data- Clustering with constraints, Outlier analysis-outlier detection methods – Clustering real time data sets using WEKA / R.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Experiments: Build Data Warehouse and Explore WEKA
 - a. Build a Data Warehouse/Data Mart (using open source tools like Pentaho Data Integration tool, Pentoaho Business Analytics; or other data warehouse tools like Microsoft-SSIS, Informatica, Business Objects, etc.).
 - b. Identify source tables and populate sample data
 - c. Design multi-dimensional data models namely Star, snowflake and Fact constellation schemas for any one enterprise (ex. Banking, Insurance, Finance, Healthcare, Manufacturing, Automobile, etc.).
 - d. Write ETL scripts and implement using data warehouse tools

- e. Perform various OLAP operations such slice, dice, roll up, drill up and pivot
- f. Explore visualization features of the tool for analysis like identifying trends etc.
- g. List the attribute names and they types
- h. Number of records in each dataset
- i. Identify the class attribute (if any)
- j. Plot Histogram
- k. Determine the number of records for each class.
- 1. Visualize the data in various dimensions
- 2. Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets
 - a. Explore various options available in Weka for preprocessing data and apply (like Discretization Filters, Resample filter, etc.) on each dataset
 - b. Load each dataset into Weka and run Aprori algorithm with different support and confidence values. Study the rules generated.
 - c. Apply different discretization filters on numerical attributes and run the Apriori association rule algorithm.
 - d. Study the rules generated. Derive interesting insights and observe the effect of discretization in the rule generation process.
- 3. Demonstrate performing classification on data sets
 - a. Load each dataset into Weka and run Id3, J48 classification algorithm. Study the classifier output. Compute entropy values, Kappa statistic.
 - b. Extract if-then rules from the decision tree generated by the classifier, Observe the confusion matrix and derive Accuracy, F-measure, TPrate, FPrate, Precision and Recall values. Apply cross-validation strategy with various fold levels and compare the accuracy results.

- 4. Demonstrate performing clustering on data sets
 - a. Load each dataset into Weka and run simple k-means clustering algorithm with different values of k (number of desired clusters). Study the clusters formed. Observe the sum of squared errors and centroids, and derive insights.
 - b. Load each dataset into Weka and perform Naïvebayes classification and k-Nearest Neighbour classification. Interpret the results obtained.
 - c. Plot RoC Curves
- 5. Demonstrate performing Regression on data sets
 - a. Load each dataset into Weka and build Linear Regression model. Study the clusters formed. Use Training set option. Interpret the regression model and derive patterns and conclusions from the regression results.
 - Use options cross-validation and percentage split and repeats running the Linear Regression Model.
 Observe the results and derive meaningful results.
 - c. Explore Simple linear regression technique that only looks at one variable.

	TOTAL: 30 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Build a Data warehouse system and perform business
	analysis with OLAP tools.
CO2:	Apply suitable pre-processing and visualization techniques
	for data analysis.
CO3:	Apply frequent pattern for data analysis.
CO4:	Apply appropriate classification for data analysis.
CO5:	Apply appropriate clustering techniques for data analysis.
CO6:	Apply Data mining techniques for association rule mining
	techniques

TEX	Г ВООК	S:														
1	Jiawei I	Han	ı an	d N	1ich	ıelir	ne K	Cam	ıber	, "I	Data	Min	ing	Coı	ncej	ots
	and Tec	hni	ique	es",	Th	ird	Edi	tior	ı, El	sev	ier, 2	2012	•			
2	Inmon	W :	Н, 1	Kris	shna	an I	K, "	Bui	ildi	ng 1	the I	Data	Lak	ceho	ous	e",
	Morgan	ı Ka	aufr	nan	ın P	ubl	ishe	ers,	Bos	ton	, 202	<u>2</u> 3.				
REF	ERENCE	S:														
1	Tan P N, Steinbach M, Kumar V, "Introduction to Data															
	Mining", Pearson Education, London, 2024.															
2	Han J,	Ka	ımb	er	M,	Pe	i J,	"L	ata	M	inin	g: (Conc	ept	s a	nd
	Techniques", Morgan Kaufmann Publishers, San Francisco,															
	2023.															
3	Kimbal	Kimball R, Ross M, "The Data Warehouse Toolkit", John														
	Wiley & Sons, New York, 2023															
4	Aggarw	Aggarwal C C, "Data Mining: The Textbook", Springer														
	Internat	tior	al,	Swi	itze	rlar	nd, 2	2022	2			•	1			
5	Inmon '	WI	H, "	Bui	ldir	ng t	he I	Data	a W	are	hous	se",	John	W.	iley	&
	Sons, N	ew	Jer	sey,	201	15			. 1	A.			W.			
	00		1	9//	7,		I	POs		1			1	I	PSC	s
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 CAVE	3	2	1	1	2		Ē	1	3	ĪE	CH	3	2	1	1
	2	3	2	1	1	3	LIAI	T. I	1	2	NIVER	51 I Y	3	2	2	1
	3	3	2	1	1	-	-	-	-	-	-	2	3	1	1	-
	4	3	2	1	1	-	-	-	1	-	-	1	2	1	3	1
	5	3	2	1	1	-	1	-	1	-	-	1	2	2	2	2
	6	3	2	1	1	-	2	-	-	-	-	2	2	2	2	-
O	verall	3	2	2	2	1	1		1	1		2	3	2	2	2
Cor	relation	3	2	_	_	1	1	-	1	T	_		3		2	_

VERTICAL 4: NETWORK AND SECURITY

VERTICAL 4: NETWORK AND SECURITY													
23CB031	ETHICAL HACKING	L	T	P	C								
		2	0	2	3								
COURSE OF	BJECTIVES:												
• To	understand the basics of comperabilities.	ute	r	base	ed								
	explore different foot printing, reconn	aiss	anc	e ar	nd								
	ning methods.	4100	uric										
• To 6	expose the enumeration and vulnerable	ility	an	alys	sis								
	inderstand hacking options available	in '	Wel	า ละ	nd								
	less applications.		,,,,,	, ui	ia								
	xplore the options for network protectio	n.											
	ractice tools to perform ethical hacking	to e	xpo	se t	he								
	erabilities.												
(3)	TRODUCTION	N		~	6								
Ethical Hacl	k <mark>ing O</mark> verview - Role of Security and	l Pe	enet	rati	on								
	netration-Testing Methodologies- Laws												
	TCP/IP- The Application Layer - Tl			_									
786/7.X77	Internet Layer - IP Addressing N												
	Attacks - Malware - Protecting Again			lwa	ire								
	ruder Attacks - Addressing Physical Sec												
	OOT PRINTING, RECONNAISSANCE	AN	ND		6								
SC	CANNING NETWORKS												
Footprinting	Concepts - Footprinting through Sea	rch	En	gine	es,								
Web Service	es, Social Networking Sites, Websi	te,	En	nail	-								
Competitive	Intelligence - Footprinting thro	ougl	n	Soc	ial								
Engineering	- Footprinting Tools - Network Scannin	ıg C	Conc	ept	s -								
Port-Scanning Tools - Scanning Techniques - Scanning Beyond													
and Firewall													
UNIT III EN	NUMERATION AND VULNERABILIT	Ϋ́			6								
Al	NALYSIS												

Enumeration Concepts - NetBIOS Enumeration - SNMP, LDAP,

NTP, SMTP and DNS Enumeration - Vulnerability Assessment Concepts - Desktop and Server OS Vulnerabilities - Windows OS Vulnerabilities - Tools for Identifying Vulnerabilities in Windows-Linux OS Vulnerabilities- Vulnerabilities of Embedded OS.

UNIT IV SYSTEM HACKING

6

Hacking Web Servers - Web Application Components-Vulnerabilities - Tools for Web Attackers and Security Testers Hacking Wireless Networks - Components of a Wireless Network - Wardriving- Wireless Hacking - Tools of the Trade.

UNIT V | NETWORK PROTECTION SYSTEMS

6

Access Control Lists - Cisco Adaptive Security Appliance Firewall

- Configuration and Risk Analysis Tools for Firewalls and Routers
- Intrusion Detection and Prevention Systems Network- Based and Host-Based IDSs and IPSs Web Filtering Security Incident Response Teams Honeypots.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- Install Kali or Backtrack Linux / Metasploitable/ Windows XP
- 2. Practice the basics of reconnaissance.
- 3. Using FOCA / SearchDiggity tools, extract metadata and expanding the target list.
- 4. Aggregates information from public databases using online free tools like Paterva's Maltego.
- 5. Information gathering using tools like Robtex
- 6. Scan the target using tools like Nessus
- 7. View and capture network traffic using Wireshark.
- 8. Automate dig for vulnerabilities and match exploits using Armitage
 - FOCA: http://www.informatica64.com/foca.aspx.
 - Nessus: http://www.tenable.com/products/nessus.
 - Wireshark: http://www.wireshark.org.
 - Armitage: http://www.fastandeasyhacking.com.
 - Kali or Backtrack Linux, Metasploitable, Windows XP

	TOTAL: 30 PERIODS															
											TO	TAL	: 30	PE	RIO	DS
COU	RSE O	UT	CO	ME	S:											
	After c	om	plet	ion	of t	he c	ou	rse,	the	stı	ıden	ts wi	11 be	e ab	le to):
CO1:	Explai	n tl	he b	asic	con	cept	ts o	f co	mp	ute	r bas	ed v	ulne	erab	iliti	es.
CO2:	Make					s fo	r fo	oot	prir	ntir	ıg, re	econi	nais	san	ce a	nd
CO3:	scanning methods. Experiment with the enumeration and vulnerability analysis methods.															
	Explain the hacking options available in Web and wireless applications.															
CO5:	Analyze and choose the options for network protection.															
CO6:	Make use of tools to perform ethical hacking to expose the vulnerabilities.															
TEX	T BOOKS:															
1	Simpson, Michael T., Kent Backman, and James E. Corley.															
	"Hands-On Ethical Hacking and Network Defense." Course															
	Techno															
2	Engeb												Iack	ing	a	nd
	Penetr			esti	ng."	SY	NC	SRE	SS,	Els	evier	, 201	.3.			
	ERENC			W	_/_			_	D:		ucret	TAT 1				
1	Stuttar	d,	Dat	ydd	, an	d M	lar	cus	Pın	to.	"The	We	b Aj	ppli	catı	on
	Hacker Flaws.			anai	2001						EX					ity
2	Seitz,			"R1:	ack	7 7 10 10							The state of		10/2/25/25	for
_	Hacke:								,11. 1	yı	11011	1108	51 411	. 11111	ng i	101
						010.		POs]	PSO	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	_	_	1	_	_	_	2	1	1	2	2	1	_
	2	3	2	1	1	2	_	_	_	3	2	2	2	3	2	-
	3	3	2	1	1	2	_	_	_	1	1	1	3	3	2	-
	4	2	1	-	-	3	-	-	-	3	2	1	2	2	3	-
	5	3	3	2	2	3	-	-	-	3	1	1	1	3	3	-
	6	3	2	1	1	2	-	-	-	2	1	1	2	3	2	-

2 2

3

Overall

Correlation

1 | 1 | 3

23CB034	SECURITY IN COMPUTING	L	T	P	C
		2	0	2	3
COLIDEE ODI	ECTIVEC.				

COURSE OBJECTIVES:

- To understand security design principles.
- To learn secure programming techniques.
- To know the standard algorithms used to provide confidentiality, integrity and authenticity in web application.
- To understand the security requirements in operating systems.
- To learn about the emerging security applications.

UNIT I SECURITY DESIGN PRINCIPLES 6

Security Goals – Secure System Design – Understanding Threats – Designing in Security – Convenience and Security – Security in Software Requirements – Security by Obscurity – Secure Design Principles – Defense in Depth – Diversity in Defense – Securing the Weakest Link – Failsafe Stance.

UNIT II SECURE PROGRAMMING TECHNIQUES 6

Worms and Other Malware – Buffer Overflows – Client State Manipulation – SQL Injection Password Security – Cross Domain Security in Web Applications – Attack Patterns – Preventing XSRF – Preventing XSSI - Preventing XSS.

UNIT III | WEB APPLICATIONS SECURITY 6

Introduction - Security Testing - Security Incident Response Planning - Microsoft Security Development Lifecycle (SDL) -OWASP Comprehensive Lightweight Application Security Process (CLASP) - The Software Assurance Maturity Model (SAMM).

UNIT IV | SECURITY IN OPERATING SYSTEMS | 6

Introduction - Security in the Design of OS - Rootkit- Windows Security - Windows Protection System - Windows Authorization Windows Security Analysis - Windows Vulnerabilities -Address Space Layout Randomizations.

UNIT V | EMERGING TOPICS IN SECURITY

6

Internet of Things- Medical Devices - Mobile Phones- Security in the Internet of Things-Economics-Making a Business Case - Quantifying Security - Current Research and Future Directions- Electronic Voting Fair Election - Critical Issues - Cyber Warfare - Examples of Cyber Warfare

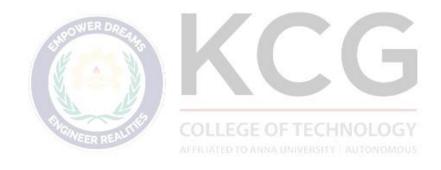
TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Implement the SQL injection attack.
- 2. Implement the Buffer Overflow attack
- 3. Implement Cross Site Scripting and Prevent XSS.
- 4. Understanding Malwares working and detection
- 5. Implement Hacking windows Windows login password.
- 6. Implement Hacking windows Accessing restricted drives.
- 7. Install wire shark and explore the various protocols
 - a. Analyze the difference between HTTP vs HTTPS.
 - b. Analyze the various security mechanisms embedded with different protocols.
- 8. Identify the vulnerabilities using OWASP ZAP tool
- 9. Installation of rootkits and study about the variety of options

TOTAL: 30 PERIODS


COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain fundamental security goals and principles in system design.
- CO2: Identify and mitigate risks from malware, including worms

	and buffer overflows.
CO3:	Develop skills in conducting security audits and managing
	vulnerabilities in web applications.
CO4:	Apply best practices for password security and cross-
	domain security in web applications.
CO5:	Develop a secure operating system.
CO6:	Analyze case studies and examples of cyber warfare to
	understand its impact and strategies.
TEX	T BOOKS:
1	Charles P. Pfleeger, Shari Lawrence P fleeger and Jonathan
	Margulies, "Security in Computing", Fifth Edition, Pearson
	Education, 2015.
2	William Stallings, "Cryptography and Network Security:
	Principles and Practices", Sixth Edition, Pearson Education,
	2014. WER DREAM
REFE	ERENCES:
1	Neil Daswani, Christoph Kern, and Anita Kesavan,
1	"Foundations of Security: What Every Programmer Needs to
	Know", Frist Edition, A press, 2007.
2	Bruce Schneier, "Applied Cryptography Protocols,
	Algorithms and Source Code in C", Second Edition, John
	Wiley and Sons Inc., 2006.
3	Matt Bishop, "Computer Security: Art and Science", First
	Edition, Addison Wesley, 2002.
4	Georgia Weidman, "Penetration Testing: A Hands-on
	Introduction to Hacking", 2nd edition, 2014.
5	N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan
	Heuser, Kari Kostianen, Elena Reshetova, Ahmad-Reza
	Sadeghi, "Mobile Platform Security", First Edition, Morgan
	and Claypool Publishers Series, 2014.

COs				PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	-	-	1	2	2	1	2	-	-
2	3	2	1	1	-	-	-	-	-	2	2	-	3	-	-
3	3	2	1	1	2	-	-	-	1	-	1	2	3	2	-
4	3	2	1	1	2	-	-	-	-	2	2	1	3	2	-
5	3	2	1	1	2	-	-	-	2	2	2	1	3	2	-
6	3	3	2	2	3	-	-	-	2	-	2	2	3	3	-
Overall Correlation	3	2	1	1	2	ı	1	ı	1	2	2	2	3	2	-

23CS039	CRYPTOCURRENCY AND	L	T	P	C					
	BLOCKCHAIN TECHNOLOGY	3	0	0	3					
COURSE	OBJECTIVES:									
•	To understand the basics of Blockchain									
To learn Different protocols and bitcoin consensus										
	algorithms in Blockchain									
 To learn the Blockchain implementation frameworks 										
To understand the Blockchain Applications										
•	To experiment the Hyperledger Fabric	, Et	her	eur	n					
	networks									
UNIT I	INTRODUCTION TO BLOCKCHAIN				9					
Blockchai	ı n- Public Ledgers-Blockchain as Public Leo	door	'C	R10	cl.					
	e	_								
	chain, Transactions-The Chain and the Lor	_								
	ned Model of Blockchain, Cryptogra	4								
	Properties of a hash function-Hash pointe	r an	d IV	lerk	de					
tree.										
UNIT II	BITCOIN AND CRYPTOCURRENCY				9					
A basic ci	ypto currency-Creation of coins, Payments	s an	d d	oul	ole					
spending,	FORTH - the precursor for Bitcoin scrip	oting	5, B	itco	in					
Scripts , 1	Bitcoin P2P Network, Transaction in Bitco	oin I	Vet	WO1	ck,					
Block Mir	ning, Block propagation and block relay.									
UNIT III	BITCOIN CONSENSUS				9					
Bitcoin Co	l onsensus, Proof of Work (PoW)- Hashcash l	PoW	' . B	itco	in					
	acks on PoW ,Monopoly Problem- Proof of									
	Proof of Elapsed Time - Bitcoin Miner, Mini									
	pol-Permissioned model and use cases.	O			,					
U	HYPERLEDGER FABRIC & ETHEREUN	1			9					
		-								

Architecture of Hyperledger fabric v1.1- chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity.

UNI	T V BLOCKCHAIN APPLICATIONS	9
C		TTT
	rt contracts, Truffle Design and issue- DApps- N	
	schain Applications in Supply Chain Management, Logist	ncs,
Smai	rt Cities, Finance and Banking, Insurance,etc- Case Study.	
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able t	
CO1:	Demonstrate the emerging abstract models for Blockch	ıain
	Technology.	
CO2:	Identify major research challenges and technical g	aps
	existing between theory and practice in the crypto curre	ncy
	domain.	
CO3:	Explain the conceptual understanding of the function	of
	Blockchain as a method of securing distributed ledgers.	b
CO4:	Apply hyperledger Fabric and Ethereum platform	to
· ·	implement the Block chain Application.	
CO5:	Apply transactions and requests against blockch	nain
4	networks.	
CO6:	Develop applications in supply chain management, sr	nall
	cities, banking etc.	Ú5
TEX	Γ BOOKS:	
1	Bashir and Imran, "Mastering Blockchain: Deeper insig	ghts
	into decentralization, cryptography, Bitcoin, and popu	ılar
	Blockchain frameworks", 3rd edition Packt Publishing, 20)20,
2	Andreas Antonopoulos, "Mastering Bitcoin: Unlock	ing
	Digital Cryptocurrencies", 3rd edition, O'Reilly, 2015.	Ü
REFI	ERENCES:	
1	Daniel Drescher, "Blockchain Basics", First Edition, Apr	ess,
	2017.	
2	Arvind Narayanan, Joseph Bonneau, Edward Fel-	ten,
		and
	Cryptocurrency Technologies: A Comprehens	
	Introduction" Princeton University Press, 2016.	

3	Melanie Swan, "Blockchain: Blueprint for a New Economy",															
	3rd edi	tion	ı, Oʻ	Rei	lly,	20	15		•						,	
4	Ritesh	M	odi	, '	'Sol	lidit	y	Pro	ogra	ımr	ning	Е	ssen	tial	s:	A
	Beginne	er's	Gu	ide	to B	Build	d Sn	nar	t Co	ntr	acts	for E	Ether	eui	n aı	nd
	Blockchain", Packet Publishing,2018															
5	Saravanan Krishnan, Valentina Emilia Balas," Handbook of															
	Research on Blockchain Technology",Elsevier Inc. ISBN:															
	9780128198162, 2020.															
	COs						I	Os						I	PSO	s
\ \ \ \	COs		2	3	4	5	6	7	8	9	10	11	12	1	2	3
	4					1				_					4	
	1	2	1	-	-	1	-	-	-	1	-	-	2	2	1	-
	2	3	2	1	1	1	-	-	-	2	-	-	2	3	1	-
		_		1	1	_	-	- - -	- - -		-	- -				-
	2	3	2	1 - 1	1 - 1	1		-		2		- - -	2	3	1	-
	2	3	2	-	-	1 2	-			2	1 1 1	-	2	3	1 2	-
	2 3 4	3 2 3	2 1 2	- 1	- 1	1 2 3	1 1 1 1	-	-	3	-	-	2 2 2	3 2 3	1 2 3	

COLLEGE OF TECHNOLOGY

23EC049	NETWORK ESSENTIALS	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- Concept of network communication
- Importance of standards and protocols in network communications
- Configuration of an integrated wireless router and wireless client to connect securely to the internet.
- Connecting wireless PC clients to a wireless router
- Concept to build a simple computer network using Cisco devices and troubleshoot basic network connectivity issues.

UNIT I BASICS OF NETWORKING 6

The Fundamentals of Internet Connectivity - PC Basics - Overview of High-Speed and Dialup Connectivity - Web Browsers and Plug-Ins - Networking Terminology - Analogies That Describe Digital Bandwidth.

UNIT II INTRODUCTION TO NETWORK 6 SIMULATION AND COMMUNICATION

Network Simulation using Packet Tracer: Packet Tracer Network Simulator - Networking Models - Network Topologies - Wireless Communications.

UNIT III INTRODUCTION TO NETWORK 6 ADDRESSING

Introduction to TCP/IP: Comparing the OSI Reference Model Layers and the TCP/IP Reference Model Layers, Internet Architecture - IP Addresses: IPv4 Addressing, IP Address Classes, Reserved IP Addresses, Public and Private Addresses, Introduction to Subnetting, IPv4 Versus IPv6 - IP Address Assignment, Acquisition, and Hierarchy: Obtaining an Internet Address, Static Assignment of an IP Address, Address Resolution Protocol, RARP IP Address Assignment

UNIT IV INTRODUCTION TO TRANSPORT LAYER

Transport Layer Services - Understanding the TCP/IP Transport Layer: Flow Control, Session Establishment, Maintenance, and Termination Overview, Three-Way Handshake. Windowing: Acknowledgment, TCP, UDP, TCP and UDP Port Numbers.

UNIT V INTRODUCTION ROUTER TROUBLESHOOTING

6

6

Introduction to Network Testing - Troubleshooting Router Issues Using the show interface and show interfaces Commands - Troubleshooting Routing Issues Using the show CDP neighbors Command - Troubleshooting Routing Issues Using show IP route and show IP protocol - Troubleshooting Router Connections Using the show controllers serial Command.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Making of cross cable and straight cable.
- 2. Configuration of switches and routers
- Creation of different Topologies using switches and Routers for Connecting Computers
- 4. Transferring data in an established Computer Network using addressing schemes.
- 5. Creation of a simple Local Area Network.
- 6. Routing Protocols.
- 7. Simulation of unicast and multicast routing protocols

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the Basic concepts of Networking
- CO2: Illustrate about the various types of cabling used in the networking
- CO3: Interpret the various addressing scheme used in networking
- CO4: Explain the basic of Transport Layer

CO6: Make use of the configuration to troubleshoot the devices

TEXT BOOKS:

- 1 Cisco Networking Academy Program CCNA 1 and 2 Companion Guide, third Edition by CISCO Press
- 2 Cisco Certified Network Associate Study Guide Seventh Edition, Todd Lammle, SYBEX

REFERENCES:

- 1 Beasley, J.S. and Nilkaew, P., 2018. Networking Essentials: A CompTIA Network+ N10-007 Textbook. Pearson IT Certification
- McMillan, T., 2015. Cisco networking essentials. John Wiley & Sons, 2nd Edition

COs	POs												PSOs			
COS	1	-2,	3	4	5	6	7	8	9	10	11	12	1	2	3	
17/4	2	1	0	\ -	3	2	1	2	2	2	-	2	3	3	3	
2	2	1	/-	1	3	2	1	2	2	2	-	2	3	3	3	
3	2	1	4	1	3	2	1	2	2	2	1	2	3	3	3	
4	2	1	•	1	3	2	1	2	2	2	1	2	3	3	3	
5 GNE	2	1		1	3	2	1	2	2	2	5	2	3	3	3	
6	3	2	1	1	3	2	1	2	2	2	SHY	2	3	3	3	
Overall Correlation	3	2	1	1	3	2	1	2	2	2	-	2	3	3	3	

23EC050	NETWORK ENGINEERING	L	Т	P	C
23EC030	NETWORK ENGINEERING	2	0	2	3
COURSE	OBJECTIVES:		U		
	earn the Network Models and datalink la	ver f	unc	tion	10
	inderstand routing in the Network Layer	-	aric	1101	
	explore methods of communication and c		stio	n	
	trol by the Transport Layer.	O			
• To s	study the Network Security Mechanisms.				
 To 1 	earn various hardware security attacks a	nd the	eir		
	ntermeasures.				
UNIT I	NETWORKING TODAY				6
Networkir	ng - Components, types, Internet	Cor	nec	tion	<u> </u>
	ents of a reliable network, Network				
-	Representations and Topologies, Comr		-		
	Internet Connections, Reliable Netwo				
	etwork Security.	113,	INC	LVVO	IK
1000	BASIC SWITCH AND END DEVICE		-		6
UNII II	CONFIGURATION				U
	CONFIGURATION	-			
Cisco IOS	Access, IOS Navigation, The Command S	truct	ure,	Bas	sic
Device Co	nfiguration, Save Configurations, Ports a	nd A	ddr	ess	es,
Configure	IP Addressing, Verify Connectivity.				
	PROTOCOLS AND MODELS				6
	, Protocols, Protocol Suites, Standards	_	niza	tion	ıs,
	Models, Data Encapsulation, Data access				
UNIT IV	ETHERNET SWITCHING				6
Ethernet 1	Frames, Ethernet MAC Address, The M	ЛАС	Ad	ldre	ess
	tch Speeds and Forwarding Methods.				
UNIT V	ADDRESS RESOLUTION				6
Introducti	on, MAC and IP, Packet Tracer – Identify	, MA	.C a	nd	ΙΡ
	, ARP, Video—ARP Request, Video—				
	Communications, IPv6 Neighbor Dis				v6
Telliote V	Distribution of the property o	2010	- y /	**	• 0

Neighbor Discovery – Address Resolution.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Basic Switch and End Device Configuration and examine the ARP Table ILM
- 2. Create network and assign Static IP address to the host using Supernetting and subnetting.
- 3. Design a network using VLANs, Wireless LANs and InterVLAN routing.
- 4. Design a simple firewall for host and network.
- 5. Configure and troubleshoot redundancy on a switched network using EtherChannel.
- 6. Simulation of Transport Layer Protocols and analysis of congestion control techniques in network.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basic of IOS Commands to configure the devices using CLI
- CO2: Interpret the usage of various transmission medium used in the connectivity
- CO3: Make use of the IP Addressing scheme to implement the VLSM Scheme, Subnetting to interconnect various active ports of routers
- CO4: Summarize the various protocols used in transport layer
- CO5: Interpret the protocols used in the Application Layer.
- CO6: Make use of the security features to configure the devise to enhance the security as well to protect from the threats.

TEXT BOOKS:

- 1 Introduction to Networks Companion Guide (CCNAv7), CISCO Press
- 2 Juniper, 'Distinguished Network Engineering Book SET', Wiley, 2011

REFI	ERENCE	S:														
1	CCNA	200	-30	1, \	/olu	ıme	1 (Offi	cial	Сє	rt G	uid	e, W	ΈN	DE:	LL
	ODOM, CCIE No. 1624 Emeritus, CISCO Press															
2	Keshav	, '	An	I	Eng	inee	erin	g	Ap	pro	ach	To) (Con	ıpu	ter
	Networking: ATM Networks, The Internet, And The															
	Telephone Network', Pearson Education, 1997															
3	Jason Edelman, Scott S. Lowe, Matt Oswalt, 'Network															
	Programmability and Automation Skills for the Next-															
	Generation Network Engineer', O'Reilly Media, 2018															
4	Stallings, 'Computer Networking With Internet Protocols															
	And Technology', Pearson Education, 2003															
	COs	POs												PSOs		
Ì		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	3	2	1_	2	2	2	-	2	3	3	3
	2 POW	2	1	1	-	3	2	1	2	2	2	<u>-</u>	2	3	3	3
	3	3	2	1	1	3	2	1	2	2	2	-	2	3	3	3
Î	4	2	1	A	1	3	2	1	2	2	2	4	2	3	3	3
1	5	2	1	4	/-	3	2	1	2	2	2	1	2	3	3	3
Ŷ	6	3	2	1	1	3	2	1	2	2	2	-	2	3	3	3
	verall relation	3	2	1	1	3	2	1	2	2	2	SITY	2	3	3	3

23EC051 SWITCHING, ROUTING AND L T P	
	C
WIRELESS ESSENTIALS 2 0 2	3
COURSE OBJECTIVES:	
Student will understand a switch functionality and able	to
configure VLANs.	
Students will gain knowledge of dynamic host configuration	n
protocols, understand LAN security concepts.	
 Students will study switch security issues and methods 	
address them. Understand Wireless LAN concepts ar	ıd
providing wireless security.	
• Students will study routing concepts and perform stat	ic
routing configurations.	
UNIT I BASIC DEVICE CONFIGURATION	6
Configure a Switch with Initial Settings, Configure Switch Ports	,
Secure Remote Access, Basic Router Configuration, Verify Directly	
Connected Networks.	
UNIT II SWITCHING CONCEPTS	6
Frame Forwarding, Collision and Broadcast Domains, Overview	V
of VLANs, VLANs in a Multi-Switched Environment, VLAN	1
Configuration, VLAN Trunks.	
	6
Implement Port Security, Mitigate VLAN Attacks, Mitigate DHCI)
Attacks, Mitigate ARP Attacks, Mitigate STP Attacks	
UNIT IV ROUTING CONCEPTS	6
Path Determination, Packet Forwarding, IP Routing Table, Station	С
and Dynamic Routing.	
and Dynamic Routing.	
	6
,	

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Basic Switch and Router Configuration using console mode
- 2. Configure VLANs and Trunking
- 3. Implementation of VLANs and Trunking
- 4. Configure Router-on-a-Stick Inter-VLAN Routing
- 5. Troubleshoot Inter-VLAN Routing
- 6. Implement the Inter VLAN Routing

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain how Layer 2 switches forward data
- CO2: Explain how STP enables redundancy in a Layer 2 network.
- CO3: Make use of DHCPv4 to operate across multiple LANs
- CO4: Explain how to configure DTP and native VLAN to mitigate VLAN attacks
- CO5: Summarize the operation of SLAAC.
- CO6: Interpret how a router processes packets when a static route is configured

TEXT BOOKS:

- 1 Switching, Routing, and Wireless Essentials v7.0 (SRWE) Companion Guide, Cisco Press
- 2 James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, Eighth Edition, Pearson Education, 2021

REFERENCES:

- 1 CCNA 200-301, Volume 1 Official Cert Guide, WENDELL ODOM, CCIE No. 1624 Emeritus, CISCO Press
- Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol Suite, Sixth Edition TMH, 2022
- Wendell Odom, CCNA Routing and Switching 200-125 Official Cert Guide, CISCO press, 1st edition

4		Hartpence, 'Packet Guide to Routing and Switching', ly Media, Inc. 2011														
COs		POs										PSOs				
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
	2	2	1	-	-	3	2	1	2	2	2	1	2	3	3	3
	3	3	2	1	1	3	2	1	2	2	2	1	2	3	3	3
	4	2	1	ı	1	3	2	1	2	2	2	1	2	3	3	3
	5	2	1	ı	1	3	2	1	2	2	2	ı	2	3	3	3
	6	2	1	ı	1	3	2	1	2	2	2	ı	2	3	3	3
	verall relation	3	2	1	1	3	2	1	2	2	2	-	2	3	3	3

23EC052	ENTERPRISE NETWORKING,	L	T	P	C			
	SECURITY AND AUTOMATION	2	0	2	3			
COURSE OBJECTIVES:								
Work with routers and switches using OSPF in point-to-								
point and multi-access networks.								
	gate threats and enhance network security rol lists and security	usi	ng a	ассе	ess			
	elop critical thinking and problem-solving	skil	ls u	ısin	g			
real	equipment and Cisco Packet Tracer.							
 Understand virtualization, SDN, and how APIs and 								
configuration management tools enable network								
	omation.							
UNIT I	SINGLE-AREA OSPFV2				6			
OSPF Features and Characteristics- OSPF Packet- OSPF								
Operations- OSPF Router ID- Point-to-Point OSPF Networks-								
Multi access OSPF Networks- Modify Single-Area OSPFv2-								
Default Route Propagation- Verify Single-Area OSPFv2.								
UNIT II	NETWORK SECURITY CONCEPTS	1			6			
		_						
Current State of Cyber security- Threat Actors- Threat Actors Tool-								
Malware- Common Network Attacks- IP Vulnerabilities and								
Threats- TCP and UDP Vulnerabilities- IP Services- Network								
Security Best Practices- Cryptography.								
UNIT III	ACL CONCEPTS				6			
Purpose o	f ACLs- Wildcard Masks in ACLs- Guidel	ines	for	A	CL			
Creation- Types of IPv4 ACLs- ACLs for IPv4 Configuration-								
Configure	Standard IPv4 ACLs-Modify IPv4 ACLs-	Sec	ure	v.	ГΥ			
Ports with	a Standard IPv4 AC- Configure Extended	d IP	v4	AC	Ls			
NAT for II	Pv4.							
UNIT IV	WAN, VPN, IPSEC AND QOS				6			

277

Wan Concepts- Purpose of WANs- VPN Technology- Types of

Transmission

Quality-

Traffic

VPNs-

IPsec-

Characteristics- QoS Models.

Network

UNI	ΓV	NETWORK TROUBLESHOOTING AND	6					
		VIRTUALIZATION						
Netv	vork	Documentation- Troubleshooting Proc	ess-					
	ooting Tools- Cloud Computing – Virtualization.	.000						
1104	<u> </u>	TOTAL: 30 PERIO	ODS					
PRA	CTIC	AL EXERCISES:						
		XPERIMENTS						
1.	Cor	ofigure Single-Area OSPFv2						
2.	Explore DNS Traffic							
3.	-	ofigure and Verify Extended IPv4 ACLs						
4.		ofigure NAT for IPv4						
5.	Inve	estigate the Broadband distribution and analyse	the					
	acce	ess options for the Scenarios.						
		TOTAL: 30 PERIO	ODS					
COU	49.11	OUTCOMES:						
1	After	completion of the course, the students will be able	to:					
CO1:	Expl	xplain how single-area OSPF operates in both point-to-						
	poin	t and broadcast multi access networks.						
CO2:	Sum	marize network security concepts with respect to	ГСР					
	and	UDP vulnerabilities	11					
CO3:	Illustrate the ACL and NAT and its types in IPv4							
CO4:	Mak	e use of NAT services on the edge router to provide l	Pv4					
	addı	ress scalability						
CO5:	Inte	rpret how VPNs and IPsec secure site-to-site and ren	note					
	acce	ss connectivity						
CO6:	Sum	Summarize how network automation is enabled through						
	Rest	ful APIs and configuration management tools.						
TEX	Г ВО	OKS:						
1		erprise Networking, Security, and Automation Cour	se					
	Воо	klet (CCNAv7), CISCO Press						
2	Mik	e Shema, "Hacking Web Apps: Detecting and Preve	nting					
		Application Security Problems", First edition, Syn						
		lishing, 2012	J					

REF	ERENCE	S:														
1	CCNA 2	:00-	301,	, Vc	lun	ne 1	Of	ficia	al C	ert	Gui	de, V	VEN	IDE	LL	
	ODOM,	CC	IE N	Vo.	162	4 E	mei	itus	s, C	ISC	O P	ress				
2	Pallapa '	Ven	kat	ara	m, S	Sati	sh E	Babı	ı, W	Vire	less	and	Mol	bile		
	Network	s Se	cur	ity,	Firs	st E	diti	on,	Tat	a M	lcGr	aw I	Hill,	201	0	
3	Markus	Sch	num	ach	ıer,	Sec	curi	ty]	Patt	ern	s: Ir	ıtegı	atin	g S	ecu	rity
	and Syst	and Systems Engineering, Wiley Software Pattern Series, 2010														
4	Angular	6 f	or l	Ente	erpi	rise	-Rea	ady	We	eb A	Appl	licat	ions	, Do	ogu.	han
	Angular 6 for Enterprise-Ready Web Applications, Doguhan Uluca, 1st edition, Packt Publishing															
	POs PSOs															
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
	2	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
	3	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
	4	3	2	1	1	3	2	1	2	2	2	5	2	3	3	3
	5	2	1	10	<i>j</i> -	3	2	1	2	2	2	70_	2	3	3	3
	6	2	1	1	\ -	3	2	1	2	2	2	-	2	3	3	3
О	verall	3	2	/4	1	3	2	1	2	2	2		2	3	3	3
Cor	relation	3	2	1	1	3		1				_		3	3	3

WEST LATED TO ANNA UNIVERSITY AUTONOMOUS

23EC053	NETWORK DESIGN	L	T	P	C
		3	0	0	3
COURSE	OBJECTIVES:		Į	Į.	
	inspire the students to learn the variou	1S S	wit	chiı	าด
	mologies				-0
 To o 	design the networks for various categories				
• To	introduce the purpose of management of	the	net	wo	rk
	ems				
UNIT I	SWITCHING TECHNOLOGIES				9
Ü	technologies, multiplexing, circuit switch		_		
switching	X.25, frame relax, SMDs ATM, B-ISDN, t	raffi	c m	natr	ix,
traffic pa	ttern calculations, performance issues	of	f p	ack	æt
networks,	delay, availability and reliability.				
UNIT II	NETWORK DESIGN FOR ACCESS				9
Network 1	Design for Access: Campus network desig	n, le	ase	d li	ne
and radio	modems, DDR & ISDN Access Network	des	ign	, X.	25
remote ac	ce <mark>ss ne</mark> twork design, Frame-relay interfa	ces	& 1	traf	fic
shaping V	S <mark>AT & W</mark> LAN network design.				
UNIT III	NETWORK DESIGN FOR BACKBONE				9
Network	Design for Backbone: Identification &	sele	ectio	on	of
internetwo	orking devices, CISCO routers & Nor	tel	swi	tche	es,
EIGRP.					
UNIT IV	NETWORK DESIGN FOR CONVERGE	NCI	Ξ		9
Network	Design for convergence: UDP broadcasts,	IP N	Vetv	vor	ks
for Voice,	Data, Video, Fax, Soft & hard design exa	mp]	les 1	for	ΙP
Technolog	y networks, network design for digital vid	eo b	roa	dca	st.
UNIT V	DATA NETWORK MANAGEMENT SY	STE	MS	6	9
Data Netv	vork Management Systems: Managing IP,	ICI	ЛP,	TC	Ρ,
UDP, X.25	reporting Ethernet traffic, managing bridg	ges &	τo	ute	rs.
Microsoft	& HP, NMS Tools. Case Studies: selected	fror	n de	esig	ŗn,
architectu	re & topology areas of internetworks.				
	TOTAL:	45 1	PER	IO	DS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

	Explain the various switching techniques use in the network															
CO1:	Explain	the	va	riou	ıs s	wite	chir	ıg te	echi	niqu	ies t	ıse iı	n the	ne	two	rk
	design															
CO2:	Interpre	et th	ne n	etw	ork	c de	sign	n fo	r th	e ac	cess	3				
CO3:	Summa	rize	e th	e n	etw	ork	c de	esig	n p	roc	ess e	emp	loye	d fo	or t	he
	backbo	ne s	yste	em												
CO4:	Explain	the	e pı	oce	ess i	invo	olve	ed i	n th	ne d	lesig	n p	roces	ss f	or t	he
	converg	geno	ce n	etw	ork	S										
CO5:	Interpr	et t	he V	/ari	ous	da	ta p	roc	essi	ng	tools	suse	d in	Ne	two	rk
	Design															
CO6:	Explair	ı th	e va	rio	us r	nan	agi	ng s	sche	eme	s us	ed ir	the	Ne	two	rk
	Design															
TEX	Г ВООК	S:														
1	Data No	etw	ork	De	sigi	n; D	LS	Spol	lin,	Mc	-Gra	wΗ	[ill, 1	993	}	
2	Networ	Network Design; D L Spolin, Mc-Graw Hill, 1993 work Design & Case Studies "CISCO Systems Inc."														
		CISCO Press, 1993														
REFI	ERENCE	S:		a	ď		Δ					37/2			35	
1	Feit, 'S		PC	DE	Ne	etwo	orki	ng I	Maı	nag	eme	nt′, l	Mc-C	Grav	wΗ	ill
	Inc., 199			VI.				10								
2	Jeff Do						hav	en	Caı	rrol	l 'l	Rout	ing	TC	P/1.	Ρ΄,
_	CISCO	-	- 40	1.75			16.7	0				CH	NI/O		D.C.	
3	Designi															
	Founda Edition	tioi	1 L	eari	ուրչ	3 G	ruiu	e: (CC	Dľ	AK	СП	042	-0/4	ŧ) 3	ra
4	Tim Szi	σet	i (hris	stin	a H	atti	nol	1 A	1 G	ore	'Fn	d-to-	.Fn	1 ()	oS
•	Networ	\sim						_								
	VPNs (\sim			-									
					0			POs							SO	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	1	1	1	3	2	1	2	3	2	2
	2	2	1	-	-	2	1	1	2	2	1	3	3	3	2	2
	3	2	1	-	-	2	1	1	2	2	3	1	2	3	3	2
	4	2	1	-	-	1	3	1	2	3	2	1	1	3	3	2
	5	2	1	-	-	2	1	1	3	2	2	1	2	3	2	2
	6	2	1	-	-	3	3	1	3	2	3	1	2	3	3	2
		erall 2 1 - - 2 2 1 3 3 3 2 2 3 3 2														
Con	rrelation 2 1 2 2 2 1 3 3 3 2 2 3 3 2															

VERTICAL 5: EMERGING TECHNOLOGIES

23AD043	INTELLIGENT ROBOTS	L	T	P	C
		3	0	0	3
COURSE OB	JECTIVES:				
To in	troduce the fundamental concepts and	com	por	ent	ts
of int	elligent robotic systems				
• To ex	plore various algorithms for perception	n, pla	ann	ing	,
and c	ontrol in robots				
• To ur	nderstand the integration of AI techniqu	ıes i	n ro	bot	ics
for de	eveloping intelligent behaviors				
• To ar	alyze the design and development of a	utor	om	ous	3
robot	s for real-world applications				
• To ev	aluate the ethical and societal implicati	ons	of		
intell	igent robots			_	
UNIT I IN	TRODUCTION TO INTELLIGE	TV			9
RO	OBOTS				
Overview of	Robotics and Intelligent Robots-	Hist	orv	aı	nd
100 / Pilling	Robotics - Components of Robotic Syste			A 16	
	d Controllers - Kinematics and Dynami				
	o Robotic Operating Systems (ROS).				
	RCEPTION IN ROBOTICS				9
	Perception: Camera, Lidar, and Son				
-	sion for Robotics: Object Detection, Rec	_			
	LAM (Simultaneous Localization and			0,	
Sensor Fusior	n Techniques - Machine Learning for l	Perc	epti	on	in

UNIT III PLANNING AND NAVIGATION

Robots

9

Motion Planning: Kinematic and Dynamic Constraints Navigation in Unstructured Environments - Obstacle Avoidance and Reactive Planning - Multi-Robot Coordination and Swarm

Robo	tics.		
UNI	ΓIV	CONTROL AND LEARNING IN	9
		ROBOTS	
Class	sical	Control: PID Controllers, State-Space Models	s -
Rein	forcer	ment Learning for Robotics Adaptive Control and	.om
Dem	onstr	ation - Human-Robot Interaction and Shared Contro	1
UNI	Г۷	APPLICATIONS AND ETHICAL	9
		CONSIDERATIONS	
Case	Stud	lies of Intelligent Robots: Industrial, Healthcare,	and
Servi	ice Ro	obots - Ethical and Societal Implications of Intellig	gent
Robo	ots -	Safety and Reliability in Autonomous Robot	:s -
Stan	dards	s and Regulations for Intelligent Robots - Fut	ure
Tren	ds i	n Robotics: AI-driven Robotics, Human-Ro	bot
Colla	abora	tion R DR	>
	100	TOTAL: 45 PERIO	ODS
COU	IRSE	OUTCOMES:	
	After	r completion of the course, the students will be able	to:
CO1:	Den	nonstrate the architecture, components, and be	asic
	func	tioning of Intelligent robotic systems.	Y
CO2:	Utili	ze perception algorithms sensor technologies	for
	obje	ct detection and environmental mapping in robots	•
CO3:	App	ly path planning and navigation algorithms	for
	auto	nomous robot movement in various environments	•
CO4:	Dev	elop control strategies and integrate advan	ced
	tech	niques such as reinforcement learning for rob	otic
	beha	avior and decision-making.	
CO5:	Ana	lyze case studies and understand the applications	s of
	intel	ligent robots across different domains, includ	ling
	indu	strial, healthcare, and service sectors.	
CO6:	Outl	ine the ethical, societal, and safety considerati	ons
	relat	red to the deployment and operation of intellig	gent
	robo	ots.	

TTT3/	T DOOL	BOOKS:														
1	John J.															
	Control	",P	ear	son	4th	ı Ed	litic	n (2	201	7) (Unit	s I, I	III, a	nd	IV).	
2	Sebastia	an	Thi	un,	, W	Volf	ran	n B	urg	garc	l, aı	nd :	Diet	er	Fox	΄,
	"Probal	oilis	stic	Rol	boti	ics"	Th	e M	ΠT	Pre	ss, 1	st E	Editio	on ((200)5)
	(Unit II))														
3	Patrick	Lin	, Ry	yan	Jer	ıkin	ıs, a	nd	Kei	th	Abn	ey, "	'Rob	ot]	Ethi	ics
	2.0: Fro	om	Αι	ıtor	non	ou	s (Cars	to	A	rtifi	cial	Inte	ellig	geno	œ"
	Oxford	Un	ive	rsit	y Pı	ress	2n	d E	diti	on	(201	7) (U	Jnit	V)		
REF	ERENCE	S:		•							•	, ,				
1	Aaron	Aaron Martinez and Enrique Fernández, "Learning ROS														
		or Robotics Programming", 2nd Edition, Packt Publishing,														
	2015.															
2	Roland	Sie	egw	art	, II	lah	Re	eza	No	url	oakh	sh,	and	l D	avi	de
	Scaram		_					- 400							1ob	
	Robots'	, 2 ₁	nd I	Edit	tion	, M	IT I	Pres	ss, 2	2011	ι.	20.				
3	B. K.		- 31	V/				D				L C	once	epts	aı	nd
	Analysi													T		
	13	,	1					POs		-,				I	PSC	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	_	_	AFF	1	:D.11	2	NA.U	NIYER 1	SHIY	1	2	won	2
	2	3	2	1	1	1	2	_	3	_	1	-	_	3	1	3
	3	3	2	1	1	1	2	_	3	-	1	-	-	3	1	3
	4	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3
	5	3	3	2	2	-	3	3	3	3	3	3	-	3	-	3
	6	2	1	-	-	-	3	3	3	3	2	3	-	2	-	3
О	verall	•	2	2	_	1	2	1	2	1	2	1	1	2	1	2
Cor	relation	3	3	2	2	1	3	1	3	1	2	1	1	3	1	3

23CS040	AR/VR TECHNOLOGY	L	T	P	C
		2	0	2	3

- To impart the fundamental aspects and principles of AR/VR technologies.
- To learn about the VR modeling techniques in detail.
- To gain knowledge about various applications of AR/VR.
- To know the basics of AR.
- To learn about the game engines involved in the development of AR/VR based applications.

UNIT I INTRODUCTION

7

Introduction to virtual reality and augmented reality – Definition – Introduction to trajectories and hybrid space – Three I's of VR – VR Vs 3D computer graphics – Benefits of VR – Components of VR system – Introduction to AR – AR technologies – Input devices – 3D position trackers – Types of trackers – Navigation and manipulation interfaces – Gesture interfaces – Types of gesture input devices – Output devices – Graphics display – Human visual system – Personal graphics displays – Large volume displays – Sound displays – Human auditory system.

UNIT II VR MODELING

6

Modeling – Geometric modeling – Virtual object shape – Object visual appearance – Kinematics modeling – Transformation matrices – Object position – Transformation invariants – Object hierarchies – Viewing the 3D world – Physical modeling – Collision detection – Surface deformation – Force computation – Force smoothing and mapping – Behavior modeling – Model management.

UNIT III | APPLICATIONS

6

Human factors in VR – VR health and safety issues – VR and society – Medical applications of VR – VR in education, arts, and entertainment – Military VR applications – Emerging

applications of VR – VR applications in manufacturing – Applications of VR in robotics – Information visualization – VR in business.

UNIT IV | AUGMENTED REALITY

6

Introduction to augmented reality – Computer vision for AR – Interaction – Modeling and annotation – Navigation – Wearable devices.

UNIT V AR/VR SOFTWARE TOOLS AND GAME 5 ENGINE 5

Fundamentals of Unity – Introduction to Vuforia – Basics of Unreal – Overview of Blender – Basics of Pygame.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Study of tools like Unity, Maya, 3DS Max, AR toolkit, Vuforia and Blender.
- 2. Use the primitive objects and apply various projection types by handling camera.
- 3. Download objects from asset store and apply various lighting and shading effects.
- 4. Model 3D objects using various modeling techniques and apply textures over them.
- 5. Create 3D realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
- 6. Add audio and text special effects to the developed application.
- 7. Develop AR enabled applications with interactivity like Elearning environment, virtual walkthroughs, and visualization of historic places.

8. Develop AR enabled simple applications like DNA structure visualization and human anatomy visualization.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Summarize the basic concepts of AR and VR.
- **CO2:** Identify different gesture interfaces used in AR/VR.
- CO3: Apply the concepts of VR modeling.
- **CO4:** Identify VR applications in different domains.
- **CO5:** Develop AR applications in different domains.
- CO6: Analyze the different types of game engines.

TEXT BOOKS:

- John Vince, "Introduction to Virtual Reality", Springer London, 1st Edition, India, 2011. (Units 1, 2 & 3)
- Dieter Schmalstieg, Tobias Hollerer, "Augmented Reality: Principles & Practice", Addison Wesley, 1st Edition, India, 2016. (Unit 1, 3 & 4)
- a. https://docs.unity.com/ (Unity)
 - b. https://developer.vuforia.com/library/(Vuforia)
 - c. https://dev.epicgames.com/documentation/enus/unreal-engine (Unreal)
 - d. https://docs.blender.org/ (Blender)
 - e. https://www.pygame.org/docs/ (Pygame) (Unit 5)

- 1 Charles Palmer, John Williamson, "Virtual Reality Blueprints: Create compelling VR experiences for mobile", Packt Publishing, 1st Edition, India, 2018.
- William R. Sherman, Alan B. Craig, "Understanding Virtual Reality Interface, Application, and Design", Morgan Kaufmann Publishers, 2nd Edition, New Delhi, 2018.

3	Justin Plowman, "3D Game Design with Unreal Engine
	4 and Blender", Packt Publishing, 1st Edition, New
	Delhi, 2016.

4 Jonathan Linowes, Krystian Babilinski, "Augmented Reality for Developers: Build practical augmented reality applications with Unity, ARCore, ARKit and Vuforia", Packt Publishing, 1st Edition, New Delhi, 2017.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	2	-	-	-	2	2	1	2	2	2	-	
2	3	2	1	1	2	-	-	-	2	2	1	2	3	2	-	
3	3	2	1	1	3	1	1	1	3	2	2	3	3	3	1	
4	3	2	1	1	3	-	-	-	2	2	3	3	3	3	-	
5	3	2	1	1	3	1	1	1	3	3	3	3	3	3	1	
6	3	2	2	2	3	1	1	1	3	3	3	3	3	3	1	
Overall Correlation	3	2	1	1	3	1	1	1	3	2	3	3	3	3	1	

COLLEGE OF TECHNOLOGY

23CS041	GAME DEVELOPMENT	L	T	P	C
		2	0	2	3
COURSE OBJ	ECTIVES:				
• To kn	ow the basics of 2D and 3D graphic	cs fo	or g	am	e
develo	pment.				
 To kno 	w the stages of game development.				
• To unc	lerstand the basics of a game engine.				
• To sur	vey the gaming development environm	ent	and	too)1
kits.					
• To lear	n and develop simple games using Un	ity			
UNIT I 3D	GRAPHICS FOR GAME DESIGN				6
Introduction (Genres of games, Basics of 2D and 3D	ora	nhi	cs f	or
	Game components - 2D and 3D Trans	0			
O	Color models - Illumination and Sha				
OWE	Controller based animation.		11100	acio	
	AME DESIGN PRINCIPLES				6
CIVII II GI	AVIE BESIGN TRINCIPEES				U
Character dev	velopment, Storyboard development	for g	gam	ing	5 –
- 107/7386	n – Script narration, Game bala				
	rinciples of level design - Proposals -	- W1	ritir	ng f	or
	n, Production and Post-production.	WALL	PROP	HU G	
UNIT III GA	AME ENGINE DESIGN				6
Rendering co	ncept – Software rendering – Hardwa	re re	end	erii	ng
_	ing algorithms - Algorithms for ga				_
_	ection – Game logic – Game AI – Path		_		
	ERVIEW OF GAMING PLATFORM			T	6
FR	AMEWORKS				
Pygame game	e development - Unity - Unity scri	pts ·	- N	lob	ile
gaming, Game	e studio, Unity single player and multi-	play	er g	gam	es
UNIT V GA	ME DEVELOPMENT USING UNITY	(6
EN	GINE				
Exporting assi	ets from 3D software - Different types	of c	am	era	in

Unity - Character navigation - Third person camera movement - Creating enemy characters runtime - Animation control in Unity - Graphic user interface in Unity - Assigning properties and methods for player

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Installation of a game engine, e.g., Unity, Unreal Engine.
- 2. Character design, sprites, movement, and character control.
- 3. Level design: design of the world in the form of tiles along with interactive and collectible objects.
- 4. Design of interaction between the player and the world, optionally using the physics engine.
- 5. Developing a 2D interactive using Unity.
- 6. Design of menus and user interaction in mobile platforms.
- 7. Developing a 3D game using Unreal.
- 8. Developing a multiplayer game using Unity.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply the basic concepts of 2D graphics.
- **CO2:** Apply the fundamentals of 3D graphics.
- **CO3:** Design games based on the principles.
- **CO4:** Make use game engines effectively.
- **CO5:** Analyse gaming environments and frameworks.
- **CO6:** Develop a simple game in Unity.

TEXT BOOKS:

Patrick Felicia, "Unity from Zero to Proficiency (Proficient):
A step-by-step guide to creating your first 3D Role-Playing
Game", LPF Publishing, 1st Edition, New Delhi, 2019. (Unit
1)

- 2 Ernest Adams, "Fundamentals of Game Design", Pearson Education India, 3rd Edition, India, 2015. (Unit 2 & 3)
- Franz Lanzinger, "3D Game Development with Unity", CRC Press, 1st edition, New Delhi, 2022. (Unit 4 & 5)

- 1 Franz Lanzinger, "2D Game Development with Unity", CRC Press, 1st Edition, New Delhi, 2020.
- Adam Kramarzewski, Ennio De Nucci, "Practical Game Design: A modern and comprehensive guide to video game design", Packt Publishing Limited, 2nd Edition, New Delhi, 2023.
- Rachel Cordone, "Unreal Engine 4 Game Development Quick Start Guide", Packt Publishing Limited, 1st Edition, New Delhi, 2019.

COs	ER E	REA	-			I	POs	- 7			-		I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	2	-	8	1	3	1	2	3	3	2	1
2	3	2	1	1	2	-	1	1	3	1	2	3	3	2	1
3	3	2	1	1	2	-	-	1	2	2	3	2	3	2	1
4 CINE	3	2	1	1	1) LI	.EC	1	1	1	1	1	3	1	1
5	3	2	1	1	1	LIAI	ED II	1	2	2	1	1	3	1	1
6	3	2	1	1	1	-	-	1	1	3	2	1	3	1	1
Overall Correlation	3	2	1	1	2	-	-	1	2	2	2	2	3	2	1

23CS042	IoT BASED SMART SYSTEMS	L	T	P	C
		2	0	2	3
COURSE OBJ	ECTIVES:				
To get fa	amiliar with IoT fundamentals.				
J	v about essential wireless technologies	for	IoT		
	erstand about cloud infrastructure for l				
• To unde	erstand IoT Design Methodologies.				
	experience about Smart Systems for Ic	Т			
	TRODUCTION TO THE INTERNET				6
	INGS				-
				\perp	
	to IoT- Elements of an IoT- Technol				
	vers- Typical IoT applications-	Trer	nds	aı	nd
implications.					
UNIT II WI	RELESS TECHNOLOGIES FOR THE	Tol			6
Sensors and s	sensor nodes - Sensing devices- Sens	sor	mod	dule	es,
nodes and syst	tems- Network connectivity and protoc	cols-	Wi	rele	ess
sensor networ	ks -Protocols - RFID , NFC, Zigbee, GS	Μ, (GPR	S.	F
UNIT III TH	E CLOUD FOR IOT)	6
The Topology	of the Cloud - Cloud-to-Device C		octiv	vity	7 _
	ss/Egress - Data Normalization a				
_	nfrastructure – APIs.	IIU	110	noc	.01
	DESIGN METHODOLOGY				6
01411 17 101	DESIGN METHODOEOG1				U
IoT systems	management - IoT Design Met	hod	olo	gy	-
Specifications	Integration and Application Developm	ent,	Ar	duii	no
IDE - Program					
UNIT V IoT	SMART SYSTEMS				6
Smart Home	Automation -Smart Lighting -Smart	Apr	liar	nces	3 -
	ection - Smoke/Gas Detectors - Smart				
	ement - Smart Agriculture - Future				
enabled IoT.	-				

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Introduction to Arduino platform and programming
- 2. Interfacing Arduino with LED Blinking
- 3. Interfacing Arduino with LED Blinking with Push Button.
- 4. Build a simple smart home system
- 5. Interfacing Arduino with sound sensor.
- 6. Implement basic security using encryption in MQTT
- 7. Interfacing Arduino with Soil Moisture Sensor.
- 8. Build up automated irrigation monitoring

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply various concepts of the IoT and their technologies.
- CO2: Develop the IoT application using wireless technologies.
- CO3: Apply cloud integration for IoT.
- CO4: Develop applications using Arduino IDE.
- CO5: Develop Smart systems and IoT for Intrusion Detection.
- **CO6:** Develop Smart systems and AI-enabled IoT.

TEXT BOOKS:

- Misra, Sudip, Anandarup Mukherjee, and Arijit Roy,"Introduction to IoT", Cambridge University Press, 2021.
- 2 Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.

- 1 Milan Milenkovic,"Internet of Things: Concepts and System Design" Springer 2020.
- **2** J. Biron and J. Follett, "Foundational Elements of an IoT Solution", O'Reilly Media, 2016.

3	Keysigl	nt T	ech	nol	logi	es,	"Tł	ne I	nte	rnet	t of	Thir	ngs:	Ena	abli	ng
	Techno	Technologies and Solutions for Design and Test",													t",	
	Applica	Application Note, 2016.														
4	Charles Bell, "Beginning Sensor Networks with Arduino											no				
	and Ras	and Raspberry Pi", Apress, 2013														
	COs						I	POs	1					I	PSO	s
	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 3 2 1 1 1										3	1	-			
	2	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1

2 2	3 1 1	4 1 1	5 1	6	7	8	9	10	11	12	3	2	3
2					-	-	_	_	_	_	3	1	_
	1	1	-							_	9	1	
		*	1	-	-	1	1	1	-	1	3	1	1
2	1	1	1	-	-	1	-	1	-	1	3	1	1
2	1	1	1	-	-	1	1	-	-	-	3	1	-
2	1	1	1	-	-	1	1	1	-	-	3	1	1
2	1	1	1	-		1	1	1	1	1	3	1	1
2	1	1	1	Z		1		1		1	3	1	1
	2 2	2 1 2 1 2 1	2 1 1 2 1 1 2 1 1	2 1 1 1 1 2 1 1 1	2 1 1 1 - 2 1 1 1 - 2 1 1 1 -	2 1 1 1 2 1 1 1 2 1 1 1	2 1 1 1 2 1 1 1 1 2 1 1 1 1	2 1 1 1 2 1 1 1 1 - 1 -	2 1 1 1 2 1 1 1 1 - 1	2 1 1 1 2 1 1 1 1 - 1	2 1 1 1 2 1 1 1 1 - 1	2 1 1 1 3 2 1 1 1 1 - 1 - 3 2 1 1 1 1 - 1 3	2 1 1 1 3 1 2 1 1 1 1 - 1 - 3 1 2 1 1 1 1 - 1 3 1

23CS043	QUANTUM COMPUTING	L	T	P	C					
		3	0	0	3					
COURSE OBJ										
	nderstand the basics of quantum comp		_							
	nderstand the background of Quantum	ı Me	cha	nic	s.					
	nalyze the computation models.				1					
 To understand quantum computation environments and frameworks. 										
 To understand quantum operations such as noise and error-correction. 										
	ANTUM COMPUTING BASIC CON	ICEI	PTS	,	9					
Complex Num	nbers - Linear Algebra - Matrices and	l Or	era	tors	s -					
_	ectives Postulates of Quantum	_			_					
Quantum state	es in Hilbert space- Quantum Bits - Rej	pres	enta	atio	ns					
of Qubits - Sup										
UNIT II QU	ANTUM GATES AND CIRCUITS	A		7	9					
Universal logi	<mark>c</mark> gates - Basic single qubit gates - M	lulti	ple	qul	oit					
gates - Circuit	<mark>t de</mark> velopment - Quantum error corr	ectio	n -	IB	M					
Qiskit Platforn	n.			The same	P					
UNIT III QU	ANTUM ALGORITHMS AND				9					
PRO	OTOCOLS			GY						
Quantum para	allelism - Deutsch's algorithm - The D	euts	sch-	Joz	sa					
algorithm - Q	uantum Fourier transform and its a	ppli	cati	ons	; -					
Quantum Sea	arch Algorithms: Grover's Algoritl	hm	-S	imp	ole					
quantum proto	ocol: teleportation.									
UNIT IV QU	ANTUM INFORMATION THEORY				9					
Data compress	sion - Shannon's noiseless channel codi	ing t	hec	ren	n -					
Schumacher's	quantum noiseless channel coding	g th	eor	em	-					
Classical inform	mation over noisy quantum channels.									
UNIT V QU	ANTUM CRYPTOGRAPHY				9					
Classical crypt	ography basic concepts - Private key c	ryp	tog	rapl	hy					
- Shor's Factor	ing Algorithm - Quantum Key Distrib	utio	1 - I	3B8	4 -					
Ekart 91.										

TOTAL: 45 PERIODS

COL	COURSE OUTCOMES:															
COU						•	0111		Lh a	o.t.	dont		11 ha	a la l	o t o	
CO1.	After co	-										S W1	II be	abi	e tc):
	Explain					_				_						
	Explain															
	Apply t															
CO4:	Explain		_	ntu	m	C	omp	outa	atio	n	env	riror	ımer	nts	aı	nd
COE	framew Identify	_		tun	2 0	12.01	otic	120	011	ah	20 1	2010	2 2 2 2		ONNO	. 14
CO3.	correcti	_	uan	tun	.1 0	per	anc	1115	Sui	LII	as 1	10150	an	iu	enc)1 –
CO6:	Apply o	qua	ntu	m c	ryp	tog	rap	hy a	algo	ritl	nm.					
TEX	Г ВООК	S:														
1	Parag	K	Lal	a,	Mc	G	Grav	v I	Hill	E	duca	tion	., "(Qua	intu	ım
	Computing, A Beginners Introduction", First edition (1															
	November 2020)															
2	Michael A. Nielsen, Issac L. Chuang, "Quantum															
	Computation and Quantum Information", Tenth Edition,															
3	Cambridge University Press, 2010.															
REFI	ERENCES:															
1	Chris B	ern	har	dt, '	Гhе	MI	ΤР	res	s; R	epr	int e	ditio	on,"(Qua	ntu	ım
	Compu	ting	g fo	r Ev	ery	one	e" (8	8 Se	pte	mb	er 20	20).		10	G)	75
2	Scott A					_								1001	ritus	s",
	Cambri															
3	N. Dav									Co	mpu	ter	Scie	ence	e: <i>I</i>	٩n
	Introdu															
								POs						I	PSO	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	-	-	-	1	-	•	1	2	-	-
	3 3 2 1 1 2 1 - 1 1 1 1 1 3 2 1										1					
	4	2	1	-	-	-	-	-		1	1	-	1	2	-	ı
	5	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1
	6	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1
	Overall relation 3 2 1 1 1 - 1															

23CS044	EXPLAINABLE AI	L	T	P	С
		3	0	0	3

- To understand the fundamentals of Explainable AI (XAI)
- To learn to interpret various machine learning models.
- To explore model-agnostic XAI techniques for generating explanations across different models
- To apply XAI methods to deep learning models.
- To evaluate XAI methods and address ethical considerations.

UNIT I INTRODUCTION TO XAI

9

9

Introduction to Explainable AI: Motivation, Importance - Challenges and limitations of black box models - Types of Explainability - taxonomy of explanations - Interpretability - Importance of Interpretability - Taxonomy of Interpretability Methods - Scope of Interpretability - Evaluation of Interpretability - Properties of Explanations - Human-friendly Explanations.

UNIT II INTERPRETABLE MACHINE LEARNING 9 MODELS

Overview of Interpretable Machine Learning – Decision Trees, Random Forests – principles, interpretation techniques, Rule based Models – Rule induction, Decision list, rule-based classifiers, Linear models – Interpreting Coefficients, regularization techniques, feature selection.

UNIT III | MODEL AGNOSTIC XAI TECHNIQUES

Overview of model Agnostic systems – LIME – local feature importance explanations – SHAP – individual predictions and feature importance – Partial Dependence Plot – Individual Conditional Expectation Plot - Counterfactual explanations.

UNIT IV XAI FOR DEEP LEARNING 9

XAI for deep learning models - Gradient-based methods: Grad-CAM, Integrated gradients, Saliency Maps - Layer wise relevance

prop	agatio	on (LRP)– feature visualization- Deep Dream	1 –
Activ	ation	Maximization.	
UNI	ТΥ	EVALUATION AND ETHICAL	9
		CONSIDERATIONS	
Eval	uating	XAI Methods - Metrics and criteria for evaluation	tinσ
	0	n - Human-in-the-loop evaluation - User studies	0
_		Ethical Considerations in XAI - Bias, fairness,	
		cy - Privacy and security concerns - Social and le	
		XAI – Applications	-641
изрес		TOTAL: 45 PERIO	ODS
COL	IRSE (OUTCOMES:	<u> </u>
		completion of the course, the students will be able	to:
CO1:		ain the Taxonomy of explanations.	
	_	ain interpretable machine learning principles	of
	-	ion tree, rule based and linear models.	
CO3:	1000	y Model Agnostic XAI techniques, interpret	and
	-	nin predictions of machine learning models.	V.
CO4:	_	y XAI techniques for deep learning models	
		tify XAI methods and Propose innovative solution	s to
		ess ethical considerations. O ANNA UNIVERSITY AUTONOMO	
CO6:	Appl	y XAI techniques in practical scenarios, for real-wo	orld
		sets and problems.	
TEX	ГВОС	-	
1	Chris	stoph Molnar, "Interpretable Machine Learning	: A
		e for Making Black Box Models Explainable", Sprin	
	2022.		O
REFI	EREN	CES:	
1	Uday	7 Kamath, John Liu, "Explainable Artificial Intellige	nce:
	An Ir	ntroduction to Interpretable Machine Learning", 202	21
2	Leon	ida Gianfagna, Antonio Di Cecco, Explainable AI v	vith
	Pytho	on, Springer, 2021.	
	•		

3 Denis Rothman, "Hands-On Explainable AI (XAI) with Python: Interpret, Visualize, Explain, and Integrate Reliable AI for Fair, Secure, and Trustworthy AI Apps", Packt Publishing Ltd, 2020.

COs						I	POs	1					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-		-	-	-	-	-	-	2	-	-	
2	2	1	1	1	-	-	-	1	-	1	-	1	3	-	1	
3	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
4	3	1	-	-	-	-	-	-	-	-	-	-	3	-	-	
5	3	2	1	1	-	-	-	1	-	1	-	-	3	-	1	
6	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
Overall Correlation	3	2	1	1	-	-	-	1	-	1	,	1	3	-	1	

23CS045	AUTONOMOUS VEHICLES	L	T	P	C
		3	0	0	3

- To Understand Autonomous Driving Basics
- To Study the role of control in autonomous systems
- To understand map databases, path planning techniques, and vehicle communication technologies for practical autonomous vehicle applications
- To learn about the use of deep learning in autonomous driving for perception, prediction, routing and reinforcement learning-based control.
- To explore AI algorithms, data management, cognitive decision-making, and the impact of autonomous vehicle technologies on industry and society.

UNIT I INTRODUCTION TO AUTONOMOUS GROUND VEHICLES

Introduction to Autonomous Driving -Autonomous Driving Algorithms, Autonomous Driving Client System, Autonomous Driving Cloud Platform - Autonomous Vehicle Localization - Localization with GNSS, Localization with LiDAR and High-Definition Maps, Visual Odometry, Dead Reckoning and Wheel Odometry, Sensor Fusion - Perception in Autonomous Driving - Detection, Segmentation, Stereo, Optical and Scene Flow.

UNIT II | CONTROL IN AUTONOMOUS SYSTEMS 9

Role of Control in Autonomous Systems - Feedback, Autonomous Control - System Architecture and Hybrid System Modeling - System Architecture, Hybrid System Formulation, State Machines for Different Challenge Events - Sensors and Estimation - Vehicle Internal State Sensing, External World Sensing, Estimation, Situational Awareness.

UNIT III	PATH PLANNING AND APPLICATIONS	9
Maps and	Path Planning - Map Databases - Raster, Vector	and

Utilizing Map Data - Path Planning - Vehicle to Vehicle and Vehicle to Infrastructure Communication - V2V Communications, V2I Communications, Communication Technologies, 802.11p/WAVE DSRC Architecture, Applications in Autonomous, Vehicles - Examples of Autonomy - Cruise Control, Antilock-Brake Systems, Steering Control and Lane Following, Parking.

UNIT IV DEEP LEARNING IN AUTONOMOUS 9 DRIVING

Deep Learning in Autonomous Driving Perception - Convolutional Neural Networks, Semantic Segmentation - Prediction and Routing - Planning and Control, Traffic Prediction, Lane Level Routing - Decision, Planning, and Control - Behavioral Decisions, Motion Planning, Feedback Control, Bicycle Model, PID Control - Reinforcement Learning-Based Planning and Control - Reinforcement Learning, Learning-Based Planning and Control in Autonomous Driving.

UNIT V AI AND SOFTWARE ENABLERS FOR AGV

Human-like reasoning - Hybrid , configurable AI algorithms - Data management environment for analyzing AI Algorithms - Dynamic Selection - Dynamic Integration - Cognitive decision making for Autonomous Driving - Autonomous Support - Automation and Autonomy - Advantages of AV Technologies - Adoptions scenarios for AVs - Industry 4.0 AVs - Major Pillars in the evolution of AVs - Spillovers and Impact of AVs.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Illustrate the fundamental concepts and algorithms used in autonomous ground vehicles.
- CO2: Explain the principles of deep learning in autonomous driving.

CO3: Apply AI and software enablers in the context autonomous ground vehicles and analyze the impact of autonomous vehicles in industry. CO4: Demonstrate the challenges and considerations related to control in autonomous systems. CO5: Apply path planning algorithms in the applications for autonomous vehicles to implement autonomy features. CO6: Identify the security vulnerabilities and risks associated with autonomous ground vehicle systems, including potential cyber-attacks, sensor spoofing, and system vulnerabilities. **TEXT BOOKS:** Shaoshan Liu, Liyun Li, Jie Tang, Shuang Wu, Jean-Luc 1 Gaudiot, "Creating Autonomous Vehicle Systems", Morgan & Claypool, 2018. 2 Umit Tankut Keith Redmill, Ozguner, Acarman, "Autonomous Ground Vehicles", Artech House, 2011. REFERENCES: Aggelos Dimitrakopoulos, Tsakanikas, 1 George Elias Panagiotopoulos, "Autonomous Vehicles Technologies, Regulations, and Societal Impacts" Elsevier, 2021 2 George A. Berkey, "Autonomous Robots: From Biological Inspiration to Implementation and Control (Intelligent Robotics and Autonomous Agents series)", MIT Press, 2005 Hong Cheng, "Autonomous Intelligent Vehicles Theory, 3 Algorithms, and Implementation", Springer, 2011. Mohinder S. Grewal, Angus P. Andrews, Chris G. Bartone, 4 "Global Navigation Satellite Systems, Inertial Navigation,

and Integration", Third Edition, John Wiley & Sons, 2013.

Karl Johan Astrom, Richard M. Muray, "Feedback System: An Introduction for scientist and Engineers", Princeton

5

University Press, 2021

COs						I	POs	1					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-		-	-	-	-	-	-	2	-	-	
2	2	1	1	1	-	-	-	1	-	1	-	1	3	-	1	
3	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
4	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-	
5	3	2	1	1	-	-	-	1	-	1	-	-	3	-	1	
6	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
Overall Correlation	3	2	1	1	-	-	-	1	-	1	1	1	3	-	1	

23CS046	AI IN INDUSTRY	L	T	P	C
		3	0	0	3

- To explore how Industrial AI is applied in various sectors
- To learn about Digital Twins, their characteristics, and how they impact predictive maintenance and data-driven decision-making.
- To explore the role of AI in decision-making, software systems, and software engineering processes.
- To study distributed computing, cloud computing, data storage solutions, and information security.
- To examine AI applications across various industries.

UNIT I	INDUSTRIAL AI		9
	OWERDA		7

Industrial AI- Industrial AI in action- Applying industrial AI- The IMS architecture for industrial AI-Visible and Invisible issues-Building the future with AI- Killer Applications of Industrial AI.

UNIT II DATA ANALYTICS IN INDUSTRY 4.0 9

Digital Twins(DT)- History of DT- Characteristics- Evolution- Data twin - physical world, digital world-Classifications- Level of integration- Characteristics- Modelling digital twins-Applications- Uses manufacturing and of Digital Technology- Digital twins maintenance - predictive maintenance-Planning the digital twin- Digital twin during operation phase-Hybrid analysis and Fleet data- Digital implementation- Digital twin impacts on industry 4.0.- Industry 4.0. Data Analytics - Data driven and model driven approaches-Types - descriptive analytics, diagnostics analytics, maintenance predictive analytics, prescriptive analytics- Data-Driven Decision making- Data quality- Data augmentation- Information logistics- Data driven challenges.

UNIT III | AI AND SOFTWARE ENGINEERING

9

Fundamentals in AI - Decision Making- Decision Support Systems- Business Intelligence- Database and Knowledge Base in Decision Support Systems- Inference Mechanisms in AI-Knowledge Interpretation- Data, Information Knowledge and Wisdom- AI and Software Engineering- Systems thinking and Systems Engineering- Software Engineering - Overview- System Software- Evolution- Paradigm- Architecture Models- Software Systems and Software Engineering Processes, Component based software engineering- Software maintenance overview- Applications of AI in classical software engineering.

UNIT IV DATA STORAGE AND COMPUTING MODELS

3

Distributed Computing, Cloud Computing, Fog and Edge Computing, Data Storage and Information Management, Data Fusion and Integration, Data Quality, Communication, Cognitive Computing, Distributed Ledger, Information Security, Cybersecurity, Block chain Security.

UNIT V CASE STUDIES

AI factory for Railway- AI Factory, Mining, Augmented Reality and Virtual Reality, Cybersecurity, AI Transformation Roadmap, AI in Healthcare, Education, Banking, Retail and E-commerce, Gaming and Entertainment, Chatbots.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the concepts, principles, and applications of industrial AI in various domains.
- **CO2:** Apply digital twin technology for smart manufacturing and other industry-specific applications.
- **CO3:** Demonstrate the impacts and challenges of AI in industry 4.0 and other specific domains.

- **CO4:** Summarize about AI algorithms and methodologies in software engineering projects.
- CO5: Illustrate various computing models, data storage and management systems and their implications for distributed systems.
- **CO6:** Analyze real-world case studies to understand the practical implementation of AI in different industries.

TEXT BOOKS:

- 1 Ramin Karim, Diego Galar and Uday Kumar,"AI Factory Theories, Applications and case Studies", CRC Press, 2023
- Ella Hassanien, Jyotir Moy Chatterjee and Vishal Jain "Artificial Intelligence and Industry 4.0", Academic press, 2022.

- 1 Stevan Lawrence Fernandes Tarun K.Sharma, "Artificial Intelligence in Industrial Applications", Springer, 2022.
- 2 Utpal Chakraborty, Amit banerjee, Jayanta Kumar Saha, Niloy Sarkar, Chinmay Chakraborty, "Artificial Intelligence and the Fourth Industrial Revolution", Jenny Stanford Publishing 2022.

COs	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-		-	-	-	-	-	-	2	-	-
2	3	2	2	1	-	-	-	1	-	1	-	1	3	-	1
3	2	1	-	-	-	-	-	1	-	1	-	1	2	-	1
4	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
5	2	1	1	1	-	-	-	1	-	1	-	-	2	-	1
6	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1
Overall Correlation	3	2	1	1	1	•	-	1	-	1	1	1	3	ı	1