

REGULATIONS - 2023 CURRICULUM AND SYLLABI

(2023-2024)

B.TECH.- INFORMATION TECHNOLOGY

KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

VISION OF KCG

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

MISSION OF KCG

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

VISION OF INFORMATION TECHNOLOGY

The department of Information Technology aspires to become a globally acclaimed center of excellence offering quality education and enabling innovative research in Information Technology department by producing competent Information Technology graduates to contribute towards nation building.

MISSION OF INFORMATION TECHNOLOGY

- Impart knowledge of fundamentals as well as emerging trends in Information Technology
- Inculcate innovative and entrepreneurial abilities as well as ethical values among the students
- Establish computing facilities and research activities to enhance the knowledge
- Enhancing competency of faculty with the advanced technologies in Information Technology

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

The graduates will:

PEO 1	Outstand as technically skilled professionals in Information Technology and relevant sector.					
PEO 2	Devise, Implement and Deploy software solutions for computational problems.					
PEO 3	Build software solutions for the challenging problems in industry and research.					
PEO 4	Manifest the ethical values and exhibit social responsibility.					

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

PO 01	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering
	specialization to the solution of complex
	engineering problems.

PO 02	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 03	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 04	Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 05	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 07	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 08	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 09	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 01	Design system to solve complex IT related problems using algorithm analysis, database technology, multimedia, web design, networking and principles of Software Engineering, to face the challenges in corporate and industries.
PSO 02	Communicate and function efficiently as an individual and as a member or leader in multidisciplinary teams in software development process.
PSO 03	Identify the need for sustainable development in software industries and follow the professional code of ethics.

INDEX

Sl.No	Description	Page No.
1	Curriculum	1
2	I Semester Syllabus	16
3	II Semester Syllabus	47
4	III Semester Syllabus	77
5	IV Semester Syllabus	107
6	V Semester Syllabus	131
7	VI Semester Syllabus	147
8	VII Semester Syllabus	165
9	VIII Semester Syllabus	176
10	Vertical 1 : Cloud Computing	179
11	Vertical 2 : Full Stack Development	204
12	Vertical 3 : Artificial Intelligence And Data Science	231
13	Vertical 4 : Network & Security	262
14	Vertical 5 : Software Engineering	286

KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

REGULATIONS 2023

B.TECH.- INFORMATION TECHNOLOGY CHOICE BASED CREDIT SYSTEM CURRICULUM FOR SEMESTERS I TO VIII

SEMESTER-I

S1.	Course	Course Title		I	er	iods	Total	
No.	Code		Category	Pe	er V	Veek	Contact	Credits
NU.	Coue			L	T	P	Periods	
	23IP101	Induction						
	2311 101	Programme		-	-	_	-	-
		T	HEORY					
1	23HS101	Essential	HSMC	3	0	0	3	3
1	23113101	Communication	TISIVIC)	U	U	3	3
2	23MA101	Matrices and	BSC	3	0	0	3	3
	23WIA101	Calculus	DSC	5	-0	U	3	3
3	23CS101	Programming in	ESC	3	0	0	3	3
3	23C3101	C		2	U	U	3	3
4	23HS102	Heritage of Tamils	HSMC	1	0	0	1	1
- 3	12	THEORY A	ND PRAC	CTI	CA	LS		
5	23PH111	Engineering	BSC	3	0	2	VO 50G	V 4
3	23PH111	Physics	DSC .	3	U	2	10006	7 4
6	23CY111	Engineering	BSC	3	0	2	<u> 5</u>	4
O	25C1111	Chemistry	DSC	٠	U		5	4
		PRA	CTICAL	S				
7	23CS121	C Programming	ESC	0	0	4	4	2
/	23C3121	Laboratory	ESC	U	U	4	4	
8	23HS121	Communication	HSMC	0	0	2	2	1
0	23113121	Skills Laboratory	TISMIC	O	U		۷	1
		Information						
9	23IT121	Technology	ESC	0	0	2	2	1
		Essentials						
		General Clubs /						
		Technical Clubs /						
10	23HS122	NCC / NSS /	HSMC	0	0	2	2	1*
		Extension						
		Activities						
		TOTAL		16	0	12	30	22

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER -II

Sl. No.	Course code	(Olirca Litla		Periods Per Week			Total Contact Periods	Credits		
				L	T	P	Perioas			
	THEORY									
1	23HS201/ 23HS202	Professional English/ Foreign language	HSMC	3	0	0	3	3		
2	23MA204	Probability and Statistics	BSC	3	1	0	4	4		
3	23PH205	Physics for Information Science	BSC	3	0	0	3	3		
4	23IT201	Data Structures and Algorithms	PCC	3	0	0	3	3		
5	23HS203	Tamils and <mark>Te</mark> chnology	HSMC	1	0	0	1	1		
		THEORY AND	PRACTIO	CAI	LS					
6	23EE281	Basic Electrical and Electronics Engineering	ESC	2	0	2	NC ⁴ LO	3		
7	23ME211	Engineering Graphics	ESC	3	0	2	5	4		
		PRACT	ICALS							
8	23ME221	Engineering Practices Laboratory	ESC	0	0	4	4	2		
9	23IT221	Data Structures and Algorithms Laboratory	PCC	0	0	4	4	2		
10	23HS221	Soft Skills	EEC	0	0	2	2	1*		
* T1-		TOTAL		18	1	10	29	25		

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER-III

S1. No.	Course code	Course Title	Category	Periods Per Week L T P		Per Week		Per Week		k	Total Contact Periods	Credits
		THE	ORY					•				
1	23MA202	Discrete Mathematics	BSC	3	1	0	4	4				
2	23IT301	Java Programming	PCC	3	0	0	3	3				
3	23CS302	Database Management Systems	PCC	3	0	0	3	3				
4	23HS301	Universal Human Values and Ethics	HSMC	3	0	0	3	3				
	WII-	THEORY AND	PRACTIC	ALS	5		1	.				
5	23CS311	Digital Principles and System Design	PCC	3	0	2	5	4				
6	23IT311	Advanced Algorithms	PCC	3	0	2	5	4				
A	N. W.	PRACT	ICALS	- 33								
7	23IT321	Java Programming Laboratory	PCC	0	0	4	ol 4 G	2				
8	23CS322	Database Management Systems Laboratory	PCC	0	0	4	4	2				
9	23ES391	Presentation Skills	EEC	0	0	2	2	1*				
* TC1		TOTAL		18	1	14	33	25				

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER-IV

S1.	Course	Course Title	Category	Periods Per Week			Total Contact	Credits
No.	code			L	T	P	Periods	
		TH	IEORY					
1	23MA301	Linear Algebra	BSC	3	1	0	4	4
2	23IT401	Machine Learning Techniques	PCC	3	0	0	3	3
3	23CS401	Operating Systems	PCC	3	0	0	3	3
4	23IT402	Formal Languages and Automata Theory	PCC	3	0	0	3	3
5	23IT403	Computer Organization and Architecture	PCC	3	0	0	3	3
		THEORY AN	D PRACT	TICA	LS			
6	23IT411	Web Technology	PCC	3	0	2	5	4
	TI CAN	PRAG	CTICALS	ETI	ECI	HN	OLOG	Y
7	23IT421	Machine Learning Techniques Laboratory	PCC	0	0	4	4	2
8	23CS421	Operating Systems Laboratory	PCC	0	0	4	4	2
9	23ES491	Aptitude and Logical Reasoning -1	EEC	0	0	2	2	1*
		TOTAL		18	1	14	31	24

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER-V

S1. No.	Course Code	Course Title	Category		rio Per Vee	•	Total Contact Periods	Credits
		TITE	OBY	L	T	P	1 errous	
		Research	OKY					
1	23RE501	Methodology and Intellectual Property Rights	ESC	2	0	0	2	2
2	23IT501	Computer Networks and Communications	PCC	3	0	0	3	3
3		Department Elective -1	DEC	-	-	ı	ı	3
4	WIE	Department Elective - 2	DEC					3
5		Open Elective - 1 (Emerging Technology)	OEC	3	0	0	3	3
		THEORY AND	PRACTIO	CAI	LS			
6	23IT511	Principles of Software Engineering	PCC	3	0	2	NC5LO	G 4
		PRACT	ICALS					
7	23IT521	Computer Networks and Communications Laboratory	PCC	0	0	4	4	2
8	23IT522	Mini Project	EEC	0	0	3	3	2
9	23IT523	Summer Internship	EEC	0	0	0	0	1
10	23ES591	Aptitude and Logical Reasoning-2	EEC	0	0	2	2	1*
* 001		TOTAL	11 1	-	-	-	-	23

^{*} The grades earned by the students will be recorded in the Mark Sheet. However, the same shall not be considered for the computation of CGPA

SEMESTER VI

S1.	Course				erio		Total	
No.	Code	Course Title	Category	—	r We		Contact	credits
				L	T	P	Periods	
	Γ	1	HEORY					
1	23IT601	Cryptography and Security	PCC	3	0	0	3	3
2		Department Elective - 3	DEC	-	-	1	-	3
3		Department Elective - 4	DEC	-	-	-	-	3
4		Open Elective - 2 (Management / Safety Courses)	OEC	3	0	0	3	3
		THEORY A	ND PRAC	TI	CAL	S		
5	23CE611	Environmental Science and Engineering	ESC	3	0	2	5	4
6	23IT611	IoT and It's Applications	PCC	3	0	2	5	4
	VEE	PRA	CTICALS	SIA	UNIVE	RSIT	Y AUTONO	MOUS
7	23IT621	Project Work – Phase 1	EEC	0	0	4	4	2
8	23IT622	Technical Training	EEC	0	0	2	2	1
9	23IT623	Technical Seminar - 1	ESC	0	0	2	2	1
		TOTAL		18	0	14	32	24

SEMESTER -VII

S1. No.	Course Code	Course Title	Category	periods Per Week L T P		Total Contact Periods	Credits	
		 THE	ORY	L		1		
1		Open Elective - 3 (Management Courses)	OEC	3	0	0	3	3
2		Department Elective – 5	DEC	-	-	ı	-	3
3		Department Elective – 6	DEC	-	-	1	-	3
4	23IT701	Technical Comprehension	EEC	2	0	0	2	2
	THEOI	RY AND PRACTICAL	S (INTE	GRA	TE	D	COURSE	E)
5	23IT711	Computer Graphics and Multimedia	PCC	3	0	2	5	4
	18	PRACT	TICALS					
6	23IT721	Project Work - Phase 2	EEC	0	0	6	NOLO 6 AUTONO	3
7	23IT722	Technical Seminar – 2	ESC	0	0	4	4	2
		-	-	-	20			

SEMESTER -VIII

Sl. No.	Course code	Course Title	Category]	vveek		Total Contact Periods	
		PRACT	ICALS					
1	23IT821 / 23IT822	Capstone Project / Internship Cum Project	EEC	0	0	20	20	10
	TOTAL					20	20	10

TOTALCREDITS: 173

DEPARTMENT ELECTIVE COURSES: VERTICALS

VERTICAL 1: CLOUD COMPUTING

S1. No.	Course Code	Course Title	Category	V	rioc Per Veel	ζ.	Total Contact periods	Credits
1	23IT031	Distributed Computing	DEC	2	0	P 2	4	3
2	23IT032	Cloud Services Management	DEC	2	0	2	4	3
3	23IT033	Virtualization	DEC	2	0	2	4	3
4	23IT034	Cloud Database Management	DEC	2	0	2	4	3
5	23IT035	Storage Technologies	DEC	2	0	2	4	3
6	23IT036	Security and Privacy in Cloud	DEC	2	0	2	4	3
7	23IT037	Stream Processing	DEC	2	0	2	4	3
8	23IT038	Cloud Web Services	DEC	2	0	2	AU40NO	1003

VERTICAL 2: FULL STACK DEVELOPMENT

S1. No.	Course Code	Course Title	Category	V	Periods Per Week		Total Contact periods	Credits
		Java Full Stack		L	T	P	P	
1	23CS031	Development	DEC	2	0	2	4	3
2	23CS032	Mobile App Development	DEC	2	0	2	4	3
3	23CS033	UI and UX Design	DEC	2	0	2	4	3
4	23CS034	MERN Stack Web Development	DEC	2	0	2	4	3
5	23CS035	DevOps	DEC	2	0	2	4	3
6	23CS036	Web Application Security	DEC	2	0	2	4	3
7	23CS037	Advanced Java Programming	DEC	2	0	2	4	3
8	23CS038	Python Full Stack Development with Machine Learning (Industry Supported Course)	DEC	2	O O	2	AUTONO!	3

VERTICAL 3 : ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

S1. No.	Course Code	Course Title	Category		Periods Per Week L T P		Total Contact periods	Credits
1	23AD046	Knowledge Engineering	DEC	3	0	0	3	3
2	23IT039	Data Science	DEC	2	0	2	4	3
3	23IT040	Deep Learning	DEC	2	0	2	4	3
4	23AD040	Natural Language Processing	DEC	2	0	2	4	3
5	23IT041	Cognitive Systems	DEC	2	0	2	4	3
6	23IT042	Big Data Analytics	DEC	2	0	2	4	3
7	23IT043	Data Mining and Warehousing	DEC	2	0	2	4	3
8	23AD045	Data Exploration and Visualization	DEC	2	0	2	AUTONOM	3

VERTICAL 4: NETWORK & SECURITY SYSTEMS

Sl. No.	Course Code	Course Title	Category	Periods Per Week		Total Contact		Credits
				L	T	P	perious	
1	23EC049	Network	DEC	2	0	2	4	3
1	25110047	Essentials	DLC	4	0	_	т	3
2	23EC050	Network	DEC	2	0	2	4	3
_	23EC030	Engineering	DEC	_	U	_	4	3
		Switching,						
3	23EC051	Routing, And	DEC	2	0	2	4	3
		Wireless Essentials						
4	23EC052	Enterprise Networking, Security, and Automation	DEC	2	0	2	4	3
5	23EC053	Network Design	DEC	3	0	0	3	3
6	23CB031	Ethical Hacking	DEC	2	0	2	INC4LO	3
7	23CB034	Security in	DEC	2	0	2	AUTONO/	3
8	23CS039	Computing Crypto Currency andBlockchain Technology	DEC	3	0	0	3	3

VERTICAL 5: SOFTWARE ENGINEERING

Sl. No.	Course Code	Course Title	Category		rio Per Vee	k	Total Contact periods	Credits
				L	T	P	perious	
1	23IT044	Software Design	DEC	3	0	0	3	3
2	23IT045	Software Project Management	DEC	3	0	0	3	3
3	23IT046	Human Computer Interaction	DEC	3	0	0	3	3
4	23IT047	Software Quality Assurance and Testing	DEC	3	0	0	3	3
5	23IT048	Agile Methodology	DEC	3	0	0	3	3
6	23IT049	Software Requirements Engineering	DEC	3	0	0	3	3
7	23IT050	Software Reliability Metrics and Models	DEC	3	0	0	NOLO	3
8	23IT051	Software Architecture	DEC	3	0	0	3	3

OPEN ELECTIVE - EMERGING TECHNOLOGIES

Sl. No.	Course Code	Course Title	Category	Periods Per Week L T P		<	Total Contact periods	Credits
1	23AE0971	Aviation Management	OEC	3	0	0	3	3
2	23OAS971	Space Engineering	OEC	3	0	0	3	3
3	23OCB971	Cyber Law	OEC	3	0	0	3	3
4	23OEC972	Fundamentals of Wearable Devices	OEC	3	0	0	3	3
5	23OED971	Introduction to Design Thinking	OEC	3	0	0	3	3
6	23OED972	Intellectual Property Law	OEC	3	0	0	3	3
7	23OEE971	Renewable Energy Technologies	OEC	3	0	0	3	3
8	23OMA971	Resource Management Techniques	OEC (3	0 IVER	0	AUTONO	G \3
9	23OMA972	Graph Theory	OEC	3	0	0	3	3
10	23OME971	Quality Engineering	OEC	3	0	0	3	3

OPEN ELECTIVE - MANAGEMENT COURSES

S1. No.	Course Code	Course Title	Category]	rio Pei /ee	_	Total Contact Periods	Credits
				L	T	P	1 CIIOUS	
1	23OMG971	Total Quality Management	OEC	3	0	0	3	3
2	23OMG972	Engineering Economics and Financial Accounting	OEC	3	0	0	3	3
3	23OMG973	Engineering Management and Law	OEC	3	0	0	3	3
4	23OMG974	Knowledge Management	OEC	3	0	0	3	3
5	23OMG975	Industrial Management	OEC	3	0	0	0100	3
6	23OMG976	Entrepreneurship and Business Opportunities	OEC	3	0	0	3	3
7	23OMG977	Modern Business Administration and Financing	OEC	3	0	0	3	3
8	23OMG978	Essentials of Management	OEC	3	0	0	3	3

OPEN ELECTIVE - SAFETY RELATED COURSES

Sl. No.	Course Code	Course Title	Category		rio Per Jee	r e k	Total Contact Periods	Credits
1	230AU981	Automotive Safety	OEC	3	0	0	3	3
2	23OCE981	Disaster Management	OEC	3	0	0	3	3
3	23OME981	Industrial Safety	OEC	3	0	0	3	3

SEMESTER-WISE CREDIT DISTRIBUTION

SEMESTER	HSMC	BSC	ESC	PCC	DEC	OEC	EEC	Total
Semester I	5	11	6		9			22
Semester II	4	7	9	5		. 7		25
Semester III	3	4		18				25
Semester IV		4	OLLE	20	FTEC	HNO	oLbG	24
Semester V	Red	A	FILI2TED	TO /9 NA	UNI16 RSI	3 4	ток2мо	23
Semester VI			5	7	6	3	3	24
Semester VII			2	4	6	3	5	20
Semester VIII							10	10
Total	12	26	24	63	18	9	21	173

SEMESTER -I

23IP101	INDUCTION PROGRAMME	L	T	P	C
		-	•	1	0

COURSE OBJECTIVES:

- This is a mandatory 2 weeks Programme to be conducted as soon as the students enter the institution.
 Normal classes start only after the induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character

 Hence, the purpose of this Programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature

• Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

• Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

Value Based Communication

This module will focus on improving the communication skills of students

Lectures by Alumni

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

Familiarization to Dept/Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities

Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests / assessments during this Programme.

REFERENCES:

Guide to Induction program from AICTE

23HS101	ESSENTIAL COMMUNICATION	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

UNIT I FORMATION OF SENTENCES

9

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing- framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development-Parts of Speech, Wh- Questions, yes or no questions, direct and indirect questions. Vocabulary development- prefixes- suffixes-articles – countable and uncountable nouns

UNIT II NARRATION AND DESCRIPTION

9

Reading – Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development – Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing – Write short narrative paragraphs, biographies of friends/relatives - writing- topic sentence- main ideas- free

writing, short narrative descriptions using some suggested vocabulary and structures.

UNIT III COMPARING AND CONTRASTING

9

Reading- short texts and long texts -understanding different types of text structures, -coherence-jumbled sentences. Language development- degrees of comparison, concord- Vocabulary development – single word substitutes- discourse markers- use of reference words Writing - comparative and contrast paragraphs writing- topic sentence- main idea, free writing, compare and contrast using some suggested vocabulary and structures.

UNIT IV | SOCIAL MEDIA COMMUNICATION

9

Reading- Reading blogs, social media reviews, posts, comments, process description, Language development - relative clause, Vocabulary development- social media terms-words, abbreviations and acronyms Writing- -e-mail writing-conventions of personal email, descriptions for simple processes, critical online reviews, blog, website posts, commenting to posts.

UNIT V ESSAY WRITING MATER TO ARRA UNIVERSITY AUTONOM

9

Reading- Close reading non-technical longer texts Language development - modal verbs, phrasal verbs- Vocabulary development - collocation. Writing- Writing short essays-brainstorming - developing an outline- identifying main and subordinate ideas.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Summarize simple, level-appropriate texts of around 300 words recognizing main ideas and specific details.

CO2:	Demons	stra	te t	he t	ınd	erst	anc	ling	of	mo	re co	mpl	ex			
	grammatical structures and diction while reading and															
	writing															
CO3:	Use appropriate expressions to describe, compare and															
	contrast	t pe	opl	e, th	ning	S, S	itua	atio	ns e	tc.,	in w	ritir	ıg.			
CO4:	Establis	h th	ne a	bili	ty to	о со	mn	านท	icat	e ef	fecti	vely	thre	oug	h	
	emails.															
CO5:	Determ	ine	the	lan	gua	ge 1	use	app	orop	oria	te fo	r dif	fere	nt s	oci	al
	media p	olatí	forn	ns.												
CO6:	Use app	orop	oria	te e	xpr	essi	ons	for	naı	rrat	ive c	desci	ripti	ons	and	d
	process	des	scrij	otio	ns.											
TEX	Г ВООК	S:														
1	Susan I	Proc	ctor	, Jac	ck C	. Ri	cha	ırds	, Jo	natl	nan l	Hull	. Int	ercl	nan	ge
	Level 2	. Ca	ımb	rid	ge U	Jniv	vers	sity	Pre	ss a	nd A	Asse	ssme	ent		
2	44 7.00	Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange														
Į.	Level 3. Cambridge University Press and Assessment															
REFI	ERENCE	S:		Λ		ľ		8								
1	Dutt P.					_			Gee	ta.	Basi	c Co	mm	uni	cati	on
Ĭ	Skills, F	our	ndat	tion	Во	oks:	: 20	13								
2	Means,l								_		ALLE VIEW	CONTRACT OF				
	Commu	ınic	atic	n fo	or C	Colle	_		eng	age	Lea	rnin	g,L			
	COs				1		I	POs		•				F	SC	s
`		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
	2	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
	3	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
	4	-	-	-	-	-	-	-	-	-	3	-	2	-	-	-
	5	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	6	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	verall relation	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
Reco	mmende	d by	Во	ard	of S	tud	ies	28-	07-2	023			1			
Approved					1st ACM Date				;	09-09-2023						

23MA101	MATRICES AND CALCULUS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

UNIT IV INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques of

Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V MULTIPLE INTEGRALS

9

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2: Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3: Find the derivative of functions of several variables
- **CO4:** Examine the application of partial derivatives
- CO5: Compute integrals by different techniques of Integration.
- CO6: Apply the concept of integration to compute multiple integrals.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

REFERENCES:

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2 Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016

- Bali. N., Goyal. M. and Watkins. C., —Advanced Engineering Mathematics, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- Narayanan. S. and Manicavachagom Pillai.T. K., —Calculus" 4 Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.

COs		POs									PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	•	-	-	-	-	1	3	ı	-
2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
4	3	2	1	1	-	-	-	-	-	-	-	1	3	ı	-
5	3	2	1	1	-	-	•	-	-	-	-	1	3	ı	-
6	3	2	1	1	1	-		1	1		1	1	3	1	-
Overall Correlation	3	2	1	1	-	4	-	-/	-	-		1	3	1	-
Recommended by Board of Studies 02-08-2023															

1st ACM Date 09-09-2023 Approved

23CS101	PROGRAMMING IN C	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the basic constructs of C Language.
- To develop C Programs using basic programming constructs.
- To develop C programs using arrays and strings.
- To develop modular applications in C using functions and pointers.
- To develop applications in C using structures and Unions.
- To understand file handling in C.

UNIT I BASICS OF C PROGRAMMING 9

Introduction to programming paradigms – Applications of C Language - Structure of C program - C programming: Data Types

- Constants Enumeration Constants Keywords Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements - Decision making statements
- Switch statement Looping statements Preprocessor directives
- Compilation process.

UNIT II ARRAYS AND STRINGS

5

Introduction to Arrays: Declaration, Initialization – One dimensional array – Two dimensional arrays - String operations: length, compare, concatenate, copy – Selection sort, linear and binary search.

UNIT III | FUNCTIONS AND POINTERS

9

Modular programming - Function prototype, function definition, function call, Built-in functions (string functions, math functions) - Recursion, Binary Search using recursive functions - Pointers - Pointer operators - Pointer arithmetic - Arrays and pointers - Array of pointers - Parameter passing: Pass by value, Pass by reference.

UNI	T IV STRUCTURES AND UNION	9
Struc	ture - Nested structures - Pointer and Structures - Array	y of
struc	tures - Self-referential structures - Dynamic mem	ory
alloc	ation - Singly linked list - typedef - Union - Storage clas	sses
and \	Visibility.	
UNI	T V FILE PROCESSING	9
Files-	- Types of file processing: Sequential access, Random Acc	ess-
	ential access file- Random access file- Command	
argu	ments.	
	TOTAL: 45 PERIO	DDS
COU	URSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Describe the basic constructs of C Programming Language	ge.
CO2:	Develop simple applications using C basic constructs.	
CO3:	Construct and Implement applications using Arrays	and
1	Strings.	
CO4:	Develop and Implement applications using Functions pointers.	and
CO5:	Construct applications using structures and Unions.	V.
	Demonstrate File handling concepts and Command	line
	arguments.	03
TEX	T BOOKS:	
1	Reema Thareja, "Programming in C", Oxford Univer	sity
	press, Second Edition, 2016.	
2	Kernighan B.W and Ritchie D.M, "The C Programm	ing
	language", Second Edition, Pearson Education, 2015.	
REFI	ERENCES:	
1	Paul Deitel and Harvey Deitel, "C How to program with	ı an
	introduction to C++", Eighth Edition, Pear	son
	Education,2018.	
2	Yashwant Kanetkar, "Let us C", seventeenth Edition, l	3PB
	Publications, 2020.	
3	Anita Goel and Ajay Mittal, "Computer Fundamentals	and

	progran	nmi	ng	in ([",]	Firs	t Ec	litic	n, l	Pear	rson	Edu	ıcati	on,	201	3.
4	Byron	S.	Go	tfrie	ed,	"S	cha	umʻ	s (out	line	of	The	eory	aı	nd
	Problem	ns	of	Р	rog	ran	nmi	ng	W	rith	C	",	McC	Grav	w-H	[ill
	Educati	on,î	1996	5.												
5	PradipDey, ManasGhosh, "Computer Fundamentals and															
	Programming in C" Second Edition, Oxford University															
	Press, 2013.															
	COs PSOs															
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	ı	-	1	1	1	1	3	1	ı
	2	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-
	3	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-
	4	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-
	5	3	2	1	1	1	-	1	1	1	1	1	1	3	1	-
	6 DOW	2	1	1/2	-	1	7		-7	1	1	1	1	3	1	1
	verall relation 3 2 1 1 1 1 1 1 1 3 1 -															
Recommended by Board of Studies 28-07-2023																
Approved 1st ACM Date 09-09-2023																

23HS102	HERITAGE OF TAMILS	L	T	P	C
		1	0	0	1

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil Nadu.

UNIT I LANGUAGE AND LITERATURE 3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism & Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART - SCULPTURE

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

UNIT III	FOL	K AND MAR	ΓIAL A	RTS			3
Therukootl	hu,	Karagattam,	Villu	Pattu,	Kaniyan	Koo	thu,

Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance – Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature – Aram Concept of Tamils – Education and Literacy during Sangam Age – Ancient Cities and Ports of Sangam Age – Export and Import during Sangam Age – Overseas Conquest of Cholas

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine - Inscriptions & Manuscripts - Print History of Tamil Books.

TOTAL: 15 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the evolution of Tamil language and literature, focusing on its cultural, ethical, and secular themes.
- CO2: Outline the making of musical instruments related to Tamil heritage.
- CO3: Discuss the sports and games of Tamils
- **CO4:** Explain the education and literacy during Sangam age.
- CO5: Express the importance and contribution of Tamils to Indian Freedom Struggle
- CO6: Outline the print history of books in Tamil Nadu

TEXT BOOKS:

1 தமிழக வரலாறு–மக்களும் பண்பாடும்–கே.கேபிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).

கணினித்தமிழ் – முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்). **REFERENCES:** கீழடி- வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு) பொருனை- ஆற்றங்கரை **நாகரிகம்** (**தொல்லியல்** துறை வெளியீடு) POs **PSOs** COs _

1st ACM

Recommended by Board of Studies 28-07-2023

Approved

Overall

Correlation

COLLEGE OF TECHNOLOGY

Date

09-09-2023

23PH111	ENGINEERING PHYSICS	L	T	P	C
		3	0	2	4

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses- factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule – torque –rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

UNIT II | ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

UNIT III	OPTICS AND LASERS	9
Reflection	and refraction of light waves - total internal reflecti	on -

types of optical fiber, Numerical Aperture and acceptance angle - interference -Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating
- 6. Airwedge- Determination of thickness of a thinsheet / wire

- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
 - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Determine the mechanical properties of materials.
- CO2: Apply the principles of electromagnetic waves to real world system.
- CO3: Determine the thickness of thin wire and the characteristic parameter of an optical fiber.
- **CO4:** Apply the principles of lasers to real world application.
- CO5: Organize the quantum mechanical properties of particles and waves.
- **CO6:** Utilize the quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1 D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", McGraw Hill Education (Indian Edition), 2017.
- 2 Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", McGraw-Hill (Indian Edition), 2017.

REFI	ERENCE	S:														
1	R.Wolfs	son	," E	Esse	ntia	al U	niv	ers	ity	Phy	sics	", V	olur	ne î	1 &	2.
	Pearson	Ed	uca	tio	n (Iı	ndia	ın E	dit	ion)	, 20	09.					
2	Paul A	. T	iple	r, '	'Ph	ysic	: -	Vo	lum	ne 1	&	2",	CBS	5, (I	Indi	an
	Edition)	, 20	004.													
3	K.Thya	gar	ajar	n aı	nd	A.C	Gha	tak,	"La	sers	s: F	unda	ame	ntal	s a	nd
	Applica	tion	ıs,"	La	xmi	Pu	blic	atic	ns,	(In	dian	Edi	tion), 20)19.	
4	D.Hallio	day	, R.	Res	nicl	k an	d J.	Wa	1ke	r, "I	Princ	ciple	es of	Phy	ysic	s",
	Wiley (I	ndi	an I	Edi	tior	1), 2	015									
5	N.Garc	ia, <i>i</i>	A.D	am	ask	and	1 S.S	Sch	war	z, "	Phy	sics	for (Con	npu	ter
	Science	Science Students",Springer Verlag, 2016.														
	COs POs PSC													PSO	s	
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	_	-	J	1	-	_	1,	1	3	1	1
	2 DOW	3	2	1	1	-	7	7	-/	9		P	1	3		1
8	3	3	2	1	1	-		2	-(Y -	-	-	1	3	-	-
ľ	4	3	2	/1	1	- "	-	9	- 1	P	. - 2	1	1	3	-	-
1	5	3	2	1	1	-	-		1	1	_	1	1	3	1	-
	6	3	2	1	1	-	-	-	-	-	÷	e i i	1	3).	1
O	verall	3	2	1	1	C	LL	LEK	JE.	OF.	IE	UH.	ATT	3	9	
Correlation 3 2 1 1 1 A C C C C C C C C C C C C C C C C													(4)	J	A O U	_
Reco	mmende				of S	Stud	ies									
	Approved						1st ACM Date					?	09-09-2023			

23CY111	ENGINEERING CHEMISTRY	L	T	P	С
		3	0	1	4

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical

vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO₂ system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO₂ emission and carbon sequestration, Green Hydrogen.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid battery and lithium-ion battery; Electric vehicles – working

principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2: Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3: Estimate the knowledge of phase rule and composites for material selection requirements
- CO4: Choose a suitable fuel for engineering processes and applications
- CO5: Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6: Explain the different types of batteries, fuel cells and working principles of Electric vehicles

TEV	ΓΕΧΤ BOOKS:															
1	P. C. Ja															
	Edition			pat	Ra	i P	ubl	ishi	ng	Co	mpa	ny	(P) I	Ltd,	Ne	ew
	Delhi, 2			<i>(</i> /E							// -	Π,	1.6.		_	T+11
2	Sivasar												Mc	ravی	w-l	1111
	Publish	_			_								. //	<u> </u>	~1	1
3	S.S. Dar							_		_			-			
	Publish															
	Enginee 44 th Edi				еш	auc	.s ,	NII	атш	аг	ubii	sner	S, IN	ew	Dei	111,
REE	ERENCE		ı, 20	710.												
1	B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James															
1	Murday, "Text book of nanoscience and nanotechnology",															
	Universities Press-IIM Series in Metallurgy and Materials															
	Science, 2018.															
2	O.G. Palanna, "Engineering Chemistry" McGraw Hill															
	Education (India) Private Limited, 2nd Edition, 2017.															
3	Friedrich Emich, "Engineering Chemistry", Scientific															
	International PVT, LTD, New Delhi, 2014New Delhi, 2018.															
4	ShikhaAgarwal, "Engineering Chemistry-Fundamentals and															
	Applications", Cambridge University Press, Delhi, Second															
	Edition, 2019															
5	O.V. Ro															
	Book fo												inge	r S	cier	ıce
	Busines	s M	edi	a, N	lew	Yo				litic	n, 2	013			200	
	COs		_	_		_		POs		_					PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	3	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	4	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	5	3	2	1	1	-	-	3	-	ı	1	1	2	3	-	-
	6															
О	verall	2	2	1	1			2					2	2		
Cor	relation	3	2	1	1	_	_	3	_	-	-	-	2	3	_	-
Reco	Recommended by Board of Studies 28-07-2023															
Approved 1st ACM Date 09-09-2023																

23CS121	C PROGRAMMING	L	T	P	C
	LABORATORY	0	0	4	2

- To familiarize with C programming constructs.
- To develop programs in C using basic constructs.
- To develop programs in C using arrays.
- To develop applications in C using strings, pointers, functions.
- To develop applications in C using structures.
- To develop applications in C using file processing.

PRACTICALS:

- 1. I/O statements, operators, expressions.
- 2. Decision-making constructs: if-else, goto, switch-case, break-continue.
- 3. Loops: for, while, do-while.
- 4. Arrays: 1D and 2D, multi-dimensional arrays, traversal.
- 5. Strings: operations.
- 6. Functions: call, return, passing parameters by (value, reference), passing arrays to function.
- 7. Recursion.
- 8. Pointers: Pointers to functions, Arrays, Strings, Pointers to Pointers, Array of Pointers.
- 9. Structures: Nested Structures, Pointers to Structures, Arrays of Structures and Unions.
- 10. Files: reading and writing, File pointers, file operations, random access, processor directives.

TOTAL: 60 PERIODS

LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS:

HARDWARE: Standalone desktops – 30 No's

SOFTWARE: : C / C++ / Equivalent Compiler

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Demonstrate knowledge on C programming constructs.

CO2:	Develop	pr	ogr	am	s in	Cι	ısin	g b	asic	COI	nstru	ıcts.				
CO3:	Develop	pr	ogr	am	s in	Cι	ısin	g a	rray	rs aı	nd s	tring	gs			
CO4:	Develop	ap	plio	cati	ons	in (C us	sing	g fu	ncti	ons	and	poir	nter	s.	
CO5:	Develop	ap	plio	cati	ons	in (C us	sing	g str	uct	ures	and	l uni	on.		
CO6:	Develop	ap	plio	cati	ons	in (C us	sing	g file	e pr	oces	ssing	ζ.			
	POs PSOs															
	LUS	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
	1 2 1 1 1 - 1 - 2 - 1 2 1 1															
	2 3 2 1 1 3 1 - 1 - 2 - 1													3	3	1
	3	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
	4	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
	5	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
	6	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
O	verall	2	2	1	1	3	1		1		·		1	3	3	1
Corr	relation	3	RE	I	1	3	1		1		2	P		3	3	1
Reco	mmended	l by	Во	ard	of S	Stud	ies	s 28-07-2023								
1	A	A	1st ACM Dat			Date	e 09-09-2023									

23HS121	COMMUNICATION SKILLS	L	T	P	C
	LABORATORY	0	0	2	2
COURSE OB	ECTIVES:			· ·	
• To enal	ole the students to comprehend the mai	n id	ea a	ınd	
specific	information of the listening passage				
 To help 	students express themselves clearly, as	nd			
	nicate effectively with others.				
	oduce authentic language use and conte		_		
vocabu	lary that might not be encountered in to	extb	ook	s.	
Exercise:1	Listening to conversations set in every	day	soc	cial	
	context and complete gap-filling exerc	ise			
Exercise : 2	Listening to a monologue in everyday	SOC	ial		
	context. Diagram labelling and MCQ				
Exercise: 3	Listening to a group conversation in a	cade	emi	С	
(POWE	setting and answer MCQ			V	
Exercise: 4	Listening to a lecture and answer MC	Q or	gaj	9	
N. T.	filling			Jall.	
Exercise: 5	Listening to Ted Talks, podcasts, docu	ımeı	ntar	ies	-
10	discussion	uo.	0	6	
Exercise : 6	Listening to a lecture and reading a te	xt o	n th	.e	
	same subject- compare and contrast			1100 100	
Exercise: 7	Speaking Introducing oneself				
Exercise: 8	Answering questions based on the int	rodı	acti	on	
Exercise: 9	Speaking on a given prompt for 2 min	ıs.			
Exercise: 10	Answering questions based on the top	oic s	pok	en	
Exercise : 11	Role play- Engaging in conversation				
Exercise: 12	Engaging in Podcast Discussion				
	TOTAL:	25 I	PER	IO	DS
COURSE OU	TCOMES:				
After cor	mpletion of the course, the students wil	1 be	abl	e to	:

After completion of the course, the students will be able to:

CO1: Demonstrate fluency in speaking in variety of situations

CO2: Express their knowledge by talking continuously for more than two minutes on a topic

CO3:De	3:Develop active listening for more meaningful interactions															
an	d con	vers	satio	ons		Ü					Ü					
CO4:Us	se a fu	ll ra	nge	e of	strı	ıctu	ıres	nat	ura	lly	and	app	ropr	iate	ly	
CO5:Id	Identify the specific information in conversations, interviews,															
tal	talks and lectures															
CO6: De	Develop the ability to compare and analyse different forms of															
int	information, identifying key similarities and differences.															
CC	POs PSOs															
CC	75	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		1	1	ı	ı	1	1	1	ı	2	3	-	2	ı	ı	-
2		ı	ı	ı	1	-	-	-	ı	2	3	ı	2	ı	ı	-
3		ı	ı	ı	ı	-	1	1	ı	2	3	-	2	ı	ı	-
4		-	-	ı	1	-	-	-	1	ı	3	1	2	1	1	-
5		-	-	-	-	_	1	1_	-	3	3	1	2	-	1	-
6	WOO	ER L	ď	1/4	-	-	1	1	-	2	3		(-)	ŀ		-
	Overall rrelation 1 1 - 3 3 - 2															
Recom	nende	d by	во Во	ard	of S	stud	ies	28-	07-2	023		-	1		1000	

AFFILIATED TO ANNA UNIVERSITY! AUTONOMOUS

1st ACM

Approved

Date

09-09-2023

23IT121	INFORMATION	L	T	P	C
	TECHNOLOGY ESSENTIALS	0	0	2	1

- To design and develop web pages using HTML and CSS.
- To understand the general concepts of PHP scripting language and MySQL functionalities for the development of simple data-centric applications.
- To provide a basic knowledge of computer software.
- To understand various types of information systems and their complexities.
- To Simplify and transfer this problem solving process to wide variety of problems

UNIT I WEB AND SCRIPTING ESSENTIALS 10

Internet Basics - Browser Fundamentals - Authoring Tools - Introduction to HTML5 -HTML5 Tags-HTML5 Forms-Cascading Style Sheets (CSS3) Fundamentals-Need for Scripting Languages-Introduction to JavaScript.

Suggested Activities:

- Browse the internet on special topics given by instructor.
- Learn HTML basic tags for web page design.
- Identify different types of form validations in the websites that are commonly used.
- Practical Design of a small simple website, interlinking set of web pages created using the HTML tags and CSS.

Suggested Evaluation Methods:

- Quizzes on all the topics of the unit.
- Discussion on form validation.
- Peer evaluation of the simple web-sites created.

UNIT II	SERVER-SIDE ESSENTIALS (PHP)	10
Introduction	n to PHP - PHP Variables - Constants - Operator	rs -

Flow Control and Looping –Arrays – Strings – Functions – PHP and HTML– Database Management–Introduction to My SQL – MySQL Commands – MySQL Database Creation –Connecting MySQL and PHP – Querying MySQL Database with PHP.

Suggested Activities:

- Practical -Simple programs using PHP.
- Design of a dynamic webpages using PHP.
- Database creation using MySQL and PHP scripts.
- Practical Creation of session and cookies.

Suggested Evaluation Methods:

- Quizzes on different topics of the unit.
- Demonstration of the implementations.
- Group discussions design of web page.

UNIT III APPLICATION ESSENTIALS 10

Creation of Simple Interactive Applications – Simple Database Applications – Introduction to Information Systems – Personal Information System – Information Retrieval System – Social Networking Applications.

Suggested Activities:

- Flipped classroom on social networking applications.
- Explore the web to know more about the concepts and technologies used for the design of Information Systems. Students may present their findings orally or by a written report.
- Design a simple web or mobile application.
- Explore and analyze some of the visual analytics software.

Suggested Evaluation Methods:

 Quizzes on features of social networking applications.

- Presentations on various information systems.
- Demonstration of application.
- Discussions through forums.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build dynamic website / web based applications using HTML, PHP, and MYSQL database.
- CO2: Build websites that meet specified needs and interests using basic elements to control at you and style.
- CO3: Illustrate the programs by applying concepts and error handling techniques of HTML, Java Script and MYSQL.
- CO4: Identify the fundamental concepts and key issues in the design of commonly used applications.
- CO5: Illustrate the programs by applying concepts and error handling techniques of PHP and MYSQL.
- CO6: Discuss and transfer this problem solving process to wide variety of problems.

TEXT BOOKS:

- Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step by Step Guide to Creating Dynamic Websites", O'Reilly Media, Inc, 2014.
- 2 Luke Welling, Laura Thomson, "PHP and MYSQL Web Development", Pearson Education 5TH EDN December 2016

REFERENCES:

- 1 Steven Holzner, —PHP: The Complete Referencel, Fifth Edition, Mc Graw Hill, 2017.
 - Niederst Robbins, Jennifer, —Learning Web Design: A Beginner's Guide to HTML, CSS, Javascript and Web Graphics, Fifth Edition, O'Reilly Media, 2018.
 - 3 Laura Lemay, Rafe Colburn, Jennifer Kyrnin, —Mastering HTML, CSS & Java Script Web Publishing, BPB Publications, 2016.
 - 4 R. Kelly Rainer, Casey. Cegielski, Brad Prince—Introduction to Information Systems^{||}, Fifth Edition, Wiley Publication, 2014.

COs						I	POs]	PSC	s		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	1	1	1	-	-	-	-	-	-	1	2	1	-		
2	3	2	1	1	1	ı	-	ı	-	-	•	1	2	1	1		
3	2	1	ı	ı	-	ı	-	ı	-	-	•	1	1	ı	1		
4	3	2	1	1	1	-	-	-	-	-	-	1	2	1	-		
5	2	1	-	-	-	-	-	-	-	-	-	1	1	-	-		
6	2	1	-	-	-	-	-	-	-	-	-	1	1	-	-		
Overall Correlation	2	2	1	1	1	ı	ı	ı	ı	-	ı	1	2	1	-		
Recommended	Recommended by Board of Studies 28-07-2023																
Approve	Approved by Academic									1st ACM Date					09-09-2023		

SEMESTER - II

23HS201	PROFESSIONAL ENGLISH	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays.
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

UNIT I WORKPLACE COMMUNICATION

9

Reading - Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing - Writing emails -emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development- Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary - One-word substitutes; Abbreviations & Acronyms as used in technical contexts and social media.

UNIT II EXPRESSING CAUSE AND EFFECT

9

Reading - Reading longer technical texts- Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development- Active, Passive and Impersonal Passive Voice transformations, Infinitive and Gerunds Vocabulary - Synonyms- contextual meaning of

words, Same word acting as different parts of speech, causal expressions.

UNIT III | PROVIDING SOLUTIONS TO PROBLEMS

9

Reading - Case Studies, editorials, news reports etc. Writing - Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional sentences Vocabulary - Compound Words, discourse markers.

UNIT IV | INTERPRETATION OF GRAPHICS

9

Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. Language development-Possessive & Relative pronouns, numerical adjectives Vocabulary Homonyms and Homophones, sequence words.

UNIT V REPORT WRITING AND RESUME WRITING

9

Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing
- CO3: Use appropriate expressions to describe process and product, compare and contrast data, analyze problems, provide solutions and prove an argument in writing

ability **CO4:** Establish the to communicate effectively in professional environment through emails and reports CO5: Determine the language use appropriate for different social media platforms used for digital marketing CO6: Convert skills to assets and position themselves in job market through their own professional narratives TEXT BOOKS: V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 1 Priyadharshini, Veena Selvam, English for Science & Technology I, Cambridge University Press and Assessment V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 2 Priyadharshini, Veena Selvam, English for Science & Technology II, Cambridge University Press and Assessment **REFERENCES:** Business Correspondence and Report Writing by Prof. R.C. 1 Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi. Developing Communication Skills by Krishna Mohan, Meera 2 Bannerji- Macmillan India Ltd. 1990, Delhi. **POs PSOs** COs 2 5 6 9 12 2 1 3 4 8 10 11 1 2 2 3 1 1 1 2 2 3 2 3 1 2 3 2 4 2 3 2 2 3 2 5 1 6 2 3 3

Recommended by Board of Studies 28-07-2023

Approved 1st ACM Date 09-09-2023

1 | 1

2 | 3

3

Overall

Correlation

23MA204	PROBABILITY AND STATISTICS	L	T	P	С
		3	1	0	4

- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To acquaint the knowledge of Estimation Theory for small and large samples this plays an important role in real life problems.
- To provide required advanced statistical tools in solving engineering problems
- To introduce the basic concepts of classifications of statistical quality control this plays very important roles in the field of agricultural engineering

UNIT I PROBABILITY AND RANDOM VARIABLES 9+3

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

UNIT II TWO- DIMENSIONAL RANDOM 9+3 VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Curve Fitting-Method of Least Squares-Central limit theorem (for independent and identically distributed random variables, without proof)-Simple problems.

UNIT III ESTIMATION THEORY 9+3

Unbiased estimators - Efficiency - Consistency - Sufficiency - Robustness - Method of moments - Method of maximum Likelihood - Interval estimation of Means - Differences between means.

UNIT IV	NON- PARAMETRIC TESTS	9+3
Introducti	on - The Sign test - The Signed - Rank test - Rank -	sum

tests - The U test - The H test- Tests based on Runs - Test of randomness - The Kolmogorov Tests.

UNIT V STATISTICAL QUALITY CONTROL

9+3

Control charts for measurements (\bar{x} and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the fundamental knowledge of the concepts of probability and one dimensional random variables in engineering.
- CO2: Apply standard probability distributions to real life phenomenon.
- CO3: Apply the basic concepts of two dimensional random variables in engineering applications.
- CO4: Apply the concept of estimation theory for small and large samples in real life problems.
- CO5: Apply the notion of sampling distributions and statistical techniques used in engineering and management problems.
- CO6: Apply the basic concepts of classifications of statistical quality control in the field of engineering.

TEXT BOOKS:

- Johnson. R.A., Miller. I.R and Freund. J.E, "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.
- Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata Mc Graw Hill, 4th Edition, 2007.

REFERENCES:

- 1 Dr.P. Sivaramakrishna Das, C. Vijayakumari, —A text book of probability and statistics, Pearson Publications.
- **2** Gupta. S.C. and Kapoor. V. K., —Fundamentals of Mathematical Statistics, Sultan Chand & Sons, New Delhi,

	12th Ed	litic	n, 2	2020	Э.											
3	Devore	. J.I	١١, ١١	Pro	bak	oilit	y aı	nd S	Stat	isti	cs fo	r Er	ngine	eeri	ng a	ind
	the Scie	enc	esI,	Ce	nga	ige	Lea	arni	ng,	Ne	ew I	Delh	i, 8t	h E	Editi	on,
	2014.															
4	Ross. S	.M.	, "I	ntr	odu	ıctio	on i	to I	Prol	bab	ility	and	1 Sta	atis	tics	for
	Engineers and Scientists", 5thEdition, Elsevier, 2014.															
	POs PSOs															
,	1 2 3 4 5 6 7 8 9 10 11 12													1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	-	-4	-	- 3	_	1/	1	3	-	-
	verall relation	3	2	1	1	-	-1	2	-	f	1	-	1	3	7	e T
Recommended by Board of 28-07-2023 Studies																
	A	ppr	ove	d	1			1st ACM Date 09-09-2023							2023	
COLLEGE OF TECHNOLOGY																

23PH205	PHYSICS FOR INFORMATION	L	T	P	C
	SCIENCE	3	0	0	3

- To make the students understand the importance in studying electrical properties of materials.
- To enable the students to gain knowledge in semiconductor physics
- To instill knowledge on magnetic properties of materials.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement, ensuing nano device applications and quantum computing.

UNIT I ELECTRICAL PROPERTIES OF MATERIALS 9

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Wiedemann-Franz law - Success and failures - electrons in metals - Particle in a three-dimensional box - degenerate states - Fermi- Dirac statistics - Density of energy states - Electron in periodic potential - Energy bands in solids - tight binding approximation - Electron effective mass - concept of hole.

UNIT II SEMICONDUCTOR PHYSICS 9

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – variation of Fermi level with temperature and impurity concentration – Carrier transport in Semiconductor: random motion, drift, mobility and diffusion (qualitative) – Hall effect and devices – Ohmic contacts – Schottky diode – introduction to solid state drive (SSD)

UNIT III | MAGNETIC PROPERTIES OF MATERIALS

9

Magnetic dipole moment – atomic magnetic moments- magnetic permeability and susceptibility - Magnetic material classification: diamagnetism – paramagnetism – ferromagnetism – antiferromagnetism – ferrimagnetism – Ferromagnetism: origin and exchange interaction- saturation magnetization and Curie temperature – Domain Theory- M versus H behaviour – Hard and soft magnetic materials – examples and uses-– Magnetic principle in computer data storage – Magnetic hard disc (GMR sensor).

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques.

UNIT V NANODEVICES AND QUANTUM COMPUTING

9

Introduction - quantum confinement - quantum structures: quantum wells, wires and dots -- band gap of nanomaterials. Tunneling - Single electron phenomena: Coulomb blockade - resonant- tunneling diode - single electron transistor - quantum cellular automata - Quantum system for information processing - quantum states - classical bits - quantum bits or qubits -CNOT gate - multiple qubits - Bloch sphere - quantum gates - advantage of quantum computing over classical computing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the knowledge of classical and quantum electron theories to energy band structures.
- CO2: Utilize the basics of intrinsic and extrinsic semiconductor physics and its application in various devices.
- CO3: Apply the knowledge of magnetic properties of materials in data storage.

CO4·	Explain	th	0 0	loct	ro	ont	ical	nr	one	rtic	NC 21	<u>ad (</u>	onto	0100	tro	nic
CO4.	devices.		C C.	icci	10	opt	icai	Pı	ope	.1 (10	.5 aı	iu (spio	CICC	.110.	ilic
CO5	Explain		011	ant	11m	ctr	11Ct1	1170	2 (1)	ııan	tum	con	fine	mei	nt a	nd
CO3.	Nano de		-	arn	um	Sti	uct	urca	», Y	uari	tuiii	COL	ııııc	mei	ii a	IIu
CO6	Explain			010	of	Q1	1212	Hiim	c et	*110	turo	c in	in	forr	nati	on
COU.	processi						ıaıı	ıuıı	1 51	ıuc	ture	5 11	1 1111	1011.	liau	.011
TEV	F BOOK	$\overline{}$	teci	шц	₁ ue											
1	Jasprit :		ah.	"C	mi	con	4110	tor	D	ovic	00:	Raci	c D _v	inc	inlo	c"
1	Wiley (I								D	evic	es.	Dasi	CII	II IC.	ipie	5,
2	S.O. Ka								oni	c 1	// ator	riole	and	1 D		200
_	McGrav													ıD	VIC	cs,
3							`				iting			Sori	nne	r ^l c
RFFF	Introduction, McGraw-Hill Education (Indian Edition), 2020. ERENCES:															
1	Charles Kittel, Introduction to Solid State Physics, Wiley															
-	India Edition, 2019.															
2	Y.B.Band and Y.Avishai, Quantum Mechanics with															
_	Applications to Nanotechnology and Information Science,															
)	Academic Press, 2013.															
3	V.V.Mitin, V.A. Kochelap and M.A.Stroscio, Introduction to															
	Nanoele															
4	G.W. H	ans	son,	Fu	ınd	ame	enta	ıls	of I	Var	oele	ctro	nics	, Pe	ears	on
	Educati										IE	CH		LU		
5	B.Roger		`							ath	ur,	Naı	note	chn	olo	gv:
	Underst		-												•	<i>)</i>
								POs						I	PSC)s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4 2 1						-	-	-	-	-	-	1	2	-	-
	5	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	6	2	1	-	-	-	-						1	2		
O	verall	3	2	1	1								1	3		
	elation					_	_	_		_	_	_	1	٥		
Reco	mmended						ies									
	Approved by Academic						1st ACM Date 09-0				09-2	2023				

23IT201	DATA STRUCTURES AND	L	T	P	C
	ALGORITHMS	3	0	0	3

- To impart the basic concepts of data structures and algorithms.
- To be familiar with writing recursive methods.
- To implement operations on Linked List, Stack and Queues.
- To implement traversal operations of trees and graphs.
- To understand concepts about various algorithm design techniques, searching and sorting techniques.

UNIT I INTRODUCTION TO ALGORITHMS

9

Introduction to Data vs Information - Data Structures - Classification Abstraction - Abstract data types (ADT) - Array - Characteristics - Storage Representations. Array Order Reversal-Recursion- Array operations, Algorithm- complexity Time and Space trade off.

UNIT II | LINKED LIST

9

Array vs Linked List Singly linked list - Representation of a linked list in memory - Operations on a singly linked list - Merging two singly linked lists into one list - Reversing a singly linked list Polynomial Manipulation using List - Advantages and disadvantages of singly linked list - Circular linked list-Doubly linked list - Circular Doubly Linked List.

UNIT III STACKS & QUEUES

9

Introduction Array Representation of a Stack Linked List Representation of a Stack - Stack Operations - Algorithm for Stack Operations - Stack Applications: Tower of Hanoi - Infix to postfix Transformation - Evaluating Arithmetic Expressions. Queue Introduction Array Representation of Queue Linked List Representation of Queue - Queue Operations - Algorithm for Queue Operations - Queue Applications: Priority Queue.

UNI	ΓIV	TREES AND GRAPHS	9
Preli	minar	ries of Tree ADT - Binary Trees - The Search Tree A	ADT
Bina	ry Sea	rch Trees - AVL Trees - Tree Traversals - B-Trees - H	leap
Tree	Preli	minaries of Graph ADT - Representation of Gra	aph,
Grap	h Tra	versal - BFS DFS Applications of Graph Shortest - I	Path
Algo	rithm	s Minimum Spanning Tree Prims Algorithm.	
UNI	Г۷	GRAPH ALGORITHM DESIGN TECHNIQUES	9
		AND SEARCHING AND SORTING	
		TECHNIQUES	
Divid	de an	d Conquer Strategy - Greedy Algorithm - Dyna	mic
Prog	ramm	ing - Backtracking Strategy - List Searches using Li	near
Searc	ch - B	inary Search - Fibonacci Search - Sorting Techniqu	ies -
Inser	tion s	ort - Heap sort - Bubble sort - Quick sort - Merge so	ort -
Anal	ysis o	f sorting techniques.	
Ų	100	TOTAL: 45 PERIO	ODS
COU	L IV	OUTCOMES:	
		completion of the course, the students will be able	to:
CO1:	Illus	trate the concept of recursive algorithms.	-
CO2:	Dem	onstrate the different types of data structures.	Y
		trate the operations on linear data structures.	US.
CO4:	Selec	et appropriate data structure as applied to speci	fied
		lem definition.	
CO5:	Expl	ain and implement the various algorithm de	sign
	techi	niques.	
CO6:	Iden	tify appropriate sort and search algorithm for a gi	ven
	appl	ication.	
TEX	Г ВО	OKS:	
1	Jean-	-Paul Tremblay, Paul G. Sorenson, 'An Introduction	n to
	Data	Structures with Application', TMH, 2017.	
2	Corr	nen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,	. C.,
	"Inti	oduction to algorithms", 3rd edition, MIT.	

REF	ERENCE	S:														
1	Richard	F,	Gil	ber	g, F	orc	uza	ın,	"Da	ita :	Stru	ctur	es",	Cei	nga	ge,
	2nd Edi	tior	n, 20	004.												
2	Darren	R.	Hay	yes,	"P	rac	tica	l G	uid	e to	Со	mpı	ıter	For	ens	ics
	Investig	atio	ons	, 20	014.											
3	Larry R. Nyhoff, ADTs, "Data Structures, and Problem															
	Solving with C++", Prentice Hall Edition, 2004.															
4	Thomas H. Cormen, Charles E. Leiserson, "Introduction to															
	Algorithms", 3rd Edition, 2010															
	I	POs	1					I	PSC	s						
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	,	-	,	-	ı	ı	ı	1	1	-	-
	2	2	1	-	-	-	-	1	-	1	1	1	2	3	-	-
	3	2	1	-	-	1	-	1	-	-	-	-	2	3	1	-
	4 LOW	3	2	1	1	1	-2	-	- /	9		100	2	3	1	-
	5	2	1	0	-	1	4	-	-/	-	-	-	1	3	1	ï-
	6	3	2	1	1	1	4	3	-/	7	- 2	7	1	3	1	-
	verall relation	3	2	1	1	1	-	-	1	1 1		_	2	3	1	es es
Reco	mmended	l by	Во	ard	of S	Stud	lies	28-	07-2	023	TE	CH	NO	LO	(G)	
	Approved by Academic									M	NIVER	Date	AUT	09-	09-2	2023

23HS203	TAMILS AND TECHNOLOGY	L	T	P	C
		1	0	0	1

- To summarize the weaving industry and ceramic technology during Sangam Age
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola, Pallava and Pandya period
- To Explain about the water bodies of Sangam age and relate it to the agricultural usage
- To Outline to students the agriculture and irrigation technology during the Chola Period
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software

Weaving Industry during Sangam Age - Ceramic technology - Black and Red Ware Potteries (BRW) - Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION 3 TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY 3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV | AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use -Agriculture and Agro Processing - Knowledge of Sea - Fisheries -Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3 Development of Scientific Tamil -Tamil computing Digitalization of Tamil Books -Development of Tamil Software -Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize the weaving industry and ceramic technology during Sangam Age CO2: Explain the design and construction of houses during Sangam Age CO3: Explain the sculptures and temples of Chola, Pallava and Pandya period. **CO4:** Explain about the water bodies of Sangam age and relate it to the agricultural usage CO5: Outline the agriculture and irrigation technology during the Chola Period. CO6: Interpret and explain the digitalization of tamil books and development of Tamil software **TEXT BOOKS:** Dr.K.K.Pillay ,"Social Life of Tamils", A joint publication of 1 TNTB & ESC and RMRL

REFERENCES:																
1	Dr.S.Singaravelu, "Social Life of the Tamils - The Classical															
	Period"	Period", Published by: International Institute of Tamil														
	Studies.															
2	Dr.S.V.S	S.V.Subatamanian , Dr.K.D. Thirunavukkarasu,														
	"Historical Heritage of the Tamils", Published by:															
	International Institute of Tamil Studies															
		POs									PSOs					
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	-	_	-	-	-	1	1	1	-	-	-	-	-	_	_
	2	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-
	3	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-
	4	-	-	-	-	-	1	1	1	-	-	-	-	-	1	-
	5	-	-	-	-	ч	1	1_	1	-	1	-		-	1	-
	6 .ow	ER b	ã,	1	-	-	1	1	1	4		<u> </u>	A	-	7	-
	verall relation	Ā	11	20 J	\-	-	1	1	1	F	-	_	E	_	-	-
Recommended by Board of Studies 28-07-2023																
Approved by Academic					1st ACM Date 09-0					09-2023						

23EE281	3EE281 BASIC ELECTRICAL AND L T								
	ELECTRONICS ENGINEERING	2	0	2	3				
COURSE OBJECTIVES:									
To introduce the basics of electric circuits and analysis									
To impart knowledge in the basics of working principles									
	and application of electrical machines								
	 To introduce analog devices and their characteristics 								
To educate on the fundamental concepts of digital									
	electronics, functional elements and working of								
	measuring instruments								
 To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. 									
	ELECTRICAL CIRCUITS	Cuir	215.		6				
CIVIII	ELECTRICAL CIRCUITS				U				
DC Circuit	DC Circuits: Circuit Components: Conductor, Resistor, Inductor,								
Capacitor - Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh									
analysis with independent sources only (Steady State)-									
Introductio	n to AC Circuits -Steady state analysis of	RL,	RC	ີ, aາ	nd				
RLC circuit	s (Simple problems only).								
UNIT II ELECTRICAL MACHINES									
Construction and Warling and C. L. C. D.C. C. C. E. E. E.									
Construction and Working principle of DC Generators, EMF									
equation, Types and Applications- Working Principle of DC									
motors, Torque Equation, Types and Applications Construction,									
Working principle and Applications of Single-Phase Transformer.									
UNIT III	ANALOG ELECTRONICS				6				
PN Junction Diodes, Zener Diode-Characteristics & Applications-									
Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V									
Characteristics and Applications - Rectifier.									
UNIT IV	DIGITAL ELECTRONICS				6				
Review of number systems, Combinational logic (adder and									
subtractor) – representation of logic functions-SOP and POS forms,									
K-map representations and minimization using K-maps (up to 3									
variables).									

UNIT V | MEASUREMENTS AND INSTRUMENTATION | 6

Functional elements of an instrument, Standards and calibration, Operating Principle, types- Moving Coil and Moving Iron meters, Instrument Transformers- CT and PT, DSO-Block Diagram

Total: 30 PERIODS

LAB COMPONENT

- 1. Verification of Ohms and Kirchhoff's Laws.
- 2. Load test on DC Shunt Motor.
- 3. Characteristics of PN and Zener Diodes
- 4. Design and analysis of Half wave and Full Wave rectifiers
- 5. Implementation of Binary Adder and Subtractor
- 6. Study of DSO

Total : 30 + 30 = 60 Periods

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply fundamental laws to DC electric circuits and demonstrate it experimentally.
- CO2: Explain the steady state AC circuits with RL, RC, and RLC circuits
- CO3: Identify the working principle and applications of electrical machines with experimental results
- CO4: Demonstrate the characteristics of various analog electronic devices
- CO5: Experiment with the basic concepts of digital electronics and demonstrate the implementation of Binary Adder and Subtractor
- **CO6:** Illustrate the operating principles of measuring instruments and demonstrate DSO for the basic measurements.

TEXT BOOKS:

1 Kothari D P and I.J Nagrath,—Basic Electrical and Electronics Engineering , Second Edition, McGraw Hill Education, 2020

2	Sedha R. S.,—A textbook book of Applied ElectronicsI, S.																							
	Chand d									r r -				,										
3	A.K. Sa	whi	ney,	, Pu	nee	t S	awl	nne	y _/	4 C	ours	e in	Elec	tric	al &	τ								
	Electron	nic I	Мea	sur	em	ents	s &	Inst	trur	nen	tatio	n', l	Dhai	npa	t Ra	i								
	and Co,	201	15.																					
REF	ERENCE	S:																						
1	Kothari	DI	o an	d I.	JΝ	agr	ath,	. —Е	Basi	c El	ectri	cal I	Engi	nee	ring	<u>5</u> ∥,								
	Fourth Edition, Mc Graw Hill Education, 2019. S.K. Bhattacharya —Basic Electrical and Electronics																							
2	S.K. Bha	S.K. Bhattacharya —Basic Electrical and Electronics																						
	Engineering I, Pearson Education, Second Edition, 2017.																							
3	Thomas L. Floyd, Digital Fundamentals',																							
	11thEdition,Pearson Education,2017.																							
4												rinc	iples	5,										
		Albert Malvino, David Bates, _Electronic Principles, McGraw Hill Education; 7th edition, 2017.																						
5	Mahmood Nahvi and Joseph A. Edminister, —Electric																							
	Circuits, 86 Schaum 'Outline Series, McGraw Hill, 2002.																							
	ALC: 15		- 61	100					_		H.S. Kalsi, _Electronic Instrumentation', Tata McGraw-Hill,													
6	H.S. Ka	lsi,	_Ele	ectr					_					- 4		ill,								
	H.S. Ka New De	lsi, _e elhi,	_Ele	ectr 10	oni	c In	stru	ıme	nta	tior	ı' , T	ata l	McG	raw	7-H	,								
7	H.S. Ka New De James A	lsi, elhi, . Sv	_Ele , 201 vobe	ectr 10 oda	onio	c In	stru rd (ime	nta	tior	ı', T	ata l	McG	raw	7-H	,								
	H.S. Ka New De	lsi, elhi, . Sv	_Ele , 201 vobe	ectr 10 oda	onio	c In	stru rd (201	те С. Е 8.	nta	tior	ı', T	ata l	McG	raw	ion	to								
7	H.S. Ka New De James A	lsi, elhi, . Sv Cir	Ele , 201 vobe cuit	ectr 10 oda	onio , Ri Wil	cha	strurd (C. E 8.	orf	tior ,— I	oʻ, T	ata l 's In	McG trod	raw ucti	r-Hi	to Os								
7	H.S. Ka New De James A Electric	lsi, elhi, Cir	Ele , 201 vobe cuit	ectr 10 oda tsl, '	onio , Ri Wil	c In	stru rd (201	те С. Е 8.	enta Porf	tior,— I	10 n'	ata l	McG trod	raw ucti I	ion	to Os								
7	H.S. Ka New De James A Electric COs	lsi, elhi, Cir 1	Ele , 202 vob cuit 2	ectroda oda ts#, '	onio , Ri Wil	cha ey, 5	rd (201 I 6	C. E. 8. POs 7	orf 8 1	,— I 9 1	10	ata l's In	McG trod	ucti	r-Hi	to s 1								
7	H.S. Ka New De James A Electric COs 1	lsi, elhi, Cir 1 3	Ele , 201 vobe cuit 2 2	ectronal 10 oda 1	onio , Ri Wile 4 1	chaey, 5 -	rd (201 I 6 -	C. E 8. POs 7	Porf 8 1	,— I 9 1	10 1	/s In 11 -	trod 12 1	ucti	7-Hion PSO 2 -	to S 3 1 1								
7	H.S. Ka New De James A Electric COs 1 2 3	lsi, elhi, Cir 1 3 2	_Ele , 200 vobe cuit 2 2 1 2	ectroda oda ts#, '	onio , Ri Wil	cha ey, 5	rd (201) 1 6 - 1	7 - 1	8 1 1	9 1 1	10 1 1 1	's In 11 - -	12 1 1	ucti	7-H:ion 2	to S 1 1 1								
7	H.S. Kan New De James A Electric COs 1 2 3 4	lsi, elhi, a. Sv Cir 1 3 2 3	Ele vobo cuit 2 2 1 2	3 1 -	7, Ri Wild 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	cha ey, 5	rd (201 I 6 -	7 - 1 1	8 1 1 1 1 1	9 1 1 1	10 1 1 1 1	/s In 11 -	12 1 1 1	1 3 2 3	7-Hi	to 3 1 1 1 1								
7	H.S. Ka New De James A Electric COs 1 2 3 4 5	1 3 2 3 2 3	_Electric	ectronal 10 oda 1	onio , Ri Wile 4 1	chaey, 5 -	rd (201 I 6 1 1	7 - 1 1 -	8 1 1 1 1 1 1 1	9 1 1	10 1 1 1	's In 11 - -	12 1 1	## Tank Control Contr		to 3 1 1 1 1								
7	H.S. Kan New Dec James A Electric COs 1 2 3 4 5	lsi, elhi, a. Sv Cir 1 3 2 3	Ele vobo cuit 2 2 1 2	3 1 -	7, Ri Wild 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	cha ey, 5	rd (201) 1 6 - 1	7 - 1 1	8 1 1 1 1 1	9 1 1 1	10 1 1 1 1	's In 11 - -	12 1 1 1	1 3 2 3	7-Hi	to 3 1 1 1 1								
7	H.S. Kan New Des James A Electric COs 1 2 3 4 5 6 verall	1 3 2 3 2 3	_Electric	3 1 -	7, Ri Wild 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	cha ey, 5	rd (201 I 6 1 1	7 - 1 1 -	8 1 1 1 1 1 1 1	9 1 1 1	10 1 1 1 1	's In 11 - -	12 1 1 1	## Tank Control Contr		to 3 1 1 1 1								
7 O Corr	H.S. Kan New Dec James A Electric COs 1 2 3 4 5	lsi, elhi, Sv. Cir 1 3 2 3 2 3 2 3	Electric 2 2 1 2 1 2 1 2 1 2 1 2	3 1 - 1 - 1	4 1 - 1 - 1	5	rd (201 I 6 - 1 1 - 1	7 - 1 1 - 1	8 1 1 1 1 1 1 1 1 1	9 1 1 1 1 -	Dorf 10 1 1 1 1 1 1 1 1	's In 11 - -	12 1 1 1 1 1	## TENT		to 3 1 1 1 1 1 1								

23ME211	ENGINEERING GRAPHICS	L	T	P	C
		3	0	2	4

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

UNIT II	PROJECTION OF POINTS, LINES AND	9+6
	PLANE SURFACE	

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method. Projection of planes (hexagonal and pentagonal planes

only) inclined to both the principal planes by rotating object method.

LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

UNIT III PROJECTION OF SOLIDS AND FREE HAND 9+6 SKETCHING

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

UNIT IV	PROJECTION OF SECTIONED SOLIDS AND	9+6
	DEVELOPMENT OF SURFACES	

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section plane inclined to the horizontal plane

UNIT V ISOMETRIC PROJECTION 9+6

Principles of isometric projection - Isometric scale - Isometric view - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions.

LIST OF EXERCISES:

- 1. Drawing Isometric view and projection of simple solids.
- 2. Drawing three dimensional modeling of isometric projection of combination of solids.

TOTAL: 75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Construct the conic curves, involutes and cycloids.
- CO2: Develop and Sketch the orthographic projections of points, lines and plane surfaces.
- CO3: Develop and Sketch the orthographic projections of simple solids.
- CO4: Construct the projections of sectioned solids and development of the lateral surfaces of solids.
- CO5: Develop and Sketch the isometric sections of solids.
- CO6: Develop and Sketch the orthographic projection 2D and 3D objects using Auto CAD.

TEXT BOOKS:

- 1 Bhatt N.D. and Panchal V.M., —Engineering Drawingl, Charotar Publishing House, 53rd Edition, 2019.
- 2 Basant Agarwal and Agarwal C.M.,—Engineering Drawingl, McGraw Hill, 2nd Edition, 2019

REFERENCES:

- 1 Natrajan K.V., —A Text Book of Engineering Graphicsl, Dhanalakshmi Publishers, Chennai, 2018.
- 2 Gopalakrishna K.R., —Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition, 2017.

3	Luzzader, Warren.J. and Duff, John M., -Fundamentals of															
	Enginee	erin	gΙ	Orav	win	ıg v	with	n ar	n ir	itro	duc	tion	to	Inte	eract	ive
	Computer Graphics for Design and Production, Eastern															
	Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi,															
	2005.															
4	Parthas	Parthasarathy N. S. and Vela Murali, —Engineering														
	Graphic	sI,	Ox	for	d L	Jniv	vers	ity,	Pr	ess	, Ne	ew l	Delh	i, 2	2015	. 5.
	Shah M	.В.,	and	d R	ana	В.0	C., -	–Er	ıgir	eer	ing	Dra	wing	g∥, I	ears	son
	Educati	Shah M.B., and Rana B.C., —Engineering Drawing, Pearson Education India, 2nd Edition, 2009.														
1	Venugopal K. and Prabhu Raja V., —Engineering Graphics",															
5	Venugo										Engi	neer	ing	Gra	phi	cs",
5	Venugo New Ag	pal	K.	and	d Pı	rabl	nu I	Raja	V.,	, —l	0	neer	ing	Gra	phi	cs",
	New Ag	pal	K.	and	d Pı	rabl	nu I (P) I	Raja	V.,	, —l	0	neer	ring		phi PSC	
		pal	K.	and	d Pı	rabl	nu I (P) I	Raja Lim	V.,	, —l	0	neer	12			
	New Ag	pal ge I	K.	and	d Pi tior	rabl nal (nu I (P) I	Raja Lim P O s	V.,	, —l d, 2	008.				PSC)s
	New Ag	pal ge I 1	K.	and rna	d Pı tior	rabl nal (nu I (P) I	Raja Lim P O s	V., nited	, —l d, 2	10	11	12	1	PSC 2)s
	New Ag	pal ge I 1	K. nter	and rna 3	d Prition	rabl nal (5	nu I (P) I	Raja Lim P O s	V., nited	, —l d, 2	10 3	11 2	12 2	1 2	PSC 2 2)s
	New As	ppal ge I 1 3	K. nte:	and rna 3 1	d Protion 4 1	rabl nal (5 2	nu I (P) I	Raja Lim P O s	8 1	, —l d, 2	10 3 3	11 2 2	12 2 2	1 2 2	PSC 2 2 2)s

Approve	d b	y A	cad	emi	c		1st	AC	M		Date	<u>;</u>	09	-09-2	2023
Recommended	Recommended by Board of Studies							07-2	202 3	}					
Correlation	3		1	1	4	ILIA	EO.	8	INA.)	4	4	Z	2	15
Overall	2	2	1	1	2	-		1		2	2	2	2	2	

23ME221	ENGINEERING PRACTICES	L	T	P	C
	LABORATORY	0	0	4	2

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment; Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK

- a) Sawing
- b) Planning
- c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture
- b) Study of common industrial trusses using models.

PART II MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

BASIC MACHINING PRACTICE

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

SHEET METAL WORK

- a) Forming and Bending
- b) Making of a square Tray

MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.

TOTAL: 30 PERIODS

COL	RSE OU	TC	'ON	/ES	· ·													
	After co					he c	·0111	1 SP	the	St11	den	ts w	ill he	a h	le to	٦.		
CO1·	Plan the																	
COI.	work.	PI.	pen	ne.	lay	Jui	101	COL	LIIII	<i>)</i> 11 1	ious	enoi	iu pi	um	וווט	5		
CO2.				1 1						1				1.0				
CO2:	Make u			ela	ıng	equ	aipi	ner	it ai	na c	arpe	entry	y toc	ol fc	r			
	making																	
CO3:	Demons					rifu	gal	pu	mp,	air	con	ditic	oner	anc	d			
	foundry																	
CO4:	Demons	stra	te t	he e	elec	tric	al v	viri	ng c	conr	necti	ons	for					
	househo	old	app	olica	atio	ns a	and	stu	dy	the	wor	king	g of i	ron	bo	X		
	and fan	reg	gula	tor														
CO5:	Identify	the	e ba	sic	ele	ctro	nic	cor	npc	ner	its a	nd e	xpla	in t	he			
	gates ar	nd s	old	erir	ng r	netl	hod	s.										
CO6:	Examin	e th	e p	erfo	orm	anc	e a	nd o	ope	rati	on o	f CR	O, I	ED	TV	r		
	and Sm	art	pho	ne.					٣.,			9	1		4			
	20/1/			3	1		1	POs	. /	Y]	PSC)s		
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	3	2	1	1	1	1	1		1	2	2	2	2	1	_		
, i	2	3	2	1	1	1	1	1	-	-	2	2	2	2	1	_		
	3 CINE	3	2	1	1	1	1	1	عاد	01	2	2	2	2	1	(_		
	4	3	2	1	1	1	1	1	OAN	NAL	2	2	2	2	1	5		
	5	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-		
	6	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-		
	U						-	_										
O		3	2	1	Overall 3 2 1 1 1 1 1 2 2 2 2 1 -													
Corı	verall relation								-	-		2	2	2	1	-		
Corı	verall	d by	Во	ard	of S	Stuc		28-	- 07-2 AC	- 2023		2 Date				2023		

23IT221	DATA STRUCTURES AND	L	T	P	C
	ALGORITHMS LABORATORY	0	0	4	2

- To impart the basic concepts of data structures and algorithms.
- To be familiar with writing recursive methods.
- To implement operations on Linked List, Stack and Queues.
- To implement traversal operations of trees and graphs.
- To understand concepts about various algorithm design techniques, searching and sorting techniques.

PRACTICALS:

- 1. Program to find the largest and smallest number in an unsorted array.
- 2. Program to construct operations on a Singly linked list.
- 3. Program to implement operations on a doubly linked list.
- 4. Program to sort the elements using insertion sort.
- 5. Program to sort the elements using quick sort.
- 6. Program to sort the elements using merge sort.
- 7. Program to construct t a Stack using an array and Linked list.
- 8. Program to perform Queue using an array and Linked list.
- 9. Program to execute Circular Queue.
- 10. Program to convert an infix expression to postfix expression.
- 11. Program to achieve BFS and DFS
- 12. Program to implement N Queens problem.
- 13. Program to apply Binary Tree Traversal
- 14. Program to carry out Travelling Salesman Problem

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Discuss the concept of data structures through ADT including List, Stack and Queues.

CO2: Explain basic concepts about stacks, queues, lists, trees and graphs. CO3: Apply and implement various tree traversal algorithms and ensure their correctness. CO4: Apply algorithms and develop algorithms through step-bystep approach in solving problems with the help of fundamental data structures. CO5: Build applications and justify use of specific linear data structures for various Applications. CO6: Apply binary data structures for various Applications. **TEXT BOOKS:** Jean-Paul Tremblay, Paul G. Sorenson, "An Introduction to Data Structures with Application", TMH, 2017. Richard F, Gilberg, Forouzan, "Data Structures", Cengage, 2nd Edition, 2004. **REFERENCES:** Larry R. Nyhoff, "ADTs, Data Structures, and Problem Solving with C++", Prentice Hall Edition, 2004 Thomas H. Cormen, Charles E. Leiserson, "Introduction to Algorithms", 3rd Edition, 2010 **POs PSOs COs** Overall Correlation Recommended by Board of Studies 28-07-2023 Approved by Academic 1st ACM Date 09-09-2023

23HS221	SOFT SKILLS	L	T	P	C
		0	0	2	1

- To help learners improve their interpersonal skills and critical thinking
- To familiarize learners with the attributes of a leader to enhance team performance
- To prepare students to face job interviews
- To help learners to know the importance of ethics in work place

UNIT I INTERPERSONAL COMMUNICATION

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

UNIT II | TEAM WORK AND LEADERSHIP

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

UNIT III TIME MANAGEMENT AND STRESS MANAGEMENT

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self- awareness and regulation.

UNIT IV CRITICAL THINKING AND WORK ETHICS

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance, attitude, character, organizational skills, productivity, respect.

UNIT V INTERVIEW SKILLS AND RESUME BUILDING TECHNIQUES

Telephonic interview, online interviews, f2f interviews, FAQ soft skills interview questions, drafting error-free CVs/ Resumes and Cover Letters, selecting the ideal format for resume, content drafting along with sequencing, art of representing one's qualifications and most relevant work history, video resume, website resume.

TOTAL: PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Express their thoughts, opinions and ideas confidently to one or more people in spoken form
- CO2: Develop evolving competences required for professional success
- CO3: Demonstrate knowledge and skills in a group as team player and leader
- CO4: Compose a comprehensive resume reflecting qualifications, exposure and achievements
- CO5: Exhibit knowledge and skills confidently during job interviews
- CO6: Demonstrate ethical and professional behaviour at workplace in all situations

TEXT BOOKS:

1 Soft Skills: Key to Success in Workplace and Life by Meenakshi Raman & Shalini Upadhyay. Cengage

REFERENCES:

- 1 English for Job Seekers (Language and Soft Skills for the Aspiring) by Geetha Rajeevan, C.L.N. Prakash) Cambridge University Press pvt, Ltd.
- 2 Business Benchmark by Norman Whitby. Cambridge University Press pvt, Ltd

COs						I	POs	,					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	-	1	-	-	-	-	-	-	2	2	-	-	-	-	-	
2	-	ı	-	-	-	2	2	2	3	3	2	2	-	-	2	
3	-	•	-	-	-	-	-	-	3	3	-	-	-	-	-	
4	-	•	-	-	-	-	-	-	3	3	-	-	-	-	-	
5	-	ı	-	-	-	-	-	-	3	3	-	-	-	-	-	
6	-	ı	1	-	-	-	-	3	3	3	-	-	-	1	3	
Overall Correlation	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2	
Recommended	d by	Во	ard	of S	tud	ies	28-	07-2	2023							
Approve	ed b	y A	cad	emi	С		1 st	t AC	M		Date	?	09-0	19-20	023	

SEMESTER -III

23MA202	DISCRETE MATHEMATICS	L	T	P	C
		3	1	0	4

COURSE OBJECTIVES:

- To develop student's logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science related courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures
- To understand the concepts and significance of Lattices and Boolean algebra which are widely used in computer science and engineering.

UNIT I LOGIC AND PROOFS

9+3

Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.

UNIT II | COMBINATORICS

9+3

Mathematical induction - The basics of counting - Well ordering - Strong induction - The pigeonhole principle - Permutations and Combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.

UNIT III GRAPHS

9+3

Graphs and graph models - Graph terminology and special types of graphs - Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.

UNIT IV | ALGEBRAIC STRUCTURES

9+3

Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets -

Lagrange's theorem - Definitions and examples of Rings and Fields. UNIT V LATTICES AND BOOLEAN ALGEBRA 9+3Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra -Boolean Homomorphism. **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply the concepts of propositional and predicate calculus to the given logical statements. CO2: Apply the idea of combinatorial techniques to various engineering problems. CO3: Find the solutions for technical problems using graphs. CO4: Apply the concepts and properties of algebraic structures in computational theory. CO5: Apply the lattice structure and its properties to engineering problems. CO6: Apply Boolean expressions in areas like computational theory. TEXT BOOKS: Rosen. K.H., "Discrete Mathematics and its Applications", 1 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2017. Tremblay. J.P. and Manohar. R, "Discrete Mathematical 2 Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011. REFERENCES:

Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari,

Mathematics Pearson Publications.

Discrete

- 2 Grimaldi. R.P. "Discrete and Combinatorial Mathematics:
 An Applied Introduction", 5thEdition, Pearson Education
 Asia, Delhi, 2013

 2 Koshy, T. "Discrete Mathematics, with Applications"
- 3 Koshy. T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.
- 4 Lipschutz. S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.

2 2	3 1	4	5	6	7	8	9	10	44	40		_	
-	1	1			′	O	ש	10	11	12	1	2	3
2		1	-	-	ı	-	ı	1	-	1	3	-	-
2	1	1	-	-	ı	-	ı	1	-	1	3	-	-
2	1	1	-	-	ı	•	ı	1	-	1	3	-	-
2	1	1	-	-	1	-	1	1	,	1	3	1	-
2	1	1	-	-,	-	-			9	1/	3	4	_
2	1	\1	-	4	1	-	1	1	-	1	3	-	-
2	1	1	-	-	1	-		1		1	3	-	J .
	2	2 1 2 1	2 1 1 2 1 1	2 1 1 - 2 1 1 -	2 1 1 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1	2 1 1 2 1 1	2 1 1 1 2 1 1 1	2 1 1 - - - - - 1 3 2 1 1 - - - - - 1 3	2 1 1 1 3 - 2 1 1 1 3 -

Recommended by Board of Studies 08-04-2023

Approved by Academic 2nd ACM Date 25-05-2025

23IT301	JAVA PROGRAMMING	L	T	P	C
		3	0	0	3

- To explain object oriented principles like abstraction, encapsulation, inheritance, and polymorphism and apply them for solving problems.
- To explain the principles of inheritance and polymorphism and demonstrate how they relate to the design of abstract classes.
- To explain the implementation of packages and interfaces.
- To explain the concepts of exception handling, multithreading and collection classes.
- To explain the design of Graphical User Interface using swing controls.

UNIT I INTRODUCTION TO JAVA PROGRAMMING 9

Java Programming - Java Buzz words, Data types, variables, Constants, Scope and Lifetime of variables, Operators, Type conversion and casting, Enumerated types, Control flow- block scope, conditional statements, loops, break and continue statements, arrays, simple java standalone programs, class, object, and its methods constructors, methods, static fields and methods, access control, this reference, overloading constructors, recursion, exploring string class, garbage collection.

UNIT II INHERITANCE AND INTERFACE 9

Inheritance – Inheritance types, super keyword, preventing inheritance: final classes and methods. Polymorphism – method overloading and method overriding, abstract classes and methods. Interfaces- Interfaces Vs Abstract classes, defining an interface, implement interfaces, accessing implementations through interface references, extending interface, inner class. Packages-Defining, creating and accessing a package, importing packages.

UNIT III EXCEPTION HANDLING AND MULTI THREADING

Exception Handling-Benefits of exception handling, the classification of exceptions - exception hierarchy, checked exceptions and unchecked exceptions, usage of try, catch, throw, throws and finally, creating own exception subclasses. Multithreading - Differences between multiple processes and multiple threads, thread life cycle, creating threads, interrupting threads, thread priorities, synchronizing threads, inter-thread communication, producer consumer problem.

UNIT IV COLLECTION FRAMEWORK, I/O, GENERIC 9 PROGRAMMING 9

Collection Framework in Java – Introduction to java collections, Overview of java collection framework, commonly used collection classes- Array List, Vector, Hash table, Stack, Lambda Expressions. Files- Streams- Byte streams, Character streams, Text input/output, Binary input/output, File management using File class. Generic Programming – Generic classes – generic methods.

UNIT V EVENT HANDLING PROGRAMMING 9

Hierarchy for Swing components, Overview of some Swing components – Jbutton, JLabel, JTextField, JTextArea, simple Swing applications, Layout management – Layout manager types – border, grid and flow. Event Handling- Events, Event sources, Event classes, Event Listeners, Delegation event model, Examples: Handling Mouse and Key events, Adapter classes

TOTAL: 45 PERIODS

9

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the concepts of classes and objects to solve simple problems.
- CO2: Identify relationships among classes needed for a specific problem with interfaces and inheritance.

CO3:	Illustrat	e	erro	or	haı	ndli	ng	te	chn	iqu	es	usir	ıg (exce	epti	on
	handlin	g aı	nd 1	nul	tith	rea	din	g.								
CO4:	Develop	o a]	ava	pr	ogr	ams	s wi	th t	he o	con	cept	s of	a hie	rar	chy	of
	Java col	lect	ion	fra	mev	wor	k.									
CO5:	Illustrat	e I/	/O s	stre	ams	s an	d C	ene	eric	pro	grai	nmi	ng to	o pı	ovi	de
	a solutio	on t	o a	giv	en s	set o	of re	equ	irer	nen	ts.					
CO6:	Apply the ability to employ various types of event handling															
	using swing.															
TEX	ГВООК	BOOKS:														
1	Herbert	Herbert Schildt, "Java: The Complete Reference", 11 th														
	Edition, McGraw Hill Education, New Delhi, 2019															
2	Herbert	Herbert Schildt, "Introducing JavaFX 8 Programming", 1 st														
	Edition, McGraw Hill Education, New Delhi, 2015															
REFI	ERENCE									-			- 5			
1	Paul De	itel	, Ha	irve	y D	eite	el, "	Java	a SI	E 8 f	or p	rogr	amn	ners	s",3	rd
2	Edition,	Edition, Pearson, 2015.														
2	E. Balag	guri	usai	my	, "]	Prog	grai	nm	ing	wi	th Ja	ava"	, 7tł	ı Ec	litic	n,
1	Mc Gro		- , 11'							4			_		To be	
3	Cay S.									nda	ame	ntals	s", V	olu/	me	1,
	11th Ed	12,52,22							_	Uľ	IE	CI.	NO	LV	91	
4	R . Nag						re]	ava	ı: A	n I	nteg	rate	d Ap	pro	oacł	n",
	Dreamt	ech	Pre	ess.	201	6.								1		
(COs		1 -	I _	1 .	ı _		Os					1		PSC	
		1	2	3	4	_	6	7		9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	1	-	-	-	1	2	1	1
	2	3	2	1	1	1	-	-	1	1	1	-	1	3	1	1
	3	2	1	-	-	1	-	-	1	1	1	-	1	2	1	1
	4	2	1	-	-	1	-	-	1	1	1	-	1	3	1	1
	5	2	1	-	-	1	-	-	1	1	1	-	1	2	1	1
	6	3	2	1	1	1	-	-	1	1	1	-	1	2	1	1
	verall relation	3	2	1	1	1	_	-	1	1	1	-	1	3	1	1
	mmended	l br	, Ro	ard	of S	Hud	ies				U8.	.04_2	023			
Reco	Approve	162	08-04-2023 2 nd ACM Date 25-05-						05-2	2025						
	TPPIOVE			11(_1 41		Dail	•		55-2	-020					

23CS302	DATABASE MANAGEMENT	L	T	P	C
	SYSTEMS	3	0	0	3

- To learn the fundamentals of data models, conceptualize and depict a database system using ER diagram.
- To study the principles to be followed to create an effective relational database and write SQL queries to store/retrieve data to/from database systems.
- To know the fundamental concepts of transaction processing, concurrency control techniques and recovery procedure.
- To learn about the internal storage structures using different file and indexing techniques and the basics of query processing and optimization.
- To study the basics of distributed databases, semi-structured and un-structured data models.

UNIT I	RELATIONAL DATABASES	9
1 1		

Purpose of Database System - Views of Data - Data Models - Database System Architecture - Introduction to Relational Databases - Relational Model - Keys - Relational Algebra - Relational Calculus - SQL Fundamentals - Advanced SQL features - Triggers - Embedded SQL

UNIT II	DATABASE DESIGN	9

Mapping Entity-Relationship Model – ER Diagrams – Functional Dependencies – Non-Loss Decomposition Functional Dependencies – First Normal Form – Second Normal Form – Third Normal Form – Dependency Preservation – Boyce/Codd Normal Form – Multi-Valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form.

UNIT III	TRANSACTION MANAGEMENT	9
Transactio	n Concepts - ACID Properties - Serializability	y –
	n Isolation Levels - Concurrency Control - Need	
Concurrer	ncy – Lock-Based Protocols – Deadlock Handlin	g -
	System – Failure Classification – Recovery Algorithn	
UNIT IV	IMPLEMENTATION TECHNIQUES	9
Organiona	of Physical Storage Media - RAID - File Organization	272
	ion of Records in Files – Indexing and Hashing	
_	ndices – B+ tree Index Files – Static Hashing – Dyna:	_
	Query Processing Overview – Catalog Information	
_	nation – Query Optimization.	101
	NOSQL DATABASE	9
Overview	of Distributed Databases - Data Fragmentation	n –
Replication	n - NOSQL Database: Characteristics - CAP theorem	m –
Outline of	NOSQL Datastores: Column Oriented, Document, K	ley-
Value and	Graph Types - Applications - CRUD Operations.	
	TOTAL: 45 PERIO	DDS
700	OUTCOMES:	Y
	r completion of the course, the students will be able t	
	ain the concepts of Database Management Systems a	and
	ly SQL Queries Using Relational Algebra	
	ly conceptual modeling to real world applications a	and
	gn database schemas	
	ly the knowledge of normalization theory to norma	lize
data	base.	
_	ain the concepts of Transaction Processing and main	tain
cons	istency of the database.	
CO5: Expl	ain basic database storage structures, access techniq	ues
and	query processing.	
CO6: Illus	trate distributed, semi-structured and unstructu	red
data	base systems.	

TFX	T BOOK	S.														
1	Abraha		Silh	erso	cha	t-7	Не	nrv	F	K	arth	S	S ₁₁	lhai	rsha	n
-	"Databa							-								ita
	McGrav		-			Co	ricc	Pts	,	JC V	CITT		MILI	J11,	10	ıta
2						mka	ant	R	Max	zath	ne "	Fun	dam	ent	als	of
_		Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson Education,														
		2021.														
REF	ERENCES:															
1	C. J. Date, A. Kannan, S. Swamynathan, "An Introduction to															
_	Database Systems", Eighth Edition, Pearson Education, 2006.															
2	Raghu															
	U						-									
	2010.	Management Systems", Fourth Edition, Tata McGraw Hill, 2010.														
3	G. K.	Gu	pta	, "	Dat	taba	ase	Ma	ana	gen	nent	Sv	stem	ıs",	Та	ıta
	G. K. Gupta, "Database Management Systems", Tata McGraw Hill, 2011.															
	McGrav	vΗ	ill,	201	1.		- 2		٠.,			•			4	
4	McGrav Carlos		-	U.S.		eve	n	Mo	rris	, I	Peter	r R	ob,	"E)esi	gn
4	All Indian	Co	ror	iel,	St			D					11			
4	Carlos	Co ent	oror atio	nel, on a	St			D					11			
_	Carlos Implem Learnin	Co ent	oror atio	nel, on a	St		nag	D	ent"				11	Ce		ge
_	Carlos Implem	Co ent	oror atio	nel, on a	St		nag	eme	ent"			Edi	11	Ce	nga	ge
_	Carlos Implem Learnin	Co enta g, 2	oron atio 011	nel, on ai	St nd 1	Maı	nag	eme POs	ent"	, N	inth	Edi	tion,	Cer	nga 'SO	ge s
_	Carlos Implem Learnin COs	Co enta g, 2 1	oronatio 011 2	nel, on an	St nd 1	Маі 5 1	I 6	POs 7	8 -	9 2	10 1	Edi 11 1	12 2	T 1 2	rga 2 1	ge s -
_	Carlos Implem Learnin COs 1	2 2	2 1 2	3 -	St nd 1	5 1	nag	eme POs	8 -	9 2 2	10 1	11 1 1	12 2 2	T 1 2 3	rga 2 1	ge s
_	Carlos Implem Learnin COs 1 2 3	2 3 3	2 1 2 2	nel, on an	St nd 1 4 - 1 1	Маі 5 1	I 6	POs 7	8 - -	9 2 2 2	10 1 1 1	11 1 1	12 2 2 2	1 1 2 3	rga 2 1 1	ge s -
_	Carlos Implem Learnin COs 1 2 3 4	2 3 2	2 1 2 2 1	3 -	St nd 1	5 1	I 6	POs 7	8 -	9 2 2 2 2	10 1 1 1 1	11 1 1	12 2 2 2	Cer 1 2 3 3 2	rga 2 1	ge s -
_	Carlos Implem Learnin COs 1 2 3 4 5	2 3 2 2 2	2 1 2 2 1 1	3 - 1	St 3 4 - 1 1	5 1 1 -	I 6	POs 7	8	9 2 2 2 2 1	10 1 1 1 1 1	11 1 1 1 1	12 2 2 2 1	T 2 3 3 2 2 2	nga 2 2 1 1 - -	ge 3
	Carlos Implem Learnin COs 1 2 3 4	2 3 2 2 2	2 1 2 2 1	3 -	St nd 1 4 - 1 1	5 1 1 - -	I 6	POs 7	8 - -	9 2 2 2 2 1	10 1 1 1 1	11 1 1 1 1 -	12 2 2 2	T1 2 3 3 2 2 2 2	rga 2 1 1	ge s -
O	Carlos Implem Learnin COs 1 2 3 4 5 6	2 3 2 2 2	2 1 2 2 1 1	3 - 1	St 3 4 - 1 1	5 1 1 -	I 6	POs 7	8	9 2 2 2 2 1	10 1 1 1 1 1	11 1 1 1 1	12 2 2 2 1	T 2 3 3 2 2 2	nga 2 2 1 1 - -	ge 3
O	Carlos Implem Learnin COs 1 2 3 4 5 6 verall	2 3 2 2 2 3	2 1 2 2 1 1 1 2	3 - 1 1	St 4 - 1 1 1	5 1 1 - 1 1	I 6	POs 7	8	9 2 2 2 2 1	1 1 1 1 1 1 1	11 1 1 1 1 -	12 2 2 2 1 1 2 2	T1 2 3 3 2 2 2 2	nga 2 1 1 1 - 1	ge 3

23HS301	UNIVERSAL HUMAN VALUES	L	T	P	C
	AND ETHICS	3	0	0	3

- Development of a holistic perspective based on selfexploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.
- Strengthening of self-reflection.
- Development of commitment and courage to act.

UNIT I	COURSE INTRODUCTION	9

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration - Continuous Happiness and Prosperity- A look at basic Human Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority -Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

UNIT II	UNDERSTANDING HARMONY IN THE	9
	HUMAN BEING	

Harmony in Myself- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body'- Sukh and Suvidha- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Harmony in Human-Human Relationship -Understanding Harmony in the family – the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust(Vishwas) and Respect as the foundational values of relationship -Understanding the meaning of Vishwas; Difference between intention and competence -Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family)-Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order- from family to world family.

UNIT IV ENGINEERING ETHICS

9

9

Senses of <u>_Engineering</u> Ethics, - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

UNIT V | SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination-Moral Leadership -Code of Conduct - Corporate Social Responsibility.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Understand the need of value education.

CO2: Comprehend the difference between self and body.

CO3: Understand the need to exist as an unit of Family and society. CO4: Understand Harmony at all levels. **CO5:** Apply the values acquired in the professional front. CO6: Identify appropriate technologies for ecofriendly production systems. **TEXT BOOKS:** Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010 3. Mike W. Martin and Roland Schinzinger, -Ethics in 2 Engineering, Tata McGraw Hill, New Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, 3 -Engineering Ethicsl, Prentice Hall of India, New Delhi, 2004 REFERENCES: Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya 1 Prakashan, Amarkantak, 1999. Human Values, A.N. Tripathi, New Age Intl. Publishers, 2 New Delhi, 2004. The Story of Stuff (Book). 3 The Story of My Experiments with Truth - by Mohandas 4 Karamchand Gandhi AICTE Model Curriculum Humanities, Social Science and Management Courses (UG Engineering & Technology) 169 | Page . Small is Beautiful - E. F Schumacher. 6 Slow is Beautiful - Cecile Andrews. 7 Economy of Permanence - J C Kumarappa 8. Bharat Mein Angreji Raj - Pandit Sunderlal. Rediscovering India - by Dharampal. 8 Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi. 9 India Wins Freedom - Maulana Abdul Kalam Azad. 10 Vivekananda - Romain Rolland (English) 13. Gandhi -11 Romain Rolland (English).

12	Charles	B. I	Flec	ldei	rma	nn,	_F	ngi	nee	rin	g Etl	nics	, Pea	arso	n	
	Prentice							_		•	J	•				
13	Charles				-					ard	and	Mic	hae	1 I.		
	Rabins,													-		
		Cengage Learning, 2009.														
WEB	B SOURCES:															
1																
2	www.ns				•	,										
3		_			ors.	<u> </u>										
	www.globalethics.org POs PS0													PSO	s	
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	_	-	-	_	_	3	3	3	3	3	-	_	_	_	3
	2	-	-	-	-	_	3	3	3	3	3	-	-	-	-	3
	3	1	-	-	-	-	3	3	3	3	3	-	-	-	-	3
	4 .ow	ER E	RE	-	-	-	3	3	3	3	3		A	-		3
	5	-	-	2	<u> </u>	- %	3	3	3	3	3	-	_	-	-	3
	6	-	-7	<u> </u>	1	- ×	3	3	3	3	3		[-]	-	-1	3
	verall relation		1	-	-	3	3	3	3	3	1	1	-	-	3	
Reco	mmende	d by	Во	ard	of S	tud	lies	E(3E	OF	08	-04-2	023	LO	G)	
	Approve	ed b	y A	cad	emi	CAFF	LIAT	2nd	1 A(CM	NIVE	Date	AUT	25-	05-2	2025

02/0011	DICITAL PRINCIPLES AND	т	т	D						
23CS311	DIGITAL PRINCIPLES AND SYSTEM DESIGN	1 3	$\frac{\mathbf{T}}{0}$	P 2	4					
COLIDEE ODI		3	U	2	-4					
COURSE OBJ		(•	.1:-						
	n digital circuits using simplified Boole	ean i	unc	:t101	ns					
To analyze and design combinational circuits										
To analyze and design synchronous and asynchronous										
sequential circuits										
	stand Programmable Logic Devices									
1	HDL code for combinational and sequ			rcu	its					
UNIT I BO	OLEAN ALGEBRA AND LOGIC GA	TES	5		9					
Number Syste	ms - Arithmetic Operations - Binary Co	des	- Bo	ole	an					
· ·	Logic Gates - Theorems and Propertie									
- C	lean Functions - Canonical and Stand									
-	of Boolean Functions using Karnaugh									
	and NOR Implementations.		Г	400)					
	MBINATIONAL LOGIC				9					
M M										
The second second	l Circuits - Analysis and Design Proced				ry					
	ctor - Decimal Adder - Binary			1	50 <u>-</u>					
0	omparator - Decoders - Encoders - M		_		3 -					
	o HDL - HDL Models of Combinationa		cui	ts.						
UNIT III SY	NCHRONOUS SEQUENTIAL LOGIC	С			9					
Sequential Cir	rcuits - Storage Elements: Latches ,	Fli	5-F1	ops	-					
_	locked Sequential Circuits - State Re	_		_						
	Design Procedure - Registers and Cou									
	uential Circuits.									
	YNCHRONOUS SEQUENTIAL LOG	IC			9					
Analysis and	Design of Asynchronous Sequentia	al C	ircı	iits	_					
Reduction of S	State and Flow Tables - Race-free State	e As	sigr	me	nt					
- Hazards.			-							
UNIT V ME	EMORY AND PROGRAMMABLE LO	GIO	2		9					
RAM - Memor	ry Decoding - Error Detection and Corr	ectio	n -	RO	M					

- Programmable Logic Array - Programmable Array Logic - Sequential Programmable Devices.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- 1. Design of adders and subtractors.
- 2. Design of code converters.
- 3. Design of Multiplexers & Demultiplexers.
- 4. Design of Encoders and Decoders.
- 5. Design of Magnitude Comparators
- 6. Design and implementation of counters using flip-flops
- 7. Design and implementation of shift registers.

TOTAL: 45 +30 =75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Solve K-map functions, Boolean algebra functions and simplification, procedures relevant to digital logic
- CO2: Analyse the combinational Logic circuit with adders and subtractors
- CO3: Examine the combinational Logic circuit with multiplexer, demultiplexer, encoder and decoder
- CO4: Infer a Synchronous Sequential Circuit
- CO5: Develop an Asynchronous Sequential Circuit
- CO6: Outline a logic gates using various memory and PLD's

TEXT BOOKS:

- M. Morris R. Mano, Michael D. Ciletti, "Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog", 6th Edition, Pearson Education, 2017.
- **2** G. K. Kharate, "Digital Electronics", Oxford University Press, 2010

REFERENCES:

1 John F. Wakerly, "Digital Design Principles and Practices", Fifth Edition, Pearson Education, 2017.

2	Charles H. Roth Jr, Larry L. Kinney, "Fundamentals of Logic															
	Design", Sixth Edition, CENGAGE Learning, 2013.															
3	Donald D. Givone, "Digital Principles and Design", Tata Mc															
	Graw Hill, 2003.															
	POs PSOs												s			
`	COs		2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1		1	-	-	1	-	-	-	-	1	-	-	2	1	-
	2		2	1	1	1	ı	-	-	-	1	-	-	3	1	-
	3	3	2	1	1	2	ı	-	-	2	1	-	-	3	1	-
	4	3	2	1	1	2	ı	-	-	2	1	-	-	3	1	-
	5	2	1	-	-	1	ı	-	-	2	1	-	-	2	1	-
	6	2	1	-	-	1	ı	-	-	-	1	-	-	2	1	-
O	verall	3	2	1	1	2				2	2			3	2	
Cor	relation	3	_	1	1	2	-	_		_	2	-	-	3	2	_
Reco	Recommended by Board of Studies 08-04-2023															

COLLEGE OF TECHNOLOGY

Date

25-05-2025

2nd ACM

23IT311	ADVANCED ALGORITHMS	L	T	P	C
		3	0	2	4

- To explain and apply the algorithm analysis techniques on searching and sorting networks.
- To explain string matching algorithms.
- To critically analyze the efficiency of graph algorithms.
- To explain different algorithm design techniques.
- To solve programming problems using state space tree.
- To understand the concepts behind NP Completeness, Approximation algorithms and randomized algorithms.

UNIT I INTRODUCTION 9

Algorithm analysis: Time and space complexity - Asymptotic Notations and its properties best case, Worst case and average case analysis. Recurrence relation: substitution method - Lower bounds. Searching: linear search, binary search and Interpolation Search-Pattern search: The naïve string-matching algorithm - Rabin-Karp algorithm - Knuth-Morris-Pratt algorithm. Sorting Networks: Bitonic Sorting Networks, Merging Network, Sorting Network.

UNIT II GRAPH ALGORITHMS 9

Graph algorithms: Representations of graphs - Graph traversal: DFS - BFS - applications - Connectivity, strong connectivity, biconnectivity. Minimum spanning tree: Kruskal's and Prim's algorithm. Shortest path: Bellman-Ford algorithm - Dijkstra's algorithm - Floyd-Warshall algorithm Network flow: Flow networks - Ford-Fulkerson method. Matching: Maximum bipartite matching

UNIT III ALGORITHM DESIGN TECHNIQUES 9

Divide and Conquer methodology: Finding maximum and minimum - Merge sort - Quick sort. Dynamic programming: Elements of dynamic programming — Matrix-chain multiplication

- Multi stage graph — Optimal Binary Search Trees. Greedy Technique: Elements of the greedy strategy - Activity-selection problem — Optimal Merge pattern — Huffman Trees.

UNIT IV | STATE SPACE SEARCH ALGORITHMS

9

Backtracking: n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem - Graph colouring problem Branch and Bound : Solving 15-Puzzle problem - Assignment problem - Knapsack Problem - Travelling Salesman Problem.

UNIT V NP-COMPLETE AND APPROXIMATION ALGORITHM

9

Tractable and intractable problems: Polynomial time algorithms - Venn diagram representation - Non Deterministic algorithms - NP-hardness and NP-completeness - Problem reduction: TSP - 3 CNF problem. Approximation Algorithms: Bin Packing problem - Randomized Algorithms: concept and application - primality testing - randomized quick sort- Finding kth smallest number.

TOTAL: 45 PERIODS

Searching and Sorting Algorithms

- 1. Implement Linear Search. Determine the time required to search for an element. Repeat the experiment for different values of n, the number of elements in the list to be searched and plot a graph of the time taken versus n.
- 2. Implement recursive Binary Search. Determine the time required to search an element. Repeat the experiment for different values of n, the number of elements in the list to be searched and plot a graph of the time taken versus n.
- 3. Sort a given set of elements using the sorting networks methods and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n.

Graph Algorithms

- 1. Develop a program to implement graph traversal using Breadth First Search
- 2. Develop a program to implement graph traversal using Depth First Search
- 3. From a given vertex in a weighted connected graph, develop a program to find the shortest paths to other vertices using Dijkstra's algorithm.
- 4. Find the minimum cost spanning tree of a given undirected graph using Prim's algorithm.
- 5. Implement Floyd's algorithm for the All-Pairs- Shortest-Paths problem.
- 6. Compute the transitive closure of a given directed graph using Warshall's algorithm.

Algorithm Design Techniques

- 1. Develop a program to find out the maximum and minimum numbers in a given list of n numbers using the divide and conquer technique.
- 2. Implement Merge sort and Quick sort methods to sort an array of elements and determine the time required to sort. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n.

State Space Search Algorithms

Implement N Queens problem using Backtracking.

Approximation Algorithms Randomized Algorithms

- 1. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.
- 2. Implement randomized algorithms for finding the kth smallest number.

The programs can be implemented in C / C++ / Python.

The p	programs can be implemented in C / C++ / Python.
	TOTAL: 30 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Examine the efficiency of algorithms using various
	frameworks.
CO2:	Apply graph algorithms to solve problems and analyze their
	efficiency.
CO3:	Make use of algorithm design techniques like divide and
	conquer, dynamic programming and greedy techniques to
	solve problems.
CO4:	Make use of the state space tree method for solving
	problems. AFFILIATED TO ANNA UNIVERSITY LAUTONOMOUS
CO5:	Solve problems using approximation algorithms and
	randomized algorithms.
CO6:	Apply String matching algorithms to solve problems and
	analyze their efficiency.
TEXT	T BOOKS:
1	Thomas H. Cormen, Charles E. Leiserson, Ronald L.
	Rivest and Clifford Stein, "Introduction to Algorithms",
	3rd Edition, Prentice Hall of India, 2009.
2	Ellis Horowitz, SartajSahni, SanguthevarRajasekaran
	Computer Algorithms/C++ Orient Blackswan, 2nd
	Edition, 2019.

REFERENCES:																
1	Anany Levitin, "Introduction to the Design and Analysis															
	of Algorithms", 3rd Edition, Pearson Education, 2012.															
2	Alfred '	Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman,														
	"Data Structures and Algorithms", Reprint Edition,															
	Pearson Education, 2006.															
3	S. Sridhar, "Design and Analysis of Algorithms", Oxford															
	university press, 2014.															
	POs										I	PSOs				
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	2	2	-	-	-	-	2	1	1	3	2	-
	2	3	2	1	1	2	-	-	-	-	1	2	2	3	1	-
	3	3	2	1	1	2	-	-	-	-	1	2	2	3	1	-
	4	3	2	1	1	1	-	Æ.	-	-	1	1	2	3	1	-
	5 1100 1	3	2	1	1	1	M	/-	-/	1	1	1	2	3	1	-
	6		2	1	1	1		-	-(-	1	1	2	3	1	-
Overall 3 3 2 2 2 -						-		M-1	-	2	2	2	3	2	J.,_	
Reco	Recommended by Board of Studies 08-04-2023															

2nd ACM

Approved by Academic

25-05-2025

Date

23IT321	JAVA PROGRAMMING		L	T	P	C		
	LABORATORY	LABORATORY						
COURS	E OBJECTIVES:							
•	Strengthen problem solving abilit	ty by	y u	sing	g t	he		
	characteristics of an object-oriented ap	pproa	ch.					
•	Design applications using object-orien	nted f	eatu	res				
•	Handle Exceptions in programs.							
•	Write, compile, run and debug the pro-	ogran	ns					
•	To demonstrate the usage of object	-orier	ited	cor	ncep	ots		
	both in C++ and JAVA.							
EXERCI	SES:							
I	Programs to demonstrate the usage o	f Clas	s, O	per	ato	r		
	Overloading and Friend Functions.							
1.	Write a C++ program to display Nat		0.000					
	grade of 3 students who have	appe	arec	l iı	n t	he		
	examination. Declare the class of n	ame,	roll	no	., a	nd		
	grade. Create an array of class objects	. Rea	d an	d d	ispl	ay		
	the contents of the array.		-		1000			
2.	Write a Program using copy constru							
	of anobject to another object.							
3.	Write a program to design a class rep		_		-			
	numbers and having the functional							
	addition &multiplication of two comp	olex n	umb	ers	usi	ng		
	operator overloading.							
4.	Write a Program to design a class co	-		-		ent		
	complex numbers. The complex class					an		
	external function (use it as a friend fu		,					
	complex numbers. The function shou				-			
	of type complex representing the su	m of	two	CO	mp]	lex		

1. Develop a java application with Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant

Basics of Java and Exception Handling

numbers.

II

- Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.
- 2. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.
- 3. Write a Java program to implement user defined exception handling.
- 4. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file in bytes.

III The usage of Packages and Interfaces, Multithreaded programming, Generic Programming

- 1. Write a Java program to perform employee payroll processing using packages. In the java file, Emp.java creates a package employee and creates a class Emp. Declare the variables name, empid, category, bpay, hra, da, npay, pf, grosspay, incometax, and allowance. Calculate the values in methods. Create another java file Emppay.java. Create an object e to call the methods to perform and print values.
- 2. Write a Java program to create an interface Shape with the getArea() method. Create three classes Rectangle, Circle, and Triangle that implement the Shape interface. Implement the getArea() method for each of the three classes.

- 3. Write a java program that implements a multi-threaded application that has three threads. The first thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
- 4. Write a java program to find the maximum value from the given type of elements using a generic function.

IV The usage of Event Driven Programming

- 1. Write a java program to draw lines, arcs, figures, images and text in different Fonts, styles and colours.
- 2. Write a java program to create Frames using swing.
- 3. Design a calculator using event-driven programming paradigm of Java with the following options.
 - a. Decimal manipulations
 - b. Scientific manipulations
- 4. Write a java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "stop" or "ready" or "go" should appear above the buttons in a selected color. Initially there is no message shown.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

- CO1: Solve the problems using the characteristics of an object-oriented approach.
- CO2: Build applications using object-oriented features.
- CO3: Apply Java programs that make use of classes, packages and interfaces.
- CO4: Build and implement Java programs with exception handling and multithreading.
- CO5: Build an applications using file processing, generic programming and event handling.

CO6:	Apply s	wii	ing components and solve the applications.													
	COs						I	POs]	PSC)s
`	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	•	ı	ı	ı	•	-	2	3	2	-
	2	3	2	1	1	2	-	1	-	-	-	-	2	3	2	-
	3	3	2	1	1	2	-	1	-	-	-	-	2	3	2	-
	4	3	2	1	1	2	-	1	-	-	-	-	2	3	2	-
	5	3	2	1	1	2	-	1	-	-	1	-	2	3	2	-
	6	3	2	1	1	2	-	1	-	-	-	-	2	3	2	-
O	erall	3	2	1	1	2							2	3	2	
Corr	elation	3	~	1	1	_	-	_	-	_	-	-	_	3	_	_
Reco	nmended	ies				08	-04-2	2023								
	Approved by Academic								2 nd ACM Date 25-0						5-05-2025	

23CS322	DATABASE MANAGEMENT	L	T	P	C
	SYSTEMS LABORATORY	0	0	4	2

- To learn and implement important commands in SQL.
- To learn the usage of nested and join queries.
- To understand functions, procedures and procedural extensions of databases.
- To understand design and implementation of typical database applications.
- To understand design of NoSQL
- To be familiar with the use of a front end tool for GUI based application development and its integration with databases

LIST OF EXPERIMENTS:

- 1. Create a database table, add constraints (primary key, unique, check, Not null), insert rows, update and delete rows using SQL DDL and DML commands.
- 2. Create a set of tables, add foreign key constraints and incorporate referential integrity.
- 3. Query the database tables using different 'where' clause conditions and also implement aggregate functions.
- 4. Query the database tables and explore sub queries and simple join operations.
- 5. Write user defined functions and stored procedures in SQL.
- 6. Create View and index for database tables with a large number of records.
- 7. Write row level and statement level SQL Triggers.
- 8. Create Document, column and graph based data using NOSQL database tools.
- 9. Add Implement CRUD operation using NOSQL Database.
- 10. Develop a simple GUI based database application and incorporate all the above mentioned features

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1:	Create o	Create databases with different types of key constraints.															
CO2:	Create j	oin	que	eries	s an	d e	xplo	ore	sub	qu	eries	S.					
CO3:	Implem	ent	que	erie	s us	sing	agg	greg	gate	fuı	nctio	ns.					
CO4:	Use adv	anc	ed	feat	ure	s st	ıch	as s	stor	ed p	oroc	edur	es a	nd			
	triggers and incorporate in GUI based application																
	development.																
CO5:	Create and manipulate data using NOSQL database.																
CO6:	Develop	Develop applications that require a Front-end Tool linked															
	with da	vith database															
60-									POs PSC								
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1	
	2	3	2	1	1	2	1	-	1	1	1	-	1	3	2	1	
	3	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1	
	4 OW	3	2	1	1	2	1		1	1	1	-	1	3	2	1	
8	5	3	2	1	1	2		ķ-	1	1	1	-	1	3	2	1	
Î	6	3	2	1	1	2	-		1	1	1	2	1	3	2	1	
- 3	verall relation	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1	
Reco	mmende	d by	Во	ard	of S	tud	ies	08-	04-2	024	TE	CH	NO	LO	(J)		
	Approved							2 nd ACM Date 25-05-2024								024	

23ES391	PRESENTATION SKILLS	L	T	P	С
		0	0	2	1*

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

UNIT I BRAINSTORMING AND OUTLINING

6

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

UNIT II STRUCTURING THE PRESENTATION

6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

UNIT III | DELIVERY TECHNIQUES

6

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language- eye contact, gestures, movement on stage.

UNIT IV USE OF TECHNOLOGICAL AIDS

6

Use of presentation software like MS Power Point, Google Slides etc, incorporating images, graphs, charts and videos, using interactive tools like quizzes and polls, using remote presentation tools like zoom, MS Teams, WebEx for screen sharing, virtual whiteboards and chat functionalities, incorporating AR/VR for more immersive presentations.

UNIT V HANDLING QUESTIONS AND FEEDBACK

6

Audience engagement through questions, PAR (Point, Answer, Redirect) strategy for structuring responses to questions. Understanding feedback process - Receiving, interpreting and evaluating constructively, active listening techniques for processing feedback, responding to feedback- acknowledging, clarifying and appreciating, Dealing with challenging feedback.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

- CO1: Construct ideas for presentation through mind mapping techniques
- CO2: Organize ideas and structure the presentation with captivating introduction, body paragraphs illustrated with examples and reasons and compelling conclusion
- CO3: Apply vocal variety and body language techniques to enhance delivery
- CO4: Prepare engaging presentations by integrating multimedia elements
- CO5: Demonstrate proficiency in delivering presentations in remote platforms utilizing various technological tools and strategies to engage audience in Virtual environments
- CO6: Exhibit active listening skills by responding to questions with clarity and confidence and incorporating constructive feedback for professional development

TEXT BOOKS:

- 1 Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.
- **2** Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

REFERENCES:

1 Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	2	1	1	-	-	-	1	1	1	1	1	2	2	1	
2	2	2	1	1	-	-	-	1	1	1	1	1	2	2	1	
3	2	2	1	1	-	-	-	1	1	1	1	1	2	2	1	
4	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
5 ow	2	2	1	1	-	- 8	4	1	1	1		1	2	2	1	
6	2	2	1	1	-	A	1	1	1	1	-	1	2	2	1	
Overall Correlation	2	2	1	1	-	4	1	1	1	1	-	1	2	2	1	
Recommended	d by	Во	ard	of S	Stud	lies				08	-04-2	023				

Approved by Academic

ACERTATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

25-05-2025

2nd ACM

SEMESTER -IV

23MA301	LINEAR ALGEBRA	L	T	P	С
		3	1	0	4
COURSE OB	ECTIVES:				
To test	the consistency and solve system of lin	near	equ	ıatio	ons
• To find	d the basis and dimension of vector sp	ace			
• To ob	tain the matrix of linear transform	atio	n a	nd	its
0	alues and eigenvectors				
	d orthonormal basis of inner product	spac	e ar	ıd fi	ind
	quare approximation				
	d eigenvalues of a matrix using numeri	cal t	:ech	niqu	aes
	erform matrix decomposition.			Τ,	
	TRICES AND SYSTEM OF LINEAR			غ ا	9+3
	UATIONS			<u>_</u>	
	Row echelon form - Rank - Syst				
	Consistency - Gauss elimination me	etho	d -	Ga	uss
	od – Gauss Seidel Method			Τ,	
I W	CTOR SPACES				9+3
	es - Subspace - Linear indepe				
	- Linear Span - Basis and dimension				
Linearly Inde	pendent Subsets.	fint)L(26	
	NEAR TRANSFORMATION			- 1	9+3
	ormation - Rank space and null spa				
	ension theorem - Matrix representa				
	on - Eigenvalues and eigenvecto on - Invertibility and Isomorphisms -				
	NER PRODUCT SPACES	<u>- Dt</u>	lai		9+3
		0	uth c		
	ict and norms - Properties - vectors - Gram Schmidt ortho				
	joint of Linear operator – Normal ar	-	-		_
	Unitary and orthogonal operato				
Matrices	ormary and ormogonal operato	10	ши	· CI	CII
	GENVALUE PROBLEMS AND MAT	RD			9+3
	COMPOSITION				-
Eigen value I	Problems - Power method, Jacobi rot	atic	n n	neth	od
	value decomposition - QR deco				
Generalized 1	nverse - Least square solution				

											TC	TA	L: 60) PE	RIC	DDS
COU	RSE OU	JTC	CON	ИES	5:											
	After co	mp	leti	on	of t	he o	cou	rse,	the	stı	ıder	its w	ill b	e al	ble t	o:
CO1:	Solve t	he s	syst	tem	of	line	ear	eqı	ıati	ons	S.					
CO2:	Find th	ne b	asis	s ar	nd d	lim	ens	ion	of	vec	ctor	spa	ce.			
CO3:	Find	the	m	atr	ix	of	li	nea	r	trar	nsfo	rma	tion	a	nd	its
	eigenv															
CO4:	Find or	rtho	no	rma	al b	asis	s of	inr	ner	pro	duc	t sp	ace.			
CO5:	Find eigenvalues of a matrix using numerical techniques															
	Find Matrix Decomposition using different techniques															
TEX	XT BOOKS:															
1	-															
	Prentice Hall of India, New Delhi, 2004.															
2	Faires J.D. and Burden R., "Numerical Methods",															
	Brooks/Cole (Thomson Publications), New Delhi, 2002.															
REFI	FERENCES:															
1	Kumaresan S, "Linear Algebra - A geometric approach",															
		Prentice Hall of India, New Delhi, Reprint, 2010.														
2	P.S.Da					ical	l A	nal	ysi	s",	Pea	rso	n E	duc	atic	ns,
	New D		,					V					N			
3	Richar			sor	ı, "I	Mat	rix	Op	era	atio	ns",	Sch	aun	n's	outl	ine
	series,	198	9.			C				0	ETI	-	HMZ			V
(COs	R R	7			jų p	-11-10	Os	o A	UNIA	UNIVE	OSIT	LAU	тон	PSC)s
· ·		1	2	3		5	6	7	8	9	10	11		1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5 3 2 1 1 1 3												-	-		
	6 3 2 1 1 1 3															
	verall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_
	relation	J 1	. D -	المسم	- C C		1:	00	04	202						
Keco	mmende				or S	otuc	nes					Data		25	05 1	2024
Approved 2 nd ACM Date 25-05-202											4 024					

23IT401	MACHINE LEARNING	L	T	P	C
	TECHNIQUES	3	0	0	3
COURSE OBJ	JECTIVES:				

- Apply the basic concepts of machine learning
- To analyze the principles and algorithms of supervised machine learning
- Study about ensembling and unsupervised learning algorithms
- Learn the basics of deep learning using neural networks
- Design and analyse machine learning experiments

UNIT I	INTRODUCTION TO MACHINE LEARNING	10

Definition of learning systems - Goals and applications of machine learning - Aspects to develop a Learning system: Training data, Concept representation - Function approximation - Learning Techniques - Supervised learning, unsupervised learning and Reinforcement learning.

UNIT II SUPERVISED LEARNING 11

Linear Regression Models: Least squares, single & multiple variables, Bayesian linear regression, gradient descent, Linear Classification Models: Discriminant function – Probabilistic discriminative model - Logistic regression, Probabilistic generative model – Naive Bayes, Maximum margin classifier – Support vector machine, Decision Tree, Random forests.

UNIT III ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting, stacking, Unsupervised learning: K-means, KNN, Anomaly Detection, Neural networks, Apriori algorithm.

UNIT IV	NEURAL NETWORKS	8
Perceptron	n - Multilayer perceptron, activation functions, netv	vork

109

training – gradient descent optimization – stochastic gradient descent, error backpropagation, from shallow networks to deep networks –Unit saturation (aka the vanishing gradient problem) – ReLU, hyperparameter tuning, batch normalization, regularization, dropout.

UNIT V DESIGN AND ANALYSIS OF MACHINE LEARNING EXPERIMENTS

9

Guidelines for machine learning experiments, Cross Validation (CV) and resampling – K-fold CV, bootstrapping, measuring classifier performance, assessing a single classification algorithm and comparing two classification algorithms – t test, McNemar's test, K-fold CV paired t test, Case study.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the machine learning concepts to solve real-world problems using machine learning algorithms.
- **CO2:** Extend the fundamentals of machine learning.
- CO3: Examine and implement supervised learning algorithms.
- CO4: Identify ensembling methods and unsupervised learning techniques.
- CO5: Discuss the fundamental understanding of deep learning apply them to simple tasks.
- CO6: Make use of machine learning experiments for various models across different datasets.

TEXT BOOKS:

- 1 Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.
- 2 Tom M Mitchell, —"Machine Learning", Third Edition, Tata McGraw-Hill, 2017

REF	REFERENCES:															
1	Peter F	ach	ı, –	-"M	lach	ine	Le	arn	ing	: Tł	ne A	rt a	nd S	Scie	nce	of
	Algoritl	nms	s tl	hat	M	ake	S	ens	e c	of 1	Data	ľ, :	First	E	ditio	on,
	Cambri	dge	Ur	iive	ersit	уР	ress	s, 20)12							
2	Jason B	ell,	— "]	Mad	chir	ne le	earr	ning	5 -	Har	nds (on f	or D	eve	lop	ers
	and Tec	hni	cal	Pro	fes	sior	nals	", F	irst	Ed	ition	ı, Wi	iley,	201	4	
3	Christo	phe	r N	1. B	ish	op,	"Pa	itte	rn I	Reco	ogni	tion	and	M	achi	ine
	Learnin	g",	Spi	ing	ger,	200	6.									
4	Mehrya	Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar,														
	"Foundations of Machine Learning", MIT Press, 2012. Aman Kharwal, "Machine Learning Algorithms:															
5	Aman	K	har	wa	1,	"N	Лас	hin	e	Le	arni	ng	Al	gor	ithr	ns:
	Handbo	Handbook", Clever Fox Publishing, 2023 Manaranjan Pradhan, U Dinesh Kumar, "Machine Learning														
6	Manara	nja	n Pı	rad	han	, U	Dir	nesł	ı Kı	ıma	ır, "	Mac	hine	Le	arni	ng
	Using P	Using Python", Wiley India Private Ltd, 2019														
	COs	er i	REA	1			I	POs							PSC	s
	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	8	1	1	1	-	2	2	2	1
	2	2	1	7	1	1	-		1	1	1	_	3	2	1	1
	3	3	3	2	2	2	-	-	1	1	1	-	1	2	2	1
	4 SINE	3	2	1	1	2	211	LD!	1	1	1		3	2	2	1
	5	2	1	-	-	1	ILIAT	<u> </u>	1	1	1	ISITY	2	3	1	1
	6	2	1	1	2	-	-	1	2	2	-	1		2	1	
_	verall	3	2	1	1	2	_	_	1	2	2	_	2	2	2	1
	relation								_	_			_		_	
Reco	mmended						lies	•		73. 4		-04-2			05.5	1005
l	Approve	ed b	y A	cad	emi	C		2 nd ACM Date 25-05-2025								

23CS401	OPERATING SYSTEMS	L	T	P	C
		3	0	0	3

- To understand the basics and functions of operating systems.
- To understand processes and threads
- To analyze scheduling algorithms and process synchronization.
- To understand the concept of deadlocks.
- To analyze various memory management schemes.
- To be familiar with I/O management and file systems.
- To be familiar with the basics of virtual machines and Mobile OS like iOS and Android.

UNIT I INTRODUCTION

10

Introduction to Operating Systems – Views of Operating system, Computer System organization, Computer System Architecture; Operating System Structures – Operating System Services - User Operating System Interface - System Calls – System Programs - Design and Implementation - Structuring methods; Processes - Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication – Shared Memory Systems, Message Passing Systems, Threads - Multithread Models.

UNIT II PROCESS MANAGEMENT

9

CPU Scheduling - Basic Concepts, Scheduling criteria - Scheduling algorithms; Process Synchronization - The Critical-Section problem, Synchronization hardware, Mutex Locks, Semaphores, Monitors, Classical problems of synchronization; Deadlock - Deadlock Characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

UNIT III | MEMORY MANAGEMENT

9

Main Memory - Address Binding, Logical and Physical Address

*	e, Contiguous Memory Allocation, Segmentation, Pagin	0
Struc	cture of the Page Table; Virtual Memory - Demand Pagin	ng,
Copy	y on Write, Page Replacement, Thrashing.	
UNI	T IV STORAGE MANAGEMENT	8
Mass	Storage system. Diele Cahaduling and Management.	(/()
	s Storage system -Disk Scheduling and Management; I	-
	ems – I/O Hardware, Kernel I/O subsystem; File-Systems	
	face - File concept, Access methods, Directory Structure, F	
_	em mounting - File Sharing and Protection; File System	
-	lementation - File System Structure - Directo	5
	ementation - Allocation Methods - Free Space Managemen	
UNI	T V VIRTUAL MACHINES AND MOBILE OS	9
Virtu	ual Machines - Benefits and Features, Building Blocks, Typ	es
of Vi	rtual Machines and their Implementations, Virtualization a	nd
Oper	rating-System Components; Mobile OS - iOS and Android	>
	TOTAL: 45 PERIC	DS
COU	JRSE OUTCOMES:	
	After completion of the course, the students will be able to	o:
CO1:	Explain operating system structures and various servi-	ces
	provided by operating systems	
CO2:	Apply Process synchronization, process scheduling, a	nd
	deadlocks concepts in the given scenario to solve	the
	problems.	
CO3:	Apply algorithms and suitable techniques for memo	ory
	management.	
CO4:	Apply disk scheduling algorithm and explain	the
	management schemes for storage systems such as file a	nd
	I/O systems.	
CO5:	Explain the concept of Virtual machines	
	Explain the functionalities of iOS and Android Operati	ing
	Systems.	J
	i J	

TEXT BOOKS:

Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 10th Edition, John Wiley and Sons Inc., 2018.

REFERENCES:

- 1 Ramaz Elmasri, A. Gil Carrick, David Levine, "Operating Systems A Spiral Approach", Tata McGraw Hill Edition, 2010.
- William Stallings, "Operating Systems: Internals and Design Principles", 7th Edition, Prentice Hall, 2018.
- Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016.

COs						I	POs					6]	PSC	s
COS	11	2	3	4	5	6	7	8	9	10	11	12	1	2	3
10	2	1	0	1	-	A	-	-/	-	-	-	-	2	-	7-
2	3	2	1	1	- 8	4	9	-/	1	- ·	1	-	3	-	-
3	3	2	1	1	-	-	7	À	1	-	2	-/	3	-	_
4	2	1	-	1	-	-	-	-	-	-	-	-	2	-	-
5 CINE	2	1		1	C)LI	.E	υĒ	01	TE	G-	MC	2)G	(-
6	2	1	-	1	AFF	ILLAT	EDT	O Ah	NAI	NIVE	RSITY	AUT	2	MOU	5
Overall	3	2	1	1									3		
Correlation	3		1	1	1	-	1	1	-	1	1	-	5	1	1
Recommended	d by	Bo	ard	of S	Stud	lies				08	-04-2	2023			

2nd ACM

Date

25-05-2025

Approved by Academic

23IT402	FORMAL LANGUAGES AND	L	T	P	C
	AUTOMATA THEORY	3	0	0	3

- To understand a finite automaton for a given language.
- To understand the relation between grammar and language.
- To understand the basic principles of working of a compiler.
- To study about the type checking procedure during the compilation.
- To understand the storage structure of the running program.

UNIT I AUTOMATA

9

Introduction to formal proof – Additional forms of proof – Inductive proofs –Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Finite Automata with Epsilon transitions- Equivalence and minimization of Automata.

UNIT II REGULAR EXPRESSION (RE) UNIVERSITY AUTONOMIC

9

Definition, Operators of regular expression and their precedence, Algebraic laws for Regular expressions, Kleen's Theorem, Regular expression to FA, DFA to Regular expression, Arden Theorem, Non Regular Languages, Pumping Lemma for regular Languages, Application of Pumping Lemma, Closure properties of Regular Languages, Decision properties of Regular Languages.

UNIT III | CONTEXT FREE GRAMMARS AND LANGUAGES

9

GRAMMAR FORMALISM: Regular grammars-Right linear and left linear grammars, Equivalence Between regular linear grammar and FA; Context Free Grammar, Definition, Examples, Derivation, Derivation trees, Ambiguity in Grammar, Inherent ambiguity,

Ambiguous to Unambiguous CFG, Useless symbols, Simplification of CFGs; Normal forms for CFGs - CNF and GNF, Closure properties of CFLs; Decision Properties of CFLs-Emptiness, Finiteness and Membership, Pumping lemma for CFLs.

UNIT IV PUSH DOWN AUTOMATA (PDA)

9

Description and definition, Instantaneous Description, Language of PDA, Acceptance by Final state, Acceptance by empty stack, Deterministic PDA, Equivalence of PDA and CFG, CFG to PDA and PDA to CFG, Two stack PDA.

UNIT V TURING MACHINES (TM)

9

Basic model, Definition and representation, Instantaneous Description, Language acceptance by TM, Computable functions, Types of Turing machines, Universal TM, Church's Thesis, Recursive and recursively enumerable languages, Halting problem, Introduction to Undecidability, Undecidable problems about TMs, Post correspondence problem (PCP), Modified PCP.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- CO1: Build a finite automaton for a specific language.
- CO2: Discuss the regular expressions and its theorems.
- CO3: Identify the basic properties of formal languages and grammars.
- CO4: Examine regular, context-free and recursively enumerable languages.
- CO5: Make use of grammars to produce strings from a specific language.
- **CO6:** Identify the concepts relating to the theory of computation and computational models.

TEY	Т ВООК	ç.																		
1	J.E. Hop		ft 1	R N	/lot	M/at	ni ar	ad I	D	T 111	man	"Ir	trod	luct	ion	to				
_	Automa																			
	Edition			-		_	_	•			,iiip	atati	10113	, 0	cco	iia				
2	Alfred V									Se	thi I	effr	av D	T 11	lma	nn				
_	"Compi												,							
	_				-				-	Co	uria	10	.010	, .	cco	iid				
REF	Edition, Pearson Education, 2008 ERENCES:																			
1																				
	J. Martin, "Introduction to Languages and the Theory of computation" Third Edition, Tata Mc Graw Hill, 2007.																			
2	Randy														rs f	or				
	Moderr							-	-			_	-	-						
	Morgar							-					1	1		,				
3	Ü										omp	iler	Des	sigr	ı aı	nd				
							Steven S. Muchnick, "Advanced Compiler Design and													
	IIII	Implementation", Morgan Kaufmann Publishers - Elsevier Science, India, Indian Reprint 2003.																		
	495 \ 1000					_					Put	olish	ers ·	- EI	sevi	ıer				
4	495 \ 1000	, Inc	dia,	Ind	lian	Re	prir	nt 20	003.	1						ř				
4	Science	, Inc	dia, ran.	Ind	lian	Re	prir	nt 20	003.	1						ř				
_	Science, Munees Press, 2	, Inc	dia, ran.	Ind	lian	Re	prir npil	nt 20	003. Des	1				Jniv		ity				
_	Science, Munees	, Inc	dia, ran.	Ind	lian	Re	prir npil	er 1	003. Des	1				Jniv	ersi	ity				
_	Science, Munees Press, 2	, Ind swa 012	dia, ran.	Ind K,	lian , "(Re	prir npil I	er l	003. Des	ign	", C)xfo1	rd U	Jniv I	ers:	ity Os				
_	Science, Munees Press, 2	, Inc swar 012 1	dia, ran.	Ind . K,	lian , "(Re Con	prin npil I	er l	003. Des	ign	", C)xfoi	rd U	Jniv I	rersi PSO 2	ity Os				
_	Science, Munees Press, 2 COs	, Inc swa: 012 1 3	dia, ran.	Ind . K,	lian , "(Re Com	prin npil I	er l	003. Des	ign	", C)xfoi	rd U	Jniv I 1 2	rersi 2 1	ity Os				
_	Science, Munees Press, 2 COs 1 2	1 3 2	dia, ran.	Ind . K, 3 1	4 1	Re Con 5 1 1	prir npil I 6	er 1 POs 7 -	003. Des	ign	", C)xfoi	rd U	Iniv	PSO 2 1 1	ity Os 3 -				
_	Science, Munees Press, 2 COs 1 2 3	3 2 3	dia, ran. 2 2 1	Ind . K, 3 1 -	4 1 -	Re Con	printingil	er 1 POs 7	003. Des	ign	", C)xfoi	rd U	Iniv	PSO 2 1 1 1 1	ity 9s				
_	Science, Munees Press, 2 COs 1 2 3 4 5	1 3 2 3	lia, ran	Ind . K, 1 - 1 2	4 1 - 1 2	5 1 1 1 1	printingil	er 1 POs 7	003. Des	ign	", C)xfoi	rd U	Iniv	rersi 2 1 1 1 1	ity 9s				
	Science, Munees Press, 2 COs 1 2 3 4 5 6	1 3 2 3 3 3 3	2 2 1 2 3	3 1 - 1 2 1	4 1 - 1 2	Re Con 5 1 1 1	printingil	er 1 POs 7	003. Des	ign	", C)xfoi	rd U	Iniv	PSO 2 1 1 1 1 1	ity 9s				
O	Science, Munees Press, 2 COs 1 2 3 4 5	, Inc. 1012	lia, ran	Ind . K, 1 - 1 2	4 1 - 1 2	5 1 1 1 1	printingil	er 1 POs 7	003. Des	ign	", C)xfoi	rd U	Iniv	rersi 2 1 1 1 1	ity 9s				
O	Science, Munees Press, 2 COs 1 2 3 4 5 6 verall	3 3 3 3 3	2 2 1 2 3 2 2 2	Ind . K, 1 - 1 2 1 1	4 1 2 1 1	8 Re Com 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	prir I 6	er 1 POs 7	003. Des	ign	10 - - -)xfoi	12	1 1 2 3 3 3 3	2 1 1 1 1 1	ity 9s				

23IT403	COMPUTER ORGANIZATION	L	T	P	C
	AND ARCHITECTURE	3	0	0	3
COURSE OB	JECTIVES:	l			
• To expla	in principles of computer organization a	and	the	bas	sic
architect	tural concepts.				
• To known	ow about basic organization, d	esig	'n,	aı	nd
program	nming of a simple digital computer.				
• To expla	ain the simple register transfer languag	ge to	o sp	eci	fy
various	computer operations.				
• To expla	ain about the computer arithmetic, in	stru	ctic	n s	set
design, 1	microprogrammed control unit,				
• To discu	ss about pipelining and vector processi	ing,	me	mo	ry
organiza	ation and I/O systems, and multiproces	sors	S.		
UNIT I BA	SIC STRUCTURE OF A COMPUTER				9
SY	STEM			7	
Functional U	nits - Basic Operational Concepts - Pe	rfor	ma	nce	_
	Language of the Computer -	VIIII O			
	Instruction representation – Logical of				
	ing - MIPS Addressing.	_			
7064735	RITHMETIC FOR COMPUTERS				9
4 1 1 1 1			-1		
	Subtraction - Multiplication - Divisio				_
=	entation – Floating Point Operations	- S	ub	wo	ra
Parallelism.	OCECCOR AND CONTROL LINET				
UNIT III PR	OCESSOR AND CONTROL UNIT				9
A Basic MIPS	implementation - Building a Data pa	th -	- Co	onti	col
Implementation	on Scheme - Pipelining - Pipelined da	ata j	patl	n ai	nd
control - Typ	es of Pipline - Handling Data Hazard	ls &	: Co	onti	ol
Hazards - Exc	ceptions.				
UNIT IV PA	RALLELISIM				9
Parallel proce	essing challenges – Flynn's classificat	ion		SIS	D
civine proce	and the state of t	.1011		رين	D,

SIMD, MISD MIMD, and Vector Architectures - Hardware

multithreading – Multi-core processors and other Shared Memory Multiprocessors - Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers and other Message-Passing Multiprocessors.

UNIT V MEMORY & I/O SYSTEMS

9

Memory Hierarchy - memory technologies - cache memory - measuring and improving cache performance - virtual memory, TLB's - Accessing I/O Devices - Interrupts - Direct Memory Access - Bus structure - Bus operation - Arbitration - Interface circuits - USB.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basics structure of computers, operations and instructions.
- CO2: Build arithmetic and logic unit.
- CO3: Illustrate pipelined execution and design control unit.
- CO4: Discuss parallel processing architectures.
- CO5: Explain the various memory systems and I/O communication.
- CO6: Examine virtual memory and paging techniques to manage large programs.

TEXT BOOKS:

- David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.
- 2 Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian, Computer Organization and Embedded Systems, Sixth Edition, Tata McGraw Hill, 2012.

REFERENCES:

William Stallings, Computer Organization and Architecture
 Designing for Performance, Eighth Edition, Pearson Education, 2010.

2	John P. Hayes, Computer Architecture and Organization, Third Edition, Tata McGraw Hill, 2012.															
	Third E	diti	on,	Tat	a M	IcG:	raw	Hi	11, 2	012						
3	John L. Hennessey and David A. Patterson, Computer															
	Architecture – A Quantitative Approach, Morgan															
	Kaufma	nn	/ E	lsev	vier	Pul	blis	her	s, F	ifth	Edit	ion,	201	2.		
4	Mano M	1. N	1ori	s, "	Coı	npı	ıter	Sys	ster	n A	rchi	tectı	ıre",	Pe	arso	n,
	20219.					-		•								
	CO-						I	POs						I	PSO	s
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	3	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	4	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	5	2	1	-	-	-	-			-	1	-	- 0	2	-	-
	6 .ow	3	3	2	2	-	-			4	_	2	A	3	4	-
O	verall	2	2	1	1		fi c	2	1	Y				2		ř
Cor	relatio <mark>n</mark>	3	2	λ	_	- 4		Ā	-	A	- 94			3		-
Reco	mmended	mmended by Board of Studies 08-04-2023														
Į.	Approve	d b	y A	cad	emi	c		2nd	1 A(\mathbf{M}		Date	,	25-	05-2	2025

23IT411	WEB TECHNOLOGY	L	T	P	C
		3	0	2	4

- To understand about client-server communication and protocols used during communication.
- To design interactive web pages using Scripting languages.
- To design interactive web pages using Scripting languages.
- To develop web pages using XML/XSLT

UNIT I WEBSITE BASICS AND HTML

Web Essentials: Clients, Servers, and Communication. The Internet-Basic Internet Protocols -The World Wide Web-HTTP request message-response Message-Web Clients Web Servers. Markup Languages: XHTML. An Introduction to HTML History-Versions-Basic n XHTML Syntax and Semantics- Some Fundamental HTML Elements-Relative URLs-Lists-Tables-Frames-Forms-HTML 5.0., DHTML.

UNIT II CSS AND CLIENT SIDE SCRIPTING 9

Style Sheets: CSS-Introduction to Cascading Style Sheets-Features-Core Syntax-Style Sheets and HTML- Style Rule Cascading and Inheritance-Text Properties-Box Model Normal Flow Box Layout-Beyond the Normal Flow-CSS3.0. Client-Side Programming: The JavaScript Language-History and Versions Introduction JavaScript in Perspective-Syntax-Variables and Data Types-Statements-Operators-Literals-Functions-Objects-Arrays-Built-in Objects-JavaScript Debuggers

UNIT III | INTRODUCTION TO PHP 9

Declaring variables, data types, arrays, strings, operations, expressions, control structures, functions, reading data from web form controls like Text Boxes, radio buttons, lists etc., Handling File Uploads, connecting to database (My SQL as reference), executing simple queries, handling results, Handling sessions and cookies. File Handling in PHP: File operations like opening,

closing, reading, writing, appending, deleting etc. on text and binary files, listing directories.

UNIT IV | DOCUMENT OBJECT MODEL

9

9

DOM-Introduction to the Document Object Model DOM History and Levels-Intrinsic Event Handling-Modifying Element Style-The Document Tree-DOM Event Handling - Accommodating Noncompliant Browsers Properties of Window

UNIT V XML

XML-Documents and Vocabularies-Versions and Declaration - Namespaces JavaScript and XML: Ajax-DOM based XML processing Event-oriented Parsing: SAX-Transforming XML Documents-Selecting XML Data: XPATH-Template based Transformations: XSLT-Displaying XML Documents in Browsers.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Create a web page with the following using HTML.
 - a. To embed an image map in a web page.
 - b. To fix the hot spots.
 - c. Show all the related information when the hot spots are clicked
- 2. Create a web page with all types of Cascading style sheets.
- 3. Client Side Scripts for Validating Web Form Controls using DHTML.
- 4. Installation of Apache Tomcat web server.

Write programs in Java using Servlets:

- 1. Create a web page with the following using HTML.
 - a. To embed an image map in a web page.
 - b. To fix the hot spots.
 - c. Show all the related information when the hot spots are clicked
- 2. Create a web page with all types of Cascading style sheets.
- 3. Client Side Scripts for Validating Web Form Controls using DHTML.

- 4. Installation of Apache Tomcat web server.
- 5. Write programs in Java using Servlets:
 - a. To invoke servlets from HTML forms.
 - b. Session Tracking.
- 6. Write programs in Java to create three-tier applications using JSP and Databases
 - a. For conducting on-line examination.
 - b. For displaying student mark list. Assume that student information is available in a database which has been stored in a database server.
- 7. Programs using XML Schema XSLT/XSL.
- 8. Programs using DOM and SAX parsers.
- 9. Programs using AJAX.
- 10. Consider a case where we have two web Services- an airline service and a travel agent and the travel agent is searching for an airline. Implement this scenario using Web Services and Data base.

TOTAL:30 PERIODS

COURSE OUTCOMES:

- **CO1:** Build simple web pages using markup languages like HTML and XHTML.
- CO2: Build dynamic web pages using DHTML and java script that is easy to navigate and use.
- CO3: Examine server side web pages that have to process request from client side web pages.
- CO4: Build web data using XML and develop web pages using ISP.
- CO5: Make use of various web services and how these web services interact.
- CO6: Utilize XPATH web services and how these web services interact.

TEX	Т ВООК	S:														
1	Jeffrey (C. Ja	acks	son	, "W	/eb	Tec	hno	olog	gies-	A (Com	pute	er S	cier	ice
	Perspec	tive	e", F	ear	son	Ed	uca	tio	n, 20	006.						
REF	ERENCE	S:														
1	Robert.	W.	Sel	oest	a, '	'Pro	ogra	mn	ning	g th	e W	orlo	l Wi	de	We	b",
	Fourth	Edi	tion	, Pe	ears	on i	Edu	ıcat	ion,	, 20	07.					
2	Deitel, l	Dei	tel,	Gol	dbe	erg,	"In	terr	et &	& W	orlo	d Wi	de V	Veb	Н	w
	to Progr	ram	ı", T	hir	d E	ditio	on,	Pea	rso	n E	duca	ition	, 200	06.		
3	Marty 1	Hal	l ar	nd 1	Ları	ry I	Brov	vn,	"C	ore	We	b P	rogr	amı	min	g"
	Second	Edi	tion	1, V	olu	me	I ar	nd I	I, Pe	ears	on I	Educ	atio	n, 2	.001	
	CO-						I	POs						I	PSC	s
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	-	-	-	-	-	3	2	-
	2	3	2	1	1	2	-	-	1	-	- (-	- 8	3	2	-
	3ow	3	3	2	2	2	-2	9	- 7	4		<u> </u>	A	3	2	
,	4	3	2	1	1	2	di i	-	-/	Y-	1	-	-	3	2	í-
	5	3	2	1	1	2	4		-/	A	- 22	-		3	2	-
	6	3	2	1	1	2	-		1	-		_	/	3	2	-
	verall relation	3	3	2	2	2) El	EC	ΞĒ	OF	TE	СН	NO	3	2	-
Reco	mmende						lies	ED T) AN	NA U	08-	-04-2	023	DNO	MOU	5
	Approve	ed b	v A	cad	emi	C		2nd	1 A($^{\circ}$ M		Date	2	25-	05-2	2025

23IT421	MACHINE LEARNING	L	T	P	C
	TECHNIQUES LABORATORY	0	0	4	2

- To analyze the big data using various techniques
- To perform mining on streaming data
- To familiarize the framework to manage huge data with different tools like hadoop, spark
- To use big data for business applications with various hadoop integration tools
- Learn the basics of deep learning using neural networks

LIST OF EXPERIMENTS:

- 1. Basics of data analysis.
- 2. Extract the data from database using python.
- 3. Implement k-nearest neighbours classification using python
- 4. Work with neural networks.
- 5. Implementation of cluster analysis for given data.
- 6. Write a program to implement the naïve Bayesian classifier for a sample training data.
- 7. Set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 8. Implement linear regression using python.
- 9. Implement Naïve Bayes theorem to classify the English text.
- 10. Implement the finite words classification system using Back-propagation algorithm.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- **CO1:** Demonstrate the ability to perform basic data analysis using statistical methods and visualization tools.
- CO2: Apply Python programming skills to extract and manipulate

	data from databases for analytical purposes. 3: Implement and evaluate various supervised and															
CO3:	Implem	ent	6	and	ϵ	eval	uat	e	var	iou	IS	supe	ervis	ed	a	nd
	unsupe	rvis	ed	ma	chii	ne 1	ear	ning	g al	gor	ithn	ns si	ıch	as 1	k-N	N,
	Naïve Bayes, and clustering techniques.															
CO4:	Design and implement linear regression models to identify															
	relationships between variables and make predictions.															
CO5:	Develop text classification systems using probabilistic															
	models	like	e Na	aïve	Ва	yes	and	d ne	eura	ıl ne	etwo	rks.				
CO6:	Build ar	nd t	rair	n ne	ura	l ne	etwo	orks	s us	ing	bac	kpro	pag	atio	n a	nd
	modern	de	eep	lea	rniı	ng :	frar	nev	vorl	ks t	to so	olve	clas	sifi	cati	on
	problen	ns.														
	problems.															
	COs POS PSOS PSOS 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
(COs	1	2	3	4	5				9	10	11	12			1
	COs 1	1 3	2	3	4	5				9	10	11 -	12 2			1
		_		_	_				8	9 -	10 - -	11 -		1	2	3
	1	3	2	1	1	2			8	9	10 - -	11 - -	2	1 3	2	3 1
	1 2 100W	3	2	1	1	2			8 1 1	9	10 - -	11 -	2	1 3 3	2 2	3 1 1
	1 2 3	3 3	2 2 2	1 1 1	1 1 1	2 2 1			8 1 1	9	10 - - -		2 2 1	1 3 3 3	2 2 2 1	3 1 1
	1 2 3 4	3 3 3	2 2 2 2	1 1 1 1	1 1 1 1	2 2 1 2			8 1 1 1	9	10 - - - -	11 	2 1 2	1 3 3 3	2 2 2 1 2	3 1 1 1
	1 2 3 4	3 3 3 3 3 3	2 2 2 2 2 2 2	1 1 1 1 1	1 1 1 1 1 1	2 2 1 2 2 2	6	7	8 1 1 1 1 1	9	10 - - - - -	11 	2 2 1 2 2 2	1 3 3 3 3 3	2 2 1 2 2 2	3 1 1 1 1 1
O	1 2 3 4 5 6 verall	3 3 3 3 3 3	2 2 2 2 2 2 2	1 1 1 1 1 1	1 1 1 1 1 1	2 2 1 2 2 2 2	6 - - - - - - -	7	8 1 1 1 1	9 - - - -	FE	CH	2 2 1 2 2 2	1 3 3 3 3	2 2 2 1 2 2 2	3 1 1 1 1
O	1 2 3 4 5 6 verall	3 3 3 3 3 3	2 2 2 2 2 2 2 2 80	1 1 1 1 1 1 1 ard	1 1 1 1 1 1 1 of S	2 2 1 2 2 2 2 Estud	6 - - - - - - -	7 - - -	8 1 1 1 1 1	OF	- - - - - 08	11	2 1 2 2 2 2 2 023	1 3 3 3 3 3 3 3	2 2 1 2 2 2 2	3 1 1 1 1 1

23CS421	OPERATING SYSTEMS	L	T	P	C
	LABORATORY	0	0	4	2

- To install windows operating systems.
- To understand the basics of Unix command and shell programming.
- To implement various CPU scheduling algorithms.
- To implement Deadlock Avoidance Algorithms.
- To be familiar with File Organization and File Allocation Strategies.
- To understand the working of virtual machines.

LIST OF EXPERIMENTS:

- 1. Installation of windows operating system.
- 2. Illustrate UNIX commands and Shell Programming.
- 3. Process Management using System Calls: Fork, Exit, Getpid, Wait, Close.
- 4. Write a C program to implement various CPU Scheduling Algorithms.
- 5. Write a C program to simulate the concept of Dining-Philosophers problem.
- 6. Write a C program to implement inter process communication.
- 7. Implement a C program to avoid Deadlock using Banker's Algorithm.
- 8. Write a C program to Implement the concept of threading.
- 9. Write a C program to Implement single level and two-level directory structure.
- 10. Write C programs to implement the following Memory Allocation Methods a. First Fit b. Worst Fit c. Best Fit
- 11. Write C programs to implement the various Page Replacement Algorithms.
- 12. Implement various disk scheduling algorithms.
- 13. Install any guest operating system like Linux using VMware

TOTAL: 45 PERIODS

COU	RSE OU	TC	ON	1ES	:											
	After completion of the course, the students will be able to: Apply basic LINIX commands and shell programming															
CO1:	Apply basic UNIX commands and shell programming															
CO2:	Constru	onstruct various CPU Scheduling Algorithms.														
CO3:	Constru	struct the concept of interprocess communication.														
CO4:	Build va	ario	us j	pag	e re	pla	cen	nent	talg	gori	thm	s.				
CO5:	Interpre	et oj	pera	atio	ns c	n d	lire	ctor	ies.							
CO6:	Build Li	inu	x O	Sus	sing	, VN	Лw	are.								
	COs						I	POs						I	PSC	s
`	LUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	3	2	1	1	2	2	ı	1	3	3	1
	2	3	2	1	1	3	2	1	1	2	2	-	1	3	3	1
	3	3	2	1	1	3	2	1	1	2	2	1	1	3	3	1
	4	3	2	1	1	3	2	1	1	2	2	16	1	3	3	1
	5	2	1	1	g -	3	2	1	1/	2	2	Y.	1	2	3	1
Ų.	6	3	2	1	1	3	2	1	1	2	2		1	3	3	1
11	verall relation	3 2 1 1 3 2 1 1 2 2 - 1 3 3 1														
Recommended by Board of Studies 08-04-2023																
	Approve	ed b	y A	cad	emi	CARE	LIAT	2nd	1 A(CM	MIVE	Date	AUT	25-	05-2	2025

23ES491		APTITUDE AND LOGICAL	L	Т	P	C				
		REASONING -1	0	0	2	1				
COU	COURSE OBJECTIVES:									
 To improve the problem solving and logical thinking ability 										
	of the students.									
 To acquaint student with frequently asked questions and 										
patterns in quantitative aptitude and logical reasoning.										
	UNIT I 4									
		M, HCF, Averages, Ratio & Proportio	n, M	lixt	ures	3 &				
	gation.									
UNI						4				
		Time and work, Pipes and Cistern, cod	ing a	nd						
	ding.									
UNI						4				
		Pistance, Train, Boats and Streams, Ana	logy	•						
UNI						4				
	- Table 1	tation (BAR,PIE,LINE), Seating arrange	emer	ıt.	4					
UNIT V 4										
Simple Interest and Compound Interest, Profit loss and Discount,										
Partr	nership.					M.				
TOTAL: 20 PERIODS										
COURSE OUTCOMES:										
601		mpletion of the course, the students wi								
CO1:	1: Analyse and solve complex problems, and foster critical									
600	thinking and logical reasoning skills.									
CO2:	Solve fundamental mathematical problems, and enhance									
CO2		mputational skills and numerical abilit	_							
CO3:	Develop strategies for tackling a variety of problem types,									
		courage the use of multiple approa	cnes	to	so	ive				
CO4:		ns efficiently.	.1	- C-	1:					
CU4:	•	e and solve different data analysis pro				me				
COF		ance, and interpret data analysis for a			_	1				
CU5:	Derive information from graphs, and solve questions based									
		nematical operations such as ratios, pro	port	ions	s, pa	ISIC				
COG		and statistical estimation.		1.		Q1.1				
CO0:	-	uestions in a fraction of a minute t	ısıng	s sr	wrt	cut				
	method	8								

TEXT BOOK:

- 1 Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.
- 2 Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand Publishing.

REFERENCES:

1 Agarwal, R.S. "A Modern Approach to Verbal & Non-Verbal Reasoning." 2nd ed., S. Chand Publishing

Cos	POs												PSOs			
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2	1	1	2	1	1	2	1	2	3	1	-	3	
2	2	3	3	-	-	2	-	1	3	2	2	3	2	1	3	
3	3	3	3	-	-	2	-	1	2	2	2	3	2	-	3	
4	2	3	2	3	-	2	1	2	3	3	2	3	1	2	3	
5	3	2	2	-	1	3	-	2	2	3	3	3	3	1	3	
6	3	3	3	3	2	3	1	3	3	2	3	3	3	1	3	
Overall	E37	Š	K			1		- 4						4		
Correlation	3	3	3	1	1	3	1	2	3	3	3	3	2	1	3	
Recommended by Board of Studies 08-04-2024																
Approved					2 nd ACM Date 25-05-20					2024						

COLLEGE OF TECHNOLOGY

SEMESTER -V

23RE501	RESEARCH METHODOLOGY	L	T	P	C					
	AND INTELLECTUAL PROPERTY	2	0	0	2					
	RIGHTS									
COURSE OBJECTIVES:										
• To	To provide an overview on selection of research problem									
bas	ed on the Literature review									
• To	 To enhance knowledge on the Data collection and Analysis 									
• To	outline the importance of ethical principle	s to	be							
foll	followed in Research work and IPR									
UNIT I	INTRODUCTION TO RESEARCH				6					
	FORMULATION									
Meaning of	of research problem, Sources of resear	ch	pro	ble	m,					
Criteria- good research problem, and selecting a research problem,										
Scope and	_		-							
formulatin	g the research problem - Necessity of		_							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Importance of literature review in defining			_						
UNIT II LITERATURE REVIEW										
Literature review - Primary and secondary sources - reviews,										
	AFFILIATED TO ANNA UNIVERSITY									
treatise, monographs-patents – web as a source – searching the										
web - Critical literature review - Identifying gap areas from literature review - Development of working hypothesis										
UNIT III DATA ANALYSIS										
					6					
Execution of the research - Data Processing and Analysis strategies										
- Data Analysis with Statistical Packages - Generalization and										
Interpretation										
UNIT IV	REPORT, THESIS PAPER, AND RESEA	RC	H		6					
	PROPASAL WRITING									
Structure and components of scientific reports - Types of report -										
Technical reports and thesis – Significance – Different steps in the										
preparation – Layout, structure and Language of typical reports –										

Illustrations and tables - Bibliography, types of referencing, citations- index and footnotes, how to write report- Paper Developing,- Plagiarism- Research Proposal- Format of research proposal- a presentation - assessment by a review committee

UNIT V INTELLECTUAL PROPERTY AND PATENT RIGHTS

6

Ethical principles- Plagiarism, Nature of Intellectual Property - Patents, Designs, Trade and Copyright- patent search, Process of Patenting and Development: technological research, innovation, patenting, and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of Patent Rights - Scope of Patent Rights, Geographical Indications

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the literature to identify the research gap in the given area of research.
- CO2: Identify and formulate the research Problem
- CO3: Analyze and synthesize the data using research methods and knowledge to provide scientific interpretation and conclusion.
- CO4: Prepare research reports and proposals by properly synthesizing, arranging the research documents to provide comprehensive technical and scientific report
- CO5: Conduct patent database search in various countries for the research problem identified.
- CO6: Apply ethical principles in research and reporting to promote healthy scientific practice

TEXT BOOKS:

- Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An Introduction to Research Methodology, RBSA Publishers.
- 2 Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.

Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess Ess Publications. 2 volumes. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p. Wadehra, B.L. 2000. Law relating to patents, Trade Marks, Copy right designs and Geographical indications. Universal Law Publishing **REFERENCES:** Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. Research Methods: A Process of Inquiry, Allyn and Bacon. Carlos, C.M., 2000. Intellectual property rights, the WTO and developing countries: the TRIPS agreement and policy options. Zed Books, New York. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications. Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press. Fink, A., 2009. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications Leedy, P.D. and Ormrod, J.E., 2004 Practical Research: Planning and Design, Prentice Hall. Satarkar, S.V., 2000. Intellectual property rights and copy right. ESS Publications. **POs PSOs COs** Overall Correlation Recommended by Board of Studies 13-11-2024 Approved by Academic 3rd ACM Date 30-11-2024

23IT501	COMPUTER NETWORKS AND	L	T	P	С					
	COMMUNICATIONS	3	0	0	3					
COURSE OF	BJECTIVES:			1						
To focus on information sharing and networks.										
 To introduce flow of data, categories of network, 										
different topologies.										
 To focus on different coding schemes. 										
 To brief the students regarding protocols and 										
standards.										
 To give a clear idea of signals, transmission media, 										
errors in data communications.										
	UNDAMENTALS AND LINK LAYER				9					
	f Data Communications- Networks				_					
Network and its types- Overview of Internet — Protocol Layering										
	l — Physical Layer — Overview of Data a			nals	31.					
	IEDIA ACCESS AND INTERNETWOR	1			9					
Introduction to Data Link Layer — Link layer Addressing — Error										
Detection and Correction – Medium Access Control – Ethernet										
(802.3) – Wireless LANs – Bluetooth – WiFi – Network layer										
services – Packet Switching – IPV4 Address – Network layer										
1	, ICMP, Mobile IP.		-	гIV	_					
UNIT III R	ER No.	NU		91	9					
Routing – Unicast Routing – Algorithms – Protocols –										
Multicast Routing and its basics — Overview of Intradomain and										
interdomain protocols – Overview of IPv6 Addressing –										
	om IPv4 to IPv6.									
	RANSPORT LAYER				9					
	to Transport layer -Protocols- Use			_						
,	JDP) and Transmission Control Protoc		•							
Services – Features – TCP Connection – State Transition										
	Flow, Error and Congestion Control –	Co	nge	estic	on					
avoidance.	ATTA I INIZI ANTO ANTO DINIZIONE									
	OATA LINK LAYER AND PHYSICAL I				9					
	Layer Paradigms — Client Server Prog									
World Wide Web and HTTP — DNSElectronic Mail (SMTP,										
	, MIME) — Introduction to Peer to Peer			'ks	_					
Need for Cryptography and Network Security — Firewalls.										

											TOT	ΓAL:	: 45	PEF	RIO	DS
COU	RSE OU	JTC	ON	1ES	:											
	After co	mp	leti	on o	of th	ne co	our	se, t	the	stu	dent	s wi	ll be	abl	e to):
CO1:	Discuss															
	commu	nic	atio	n N	etw	ork	s.									
CO2:	Develop various error detection techniques and network															
	layer se	layer services.														
CO3:	Explain	Explain the mechanism of Media access control in the data														
	layer.															
CO4:	Apply different routing algorithms in Network Layer															
CO5:	Discuss	Discuss the significance of various Flow control and														
	Congestion control mechanisms.															
CO6:	Explain the Functioning of various Application Layer															
	Protocols.															
TEX	XT BOOKS:															
1	Kurose James F, Keith W. "Computer Networking A Top-															
	Down Approach." ,7th Edition, Pearson, 2016.															
2	Behrouz A. Forouzan. "Data Communications and															
1	Networ	kin	g."	,5th	Ed	itio	n N	IcG	raw	-H	ill Eq	luca	tion	, 20	17.	
REFI	ERENCE	S:		V)	J.			1	M .			>			Side of	
1	Bhusan	Tı	rive	di.	"Da	ata	COI	nm	uni	cati	on	and	Ne	two	rks	. ,
	Oxford															
2	Andrew	v S	Tan	enb	aur	n. "	Cor	npı	ıter	Ne	two	rks."	, 4tl	ı Ec	litic	n,
	Pearsor	ı Ec	luca	atio	n, 20	002.		, tacing , t			Traile 4				0.000	
3	W. A.								_					ons	aı	nd
	Networ	ks.'	", 31	rd E	diti	on,			_	Lea	rning	g, 20	04.			
(COs				1			Os				1		_	PSC	
		1	2	3	4	5	6	7	8	9	10	11		1	2	3
	1	2	1	-	-	-	-	-	1	-	-	-	1	3	-	1
	2	3	2	1	1	1	-	-	1	-	-	-	1	3	1	1
	3	2	1	-	-	1	-	-	1	-	-	-	1	3	1	1
	4	3	2	1	1	1	-	-	1	-	-	-	1	3	1	1
	5 2 1 1 - 1 1 3 1 1															
											1					
	verall	3	2	1	1	1	_	_	1	_	_	_	1	3	1	1
	elation															
Reco	mmende						ies		11-2			D :		20.	14.5	001
	Approved by Academic 3 rd ACM Date 30-11-2024															

		,		, ,							
23IT511	PRINCIPLES OF SOFTWARE	L	T	P	C						
	ENGINEERING	3	0	2	4						
COURSE OBJECTIVES:											
To understand Software Engineering Process and Models											

- To perform software requirements analysis.
- To gain knowledge of the System Analysis and Design concepts using Design and Data flow model.
- To understand software testing and maintenance approaches.
- To work on the software metrics process.

UNIT I	SOFTWARE PROCESS	9

Introduction-The software process-software Engineering Practice-A generic process model-prescriptive process models specialized process models. -Unified process-Personal and Team Process Models -process technology - product and process Agility-Agile Process-Extreme Programming (XP)-Other Agile Process models.

UNDERSTANDING REQUIREMENTS UNIT II

Requirements Engineering -Establishing the Groundwork -Eliciting Requirements -Developing Use Cases - Building the Requirements Model -Negotiating Requirements - Validating Requirements-Requirements Analysis - Scenario-Based Modeling - UML Models That Supplement the Use Case -Data Modeling Concepts- Class-Based Modeling.

UNIT III DESIGN CONCEPTS AND PRINCIPLES 9

Design within the Context of Software Engineering - The Design Process - Design -The Design Model - Software Architecture -Architectural Genres - Architectural Styles - Architectural Design -Assessing - Alternative Architectural Designs -Architectural Mapping Using Data Flow.

UNIT IV | TESTING

A Strategic Approach to Software Testing - Strategic Issues -Test Strategies for Conventional Software - Test Strategies for Object-Oriented Software - Test Strategies for Web Apps - Validation Testing -System- -The Art of Debugging- White Box Testing-Basis Path Testing-Control Structure Testing-Black Box Testing-Model Based Testing-Object Oriented Testing Strategies-Object Oriented Testing Methods-Testing Concepts for Web Apps-The Testing Process.

UNIT V | SOFTWARE METRICS

9

The Management Spectrum - The People - The Product - The Process - The WHH Principle - Metrics in the Process and Project Domains - Software Measurement - Metrics for Software Quality - Integrating Metrics within the Software - Metrics for Small Organizations - Establishing a Software Metrics Program - Decomposition - Empirical Estimation Models - Specialized Estimation Techniques - The Make/Buy Decision.

TOTAL: 45 PERIODS

PRACTICALS:

- 1. Identify a software system that needs to be developed.
- 2. Document the Software Requirements Specification (SRS) for the identified system.
- 3. Identify use cases and develop the Use Case model according to the Requirement analysis.
- 4. Identify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.
- 5. Develop Software architecture for the Design process.
- 6. Develop Software architecture for the Data Flow model.
- 7. Implement the application and develop the test cases.
- 8. Implement debugging techniques to identify and correct any issues found during testing.
- 9. Implement the system as per detailed Design (Understand and apply metrics in the process and project domains and measure software quality).
- 10. Implement Software Metrics and Quality Measurement in a software development project.

TOTAL: 30 PERIODS

COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Compare various Software Development Lifecycle Models. CO2: Examine project management approaches as well as cost and schedule estimation strategies. CO3: Develop formal analysis on specifications. CO4: Make use of UML diagrams for analysis and design. CO5: Develop architectural styles and design patterns, and test the system **CO6:** Build relationships among objects. **TEXT BOOKS:** Roger S. Pressman. "Software Engineering: A Practitioner's Approach.", Sixth Edition, Mc Graw-Hill International Edition, 2017. Ghezzi, Mehdi Carlo Jazaveri, Dino Mandrioli. "Fundamentals of Software Engineering.", 2nd edition, PHI Learning Pvt. Ltd., 2010. REFERENCES: Bernd Bruegge and Allen H. Dutoit. "Object-Oriented Software Engineering: Using UML, Patterns and Java.", Third Edition, Pearson Education, 2009. Craig Larman. "Applying UML and Patterns.", 3rd ed, Pearson Education, 2005. Len Bass, Ingo Weber and Liming Zhu. "DevOps: A Software Architect's Perspective.", Pearson Education, 2016 **POs PSOs** COs **Overall** Correlation Recommended by Board of Studies 13-11-2024 Approved by Academic 3rd ACM Date 30-11-2024

23IT521	COMPUTER NETWORKS AND	L	T	P	C
	COMMUNICATIONS	0	0	4	2
	LABORATORY				

COURSE OBJECTIVES:

- To introduce flow of data, categories of network, different topologies
- To focus on different coding schemes.
- Brief the students regarding protocols and standards.
- To give clear idea of signals, transmission media, errors in data communications
- To explain the performance of the network.

PRACTICALS

- 1. Applications using TCP sockets:
 - i. Echo client and echo server
 - ii. Chat
- 2. Write socket programs to simulate the operation of HTTP application layer and Web caching
- 3. Write socket programs to simulate the operation of DNS
- 4. Analyze the Network traffic using Packet Analyser (Wireshark) and understand the various protocol headers.
- 5. Simulation of flow control
- 6. Practice different network commands available in Windows and Linux Operating Systems and troubleshoot the network.
- 7. Configure the network devices such as Router, Switch, Hub, Bridge, and Repeater by simulation.
- 8. Simulation of Distance Vector/ Link State Routing algorithm
- 9. Performance evaluation of routing protocols using the simulation tool
- 10. Configuring client-server interaction using mininet with an SDN controller

TOTAL: 45 PERIODS

COU	COURSE OUTCOMES: After completion of the course, the students will be able to:															
	After co	mp	letic	n of	f the	e co	urs	e, tl	he s	tuc	lents	s wil	l be	abl	e to):
CO1:	Explain	th	e b	asic	lay	ers	aı	nd	its	fur	nctic	ns	in (com	put	er
	networ	networks.														
CO2:	Discuss the basics of how data flows from one node to															
	another.															
CO3:	Examine routing algorithms.															
CO4:	D4: Describe protocols for various functions in the network.															
CO5:	O5: Examine the working of various application layer protocols.															
CO6:	CO6: Explain the basics of network hardware devices.															
	20-		POs PSOs)s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	-	-	-	1	-	-	1	2	2	-
	2	2	1	-	-	2	-	-	-	-	-	-	3	2	2	-
	3	3	2	1	1	1	7.0	-	e - 3	-	-	5	2	3	1	-
	4	2	1	-	-	2	A	_	-/	A	-	7 - V	2	2	2	_
y.	5	3	2	1	1	2	9	N -	-	-	-	-	2	3	2	-
	6	2	1) - '	-	2	1		. 7				2	2	2	1
O	erall	3	2	1	1	2				- 55			2	2	•	
Corr	elation	3	7	1	1	2	ń	EG	ΕŒ)F	TE	EHI	VO	3	2	
Reco	mmende	d b	у Во	ard (of S	tudi	es	3 13-11-2024					INON	MOL	5	
	THE RESERVE OF THE PERSON OF T							3rd ACM Date				30-11-2024				

23IT522	MINI PROJECT	L	T	P	C
		0	0	2	1

COURSE OBJECTIVES:

- Encourage students to apply foundational theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork and effective communication.
- Train students in basic research methodology, technical documentation, and presentation techniques to articulate project outcomes clearly.
- Enhance students' ability to systematically design, analyze, and evaluate simple prototypes or models.
- Prepare students for real-world engineering challenges and lay the foundation for multidisciplinary teamwork and problem-solving in advanced projects.

COURSE DESCRIPTION:

This course serves as an introductory platform for students to apply the foundational knowledge acquired from their core and interdisciplinary subjects in a practical setting. This course enables students to work on small-scale, department-relevant projects that focus on problem identification, basic design, and preliminary prototype development. With limited prior expertise, students will explore the process of translating theoretical concepts into tangible solutions, fostering creativity, teamwork, and critical thinking. The course emphasizes hands-on communication, and project documentation, laying a strong foundation for advanced projects and professional challenges in later semesters.

PROJECT OUTLINE:

Week 1	Course Orientation and Topic Selection
Week 2	Problem Definition and Objective Setting

Week 3	Literature Review and Research
Week 4	First Review and Feedback
Week 5	Problem Refinement and Research Gap Identification
Week 6	Conceptual Design and Initial Approach
Week 7	Methodology and Project Planning
Week 8	Second Review and Project Evaluation
Week 9	Design Refinement and Testing
Week 10	Resource Identification and Budget Estimation
Week 11	Report Writing and Presentation Preparation
Week 12	Third Review Presentation and Submission of Thesis
TXIATIAT	IONI

EVALUATION:

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The project should focus on topics from first three or four semester (whichever is applicable) subjects / industry demand topics, or futuristic technologies. It is recommended for Faculty of Aeronautical Engineering, Civil Engineering, and Mechanical Engineering students, the project should demonstrate an understanding of first principles of engineering.
- Similarly for students of Faculty of Computer Science Engineering, the project may involve programming using Python or C language. For Faculty of Electronics and Communication Engineering, the student project shall

- incorporate appropriate techniques and systems relevant to the field. For the students of Faculty of Fashion Technology, the project based on material innovations, or technology in fashion is recommended.
- The evaluation will focus on how well the project is structured, including clarity and logical flow in both oral presentations and written texts.
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability, innovation, and SDG-aligned goals.
- The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content.

COU	RSE OUTCOMES:
A	After completion of the course, the students will be able to:
CO1:	Apply basic engineering principles to solve simple problems.
CO2:	Choose relevant sources to understand the current knowledge and identify areas to improve.
CO3:	Utilise basic tools and techniques to test simple solutions.
CO4:	Interpret the impact of engineering solutions on society and the environment.
CO5:	Combine in teams to plan and complete projects within given constraints.
CO6:	Develop comprehensive technical reports and deliver structured presentations to effectively convey project outcomes.

COs						P	Os						I	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3		
2	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3		
3	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3		
4	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3		
5	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3		
6	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3		
Overall	3	2	1	1	1	1	1	3	2	2	2	1	2	1	2		
Correlation	3	2	1	1	1	1	1	3	-	2	2	1	3	1	3		
Recommende	Recommended by Board of Studies 13-11-2024																
Approved by Academic								3rd ACM Date				?	30-11-2024				

23ES	591	APTITUDE AND LOGICAL	L	T	P	C
		REASONING -2	0	0	2	1
COU	RSE OF	BJECTIVES:	ı			
•	To im	prove the problem solving and logi	cal	thin	king	7
		of the students.				,
•	To acq	uaint the student with frequently aske	d pa	tteri	ns ir	ı
	quanti	tative aptitude and logical reasor	ning	du	ring	5
		s examinations and campus interviews	S			
UNI	ГΙ					4
Prob	ability, I	Permutation & Combination, Algebra,	Prol	olem	s or	1
ages		-				
UNI	ГІІ					4
Mens	suration	, Logarithms, inequalities and modulu	s, Sy	llog	ism	
UNI	ΓIII					4
Dire	ctions, 1	ogical sequence words, number ser	ies,	Ana	alyt	ical
Reas	oning	THE REAL PROPERTY.	- 4		4	34
UNI	ΓΙΥ	31,0		- 1		4
Blood	d relatio	n, Clock and Calendar, Picture puzzles	3 \		1	
UNI				9		4
Data	sufficie	ncy, cube and cuboids, odd man out				
	CINE	TOTA	L: 20	PE	RIO	DS
COU		JTCOMES: AFFILIATED TO ANNA UNIVERSITY	AU	TONO	MOU	5
		empletion of the course, the students w		e ab	le to) :
CO1:		concepts of probability, permutation, a	ind			
		ation to solve real-world problems.				
CO2:		lgebraic problems and age-related pro	blen	ns us	sing	
)	approaches and techniques.				
CO3:	-	e and solve problems in mensuration,	loga	rith	ms,	
		equalities.				
CO4:	-	et and solve problems related to direct	ions	, log	ical	
00-	_	ce, and number series.	,	- 1		
CO5:		y and solve problems in logical reason	_	such	as	
666		sm, blood relations, clock and calendar		1		
CO6:		y and solve problems in logical reason:		such	as	
	syllogis	sm, blood relations, clock and calendar	:			

TEX	Г ВООК	:														
1	Smith,	Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.														
2	Agarw	Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand														
	Publishing.															
REFI	ERENCE	RENCES:														
1	Agarw	Agarwal, R.S. "A Modern Approach to Verbal & Non-														
	Verbal	Verbal Reasoning." 2nd ed., S. Chand Publishing.														
,	COs	POs													PSC	s
`	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	3	2	2	2	1	3	1	2	3	2	2
	2	3	2	2	2	3	2	3	2	1	2	1	2	3	2	3
	3	3	3	2	2	2	2	2	2	1	3	1	2	3	3	2
	4	2	3	2	1	2	3	1	2	3	3	2	3	2	2	3
	5	2	3	3	2	2	2	2	3	2	2	2	3	3	3	3
	6	3	3	2	2	3	2	3	3	2	2	1	2	3	3	2
O	verall	er .	200	2		2	2	2	2	2	2		2	2	2	2

3 3

Recommended by Board of Studies

Approved

Correlation

2

3 3

3

3 2

3rd ACM

COLLEGE OF TECHNOLOGY

3 2 3

13-11-2024

Date

3 3

30-11-2024

3

SEMESTER -VI

23IT601	CRYPTOGRAPHY AND	L	T	P	C
	SECURITY	3	0	0	3

COURSE OBJECTIVES:

- Understand the basic categories of threats to computers and networks
- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various symmetric key cryptographic algorithms.
- Describe public-key cryptosystem
- Describe various message authentication models.
- Understand Intrusions and intrusion detection

UNIT I INTRODUCTION 10

Overview of Cryptography and Its Applications - Secure Communications - Cryptographic Applications - Classical Cryptosystems - Shift Ciphers - Affine Ciphers - The Vigenère Cipher - Substitution Ciphers - Sherlock Holmes - The Playfair and ADFGX Ciphers - Enigma - Basic Number Theory - The Extended Euclidean Algorithm - The Chinese Remainder Theorem - Modular Exponentiation - Fermat's Theorem and Euler's Theorem - Primitive Roots.

UNIT II SYMMETRIC KEY CRYPTOGRAPHY 9

Block Cipher and Data Encryption Standards: Block Cipher Principles, Data Encryption Standards, the Strength of DES. Advanced Encryption Standards: Evaluation Criteria for AES, the AES Cipher.

UNIT III PUBLIC KEY CRYPTOGRAPHY 9

Asymmetric Key Ciphers: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange -ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT IV | MESSAGE AUTHENTICATION AND 9 **INTEGRITY** Authentication requirement - Authentication function - MAC -Hash function - Security of hash function and MAC - SHA -Digital signature and authentication protocols - DSS- Entity Authentication: Biometrics, Passwords, Challenge Response protocols- Authentication applications - Kerberos, X.509. SECURITY PRACTICE AND SYSTEM UNIT V 8 **SECURITY** Electronic Mail security - PGP, S/MIME - IP security - Web Security - System Security: Intruders - Malicious software viruses - Firewalls. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Infer basic security attacks and services. CO2: Illustrate confidentiality, integrity, authentication and availability concepts CO3: Make use of symmetric key algorithms for cryptography CO4: Make use of asymmetric key algorithms for cryptography and apply the knowledge of Key Management techniques CO5: Utilize the Authentication functions the manner in which Message Authentication Codes and Hash Functions works. **CO6:** Examine the issues and structure of Authentication Service and Electronic Mail Security **TEXT BOOKS:** Wade Trappe and Lawrence C. Washington. "Introduction 1 to Cryptography with Coding Theory.", 3rd edition, Pearson, 2020 William Stallings. "Cryptography and Network Security: Principles and Practice.", 8th edition, Pearson Education, India, 2020.

REF	ERENCE	S:														
1	Charlie		Ka	ufn	nan		"N	Jetv	vor	k	Se	curi	ty:	I	Priva	ate
	Commu	ınic	atio	n i	n a	Pu	ıblio	w W	orl	d.",	2nd	l ed:	ition	ı, Pı	rent	ice
	Hall of	Hall of India, 2002.														
2	Atul Ka	Atul Kahate. "Cryptography and Network Security.", 2nd														
	edition, Tata Mc Grawhill, 2008.															
3	Robert Bragg, Mark Rhodes. "Network Security: The															
	complete reference.", Tata Mc Grawhill, 2004.															
	POs]	PSOs			
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	2	1	3	3	2	-	-
	2	2	1	-	-	-	-	-	-	2	1	3	3	2	-	-
	3	3	2	1	1	-	-	-	1	-	-	1	-	3	-	-
	4	3	2	1	1	_	-		1	-	1	1	- :	3	-	-
	5 .oow	3	3	1	1	-	-3	1	-	4	į	1	A	3	-	1
,	6	3	3	2	2	1	1	1	1	1	1	1	1	3	1	1
	Overall Correlation 3 2 1															
Reco	mmended	l by	Во	ard	of S	Stud	lies	13-	11-2	2024						-
	Approved by Academic)L	3 rd ACM Date					30-11-2024			

23CE611	3CE611 ENVIRONMENTAL SCIENCE						
	AND ENGINEERING	3	0	1	4		

COURSE OBJECTIVES:

- To provide basic knowledge on environment impact assessment
- To create an awareness on the pollutants in the environment
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products
- To develop simple climate models and evaluate climate changes using models

UNIT I INTRODUCTION TO ENVIRONMENT IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework

UNIT II MOVEMENT OF POLLUTANTS IN 9 ENVIRONMENT

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

UNIT III | ECOLOGICAL RESTORATION 9

Wastewater treatment: anaerobic, aerobic process, methanogenesis, treatment schemes for waste water: dairy, distillery, tannery, sugar, antibiotic industries; solid waste treatment: sources and management (composting, vermiculture

and methane production, landfill. hazardous waste treatment). UNIT IV ECOLOGICALLY SAFE PRODUCTS AND PROCESSES Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation UNIT V CLIMATE CHANGE MODELS 9 Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate change				
Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation UNIT V CLIMATE CHANGE MODELS 9 Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	and	metha	ane production, landfill. hazardous waste treatment)	•
Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation UNIT V CLIMATE CHANGE MODELS 9 Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	UNI	ΓIV	ECOLOGICALLY SAFE PRODUCTS AND	9
plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation UNIT V CLIMATE CHANGE MODELS 9 Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO6: Apply the climate model simulation to monitor climate			PROCESSES	
plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation UNIT V CLIMATE CHANGE MODELS 9 Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO6: Apply the climate model simulation to monitor climate	Biofe	ertiliz	l ers, microbial insecticides and pesticides, bio-contro	ol of
stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation UNIT V CLIMATE CHANGE MODELS Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate			-	
microbial transformation UNIT V CLIMATE CHANGE MODELS 9 Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	_	_		
Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate				0,
simulation and drift - Evaluation of climate model simulation - regional (RCM) - global (GCM) - Global average response to warming -climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	UNI	ΓV	CLIMATE CHANGE MODELS	9
simulation and drift - Evaluation of climate model simulation - regional (RCM) - global (GCM) - Global average response to warming -climate change observed to date TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	Cons	struct	ing a climate model – climate system modeling – clin	nate
TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate				
TOTAL: 60 PERIODS LIST OF EXPERIMENTS a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	regio	nal ((RCM) - global (GCM) - Global average response	e to
a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	warr	ning -	-climate change observed to date	
 a. Determination of Bio fuel parameters such as flash point and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate 			TOTAL: 60 PERIO	DDS
and fire point. b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	LIST	OF I	EXPERIMENTS	>
 b. Determination of density of biofuels. c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate 	a	. D	etermination of Bio fuel parameters such as flash po	int
 c. Determination of BOD/COD in water. d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate 	1	aı	n <mark>d fire p</mark> oint.	
d. Simulating the RCM and GCM model for different geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	b). D	e <mark>termin</mark> ation of density of biofuels.	
geographic conditions. e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	С	. D	etermination of BOD/COD in water.	
e. Measurement of Pollutant in environment by Gaussian Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	d			
Plume model. COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate		ge	eographic conditions.	
COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	e			n
After completion of the course, the students will be able to: CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate		P	lume model.	
CO1: Explain the importance of the process of Environmental impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	COU	IRSE	OUTCOMES:	
impact assessment and its types. CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate		Afte	r completion of the course, the students will be able t	o:
CO2: Illustrate the chemical processes and pollutant chemistry CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	CO1:	Expl	ain the importance of the process of Environmental	
CO3: Identify the methods to solve environmental problems CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate		impa	act assessment and its types.	
CO4: Apply the knowledge to develop ecofriendly products. CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	CO2:	Illus	trate the chemical processes and pollutant chemistry	,
CO5: Construct the various simple climate models for simulation CO6: Apply the climate model simulation to monitor climate	CO3:	Iden	tify the methods to solve environmental problems	
CO6: Apply the climate model simulation to monitor climate	CO4:	App	ly the knowledge to develop ecofriendly products.	
	CO5:	Con	struct the various simple climate models for simulati	ion
change	CO6:	App	ly the climate model simulation to monitor climate	
		char	nge	

TEX	г воок	S:														
1	David .	EΝ	eeli	n "(Clin	nate	e Cł	nang	ge a	nd	Mod	lelliı	ng",			
	Cambri	dge	Ur	ive	rsit	y Pı	ess	, Ca	alifc	rni	a 2 03	12.				
2	Evans, 0	G.G	i. &	Fur	lon	g, J.	. 20	10.	Env	iroı	nme	ntal				
	Biotech	nol	ogy	: Th	eor	y aı	nd A	App	olica	atio	n (2r	nd e	ditio	n).		
	Wiley-B	lac	kwe	ell F	ubl	icat	ion	s.								
3	Pani, B. 2007. Textbook of Environmental Chemistry. IK															
	international Publishing House															
4	N.S. Raman , A.R. Gajbhiye & S.R. Khandeshwar,															
	Environmental Impact Assessment, 2014,IK International															
	Pvt Ltd.															
REF	FERENCES:															
1	Carson (1907-1964). Environment Conservation-book															
2	Encyclopaedia of Environmental Issues by Craig W. Allin															
	& Ramp; Probe.															
3	Encyclopaedia of Environmental studies by William															
	Ashworth.															
4	Climate Change and Climate Modeling- Kindle Edition. Environmentally- Friendly Product development -															
5				1							velo	pme	nt -		C.V	7
	Eberhar	nd A	Abil	e ,R	Rein	er /				5	NIVER		AUT			
	COs					_		POs			40		I SAME AND		SC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	1	-	-	-	-	-	2	-	-
	2	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	3		-	_	-	-	1	3	-	-
-	6	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	verall	3		1	1	-	3		-	-	-	-	1	3	-	-
	relation	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
Reco	mmended				of S	tud	ies		11-2 AC					1		
	Approved											Date	30-11-2024			

23IT611	IoT AND ITS APPLICATIONS	L	T	P	C
		3	0	2	4
COURSE OB	JECTIVES:				
• To	learn the internal architecture and progr	amı	nin	g of	
an	embedded processor.				
• To	introduce interfacing I/O devices to the	pro	ces	sor.	
• To	introduce the evolution of the Interne	t of	Thi	ngs	,
(IO	T).				
• To	build a small low-cost embedded and	IoT	syst	em	Ĺ
usi	ng Arduino/Raspberry Pi/ open platfo	rm.			
• To	apply the concept of Internet of Thir	ngs	in 1	real	L
	rld scenario				
UNIT I 8 -	BIT EMBEDDED PROCESSOR				9
8-Bit Microc	ontroller – Architecture – Instructi	on	Set	ar	nd
.0W	g – Programming Parallel Ports – Time			4	
Port - Interru		.15 4			
1 1/2	MBEDDED C PROGRAMMING				9
ONII II	MBEDDED C I KOGRAMINING				פ
Memory And	I/O Devices Interfacing - Programmir	ng E	mbe	edd	ed
Systems in C	- Need For RTOS - Multiple Tasks and	d Pr	oce	sses	3 –
	ching – Priority Based Scheduling Polici				
UNIT III IC	T AND ARDUINO PROGRAMMINO	3			9
Introduction	to the Concept of IoT Devices - IoT De	evice	es V	'ers	us
	- IoT Configurations - Basic Co				_
=	to Arduino - Types of Arduino - Ardui	_			in
- Arduino	Programming Structure - Sketches	s –	Pi	ns	_
Input/Outpu	t From Pins Using Sketches - Int	rodı	ıctio	on	to
Arduino Shi	elds - Integration of Sensors and Ac	tuat	ors	wi	ith
Arduino.					
UNIT IV IC	T COMMUNICATION AND OPEN				9
PI	ATFORMS				
IoT Commu	nication Models and APIs - IoT Co.	mm	unio	cati	on

Protocols - Bluetooth - WiFi - ZigBee - GPS - GSM modules - Open Platform (like Raspberry Pi) - Architecture - Programming - Interfacing - Accessing GPIO Pins - Sending and Receiving Signals Using GPIO Pins - Connecting to the Cloud.

UNIT V APPLICATIONS DEVELOPMENT

9

Complete Design of Embedded Systems - Development of IoT Applications - Home Automation - Smart Agriculture - Smart Cities - Smart Healthcare.

TOTAL: 45 PERIODS

PRACTICALS:

- 1. Write 8051 Assembly Language experiments using a simulator.
- 2. Test data transfer between registers and memory.
- 3. Perform ALU operations.
- 4. Write Basic and arithmetic Programs Using Embedded C.
- 5. Introduction to Arduino platform and programming
- 6. Introduction to Raspberry PI platform and python programming
- 7. Explore different communication methods with IoT devices (Zigbee, GSM, and Bluetooth)
- 8. Interfacing sensors with Raspberry PI
- 9. Communicate between Arduino and Raspberry PI using any wireless medium
- 10. Setup a cloud platform to log the data
- 11. Log Data using Raspberry PI and upload to the cloud platform
- 12. Design an IOT based system

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the architecture of embedded processors.
- CO2: Develop embedded C programs.
- CO3: Build simple embedded applications.

CO4:	Compa	re t	he c	om	mu	nica	atio	n m	node	els i	n IC)T				
	Develo												Racr	her	'1'3 7	Pi
CO3.	/open p				PIIC	anc	1113	us	mg	11	uui	110/	rasp	OCI	1 y	11
CO6:	Build si				anr	lica	tio	nc								
	Γ BOOK		ie i	<u> </u>	app	ille	1110	115.								
			1 /	. 1•	N #	. 1.	т	•		•11•	•	1 (. 1.	D	1.	D
1	Muham										_					
	McKinl	,													eaa	ea
	Systems															
2	Robert													-		
	Henry, Gonzalo Salgueiro. "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of															
	Technologies, Protocols, and Use Cases for the Internet of															
	Things.", CISCO Press, 2017.															
	ERENCES:															
1	Michael J. Pont. "Embedded C", Pearson Education, 2007.															
2	Wayne Wolf. "Computers as Components: Principles of															
3	Embedded Computer System Design.", Elsevier, 2006.															
3	Andrew N. Sloss, D. Symes, C. Wright. "Arm System															
1	Developer's Guide.", Morgan Kauffman Elsevier, 2006.															
4	Arshdeep Bahga, Vijay Madisetti. "Internet of Things - A															
	hands-c	n a	ppı	oac	ch."	, U1	nive	ersit	ies	Pre	ss, 2	015.				
	COs					500.00	I	POs	1.531.5		Malate 1	MA LACO		I	PSO	s
`	LUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	-	2	1	3	2	2	1	-
	2	3	2	1	1	2	ı	ı	ı	1	2	3	1	2	2	1
	3	3	2	1	1	3	1	1	1	3	3	1	1	3	2	-
	4	2	1	-	-	3	-	-	-	2	3	3	1	1	1	-
	5	3	2	1	1	2	-	-	-	1	3	1	2	1	3	-
	6	3	2	1	1	1	-	-	-	1	1	1	1	1	1	-
O	verall	2	2	1	1	2				2	2	2	2	2	2	
	elation	3	2	1	1	2	_	_	_	2	2	2	2	2	2	_
Reco	mmende						ies									
	Approve	ed b	y A	cad	emi	c		3rc	AC	$\mathbf{C}\mathbf{M}$		Date	9	30-	11-2	2024

23IT621	PROJECT WORK PHASE-1	L	T	P	C
		0	0	4	2

COURSE DESCRIPTION:

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

COURSE OBJECTIVES:

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

PROJECT OUTLINE:

Week 1	Orientation and course overview. Formation of project
	teams and approval of topics by HoD.
Week 2	Initial meeting with supervisors. Define problem
	statement and objectives
Week 3	Literature review: Research methodologies and topic-
	specific studies.
Week 4	Zeroth Review.

Week 5	Refinement of literature review and identification of
	research gaps.
Week 6	Identification of Base Paper.
Week 7	First Review.
Week 8	Conceptual design discussions and brainstorming
	solutions.
Week 9	Narrowing done on the exact work.
Week 10	Completion of first stage of the Project.
Week 11	Development of detailed conceptual design and
	methodology.
Week 12	Incorporation of feedback and refinement of design
	and methodology.
Week 13	Second Review.
Week 14	Compilation of Phase 1 results, report writing, and
45	presentation preparation.
Week 15	Final Viva Voce Presentations.
Individual	moetings will be get up on a pood's basis in conjunction

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is required to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDG-aligned goals.

Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written communication, ensuring effective delivery of technical content. **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Develop feasible solutions by analyzing complex engineering problems using foundational knowledge, mathematics, and science. **CO2:** Survey literatures to identify gaps, define research questions, and propose designs and methods for solving engineering problems. CO3: Make use of modern tools to check the feasibility of the solutions effectively. **CO4:** Evaluate societal and environmental impacts of solutions while incorporating sustainability and ethical practices. CO5: Combine in teams to plan, manage, and lead projects within professional and economic constraints. CO6: Formulate technical reports, deliver presentations, and in lifelong learning to adapt to new technologies

engage	шц	пец	Jug	iea	11111	ıgι	o ac	ıap	ιω	new	iec.	шю	ogr	es.	15		
COs	RR	ALL			CC	/-I	POs	3 E	O.	1 5	Un	NO	PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3		
2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3		
3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3		
4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3		
5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3		
6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3		
Overall	2	•	•	•	1	2	•	•	2	3	2	2	•	1	2		
Correlation	3	2	2	2	1		2	3	3	3	3	3	3	1	3		
Recommended by Board of Studies								11-2	024								
Approve	Approved by Academic							3 rd ACM Date						30-11-2024			

23IT622	TECHNICAL TRAINING	L	T	P	С
		0	0	2	1

PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

COURSE OBJECTIVES:

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

COURSE OUTCOMES:

A	After completion of the course, the students will be able to:								
CO1:	Identify specific domain from the enrolled branch and to								
	get training preferable in computer-oriented platform.								
CO2:	Survey and apprehend the learning modules in the								
	training program and to become expert in the specific								
	domain.								

CO3:	Apply theoretical learning in the practical environment and enhance the skillset of learner.
CO4:	Estimate the learning using available data.
CO5:	Defend a presentation about the learning done in the specified skillset.
CO6:	Construct a technical report about the training.

GUIDELINES:

- More than one training program may be given depending on availability and interest of the students. One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

EVALUATION PATTERN:

Training Coordinator:

50 marks (Training Manual - 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall

approve the entries in the Training Manual during the weekly meeting with the student), Attendance -10,).

Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

	Training duration - 30 Hours								ours						
COs	POs PSOs											s			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	2	1	-	-	1	1	3	3		1
2	3	3	2	1	- 0	2	1	-	4	1	1	3	3	-	-
3	3	3	3	3	3	•	P	1	N	2		3	3	3	1
4	3	3	3	2	2	-	-	1	,	3	-	3	3	2	1
5 6/45	3	3	3	2	(10	2	Ĕ	2	Θ	2	t	2	3	(1)	2
6	3	3	3	3	2	2	EPT	2	14	3	BSHY	3	3	2	2
Overall	3	3	3	3	2	2	1	2		3		3	3	2	2
Correlation	3	3	3	3			1		-	3	•	3	3		
Recommended by Board of Studies							13-	11-2	2024		•		•	•	·
Approved by Academic								3rd ACM Date 30-11						11-2	2024

23IT623	TECHNICAL SEMINAR - 1	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned

Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Identify	aca	ade	mic	do	cun	nen	ts fr	om	the	lite	ratu	re w	hicl	h ar	e
	related t	related to her/his areas of interest.														
CO2:	Survey	and	ар	pre	hen	d a	n ac	cade	emi	c do	ocun	nent	fror	n th	ıe	
	literatur	e w	hic	h is	rel	ate	d to	hei	r/h	is a	reas	of i	nter	est.		
CO3:	Compile	e a _]	pres	sent	atio	on a	ıboı	ıt a	n ac	ade	emic	doc	ume	nt.		
CO4:	Estimate	Estimate the Contents using available literature.														
CO5:	Defend	a p	rese	nta	tior	ı ab	out	an	aca	der	nic (locu	mer	ıt.		
CO6:	Constru	ıct a	tec	hni	cal	rep	ort.									
	COs					I	POs						PSOs			
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	verall relation															
Reco	mmended	d by	Во	ard	of S	tud	lies	3 13-11-2024							-	
	Approve	ed b	y A	cad	emi	coo	М	3rd ACM Date 30-11-2024								

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

SEMESTER - VII

23IT701	COMPREHENSION	L	T	P	С				
		2	0	0	2				
PURPOSE:									
To provide	a complete review of the topics co	vere	ed i	n t	he				
previous s	semesters, to ensure that a co	mpr	ehe	nsi	ve				
understandi	ing of the subjects is achieved. The st	ıder	nt w	rill 1	be				
	per the guidelines given by na								
examinations like GATE, TANCET etc. It will also help students									
	nterviews and competitive examination	ns.							
COURSE OUT	TCOMES:								
	npletion of the course, the students wil								
CO1: Analyse	O1: Analyse the phenomena involved in the concerned problem								
31117	and solve them.								
CO2: Apply principles to new and unique circumstances.									
CO3: Estimate	CO3: Estimate concepts and principles of concerned branch of								
engineeri	ing.			d					
	ish between facts and opinion in the er	ngin	eeri	ng					
field.	COLLEGE OF TECH	VO.	10	GΥ	p.				
CO5: Deduct c	ause-and-effect relationships of any re	latic	nsh	ιip.					
CO6: Interpret	data from charts and graphs and judg	e th	e						
relevance	e of information.								
GUIDELINES	:								
• The D	epartment shall form an Internal	As	sess	me	nt				
Commi	ttee for the Comprehension with	n A	Acac	lem	nic				
coordinator for that class as the Comprehension Instructor									
and Class coordinator as member.									
• Instructor shall provide required input to their students									
regardi	regarding the overview of all topics covered in the previous								

Periodic tests can be conducted to assess students.

semesters.

COs						I	POs						I	PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	1	-	2	1	-	-	-	-	1	3	-	-
2	3	2	1	1	-	1	1	ı	-	•	-	1	3	ı	-
3	3	3	3	3	3	-	-	3	-	3	-	3	3	3	3
4	3	2	1	1	2	-	-	1	-	3	-	3	3	2	1
5	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2
6	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2
Overall	3	2	3	•	•	2	1	2		3		3	•	•	2
Correlation	3	3	•	3	3	4	1	۷		•	-	•	3	3	
Recommended by Board of Studies						ies	13-11-2024								
Approved by Academic						3rd	AC	CM		Date	2	30-	11-2	2024	

23IT711	COMPUTER GRAPHICS AND	L	T	P	C				
	MULTIMEDIA	3	0	2	4				
COURSE OBJECTIVES:									
Explain two and three dimensional concepts and their									
applications									
Identify all techniques related to modern graphics									
-	gramming concepts								
	ntify the media used in multimedia syst								
	ess their relative advantages and disadvanta	ages	rela	ativ	e				
	oth user and system points of view.		1	1.					
	plain the interaction problems intro Itimedia (e.g., compression and synchroniz			D	У				
UNIT I PRIMITIVES 6									
Output primitives – Line, Circle and Ellipse drawing algorithms -									
Attributes	of output primitives -Two dimensiona	al C	Geoi	net	ric				
transform	ation - Two dimensional viewing – Line, Po	olygo	on,	Cur	ve				
and Text o	li <mark>pping</mark> algorithms.								
UNIT II	CONCEPTS	1			6				
D 11.1	1 Days Committee Theory		1	-1-:	21.1				
	nd Perspective projections - Three dimer			-					
_	ntion-Polygons, Curved lines, Splines, Qua								
	ation of data sets - 3D transformations - Vie	wın	g - \	/1S1l	ole				
	entification.								
UNITIII	GRAPHICS PROGRAMMING				6				
Color Mo	dels - RGB, YIQ, CMY, HSV - Animatio	ns -	- G	ene	ral				
Computer	Animation, Raster, Keyframe - Graphics p	orog	ran	ımi	ng				
using OPI	ENGL / Blender - Basic graphics primitive	es -	Dra	awi	ng				
three dime	ensional objects.								
UNIT IV	MULTIMEDIA BASICS				6				
Introducti	on and definitions – applications -	ele	eme	nts	_				
Compress	ion – Types of compressions -Lossless, L	ossy	<i>-</i>	Vid	.eo				
compression - Image Compression - Audio compression - Data									

and file format.

UNIT V MULTIMEDIA SYSTEMS

6

Multimedia Authoring Systems – Hypermedia Design considerations – User Interface Design – Object Display and Play back issues- Hypermedia Messaging- Distributed Multimedia Systems – Components – multimedia Object Servers – Managing Distributed Objects.

TOTAL: 45 PERIODS

PRACTICALS:

- 1. To implement Bresenham's algorithms for line, circle and ellipse drawing
- 2. To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing using 2D Animation software
- 3. To perform 3D Transformations such as translation, rotation and scaling. 3D viewing, 3D transformations using 3D Animation software.
- 4. Developing interactive multimedia Applications-Authoring a 2D presentation: (storyboard, design layout, collect the content, Presentation) using 2 D animation software.
- 5. Creating simple 3D animations and visualizations.
- 6. 2D Animation To create Interactive animation using any animation software
- 7. Image Editing and Manipulation Basic Operations on image using any image editing software, creating gif animated images, Image optimization
- 8. Create a storyboard and script for an animation.
- 9. Complete a computer animation demonstrating the use of the basic elements and principles of art and design to communicate specific ideas, moods or feelings.
- 10. Manipulate and synchronize the sound to the animation.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Explain the concepts of display devices and Line drawing algorithms.

CO2: Model the different types of clipping algorithms and two dimensional transformations. CO3: Apply the concepts of 3D display methods, transformation and viewing in computer graphics. CO4: Build the surface detection methods, dither techniques, rendering and illumination Models. CO5: Apply the multimedia system concepts and techniques with the algorithms CO6: Explain the basic programming with the 2D and 3D concepts. **TEXT BOOKS:** Donald Hearn, M. Pauline Baker, "Computer Graphics - C Version", second edition, Pearson Education, 2004. 2 Prabhat K Andleigh, Kiran Thakrar, "Multimedia systems design", PHI, 2007. REFERENCES: F.S.Hill, "Computer Graphics using OPENGL", Second 1 edition, Pearson Education, 2003. Ralf Steinmetz and Klara, "Multimedia Computing, Communications and Applications", Pearson Education, 2004.

- V. Andillott V - 2	3 - 3 - 1	7 200													
COs	PSOs ANNA UNIVERSITY LAUT IN PSOs														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	1	-	-	-	2	-	2	1	1	1	-
2	3	2	1	1	2	-	-	-	2	-	2	2	3	2	-
3	3	2	1	1	3	-	-	-	3	-	2	2	3	2	-
4	3	2	1	1	1	-	-	-	3	-	2	2	3	2	-
5	3	2	1	1	3	-	-	-	3	-	2	1	3	2	-
6	2	1	-	-	3	-	-	-	3	-	2	1	3	2	-
Overall Correlation	3	2	1	1	2	-	-	-	3	-	2	2	3	2	-
Recommended by Board of Studies						lies	13-	11-2	2024						
Approved by Academic							3rd ACM Date 30-11-202							2024	

23IT721	PROJECT WORK PHASE-2	L	T	P	C
		0	0	4	3

COURSE DESCRIPTION:

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through fabrication, simulation, or experimental validation. Students will refine their designs, validate test problems, and commission setups for final testing. This phase emphasizes hands-on application, calibration, and demonstration of results, culminating in a final presentation and report submission.

COURSE OBJECTIVES:

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

PROJECT OUTLINE:

Week 1	Review of Phase 1 outcomes and refinement of proposed methodology.
Week 2	Material procurement/ software setup for simulation, and initiation of fabrication/simulation work.
Week 3	Intermediate fabrication/simulation work and initial testing or calibration, troubleshooting challenges.

Week 4	Second Review.
Week 5	Validation of test problem or refinement of prototype/simulation
Week 6	Optimisation of the test setup or solution trials, Data curation / uncertainty analysis
Week 7	Final testing of setup or simulation outcomes, Validation of Data .
Week 8	Third Review
Week 9	Demonstration of the solution with high level of data accuracy and precision.
Week 10	Compilation of Phase 2 results, report writing, and presentation preparation.
Week 11	Preparing or publishing of research article/ Filing or Grant of Patent
Week 12	Final Viva Voce Presentations.

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.

Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project. **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply appropriate methodologies to implement solutions for complex engineering problems identified in phase -1 using hardware / software or both systems. CO2: Develop existing functional prototypes or simulations models by integrating theoretical and practical knowledge. **CO3:** Evaluate solutions ensuring compliance with design specifications. **CO4:** Appraise the performance of solutions by refining designs or improving algorithms for enhanced outcomes. CO5: Collaborate effectively with team members to plan, manage, and execute engineering projects adhering to ethical principles and professional standards. CO6: Prepare technical reports, impactful presentations that communicate solutions effectively. **POs PSOs** COs Overall

13-11-2024 3rd ACM

Date

30-11-2024

Correlation

Recommended by Board of Studies

Approved by Academic

23IT722	TECHNICAL SEMINAR - 2	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar 2' is intended to be continuation of Technical Seminar 1. It enables a B.E./B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10).

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

COL	DOE OI		-	<u> </u>												
	RSE OU															
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	e to):
CO1:	Identify academic documents from the literature which are															
	related to her/his areas of interest.															
CO2:	Survey and apprehend an academic document from the															
	literature which is related to her/ his areas of interest.															
CO3:	Compile a presentation about an academic document.															
CO4:	Estimate the Contents using available literature.															
	Defend a presentation about an academic document.															
	Construct a technical report.															
			POs PSOs													
C	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3			3	2	2
			_	_	_			_		_	_	2	2	_	_	_
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3 OW	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
7	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	verall elation	3	3	2	1	1	1	1	2	3	3	2	2	3	2	2
Recor	nmende	d by	Во	ard	of S	tud	ies	s 13-11-2024 пуенуну ацтономоць								5
	Approved by Academic						3rc	AC	$\mathbf{C}\mathbf{M}$		Date	;	30-	11-2	024	

SEMESTER -VIII

23IT821	CAPSTONE PROJECT	L	T	P	C
		0	0	20	10

COURSE DESCRIPTION:

Prerequisites:

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

COURSE OBJECTIVES:

The Capstone Project should demonstrate the depth and extent of knowledge of students

During this course, students will

- Investigate and evaluate prominent literature connected to your CP.
- Present a clearly articulated investigative framework, while situating projects within established academic

practices and/ or ideas.

PROJECT OUTLINE:

- Develop and create practical resources (either computational or experimental) for the concerned area of interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

Week 1	Identification problem.
Week 2	Literature review.
Week 3	Preliminary work.
Week 4	First review.
Week 5	Completion of first stage of the Project methodology.
Week 6	Development.
Week 7	Testing & Validation.
Week 8	Second review.
Week 9	Repeatability.
Week 10	Report correction and Documentation

Individual meetings will be set up on a need's basis in conjunction with developing work

review-Submission

Thesis Correction and Submission

of

paper

for

COURSE OUTCOMES:

Third

conference/journal

Week 11

Week 12

After completion of the course, the students will be able to:

CO1:	Take p	art	in	ch	alle	ngi	ng	pra	acti	cal	pro	bler	ns a	and	fir	nd
	solution	ns b	y fo	orm	ula	ting	gpr	ope	r m	eth	odo	logy				
CO2:	Plan res	seaı	ch	me	thoc	dolo	gy	to t	ack	le a	spe	cific	pro	ble	m.	
CO3:	Construct extensive study on particular research projects.															
CO4:	-	op experimental and computational studies on ative research projects.														
CO5:	Estimat	stimate incremental study on existing research projects.														
CO6:	Take pa						gin	eeri	ing	cha	ıllen	ges	and	pro	opo	se
	COs		POs PSOs)s	
,	200	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	2	3	2	3	3	2	3	2	3	2	3	2	3	3	2	3
- V	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3
	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	5	2	3	3	3	3	3	3	3	3	3	3	3	2	3	_3
	6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	verall relation	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Reco	mmende	d by	В о	ard	of S	Stud	lies	13-	11-2	2024						
	Approved by Academic					3rc	AC	CM		Date 30-11-2024						

VERTICAL 1: CLOUD COMPUTING

23IT031	DISTRIBUTED COMPUTING	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To introduce the computation and communication models of distributed systems
- To illustrate the issues of synchronization and collection of information in distributed systems
- To describe distributed mutual exclusion and distributed deadlock detection techniques
- To elucidate agreement protocols and fault tolerance mechanisms in distributed systems
- To implement security Mechanisms for Distributed Systems

UNIT I INTRODUCTION 6

Introduction: Relation to Computer System Components – Message -Passing Systems versus Shared Memory Systems – Primitives for Distributed Communication – Synchronous versus Asynchronous Executions –A Model of Distributed Computations and Communication Networks - Logical Clocks – Scalar Time and Vector Time - Message Ordering and Group Communication - Causal Order and Total Order - Global State and Snapshot Recording Algorithms.

UNIT II LOGICAL TIME AND GLOBAL STATE 6

Logical Time: Physical Clock Synchronization: NTP - A Framework for a System of Logical Clocks - Paradigms - Asynchronous Execution with Synchronous Communication - Synchronous Program - Order on Asynchronous System - Group Communication - Causal Order - Total Order; Global State and Snapshot Recording Algorithms: Introduction - System Model and Definitions - Snapshot Algorithms for FIFO Channels.

UNIT III | DISTRIBUTED MUTEX AND DEADLOCK

6

Distributed Mutual exclusion Algorithms: Introduction – Preliminaries – Lamport's algorithm – Ricart- Agrawala's Algorithm – Token-Based Algorithms – Suzuki-Kasami's Broadcast Algorithm; Deadlock Detection in Distributed Systems: Introduction – System Model – Preliminaries – Models of Deadlocks – Chandy-Misra-Haas Algorithm for the AND model and OR Model.

UNIT IV CONSENSUS AND RECOVERY

6

Consensus and Agreement Algorithms: Problem Definition – Overview of Results – Agreement in a Failure-Free System(Synchronous and Asynchronous) – Agreement in Synchronous Systems with Failures; Checkpointing and Rollback Recovery: Introduction – Background and Definitions – Issues in Failure Recovery – Checkpoint-based Recovery – Coordinated Checkpointing Algorithm – Algorithm for Asynchronous Checkpointing and Recovery

UNIT V | FAULT TOLERANCE AND SECURITY

6

Types of Faults and Failure Models - Fault Detection and Failure Recovery Techniques - Byzantine Fault Tolerance (BFT) - Replication Strategies for Fault Tolerance - Network Partitioning and Partition Tolerance - Security Mechanisms - Intrusion Detection and Prevention - Data Privacy and Confidentiality - Checkpointing and Logging - Self-Stabilization and Resilient Algorithms - Partition Tolerance and CAP Theorem - Blockchain Security.

TOTAL: 30 PERIODS

PRACTICALS:

- 1. Install Virtualbox/VMware Workstation with different flavours of linux or windows OS.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs.
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- 5. Use fault injection techniques (e.g., Chaos Monkey) to simulate failures in a distributed environment.
- 6. Develop a small-scale MapReduce application (e.g., word count, log processing).
- 7. Implement a mini version of a distributed file system (similar to HDFS or GFS).
- **8.** Simulate load-balancing techniques (e.g., round robin, least connections) across multiple servers.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the concept of computation and communication models of distributed systems.
- CO2: Apply the issues of synchronization.
- CO3: Experiment with virtualization of hardware resources and Docker.
- CO4: Develop the concept of distributed mutual exclusion and distributed deadlock detection techniques.
- CO5: Develop fault detection and failure recovery techniques.
- **CO6:** Apply security mechanisms.

TEXT BOOKS:

1 George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair, "Distributed Systems: Concepts and Design", Pearson Publishers, 2011.

2	James	Turnbull,	"The	Docker	Book",	O'Reilly	Publishers,
	2014.						

REFERENCES:

- James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 2 Sukumar Ghosh, "Distributed Systems: An Algorithmic Approach", CRC Press, 2014

COs						F	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	-	-	-	2	3	1	3	3	1	-	
2	3	2	1	1	1	-	ı	1	1	2	1	3	3	2	-	
3	3	2	1	1	1	-	-	-	3	1	1	3	3	1	1	
4	3	2	1	1	3	-	4	-	3	3	1	2	3	3	-	
5ow	3	2	1	1	3	-		-	2	2	1	2	3	2	,	
6	2	1	5	/-	3	4	2	-/	2	2	1	2	3	3	-	
Overall Correlation	3	2	1	1	2	-		- \	3	3	2	3	3	2) <u>-</u>	

23IT032	CLOUD SERVICES	L	T	P	C
	MANAGEMENT	2	0	2	3
COURSE OB	JECTIVES:				
• To	understand the principles of cloud a	rchi	tect	ure,	,
mo	dels and infrastructure.				
 To 	explore and experiment with vari	ous	Clo	oud	1
dej	ployment environments.				
 To 	learn about the security issues in	the	cle	oud	1
env	rironment.				
• To	Introduce Cloud Service M	ana	gen	ent	t
ter	minology, definition & concepts				
• Co	mpare and contrast cloud service m	ana	gen	ent	t
wit	h traditional IT service management				
• Ide	entify strategies to reduce risk and elim	inate	e iss	ues	3
ass	ociated with adoption of cloud services			4	
UNIT I CL	OUD ARCHITECTURE MODELS AN	ID			6
IN	FRASTRUCTURE	A.			
Cloud Archit	ecture: System Models for Cloud Comp	utin	σ –	NIS	ST
	uting Reference Architecture - Cloud		_		
100//12	Cloud service models; Cloud In	31.30	100		
	Design of Compute and Storage Cloud				
Challenges				`	
UNIT II CL	OUD DEPLOYMENT ENVIRONMEN	JT			6
	F			71	
	Engine - Amazon AWS - Microsoft A	\zur	e; (_lot	ıd
	ironments - Eucalyptus - OpenStack.				
	OUD SERVICE MANAGEMENT				6
FU	NDAMENTALS				

Cloud Ecosystem, Essential Characteristics, Basics of Information Technology Service Management and Cloud Service Management, Service Perspectives, Cloud Service Models, Cloud Service Deployment Models.

UNIT IV CLOUD SERVICES STRATEGY

6

Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture

UNIT V | CLOUD SERVICE MANAGEMENT

6

Cloud Service Reference Model, Cloud Service LifeCycle, Basics of Cloud Service Design, Dealing with Legacy Systems and Services, Benchmarking of Cloud Services, Cloud Service Capacity Planning, Cloud Service Deployment and Migration, Cloud Marketplace, Cloud Service Operations Management

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
- 2. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 3. Find a procedure to launch virtual machine using trystack (Online Openstack Demo Version)
- 4. Install Hadoop single node cluster and run simple applications like word count.
- Create a Cloud Organization in AWS/Google Cloud/or any equivalent Open Source cloud softwares like Openstack, Eucalyptus, OpenNebula with Role-based access control
- 6. Create a Cost-model for a web application using various services and do Cost-benefit analysis
- 7. Create alerts for usage of Cloud resources
- 8. Create Billing alerts for your Cloud Organization
- 9. Compare Cloud cost for a simple web application across AWS, Azure and GCP and suggest the best one.

TOTAL: 30 PERIODS

COU	RSE OU	JTC	CON	ИES	:											
	After co	mp	oleti	on c	of th	ne co	our	se, t	he s	stuc	lent	s wi	ll be	abl	e to):
	Explair			_			_									
CO2:	Develo	-		depl	oy s	erv	ices	on	the	clo	ud a	and s	set u	ра	clo	ud
	enviror															
CO3:		Build and automate business solutions using cloud rechnologies.														
CO4:	Explair	Explain the cloud service strategies including management														
	framework and cloud policies.															
CO5:	Solve t	Solve the real world problems using Cloud services and														
	technologies															
CO6:	Explain security challenges in the cloud environment.															
TEX	F BOOKS:															
1	Enamul Haque, "Cloud Service Management and															
	Governance: Smart Service Management in Cloud Era", Enel															
	Publications, 2017.															
2	Thomas Erl, Ricardo Puttini, Zaigham Mahmood, "Cloud															
3	Computing: Concepts, Technology & Architecture", Prentice Hall, 2013.															
DEEL			all,	2013	3.		- 1	10	1							
	ERENCE		1		// T	=			- C	C1-	1 /	~			′ T /	\D
1	Pravee:															ΑP
2	Rajkun															vi,
	"Maste															nď
	Applica															er,
	2013.															
(COs						P	Os						F	SO	s
	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	3	ı	ı	ı	2	2	3	1	3	3	1
	2	3	2	1	1	2	ı	1	1	2	2	3	3	2	3	1
	3 3 2 1 1 3 2 2 1 2 3 -															
	4 2 1 3 2 2 3 2 3 3 -															
	5	3	2	1	1	3	_	_	-	3	1	3	2	3	2	-
	6	2	1	-	-	3				3	1	3	2	3	2	
Ov	erall	3	2	1	1	3	_	_	_	3	2	3	2	3	3	_
Corr	elation	,	_	_						J		<i>-</i>	_	,	5	

23IT033		VIRTUALIZATION	L	T	P	C		
			2	0	2	3		
COURSE		JECTIVES:						
•		understand the basic concepts of netwo						
•	То	explore various technologies in the wire	eless	do	mai	in.		
•	To	study about 4G and 5G cellular networ	ks.					
•	To l	earn about Network Function Virtualiz	zatic	n.				
•	To	understand the paradigm of Softw	vare	d€	fin	ed		
	net	works.						
UNIT I	IN	FRODUCTION TO VIRTUALIZATION	ΟN			6		
Virtualiza	ation	and cloud computing - Need of vir	tual	izat	ion			
		ration, fast deployment, reduce infrast						
		ypes of hardware virtualization: Full vi						
	•	ization – Paravirtualization-Types of H						
-		RVER AND DESKTOP VIRTUALIZA			1	6		
CIVII		AVERTICO DESKTOT VIKTOTREIZE						
Virtual m	achi	ne basics- Types of virtual machines- U	nder	sta	ndi	ng		
		llization- types of server virtualizati						
Cases fo	r S	erver Virtualization – Uses of Vi	rtua	1 5	erv	er		
Consolida	ation	- Selecting Server Virtualization Platf	orm	-De	skt	op		
Virtualiza	ation	-Types of Desktop Virtualization.						
UNIT III	NE	TWORK FUNCTIONS VIRTUALIZA	TIC	N		6		
Virtual N	/ //ach	ines -NFV benefits-requirements -	arcl	nite	ctui	re-		
NFV Infrastructure - Virtualized Network Functions - NFV								
		and Orchestration- NFV Use Cases- N						
-Networl	vir	tualization – VLAN and VPN.						
UNIT IV	ST	ORAGE VIRTUALIZATION				6		
Memory	Virt	ualization-Types of Storage Virtuali	zatio	on-l	Bloc	ck,		

File-Address space Remapping-Risks of Storage Virtualization-

SAN-NAS-RAID.

UNIT V VIRTUALIZATION TOOLS

6

VMWare-Amazon AWS-Microsoft HyperV- Oracle VM Virtual Box - IBM PowerVM- Google Virtualization- Case study.

TOTAL: 30 PERIODS

PRACTICALS EXCERCISES:

- 1. Create type 2 virtualization in VMWARE or any equivalent Open Source Tool. Allocate memory and storage space as per requirement. Install Guest OS on that VMWARE
- 2. Create, Manage, Configure and schedule snapshots.
- 3. Desktop Virtualization using Chrome Remote Desktop.
- 4. Create type 2 virtualization on ESXI 6.5 server.
- 5. Create a VLAN in CISCO packet tracer.
- 6. Install KVM in Linux.
- 7. Create Nested Virtual Machine (VM under another VM)

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build a Virtualization network.
- CO2: Apply the virtualization techniques.
- CO3: Illustrate the Network function Virtualization.
- **CO4:** Develop SDN based applications.
- **CO5:** Explain the concepts of storage virtualization.
- **CO6:** Build a Nested VM and explain about Virtualization tools.

TEXT BOOKS:

- 1 Cloud computing a practical approach Anthony T.Velte, Toby J. Velte Robert Elsenpeter, TATA McGraw-Hill, New Delhi – 2010
- 2 Cloud Computing (Principles and Paradigms), Edited by Rajkumar Buyya, James Broberg, Andrzej Goscinski, John Wiley & Sons, Inc. 2011

REFERENCES:

1 P Chris Wolf, Erick M. Halter. "Virtualization: From the Desktop to the Enterprise". APress, 2005.

2	P James E. Smith, Ravi Nair. "Virtual Machines: Versatile
	Platforms for Systems and Processes". Elsevier/Morgan
	Kaufmann, 2005.

3	David Marshall, Wade A. Reynolds, "Advanced Server
	Virtualization: VMware and Microsoft Platform in the
	Virtual Data Center", Auerbach Publications, 2006.

COs						F	Os						PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	2	-	-	1	-	-	-	1	3	1	1	
2	3	2	1	1	2	-	-	1	-	-	-	1	3	1	1	
3	2	1	-	-	2	-	-	1	-	-	-	1	3	1	1	
4	3	2	1	1	2	-	-	1	-	-	-	1	3	2	1	
5	2	1	-	-	1	-	-	1	-	-	-	1	3	1	1	
6	3	2	1	1	2	-	d	1	1	1	1	1	3	2	1	
Overall Correlation	3	2	1	1	2	V	-	2	7	(-		2	3	2	2	

23IT034	CLOUD DATABASE	L	T	P	C
	MANAGEMENT	2	0	2	3
COURSE C	DBJECTIVES:				
• Unde	erstand the fundamental concepts of o	clou	d d	atal	oase
mana	agement.				
• Explo	ore various cloud database services and	thei	r fea	ture	es.
• Learn	n to design, deploy, and manage databas	es i	n the	e clo	oud.
• Gain	insights into security and compliance a	spe	cts o	f cl	oud
datal	pases.				
• Deve	elop skills to optimize and troubleshoot c	louc	l dat	aba	ses.
UNIT I	NTRODUCTION TO CLOUD DATAB	ASI	3		6
N	MANAGEMENT				
Basics of cl	oud computing-Cloud database archited	ctur	e-Ty	pes	of
cloud datab	oases (SQL, NoSQL, NewSQL)-Cloud da	taba	ase s	erv	ice
models (DE	BaaS)- Benefits and challenges of cloud d	atab	ases		
UNIT II	LOUD DATABASE SERVICES	1 3		110	6
Ovorviow	of major cloud database providers (ΔΤΛ	TC .	A 711	ro
	oud)- Comparing cloud database services				
30,7, P30,	e SQL Database, Google Cloud SQL)				
	dels-Use cases for different cloud data				
- 0	pase platforms.				0.0
	DESIGNING AND DEPLOYING CLOU	JD			6
	OATABASES				
Database d	lesign principles for the cloud-Data n	nod.	ellin	σa	nd
	sign-Deployment strategies and auton			_	
	ry in cloud databases-High availability				-
		VI.			
recovery.					

DATABASES

UNIT IV SECURITY AND COMPLIANCE IN CLOUD

Security principles for cloud databases-Data encryption (at rest and in transit)-Identity and access management-Compliance standards (GDPR, HIPAA, etc.)-Auditing and monitoring

UNIT V OPTIMIZATION AND TROUBLESHOOTING OF CLOUD DATA

Performance tuning techniques-Indexing and query optimization-Scaling databases (vertical and horizontal scaling)-Monitoring and diagnostics tools-Common troubleshooting scenarios and solutions

TOTAL: 30 PERIODS

6

PRACTICALS EXPERIMENTS:

- 1. Create Amazon AWS EC2 Linux instance with conceptual understanding of SSH client software protocol and keys.
- 2. Create Amazon AWS EC2 Windows server instance with conceptual understanding of RDP (Remote Desktop Protocol).
- 3. Create cloud storage Bucket using Amazon Simple Storage Service (S3). Perform the following operations:
- Create a folder within a S3 Bucket.
- 5. Upload content to S3
- 6. Create a cloud storage Bucket using Amazon Simple Storage Service (S3). Perform the following operations:
- 7. Change permissions to allow public access of contents.
- 8. Set MetaData on an S3 Bucket.
- 9. Delete an S3 Bucket and its content.
- 10. Launch and connect to an Amazon Relational DataBase (RDS) Service using MySQL
- 11. Launch and connect to an Amazon Relational DataBase (RDS) Service using Oracle.
- 12. Launch and connect to an Amazon Relational DataBase (RDS) Service using postgre SQL DataBase engines.
- 13. Launch and connect to an Amazon Relational DataBase (RDS) Service using SQL Server.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the fundamental concepts and architecture of cloud databases.
- **CO2:** Explain the features and benefits of different cloud database services.
- CO3: Summarize the process of designing and deploying databases in the cloud.
- CO4: Explain the security and compliance considerations for cloud databases.
- CO5: Illustrate the techniques for optimizing cloud database performance.
- CO6: Interpret common troubleshooting methods for cloud database issues.

TEXT BOOKS:

- Thomas Erl . "Cloud Computing: Concepts, Technology & Architecture.", Prentice Hall, 1st Edition, 2013.
- 2 Carlos Coronel, Steven Morris. "Database Systems: Design, Implementation, and Management (with Cloud Computing and Data Storage Integration).", Cengage Learning, 2020.

REFERENCES:

- Michael J. Kavis, "Architecting the Cloud: Design Decisions for Cloud Computing Service Models (SaaS, PaaS, and IaaS)", Wiley, 1st Edition, 2014.
- Tim Mather, Subra Kumaraswamy, and Shahed Latif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance", O'Reilly Media, 1st Edition, 2009.

COs		POs)s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	-	-	1	-	1	1	1	2	1	1
2	2	1	ı	ı	1	ı	ı	1	ı	1	1	1	3	1	1
3	2	1	1	1	1	1	1	1	-	1	1	1	3	1	1
4	2	1	1	1	1	1	1	1	-	1	1	1	3	1	1
5	2	1	-	-	1	-	-	1	-	1	1	1	3	1	1
6	2	1	-	-	1	-	-	1	-	1	1	1	3	1	1
Overall Correlation	3	2	1	1	2	-	-	2	-	2	2	2	3	2	2

23IT035	STORAGE TECHNOLOGIES	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- Characterize the functionalities of logical and physical components of storage
- Describe various storage networking technologies
- Identify different storage virtualization technologies
- Discuss the different backup and recovery strategies
- Understand common storage management activities and solutions

UNIT I STORAGE SYSTEMS

6

Introduction to Information Storage: Digital data and its types - Information storage - Key characteristics of data center and Evolution of computing platforms - Information Lifecycle Management - Third Platform Technologies: Cloud computing and its essential characteristics - Cloud services and cloud deployment models - Big data analytics - Social networking and mobile computing - Characteristics of third platform infrastructure and Imperatives for third platform transformation - Data Center Environment: Building blocks of a data center - Compute systems and compute virtualization and Software-defined data center.

UNIT II INTELLIGENT STORAGE SYSTEMS AND RAID

6

Components of an intelligent storage system, - Components, addressing, and performance of hard disk drives and solid-state drives - RAID - Types of intelligent storage systems - Scale-up and scale-out storage Architecture.

UNIT III | STORAGE NETWORKING TECHNOLOGIES

6

Block-Based Storage System - File-Based Storage System - Object-Based and Unified Storage - Fibre Channel SAN: Software-defined networking - FC SAN components and architecture - FC SAN topologies - link aggregation, and zoning - Fibre Channel over

Ethernet SAN: Components of FCoE SAN - FCoE SAN connectivity - Converged Enhanced Ethernet - FCoE architecture.

UNIT IV BACKUP, ARCHIVE AND REPLICATION

6

Introduction to Business Continuity - Backup architecture - Data deduplication - Cloud-based and mobile device backup - Data archive - Compute based, storage-based, and network-based replication - Data migration, - Disaster Recovery as a Service (DRaaS).

UNIT V | SECURING STORAGE INFRASTRUCTURE

6

Information security goals - Storage security domains - Threats to a storage infrastructure - Security controls to protect a storage infrastructure - Governance, risk, and compliance - Storage infrastructure management functions - Storage infrastructure management processes.

TOTAL: 30 PERIODS

PRACTICALS: LIST OF EXPERIMENTS

- 1. For any storage documentation, plan storage requirements based on performance and cost considerations such as Fibre Channel.
- 2. Install the iSCSI target feature and create/configure an iSCSI target.
- 3. Self-directed remote lab for advanced HPE storage solutions.
- 4. Design backup, recovery, and archive strategies for various customer scenarios.
- 5. Create a persistent disk and attach it to a virtual machine.
- 6. Create a storage bucket and upload objects to the bucket using google cloud console.
- 7. Create folders and subfolders in the bucket using google cloud console.
- 8. Make objects in a storage bucket publicly accessible using google cloud console.
- 9. Create an Image-backed Dataset from a Node-local Dataset.
- 10. Create a Remote Dataset and use it on a Single Node.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the fundamentals of information storage management and various models of Cloud infrastructure services and deployment
- CO2: Illustrate the usage of advanced intelligent storage systems and RAID
- CO3: Interpret various storage networking architectures SAN, including storage subsystems and virtualization
- **CO4:** Examine the different role in providing disaster recovery and remote replication technologies
- CO5: Utilize the security needs and security measures to be employed in information storage management
- CO6: Model the backup, archiving with regard to recovery and business continuity.

TEXT BOOKS:

- 1 EMC Corporation, "Information Storage and Management", Wiley, India, 2012
- Jon Tate., Pall Beck., Hector Hugo Ibarra., Shanmuganathan Kumaravel and Libor Miklas, "Introduction to Storage Area Networks", Ninth Edition, IBM Redbooks, 2017.

REFERENCES:

1 Hubbert Smith , "Data Center Storage", First Edition, Auerbach Publications, 2019

COs						F	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	ı	1	3	1	1	1	1	1	1	3	3	2	-	
2	2	1	ı	1	3	ı	ı	1	3	2	3	2	2	3	-	
3	2	1	-	-	2	-	-	-	3	1	1	2	2	3	1	
4	3	3	2	2	2	-	-	-	1	1	3	1	3	2	-	
5	3	2	1	1	2	1	1	1	1	2	3	1	3	2	-	
6	3	2	1	1	1	ı	ı	1	2	2	2	2	2	2	-	
Overall Correlation	3	2	1	1	3	-	-	-	2	2	3	2	3	2	1	

23IT036	SECURITY AND PRIVACY IN	L	T	P	C
	CLOUD	2	0	2	3

COURSE OBJECTIVES:

- To introduce Cloud Computing terminology, definition & concepts
- To understand the security design and architectural considerations for Cloud
- To understand the Identity, Access control in Cloud
- To follow best practices for Cloud security using various design patterns
- To be able to monitor and audit cloud applications for security

UNIT I	FUNDAMENTALS OF CLOUD SECURITY	6
	CONCEPTS	

Overview of cloud security- Security Services - Confidentiality, Integrity, Authentication, Non- repudiation, Access Control - Basic of cryptography - Conventional and public-key cryptography, hash functions, authentication, and digital signatures.

UNIT II SECURITY DESIGN AND ARCHITECTURE 6 FOR CLOUD

Security design principles for Cloud Computing - Comprehensive data protection - End-to-end access control - Common attack vectors and threats - Network and Storage - Secure Isolation Strategies - Virtualization strategies - Inter-tenant network segmentation strategies - Data Protection strategies: Data retention, deletion and arching procedures for tenant data, Encryption, Data Redaction, Tokenization, Obfuscation, PKI and Key.

	ACCESS CONTROL AND IDENTITY MANAGEMENT	6
Access c	ontrol requirements for Cloud infrastructure -	User

Identification - Authentication and Authorization - Roles-based Access Control - Multi-factor authentication - Single Sign-on, Identity Federation - Identity providers and service consumers - Storage and network access control options - OS Hardening and minimization - Verified and measured boot - Intruder Detection and prevention.

UNIT IV CLOUD SECURITY DESIGN PATTERNS

6

Introduction to Design Patterns, Cloud bursting, Geo-tagging, Secure Cloud Interfaces, Cloud Resource Access Control, Secure On-Premise Internet Access, Secure External Cloud.

UNIT V MONITORING, AUDITING AND MANAGEMENT

Security Information and Event Management

6

Proactive activity monitoring - Incident Response, monitoring for unauthorized access, malicious traffic, abuse of system privileges - Events and alerts - Auditing - Record generation, Reporting and Management, Tamper-proofing audit logs, Quality of Services, Secure Management, User management, Identity management,

TOTAL: 30 PERIODS

PRACTICALS EXERCISES:

LIST OF EXPERIMENTS

- Simulate a cloud scenario using Cloud Sim and run a scheduling algorithm not present in Cloud Sim
- 2. Simulate resource management using cloud sim
- 3. Simulate log forensics using cloud sim
- 4. Simulate a secure file sharing using a cloud sim
- 5. Implement data anonymization techniques over the simple dataset (masking, k- anonymization, etc)
- 6. Implement any encryption algorithm to protect the images
- 7. Implement any image obfuscation mechanism
- 8. Implement a role-based access control mechanism in a specific scenario.

- 9. Implement an attribute-based access control mechanism based on a particular scenario
- 10. Develop a log monitoring system with incident management in the cloud

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Utilize the cloud concepts and fundamentals.
- **CO2:** Explain the security challenges in the cloud.
- CO3: Make use of cloud policy and Identity and Access Management.
- CO4: Experiment with various risks and audit and monitoring mechanisms in the cloud.
- CO5: Analyze the various architectural and considerations for security in the cloud.
- CO6: Illustrate the privacy issues in cloud environment

TEXT BOOKS:

- 1 Raj Kumar Buyya, James Broberg, Andrzej Goscinski, "Cloud Computing", Wiley, 2013.
- 2 Dave shackleford, "Virtualization Security: Protecting Virtualized Environments", Sybex, 2013.

REFERENCES:

- 1 Mark C. Chu-Carroll, "Code in the Cloud", CRC Press, 2011.
- 2 Rajkumar Buyya, Christian Vechhiola, S. Thamarai Selvi, "Mastering Cloud Computing Foundations and Applications Programming", McGraw-Hill Education, 2013.

COs						ŀ	<u>'Os</u>						ŀ	<u> PSC</u>)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	2	ı	ı	ı	1	1	1	3	3	3	-
2	2	1	-	-	1	-	-	-	2	2	3	2	3	3	-
3	3	2	1	1	2	ı	ı	ı	3	1	1	2	2	3	1
4	3	2	1	1	3	1	1	1	3	2	3	3	1	1	-
5	3	3	2	2	1	-	-	-	2	3	3	2	2	3	-
6	2	1	-	-	1	-	-	-	2	3	3	2	2	3	-
Overall Correlation	3	2	1	1	2	-	-	-	3	2	3	3	3	3	-

23IT037	STREAM PROCESSING	L	T	P	С
		2	0	2	3
COURSE	DBJECTIVES:	<u>l</u>			
•	To Introduce Data Processing terminol	ogy,	def	init	ion
	& concepts				
•	To Define different types of Data Proce	essir	ıg		
•	To Explain the concepts of Real-time D	ata j	pro	cess	ing
•	To Select appropriate structures for	desi	gnir	ng a	and
	running real-time data services in	n a	bı	ısir	iess
	environment				
•	To Illustrate the benefits and drive the	ne a	dop	tior	ı of
	real-time data services to solve real wo	rld j	prol	bler	ns
UNIT I	FOUNDATIONS OF DATA SYSTEMS				6
Introduction	n to Data Processing - Stages of Data proc	cocci	na	Da	ata.
	Batch Processing - Stream processing - Data		_	-7/	
7.0000000000000000000000000000000000000	onal Data processing, Data Mining - Data				100
1,000	torage, Processing - Integration - Analytic				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ervice - Challenges.				
	REAL-TIME DATA PROCESSING	NIO	10	G)	6
	EER REA	AUT	RIVOR	nou	
	n to Big data - Big data infrastructure				
_	Near real-time solution - Lambda archite				_
	re - Stream Processing, Understanding D				
_	roker - Stream Processor - Batch & Real-ti	me .	EIL	τοι	ЭIS
	; Data Storage.	<u> </u>	7.0	-	
UNITIII	DATA MODELS AND QUERY LANGU	AGI	23		6
Relational	Model - Document Model - Key-Value Pa	irs -	No	SQ	L -
Object-Rela	tional Mismatch - Many to-One and M	any	-to-	Ma	ny
Relationshi	ps - Network data models, Schema	Fle	xibi	lity	-
Structured	Query Language - Data Locality for	or (Que	ries	-
	Queries - Graph Data models - Cy	_			-
	- Graph Queries in SQL, The Sem	anti	c V	Veb	-
CODASYL	, SPARQL.				

UNIT IV **EVENT PROCESSING WITH APACHE KAFKA** Apache Kafka - Kafka as Event Streaming platform - Events, Producers - Consumers, Topics - Partitions, Brokers - Kafka APIs -Admin API - Producer API - Consumer API - Kafka Streams API -Kafka Connect API. UNIT V | REAL-TIME PROCESSING USING SPARK 6 **STREAMING** Structured Streaming - Basic Concepts, Handling Event-time and Late Data - Fault-tolerant Semantics - Exactly-once Semantics -Creating Streaming Datasets - Schema Inference - Partitioning of Streaming datasets - Operations on Streaming Data - Selection, Aggregation - Projection - Watermarking - Window operations -Types of Time windows - Join Operations - Deduplication. **TOTAL: 30 PERIODS** PRACTICALS EXERCISES: 1. Install MongoDB Design and Implement Simple application using 2. MongoDB Query the designed system using MongoDB 3. Create a Event Stream with Apache Kafka 4. Create a Real-time Stream processing application 5. using Spark Streaming Build a Micro-batch application 6. 7. Real-time Fraud and Anomaly Detection 8. Real-time personalization, Marketing, Advertising **TOTAL: 30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Apply the applicability and utility of different streaming algorithms. CO2: Apply current research trends in data-stream processing.

CO3: Analyze the suitability of stream mining algorithms for data

stream systems.

001	D '11 (1 1 1 1 1
(()4:	Build stream	processing systems,	services and	l applications
CO 1.	Dana Sacam	processing by sterner	bei viceb aric	applications.

- CO5: Solve problems in real-world applications that process data streams.
- CO6: Solve problems in Event Processing with Apache Kafka

TEXT BOOKS:

- 1 Karau, Holden, and Matei Zaharia. "Learning Spark: Lightning-Fast Data Analytics." 2nd Edition. O'Reilly Media, 2023.
- Wampler, Dean, and Jason Decremer. "Programming Scala: Scalability = Functional Programming + Objects." 3rd Edition. O'Reilly Media, 2023.

REFERENCES:

- 1 Gualtieri, Mike, et al. "Streaming Data: Understanding the Real-Time Pipeline." 1st Edition. O'Reilly Media, 2023.
- 2 Shukla, Bhavuk, and Pradeep Pujari. "Stream Processing with Apache Kafka." Apress, 2023.
- 3 Akidau, Tyler, Slava Chernyak, and Reuven Lax. "Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing." 1st Edition. O'Reilly Media, 2018.

COs	ER R	EAL	Maria		CC	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	-	-	1	2	1	3	2	2	1	1
2	3	2	1	1	2	-	-	1	1	2	3	1	2	2	1
3	3	3	2	2	3	-	-	1	3	3	1	1	3	2	1
4	3	2	1	1	3	-	-	1	2	3	3	1	1	1	1
5	3	2	1	1	2	-	-	1	1	3	1	2	1	3	1
6	3	2	1	1	1	ı	-	1	1	1	1	1	1	1	1
Overall	3	3	2	2	2			2	2	2	2	2	2	2	2
Correlation	3	3	_	4	4	1	-	4	4	4	4		4	4	

23IT038	CLOUD WEB SERVICES	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- Introduction to cloud computing and Amazon web services.
- Understanding and using EC2 instances.
- Deploying and managing applications on AWS cloud.
- Using AWS security services.
- Implementing the networking concepts on AWS cloud.
- Analyze the requirements for developing and migrating applications to Web and Cloud Services.

UNIT I INTRODUCTION TO CLOUD COMPUTING 6 AND AMAZON WEB SERVICES

Introduction to Cloud Computing - Cloud Service Delivery Models (IAAS, PAAS, SAAS) - Cloud Deployment Models (Private, Public, Hybrid and Community) - Introduction to Amazon Web Services - Why Amazon? Use Cases - AWS Storage Options - AWS Compute Options - AWS Database Options - AWS Workflow Automation and Orchestration Options - AWS Systems Management and Monitoring Options - AWS Virtual Private Cloud Introduction, Pricing Concepts.

UNIT II INTRODUCTION TO EC2 6

Introduction To EC2 - Instance Types And Uses - Auto scaling Instances - Amazon Machine Images (AMIS) - Modifying Existing Images - Creating New Images of Running Instances - Converting An Instance Store AMI To An EBS AMI - Instances Backed By Storage Types - Elastic IPS - Elastic Load Balancing.

UNIT III WEB APPLICATIONS AND SECURITY 6

Introduction to Elastic Beanstalk - Deploying Scalable Application On AWS - Selecting And Launching An Application Environment - Provisioning Application Resources with Cloud formation - Introduction to Cloud Lookout - Describe Amazon Cloud Watch metrics and alarms - AWS Messaging Services Introduction to

AWS Security - Describe Amazon Identity and Access Management (IAM) - AWS Directory Service - AWS Key Management Service.

UNIT IV STORAGE

6

Amazon Storage - S3 Storage Basics - Buckets and Objects - Creating A Web Server Using S3 Endpoints - Managing Voluminous Information with EBS - Glacier Storage Service - Describe Amazon Dynamo - Understand key aspects of Amazon RDS - Launch an Amazon RDS instance

UNIT V NETWORKING

6

Introduction to AWS Networking - Access Control Lists (ACLs) - Setting Up a Security Group- Setting Up VPC And Internet Gateway-Setting Up A VPN- Setting Up A Customer Gateway For VPN- Setting Up Dedicated Hardware For VPC-Route53 for DNS System - Cloud front.

TOTAL: 30 PERIODS

PRACTICALS EXERCISES:

- 1. Study of CloudSim, set up CloudSim environment.
- 2. Virtual Machine (VM) creation, Running VMs on CloudSim.
- 3. Allocate different Cloudlets to VMs and Data Centers using different Cloud based scheduling algorithms
- 4. Create different Data Centers, VM allocation and provisioning on Data Centers, and analysis of outcomes
- 5. Assigning cloudlets and analysing the scheduling parameters for various scenarios
- **6.** Apply and evaluate the performance of various Cloud based Web Services

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the process of cloud computing and Amazon web services.
- CO2: Summarize the concept of EC2

CO3: Apply knowledge on Deploying and managing applications

	on AWS Interpret the use of AWS security service															
CO4:	Interpret the use of AWS security service															
CO5:	Explain the networking concepts on AWS Interpret the migrate applications to Web and Cloud															
CO6:	Interpr	et	the	mi	gra	te	app	lica	tio	าร	to \	Web	an	d (Clo	ud
	Services.															
TEX	EXT BOOKS:															
1	Joe Baron, Hisham Baz , Tim Bixler , Biff Gaut , Kevin E.															
	Kelly,	Sea	n Se	enior	, Jo	hn	Sta	mpe	er,"	'AV	VS C	erti	fied	Sol	ıtio	ns
	Kelly, Sean Senior, John Stamper, "AWS Certified Solutions Architect Official Study Guide: Associate Exam, John Wiley															
	and Sons Publications, 2017															
2	Cloud Computing: A Hands-On Approach Book by															
	Arshdeep Bahga and Vijay K. Madisetti, CreateSpace															
	Independent Publishing Platform,2013															
REFE	ERENCI					_							100			
1	Yohan	Wa	dia	, "A	W	S C	erti	fied	So	luti	ons	Arc	hitec	t O	ffic	ial
9	Study (Gui	de:	Asso	ocia	te I	Exai	n, J	ohn	l Pa	ckt I	Publ	ishir	ng,	201	6
2	Bernal	d C	old	en,	"A	maz	zon	W	eb :	Ser	vices	s fo	r Dı	ımı	nie	s",
1	John W	iley	y &	Son	s, 20	013		4	h. '				1		Total Control	
	100	~	4				P	Os						I	SC	s
	COs ONE	1.	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	UAL	10.15	2	1	1	1	2	2	2	2
	2	2	1	-	-	1	-	-	-	2	1	1	2	2	3	-
	3	3	2	1	1	2	1	1	-	1	2	1	3	2	2	-
	4	2	1	-	-	2	-	-	-	1	1	2	2	3	3	-
5		2	1	-	-	2	-	-	-	1	1	1	2	2	2	-
	6	2	1	-	-	2	-	-	-	1	1	1	2	2	2	_
	erall	3	2	1	1	2	1	1	1	2	2	2	2	2	2	
Corr	elation	5	_	1	1	_	1	1	1	_	_	_	_	_	_	-

VERTICAL 2: FULL STACK DEVELOPMENT

23CS031	JAVA FULL STACK	L	T	P	C
	DEVELOPMENT	2	0	2	3

COURSE OBJECTIVES:

- To understand and familiarize with JavaScript and NodeJS environments.
- To learn about NoSQL database and basics of MongoDB.
- To acquire knowledge of the ReactJS frontend.
- To acquire knowledge of the ExpressJS backend.
- To acquire knowledge of how to develop and create real time web applications.

UNIT I INTRODUCTION TO JAVA SCRIPT 6

Introduction to JavaScript- Brief history of NodeJS and its alternatives- Installing and setting up NodeJS environment - Introduction to NPM package manager and registry - Introduction to callbacks and events -File system access and handling streams-Introduction to common utility modules (OS, Path).

UNIT II INTRODUCTION TO NOSQL DATABASE 6 WITH MONGODB

Introduction to NoSQL -Benefits and disadvantages of NoSQL databases -Introduction to MongoDB - Installing and setting up MongoDB environment -Data model design (Embedded and Normalized) -Database manipulation (Create, Drop, Create and Drop Collections) -Document manipulation (Insert, Delete, Update, Query (Limit, Sort, Aggregation)) -Projection Introduction and setting up Mongoose ORM -Handling models and queries with Mongoose.

UNIT III FRONTEND DEVELOPMENT WITH REACT JS 6

Introduction to ReactJS -Installation and creating a basic React application -Introduction to JSX- Components and props- State and lifecycle -Events and effects -Conditional rendering - Introduction to HTTP requests and fetch -Making HTTP GET and POST requests- Handling data from API.

UNIT IV BACKEND DEVELOPMENT WITH EXPRESS JS

Introduction to ExpressJS- Separating the tasks of frontend and backend -Installing and setting up ExpressJS environment-Introduction to APIs -Routing and URL building -Error handling-Project directory structuring - Handling form data and request data -Handling and serving files -Authentication using session keys- Handling request of multiple methods and their placement (GET, POST, DELETE, PATCH) -Documenting an API.

UNIT V CREATING A FULL STACK WEB APPLICATION

React page with input fields -Extracting and validating data from input field(s)- Making a HTTP request with data from input field(s) Using Mongoose with an ExpressJS application -Inserting document with data from HTTP request -Writing, handling URL query parameters and using its values to write queries with Mongoose -Displaying data returned from backend- Handling errors in API requests.

TOTAL: 30 PERIODS

6

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Develop a Life Line A Health Assistance Web Application
- 2. Develop Employee Timesheet Management System
- 3. Build Paytm clone Page
- 4. Build Portfolio page
- 5. Creating a simple College website using HTML, CSS, and JS.
- 6. Develop a Hospital Management System
- 7. Develop an Online Banking Application

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Explain concepts of JavaScript and its environment.

CO2: Apply NoSQL databases and develop deeper into it using MongoDB and performing basic database operations in it.

CO3:	Apply the concepts of JSX and ReactJS to display and manipulate data in a webpage and to make basic HTTP															
	manipulate data in a webpage and to make basic HTTP requests and handle them.															
	request	ts aı	nd l	nano	dle	ther	n.									
CO4:	Compare the roles of frontend and backend, and to work															
	with ExpressJS.															
CO5:	Develop complete API and interact with it from the ReactJS															
	frontend.															
CO6:	Develop and create real time web applications.															
TEX	Г ВООК	S:														
1	Herber	t S	chil	dt,	"Ja	va:	Th	e C	Com	ıple	te F	Refe	ence	e",	11	th
	Edition, McGraw Hill Education, New Delhi, 2019															
2	Bradshaw, Shannon., Brazil, Eoin., Chodorow, MongoDB:															
	The Definitive Guide: United States: O'Reilly Media, 2019.															
3	Herbert Schildt, "Introducing JavaFX 8 Programming", 1 st															
4	Edition, McGraw Hill Education, New Delhi, 2015.															
-	Chris Northwood, 'The Full Stack Developer: Your Essential Guide to the Everyday Skills" APress; 1st ed. Edition (20															
	Novem				.i y c	lay			1	Tes	, I	,		AILIC	,,,,	
REFI	ERENCE			y)	7.			1		1					To have	
1	'Expect	ted	of a	M	ode	rn l	Full	Sta	ıck	We	b De	evelo	per	', A	pre	ss;
	1st edit								SE.		TE	CH	ΝO	LO	G)	
2	Cay S. 1						-		un	dan	nenta	als",	Vol	um	e 1,	11
	th Edit															
3	Nichola									sio	nal	Jav	a f	or	W	eb
	Applica	atıo	ns"	, W	rox	Pre			4.					_	100	
(COs	-1	_	_	4	-		Os	0	_	10	11	10		PSO	
	1	1	2	3	4	5	6	7	8	9	10	11		1	2	3
	1	2	1	-	-	3	-	-	1	-	-	-	1	2	3	1
	2	3	2	1	1	1	-	-	1	-	-	-	2	3	1	1
3		3	2	1	1	2	-	-	1	-	-	-	2	3	2	1
4		3	2	1	1	2	_	_	1	-	-	-	1	2	2	1
	5 6	3	2	1	1	2	-	-	1	-	-	1	1	3	2	1
0-		3	2	1	1	2	-	-	1	-	-	-	1	3	2	1
	verall relation	3	3	1	1	2	_	_	1	_	_	_	2	3	2	1
Corr	elation			l	l		1	l	1		l		l	1	l	

23CS032	MOBILE APP DEVELOPMENT	L	T	P	C
		2	0	2	3

- To understand the need and characteristics of mobile applications
- To design the right user interface for mobile applications.
- To understand the design issues in the development of mobile applications
- To understand the development procedure for mobile applications forms
- To develop mobile applications using various tools and platform

UNIT I INTRODUCTION TO ANDROID OS

6

Android: An Open Platform for Mobile Development-Introducing the Open Handset Alliance- Introducing the Development Framework- Developing for Android-Developing for Mobile and Embedded Devices- Android Development Tools-Introducing the Application Manifest File -The Android Application Lifecycle.

UNIT II BUILDING USER INTERFACE AND INTENT 6 **CREATIONS**

Fundamental Android UI Design- Android User Interface Fundamentals- Introducing Layouts- The Android Widget Toolbox- Introducing Intents- Creating Intent Filters and Broadcast Receivers- Using Internet Services-Connecting to Google App Engine.

UNIT III DATABASES AND CONTENT PROVIDERS

Introduction on SQLite-Working with SQLite Databases- Creating Content Providers Native Android Content Providers-Introducing Services - Using Background Threads- Using Alarms-Creating and Using Menus and Action Bar Action Items.

UNIT IV LOCATION-BASED SERVICES AND WIRELESS SERVICES

Using Location-Based Services-Using the Emulator with Location-Based Services-Selecting a Location Provider- Finding Your Current Location- Using Bluetooth-Managing Network and Internet Connectivity- Managing Wi-Fi.

UNIT V TELEPHONY AND SMS, PUBLISHING 6 APPLICATIONS 6

Using Telephony - Introducing SMS and MMS - Distributing Applications-Introducing the Google Play - Getting Started with Google Play-Publishing Applications.

TOTAL: 30 PERIODS

6

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- Develop an application that uses GUI components, Font and Colours
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Write an application that draws basic graphical primitives on the screen.
- 4. Develop an application that makes use of databases
- 5. Develop an application that makes use of Notification Manager
- 6. Implement an application that uses Multi-threading
- 7. Develop a native application that uses GPS location information
- 8. Implement an application that writes data to the SD card
- Implement an application that creates an alert upon receiving a message
- 10. Write a mobile application that makes use of RSS feed

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Develo	p	an	ap	plic	atio	on	usi	ng	Aı	ndro	id	dev	elop	ome	ent
	enviror	nme	ent													
CO2:	Develo	рn	nob	ile a	app	lica	tior	ı de	vel	opn	nent	frai	new	ork	s a	nd
	tools															
CO3:	Build	a	mo	bile	e a	ppl	icat	ion	tl	nat	ma	nag	es	Dat	taba	ise
	operati	operations														
CO4:	Develo	Develop location based services and wireless environments														
CO5:	Develo	рΤ	elej	oho	ny	Apj	olica	atio	ns f	for	intro	oduc	ing	SM	Sa	nd
	MMS															
CO6:	Develo	p aj	ppli	cati	ons	ba	sed	on	And	droi	id O	S				
TEXT	г воок	S:														
1	Lauren	D	arce	ey	and	Sl	nan	e (Con	der,	. "A	ndr	oid	Wi	irele	ess
	Applica	atio	n I	Dev	eloj	ome	ent"	, P	ear	son	Ed	ucat	ion,	2n	d e	ed.
	(2011)	(2011)														
REFI	TERENCES: DREAM															
1	Reto	Reto Meier, "Professional Android 4 Application														
Î	Develo	Development", Wiley, First Edition, 2012														
2	Zigurd	M	edn	ieks	s, L	airc	d D	orn	in,	G.	Blak	ke N	ſike,	M	asu	mi
	Nakam	ura	, "I	rog	ran	nmi	ng	And	droi	ď,	O'R	eilly	7, 2n	dEc	litic	on,
	2012.	ER R	EAL	Maria		CC	JLI	_EK	o E	UI-	IE	CH	NO	LU	(0)	
3	Alasda	ir .	Alla	ın,	"iP	hor	ne :	Pro	gra	mm	ing"	', C	'Rei	11y,	Fi	rst
	Edition	ı , 2 0	10.													
(COs						F	Os						I	PSC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	1	-	-		1	3	2	1
	2	3	2	1	1	2	1	-	1	1	-	1	1	3	2	1
	3	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1
	4	3	2	1	1	2	1	-	1	-	1	1	1	3	2	1
	5	3	2	1	1	2		-	1	-	-	-	1	3	2	1
	6	3	2	1	1	2	1	-	1	1	-	1	1	3	2	1
	erall	3	3	1	1	2	1	_	1	1	_	1	1	3	2	1
Carre	elation			*	1	_	*		1	1		•	-		_	•

23CS033	UI AND UX DESIGN	L	T	P	C
		2	0	2	3

- To provide a sound knowledge in UI & UX.
- To understand the need for UI and UX.
- To understand the various Research Methods used in Design.
- To explore the various Tools used in UI & UX.
- To create a wireframe and prototype.

UNIT I FOUNDATIONS OF DESIGN 6

UI vs. UX Design - Core Stages of Design Thinking - Divergent and Convergent Thinking - Brainstorming and Game storming - Observational Empathy.

UNIT II FOUNDATIONS OF UI DESIGN 6

Visual and UI Principles - UI Elements and Patterns - Interaction Behaviors and Principles - Branding - Style Guides.

UNIT III FOUNDATIONS OF UX DESIGN 6

Introduction to User Experience - Why You Should Care about User Experience - Understanding User Experience - Defining the UX Design Process and its Methodology - Research in User Experience Design - Tools and Method used for Research - User Needs and its Goals - Know about Business Goals.

UNIT IV WIREFRAMING, PROTOTYPING AND TESTING 6

Sketching Principles - Sketching Red Routes - Responsive Design - Wireframing - Creating Wireflows - Building a Prototype - Building High-Fidelity Mockups - Designing Efficiently with Tools- Interaction Patterns - Conducting Usability Tests - Other Evaluative User Research Methods - Synthesizing Test Findings - Prototype Iteration.

UNIT V RESEARCH, DESIGNING, IDEATING, & 6 INFORMATION ARCHITECTURE

Identifying and Writing Problem Statements - Identifying Appropriate Research Methods - Creating Personas - Solution Ideation - Creating User Stories - Creating Scenarios - Flow Diagrams - Flow Mapping - Information Architecture.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Designing a Responsive layout for an societal application
- 2. Exploring various UI Interaction Patterns
- 3. Developing an interface with proper UI Style Guides
- 4. Developing Wireflow diagram for application using open source software
- 5. Exploring various open source collaborative interface Platform
- 6. Hands on Design Thinking Process for a new product
- 7. Brainstorming feature for proposed product
- 8. Defining the Look and Feel of the new Project
- 9. Create a Sample Pattern Library for that product (Mood board, Fonts, Colors based on UI principles)
- 10. Identify a customer problem to solve.
- 11. Conduct end-to-end user research User research, creating personas, Ideation Process (User stories, Scenarios), Flow diagrams, Flow Mapping.
- 12. Sketch, design with popular tool and build a prototype and perform usability testing and Identify improvements.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build UI for user Applications.
- **CO2:** Apply UX design in any product or application.
- CO3: Apply UX Skills in product development.

CO4:	Apply	Ske	tch	ing	prii	ncip	les.									
CO5:	Develo	p V	Vire	frar	ne a	and	Wi	refl	ows	S.						
CO6:	Develo	p P	roto	otyp	e T	esti	ng i	for	Hig	h-F	ideli	ty N	lock	ups	S.	
TEXT	Г ВООК	S:														
1	Joel M	oel Marsh, "UX for Beginners", O'Reilly, 2022 Edition														
2	Jon Ya	blo	nsk	i, "I	Law	s of	U)	(us	ing	Psy	cho	logy	to I	Desi	ign	
	Better	Pro	du	ct &	Sei	vic	es"	O'F	Reill	y,20	020.					
REFE	ERENCI	ES:														
1	Jenifer	·Tio	lwe	11, 0	Cha	rles	Bre	ewe	r, A	ynı	ne V	alen	cia,			
	"Desig	gnir	ıg Iı	nter	face	e" 3	rd :	Edi	tion	, O	'Reil	ly 20	020.			
2	Steve S	Sch	oge	r, A	dar	n W	ath	an '	"Re	fact	orin	g U	[", 20	018.		
3	Steve 1	Steve Krug, "Don't Make Me Think, Revisited: A														
	Comm	Commonsense Approach to Web & Mobile", Third Edition,														
	2015 WER DREA															
4	Jenifer	Jenifer Tidwell, Charles Brewer, and Aynne Valencia,														
	"Desig	gnir	ıg Iı	nter	face	es: F	atte	erns	s foi	Ef	fecti	ve Ir	ntera	ictio	on	
1	Design	n" C)'Re	illy	Me	dia	,202	20.								
5	https:/	//w	wv	v.nr	igro	oup.	con	n/a	rtic	les/	TE	CH	NO	LO	G)	1
6	https:/	//w	wv	v.in	tera	ctic	n-d	lesi	gn.c	org/	lite:	ratu	re.	ONO	MOU	5
	-						F	Os						I	PSO	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	1	3	3	2	1	3	1	1
	2	3	2	1	1	2	-	-	1	1	2	2	2	3	2	1
	3	3	2	1	1	2	-	-	-	2	3	1	2	3	2	1
									1							
	5	3	2	1	1	1	-	-	1	2	1	1	1	3	1	1
	6															
	erall elation	3	2	1	1	2	-	-	1	3	2	2	2	3	2	1
Corr	eration					İ										

23CS034	MERN STACK WEB	L	T	P	C
	DEVELOPMENT	2	0	2	3

- To understand MERN stack architecture
- To enrich the knowledge of different JavaScript libraries and frameworks
- To understand how Javascript libraries can be used in front end and backend process

6

- To understand NoSQL databases
- To build web applications using MERN Stack

UNIT I INTRODUCTION TO MERN STACK

MERN Stack Overview, Modular Architecture, MERN support for modular architecture- Component-Based Frontend Development-Modular Server-Side Development - Separation of Concerns-Dependency Management- Testing and Deployment, Benefits/Features of Using Modular Architecture in MERN App.

UNIT II JAVA SCRIPT AND ECMA SCRIPT 6

JavaScript Fundamentals, Grammar and types, Control flow and error handling, Loops, Function, Objects, Arrays, Promises,ES6 Let and const, Template literals, Arrow Function, Default parameter, Async Await.

UNIT III BACKEND DEVELOPMENT USING Node.js AND Express.js with MONGO DB

Node.js overview, Node.js - basics and setup, Node.js console, Node.js command utilities, Node.js modules, concepts, Node.js events, database access ,Node.js with Express.js, Express.js Request/Response, Express.js Get, Express.js Post, Express.js Routing, Express.js Cookies, Express.js File Upload, Middleware, Express.js Scaffolding, Template, Migration of data into MongoDB, MongoDB with Node.js, Services offered by MongoDB.

UNIT IV FRONTEND DEVELOPMENT with ReactJS

6

6

Introduction to React: Components, Props, and State, JSX Syntax, Functional Components vs. Class Components; Advanced React Concepts: React Hooks: useState, useEffect, useContext. Component Lifecycle and State Management, Forms and Controlled Components, React Router and Single Page Applications (SPA): Setting up React Router for Navigation, Building a Single Page Application with Multiple Routes.

UNIT V CREATING A WEB APPLICATION USING MERN STACK

Integrating Frontend and Backend, State Management with Redux, Deployment of Apps, Authentication and Security, WebSocket and Real-Time Applications, Performance Optimization.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Create a simple calculator application using React.js
- 2. Create a simple login form using React.js
- 3. Write a node.js program to replace strings using Regular expression.
- 4. Create http server interacting with client using Node.js
- 5. Perform CRUD operations using MongoDB
- 6. Build migration of data using MongoDB
- 7. Create a REST backend API Using Express
- 8. Build an web application using React, Node, Express and MongoDB.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply the basic components of MERN stack architecture.
- Apply the basic fundamentals of javascript and ECMA Script.
- CO3: Build robust server-side applications with Node.js and Express.js.

- **CO4:** Build and interacting with MongoDB databases.
- CO5: Construct dynamic and responsive user interfaces using React.js.
- **CO6:** Develop a full stack application using MERN stack.

TEXT BOOKS:

- Nabendu Biswas ,"Ultimate Full-Stack Web Development with MERN: Design, Build, Test and Deploy Production-Grade Web Applications with MongoDB, Express, React and NodeJS", Orange Education ,2023
- 2 Herbert Schildt, "The Complete Reference-Java", Tata Mcgraw- Hill Edition, Eighth Edition, 2014.

REFERENCES:

- Adam Freeman," Mastering Node.js Web Development: Go on a comprehensive journey from the fundamentals to advanced web development with Node.js", Packt Publishing, 2024.
- **2** Greg Lim ," Beginning MERN Stack: Build and Deploy a Full Stack MongoDB, Express, React, Node.js App", Kindle Edition, 2021.
- 3 Shama Hogue," Full-Stack React Projects: Learn MERN stack development by building modern web apps using MongoDB, Express, React, and Node.js", second edition, Packt Publishing2020.

COs						F	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	-	-	-	1	-	-	1	2	3	-	1	
2	3	2	1	1	ı	-	ı	1	ı	-	1	2	3	ı	1	
3	3	2	1	1	3	-	ı	1	ı	-	1	2	3	3	1	
4	3	2	1	1	3	-	ı	1	ı	-	1	2	3	3	1	
5	3	2	1	1	3	-	ı	1	ı	-	1	2	3	3	1	
6	3	2	1	1	3	-	ı	1	ı	-	1	2	3	3	1	
Overall	3	2	1	1	3			1			1	2	3	3	1	
Correlation	3		1	1	3	_	-	T	1	-	1	2	3	3	1	

23CS035	DEVOPS	L	T	P	C
		2	0	2	3

- To introduce DevOps terminology, definition & concepts
- To understand the different Version control tools like Git, Mercurial
- To understand the concepts of Continuous Integration/ Continuous Testing/ Continuous Deployment)
- To understand Configuration management using Ansible
- To illustrate the benefits and drive the adoption of cloudbased Devops tools to solve real world problems

UNIT I	INTRODUCTION TO DEVOPS	6
	ssentials - Introduction to AWS, GCP, Azure - Vers stems: Git and Github.	sion
UNIT II	COMPILE AND BUILD USING MAVEN & GRADLE	6

Introduction, Installation of Maven, POM files, Maven Build lifecycle, Build phases(compile build, test, package) Maven Profiles, Maven repositories(local, central, global), Maven plugins, Maven create and build Artificats, Dependency management, Installation of Gradle, Understand build using Gradle

UNIT III | CONTINUOUS INTEGRATION USING | 6 | JENKINS | 6

Install & Configure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job, Configuring a Jenkins job, Introduction to Plugins, Adding Plugins to Jenkins, Commonly used plugins (Git Plugin, Parameter Plugin, HTML Publisher, Copy Artifact and Extended choice parameters). Configuring Jenkins to work with java, Git and Maven, Creating a Jenkins Build and Jenkins workspace.

UNIT IV CONFIGURATION MANAGEMENT USING 6 **ANSIBLE** Ansible Installation, Introduction, Ansible master/slave configuration, YAML basics, Ansible modules, Ansible Inventory files, Ansible playbooks, Ansible Roles, adhoc commands in ansible UNIT V **BUILDING DEVOPS PIPELINES USING** 6 **AZURE** Create Github Account, Create Repository, Create Organization, Create a new pipeline, Builda sample code, Modify azure-pipelines.yaml file. **TOTAL: 30 PERIODS** PRACTICAL EXERCISES: LIST OF EXPERIMENTS Create Maven Build pipeline in Azure. Run regression tests using Maven Build pipeline in Azure. 3. Install Jenkins in Cloud. 4. Create CI pipeline using Jenkins. 5. Create a CD pipeline in Jenkins and deploy in Cloud. 6. Create an Ansible playbook for a simple web application infrastructure. 7. Build a simple application using Gradle. 8. Build Devops Pipelines using Azure. **TOTAL: 30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to:

COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain different actions performed through Version control tools like Git. CO2: Apply Continuous Integration and Continuous Testing and Continuous Deployment using Jenkins by building and automating test cases using Maven & Gradle CO3: Deployment using Jenkins by building and automating test cases using Maven & Gradle.

CO4:	Develop	o Pi	peli	ine	in J	enk	ins	anc	l de	plo	y in	clou	d.		Develop Pipeline in Jenkins and deploy in cloud. Apply Automated Continuous Deployment.								
CO5:	Apply A	Aut	oma	atec	l Co	nti	nuo	us	Dep	oloy	men	ıt.											
CO6:	Constru	ıct c	conf	igu	rati	on	mar	nag	eme	ent i	using	g Ar	rsibl	e.									
TEX	г воок	S:																					
1	Roberto	Vo	rm	itta	g,"	A P	ract	ical	Gu	iide	to C	it ar	nd G	itH	ub 1	for							
	Window	Vindows Users: From Beginner to Expert in Easy Step-By-																					
	Step Ex																						
2	Jason C	anr	ion,	"L	inu	x fo	r Be	egir	nneı	rs: A	\n Ir	ntro	ducti	ion	to t	he							
	Linux	Ope	erat	ing	Sy	ste	m	anc	l C	om	man	d I	Line"	', ŀ	Sinc	lle							
	Edition	, 20	14																				
REFI	ERENCE																						
1	Mitesh	Ş	Son	i	,″⊦	Ian	ds-C	Эn	P	∖zu	re	De	vops	s:	Ci	cd							
	Implem	ent	atic	n F	or l	Mol	oile,	Ну	bri	d, A	and '	Web	Ap	plic	atio	ns							
	Using	Using Azure Devops And Microsoft Azure: CICD																					
	1000	Implementation for DevOps and Microsoft Azure", BPB																					
	Publications, 2020																						
2	Jeff Geerling, "Ansible for DevOps: Server and configuration																						
1	manage			for	hı	ama	ans'	, I	Mid	we	sterr	ı M	lac,	LL	CFi	rst							
	Edition		- 4	12	//										_								
3	David J																						
	to Kno										_	ps",	Cr	eate	espa	ice							
	Indeper											1.0											
4	https://	/wv	vw.	jen	kins	5.10				dbo	ok.p	df		_									
(COs		_	_		_		Os		_	10	44	10		PSO								
	1	1	2	3	4		6	7	8	9	10	11	12	1	2	3							
	2	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-							
	3	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2							
								3	3	2													
	5	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2							
	6	2	1	1	1	<i>-</i>	-	_	_	_	_		_	2	<i>-</i>								
O	verall	3		_	_	_	_	_					_		_	_							
	Correlation		2	1	1	3	-	-	2	-	-	-	-	3	3	2							

23CS036	WEB APPLICATION SECURITY	L	T	P	C
		2	0	2	3

- To understand the fundamentals of web application security.
- To focus on wide aspects of secure development and deployment of web applications.
- To learn how to build secure APIs.
- To learn the basics of vulnerability assessment and penetration testing.
- To get an insight about Hacking techniques and Tools.

UNIT I	FUNDAMENTALS OF WEB APPLICATION	6
	SECURITY	

The history of Software Security-Recognizing Web Application Security Threats, Web Application Security, Authentication and Authorization, Secure Socket layer, Transport layer Security, Session Management-Input Validation.

UNIT II | SECURE DEVELOPMENT AND DEPLOYMENT | 6

Web Applications Security - Security Testing, Security Incident Response Planning, The Microsoft Security Development Lifecycle (SDL), OWASP Comprehensive Lightweight Application Security Process (CLASP), The Software Assurance Maturity Model (SAMM).

UNIT III SECURE API DEVELOPMENT 6

API Security- Session Cookies, Token Based Authentication, Securing Natter APIs: Addressing threats with Security Controls, Rate Limiting for Availability, Encryption, Audit logging, Securing service-to-service APIs: API Keys, OAuth2, Securing Microservice APIs: Service Mesh, Locking Down Network Connections, Securing Incoming Requests.

UNIT IV VULNERABILITY ASSESSMENT AND PENETRATION TESTING

6

Vulnerability Assessment Lifecycle, Vulnerability Assessment Tools: Cloud-based vulnerability scanners, Host-based vulnerability scanners, Network-based vulnerability scanners, Database- based vulnerability scanners, Types of Penetration Tests: External Testing, Web Application Testing, Internal Penetration Testing, SSID or Wireless Testing, Mobile Application Testing.

UNIT V HACKING TECHNIQUES AND TOOLS

6

Social Engineering, Injection, Cross-Site Scripting(XSS), Broken Authentication and Session Management, Cross-Site Request Forgery, Security Misconfiguration, Insecure Cryptographic Storage, Failure to Restrict URL Access, Tools: Comodo, OpenVAS, Nexpose, Nikto, Burp Suite, etc.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Install wireshark and explore the various protocols
 - a) Analyze the difference between HTTP vs HTTPS
 - b) Analyze the various security mechanisms embedded with different protocols.
- 2. Identify the vulnerabilities using OWASP ZAP tool
- 3. Create simple REST API using python for following operation
 - a) GET
 - b) PUSH
 - c) POST
 - d) DELETE
- 4. Install Burp Suite to do following vulnerabilities:
 - a) SQL injection
 - b) cross-site scripting (XSS)
- 5. Attack the website using Social Engineering method

	TOTAL: 30 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the basic concepts of web application security and
	the need for it.
CO2:	Identify the process for secure development and
	deployment of web applications.
CO3:	Develop the skill to design and develop Secure Web
	Applications that use Secure APIs.
CO4:	Apply vulnerability assessment and penetration testing.
CO5:	Develop the skill to think like a hacker.
CO6:	Apply hachers tool like Comodo, OpenVAS, Nexpose.
TEXT	T BOOKS:
1	Andrew Hoffman, Web Application Security: Exploitation
	and Countermeasures for Modern Web Applications, First
	Edition, 2020, O'Reilly Media, Inc
2	Bryan Sullivan, Vincent Liu, Web Application Security: A
	Beginners Guide, 2012, The McGraw-Hill Companies.
3	Neil Madden, API Security in Action, 2020, Manning
	Publications Co., NY, USA.
REFE	ERENCES:
1	Michael Cross, "Developer's Guide to Web Application
	Security", Syngress Publishing, Inc., 2007.
2	Ravi Das and Greg Johnson, "Testing and Securing Web
	Applications", Taylor & Francis Group, LLC, 2021,
3	Prabath Siriwardena," Advanced API Security", Apress
	Media LLC, USA, 2020.
4	Malcom McDonald, "Web Security for Developers", No
	Starch Press, Inc, 2020,

5	Allen Harper, Shon Harris, Jonathan Ness, Chris Eagle,
	Gideon Lenkey, and Terron Williams "Grey Hat Hacking:
	The Ethical Hacker's Handbook", The McGraw-Hill
	Companies,Third Edition, 2011,

COs		POs													s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-		-	-	-	-	-	-	2	-	-
2	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
3	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
4	3	1	-	-	-	-	-	-	-	-	-	-	3	-	-
5	3	2	1	1	1	-	-	1	-	1	-	-	3	1	1
6	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
Overall	3	2	1	1	2			1		1		1	3	2	1
Correlation	3	2	1	1	2	-	Ā	<u> </u>	-		1	1	3	_	1

23CS037	ADVANCED JAVA	L	T	P	C							
	PROGRAMMING	2	0	2	3							
COURSE OB	JECTIVES:											
• To lear	n the advanced concepts in J2SE.											
• To und	lerstand server side programming using	g Sei	vle	t.								
• To lear	n the Java server pages and implement	atior	٦.									
• To und	lerstand the Model View Controller Arc	hite	ctu	re.								
• To lear	rn to develop web-based applications ເ	ısing	ς st	ruts	3							
hibernate Frameworks.												
UNIT I IN	TRODUCING JAVA ENTERPRISE EI	OITI	ON	1	6							
Entrancia I	Paris Anglication Characters	TI-:		T A 7	-1-							
-	ava, Basic Application Structure,		_									
Containers,	Creating Servlets, Configuring	_		rvle								
	ng HTTP methods, Using Parameters a											
	sions, Using Init parameters, File Uploa	ain	g, Ji	JBC								
UNITII JA	VA SERVER PAGES				6							
Creating JSP	s, Using Java within JSP, Combining	Serv	vlet	s aı	nd							
JSPs, maintai	ning State using Sessions, JSP C	usto	m	T	ag							
Library, Inte	grating Servlets and JSP: Model View	w C	Cont	rol	ler							
Architecture.	R REALTH COLLEGE OF TECH											
UNIT III ST	RUTS FRAMEWORK	AUTO	PINO	virio.	6							
Introduction	to Struts - Building a Simple Struts	Appl	lica	tior	ı –							
	ng Model, View and Controller Layer-											
Tiles.												
UNIT IV JA	VA SERVER FACES (JSF)				6							
Introduction	to Java Server Faces (JSF)- JSF	Ar	plio	catio	on							
	- Building a simple JSF Application -	-	-									
	fecycle - The Facelets View Declaration			-								
0	e Component Model- JSF Event Model.		0 -	0								
	RING FRAMEWORK AND HIBERNA	ATE			6							
1.016												
MVC patter	n for Web Applications, Spring	Fra	me	WO1	îK,							

Understanding Application Context, Bootstrapping Spring

framework, Configuring Spring framework, Data Persistence, Object/relational Mapping, Hibernate ORM, Mapping Entities to Tables.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Deploy a basic web application on a web container like Apache Tomcat.
- 2. Develop a servlet to handle file uploads.
- Implement a simple application combining servlets and JSPs.
- 4. Implement session management in JSP.
- 5. Develop a simple form-based application using Struts.
- 6. Develop JSP pages as the view layer in Struts.
- 7. Develop a simple form-based application using JSF.
- 8. Develop JSF views using Facelets.
- 9. Implement the MVC pattern using Spring MVC.
- 10. Implement database operations using spring and Hibernate.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the advanced Java concepts to solve complex problems.
- **CO2:** Develop server side programs using Servlets and JSP.
- CO3: Develop an application using Java Server Faces and Struts Framework.
- CO4: Apply cutting-edge frameworks in web application development.
- **CO5:** Develop a web application using Hibernates.
- CO6: Develop a web application using Spring framework.

	THE POOLS															
TEX	Г ВООК	S:														
1	Anil H	Iem	raja	mi,	"A	gile	e Ja	va	De	velo	opm	ent	witl	n S	prir	ıg,
	Hibern	ate	anc	l Ec	lips	se",	San	ns P	ubl	ishi	ing,	2006) .			
2	Herbert Schildt, "The Complete Reference-Java", Tata															
	Mcgraw- Hill Edition, 2022.															
REF	FERENCES:															
1	Christian Bauer, Gavin King, Gary Gregory, "Java															
	Persistence with Hibernate", Manning Publications, 2015.															
2	Craig Walls, "Spring in Action", Manning Publications,															
	2014.															
3	Ed Burns, Chris Schalk, "JavaServer Faces 2.0, The Complete															
	Reference", McGraw-Hill Publishers, 2010.															
								Os						I	PSC	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 .0%	3	2	1	1	2	-2	4	1		_	2	1	3	2	1
	2	3	2	1	\1	2	1	-	1	1	-	_	1	3	2	1
	3	3	2	1	1	2	1		1	1	1	1	1	3	2	1
	4	3	2	1	1	2		7	1	1	_	_	1	3	2	1
	5	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1
	6 GAVE	3	2	1	1	2	1	Ŀξ	1	1	1	1	10	3	2	1
	verall	3	3	1	1	3	1	ED T	DAN 1	1	1	1	AUT	3	3	1

23CS038	PYTHON FULL STACK	L	T	P	C
	DEVELOPMENT WITH MACHINE	2	0	2	3
	LEARNING				

- To learn foundational backend development concepts using Python's Flask for API development
- To integrate advanced backend features to ensure secure, efficient, and scalable APIs.
- To build and train machine learning models using Scikit-Learn, focusing on data preprocessing, model evaluation, and tuning
- To integrate machine learning models within backend APIs to enable real-time predictions
- To deploy machine learning applications on Render with CI/CD pipelines and monitoring for production stability

UNIT I PYTHON FOR BACKEND DEVELOPMENT 6

Backend Fundamentals and REST API Concepts – RESTful architecture, HTTP methods (GET, POST, PUT, DELETE), resource-based endpoint design, best practices for REST API design; **Flask Essentials** – Setting up Flask, routing and request handling, working with JSON, custom error handling; **Building CRUD APIs:** Implementing create, read, update, and delete operations using Flask-Introduction to database interactions using SQLite or in-memory data handling for testing.

UNIT II	ADVANCED BACKEND TECHNIQUES	6

API Security and Authentication – JWT authentication, Flask-JWT-Extended, role based access control;

Data Processing and Serialization - Handling large datasets in FLASK, using JSON and XML data serialization formats;

Implementing Caching and Redis- Introduction to Redis, Flask-

Redis integration, managing cache expiry and invalidation.

UNIT III | MACHINE LEARNING FUNDAMENTALS

6

Types of Machine Learning – Supervised, unsupervised, and reinforcement learning, Supervised Learning Models; Data Preprocessing and Feature Engineering– Data cleaning techniques, Scaling and Normalization, Feature Selection and Engineering; Building Machine Learning Models – Linear regression and decision trees, Random Forest and SVM; Model Evaluation and Optimization – Metrics for evaluation, cross-validation techniques, hyperparameter tuning.

UNIT IV MACHINE LEARNING MODEL INTEGRATION

6

Exposing ML Models through APIs - Creating prediction endpoints in Flask, Formatting input data for predictions and handling JSON requests; **Data Processing for Model Inference** - Data Formatting and Validation , Batch Processing for Efficiency: **Optimizing and Scaling Model Serving-** Techniques for faster inference, asynchronous processing for handling large volumes of requests; **Monitoring and Logging Predictions** - Logging incoming prediction requests and analyzing data distribution, Health Checks and Error Tracking.

UNIT V DEPLOYMENT AND PRODUCTION READINESS

6

Render Deployment Essentials – Setting up a Render account and deploying Flask applications, Environment Configuration; Preparing ML Models for Deployment – Packaging models and dependencies for production, Creating Docker containers for scalable deployments; CI/CD with GitHub Actions – Setting up GitHub Actions for automated builds and deployments,

Monitoring and Logging for Production APIs- Real-time Logging, Error Handling and Alerting.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Basic CRUD API Creation: Develop a CRUD API for managing a library of books with operations for adding, viewing, editing, and deleting records.
- 2. Implementing JWT Authentication: Set up JWT authentication to secure the library API.
- 3. Using Redis Caching: Add Redis caching to cache frequently accessed endpoints, such as the "View All Books" endpoint
- 4. Data Cleaning and Feature Engineering: Clean a housing dataset and create engineered features to improve predictive performance.
- 5. Model Building and Evaluation: Train a classification model using a dataset, evaluating it with accuracy and F1 score metrics.
- 6. Model Prediction API: Develop a Flask API to serve predictions from a trained ML model.
- 7. Prediction Logging: Set up basic logging to track incoming requests and analyze prediction patterns.
- Deploying Flask API on Render: Deploy a Flask-based API on Render, including environment configuration and monitoring setup.
- CI/CD Setup with GitHub Actions: Automate deployment of the API with CI/CD, ensuring consistent updates on each code commit

Mini Projects

1. Book Recommendation API: Build an API using Flask that

- provides book recommendations based on genre and author. Integrate data validation to ensure API requests have the required fields.
- User Profile API with JWT and Redis: Create a Flask API where users can view and update their profiles. Implement JWT-based authentication and use Redis to cache user data for improved performance.
- 3. Movie Rating Predictor: Develop a regression model to predict user ratings for movies based on genre, director, and other features. Tune the model using cross-validation to optimize accuracy.
- 4. Spam Detection API: Develop an API using a pre-trained spam detection model to classify messages. Implement logging to track prediction accuracy over time.
- Sentiment Analysis API with CI/CD on Render: Develop and deploy a sentiment analysis API, set up CI/CD on Render to automate redeployment, and implement monitoring.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Design and implement RESTful APIs using Python and Flask framework.
- CO2: Apply authentication, authorization, and caching mechanisms to secure and optimize backend applications.
- CO3: Preprocess data and build machine learning models using Scikit-Learn for regression and classification tasks.
- CO4: Integrate trained machine learning models into Flask APIs for real-time prediction and analysis.
- CO5: Monitor and log backend systems to ensure robustness and performance in API services.

CO6:	Deploy	_r f	ull-	stac	k r	nac	hin	e 1	earı	nin	g ap	oplic	atio	ns	usi	ng
	Render	ar	ıd C	SitH	ub 1	Acti	ons	s wi	th (CI/	CD p	oract	ices			
TEX	Г ВООК	S:														
1	Miguel	G	rinl	oerg	, F	lask	W	'eb	De	vel	opm	ent,	2nd	l E	ditic	n,
	O'Reill	y N	1edi	ia, 2	.018											
2	Aurélie	en (Gér	on,	Haı	nds-	-On	M	ach	ine	Lea	rning	g w	ith :	Scik	it-
	Learn,	Ke	ras,	and	l Te	nso	rFlo	w,	2nc	l Ec	ditio	n, O'	Reil	ly, 2	2019).
3	Sebasti	Sebastian Raschka, Python Machine Learning, 3rd Edition,														
	Packt F	Packt Publishing, 2019.														
REFI	ERENCI	RENCES:														
1	Mark Bates, Programming Flask, Pragmatic Bookshelf, 2022.															
2	Jason Brownlee, Machine Learning Mastery With Scikit-															
	Learn, 2021.															
3	GitHub Docs: https://docs.github.com/															
	Flask Docs: https://flask.palletsprojects.com/															
4	Flask I	oc)	s: h	ttps	://f	flasl	c.pa	allet	spr	oje	cts.co	om/	1		7	
5	Flask I Render					_	_	_				om/	1			
5	Render					_	nde	_				om/		I	'SO	S
5						_	nde	er.co				om/ 11	12	I 1	PSO 2	s 3
5	Render	Do	ocs:	http	os:/	/re	nde F 6	er.co	0m/ 8 -	'do	10 -		. I co	1 2	2	
5	Render COs 1 2	1	2	http	os:/	/re-	nde F 6	er.co	8 - 1	'do	10 - 1		- 1	1 2 3	2 - 1	
5	Render COs 1	1 2	2 1	http 3	2 4 -	/re	nde F 6	er.co	0m/ 8 -	'do	10 -		. I co	1 2	2	3
5	Render COs 1 2	1 2 3	2 1 2	3 - 1	9s:/ 4 - 1	/re-	nde F 6	er.co	8 - 1	9 -	10 - 1		- 1	1 2 3	2 - 1	3 - 1
5	Render COs 1 2 3 4 5	1 2 3	2 1 2 2	3 - 1 1	4 - 1	/re-	nde F 6	er.co	8 - 1	9 -	10 - 1		1	1 2 3 3	2 - 1	3 - 1
5	Render 20	1 2 3 3	2 1 2 2 2	3 - 1 1	4 - 1 1	/re-	nde F 6	er.co	8 - 1	9 -	10 - 1		1	1 2 3 3 3	2 - 1	3 - 1
5 ()	Render COs 1 2 3 4 5	1 2 3 3 3	2 1 2 2 2 2	3 1 1 1	4 - 1 1 1	/res	6 - - -	er.co	8 - 1 1 -	9 - - -	10 - 1 1 -		1 1 -	1 2 3 3 3 3	2 - 1 1 -	3 - 1 1 -

VERTICAL 3: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

23AD040	NATURAL LANGUAGE	L	T	P	C
	PROCESSING	2	0	2	3
COLLEGE					

COURSE OBJECTIVES:

- Explain fundamental tasks in NLP, including syntax, semantics, and pragmatics, along with associated challenges.
- Explore word-level syntax through N-grams, smoothing techniques.
- Explain context-free grammars and parsing techniques.
- Demonstrate linguistic meaning using first-order predicate calculus, syntax-driven semantic analysis, word sense disambiguation.
- Examine language generation frameworks and machine translation approaches.
- Analyze discourse structures, reference resolution, and the architecture of conversational agents for effective natural language communication.

UNIT I OVERVIEW AND MORPHOLOGY 6

Introduction – Models -and Algorithms - -Regular Expressions Basic Regular Expression Patterns – Finite State Automata Understand the wireless sensor network principles. Morphology -Inflectional Morphology - Derivational Morphology. Finite-State Morphological Parsing -- Porter Stemmer.

UNIT II WORD LEVEL AND SYNTACTIC 6 ANALYSIS

N-grams Models of Syntax - Counting Words - Unsmoothed N-grams. Smoothing- Back-off Deleted Interpolation - Entropy - English Word Classes - Tag sets for English Part of Speech Tagging-Rule Based Part of Speech Tagging - Stochastic Part of Speech Tagging - Transformation-Based Tagging.

UNIT III | CONTEXT FREE GRAMMARS

6

Context Free Grammars for English Syntax- Context-Free Rules and Trees -Understand the network simulation tools. Sentence-Level Constructions-Agreement - Sub Categorization, Parsing - Top-down - Early Parsing -feature Structures - Probabilistic Context-Free Grammars.

UNIT IV SEMANTIC ANALYSIS

6

Representing Meaning-Meaning Structure of Language-First Order Predicate Calculus Representing Linguistically Relevant Concepts -Syntax-Driven Semantic Analysis - Semantic Attachments -Syntax-Driven Analyzer. Robust Analysis - Lexemes and Their Senses - Internal Structure - Word Sense Disambiguation -Information Retrieval.

UNIT V LANGUAGE GENERATION AND DISCOURSE ANALYSIS

6

Discourse -Reference Resolution - Text Coherence -Discourse Structure - Coherence. Dialog and Conversational Agents - Dialog Acts - Interpretation -Conversational Agents. Language Generation-Architecture-Surface Realizations - Discourse Planning. Machine Translation -Transfer Metaphor- Interlingua - Statistical Approaches

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Implement basic text preprocessing steps such as tokenization, lowercasing, removing punctuation and stop word removal.
- 2. Build an N-gram language model using a text corpus, calculate probabilities, and generate text.
- 3. Use regular expressions to find patterns in text, such as identifying dates, phone numbers, or specific words.

- 4. Implement part-of-speech tagging on a text corpus using NLTK's pre-trained POS tagger.
- 5. Perform word sense disambiguation using WordNet to identify the correct meaning of ambiguous words.
- 6. Implement syntactic parsing using a context-free grammar and visualize the resulting parse tree.
- 7. Use a pre-trained NER model to identify and classify named entities like names, locations, and dates in text.
- 8. Implement a basic morphological parser to analyze word structures and identify morphemes, including prefixes, suffixes, and roots.
- 9. Build a simple sentiment analysis model to classify text as positive, negative, or neutral using a predefined dataset and basic machine learning techniques.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Outline the internal structure of a word of the natural language.
- **CO2:** Apply N-grams rules to identify word patterns.
- CO3: Explain the context free grammar.
- **CO4:** Compare and contrast the meaning of the word.
- CO5: Utilize syntax driven semantic analysis.
- **CO6:** Demonstrate automatic machine translation procedure.

TEXT BOOKS:

- C. Manning and H. Schutze, Statistical Natural, "Foundations of Language Processing. C", 1st Edition, MIT Press Cambridge, MA:1999
- 2 Daniel Jurafsky and James H Martin," Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Prentice Hall, 2nd Edition, 2008

REF	ERENCES:
1	Bharati A., Sangal R., Chaitanya, "Natural language
	processing: a Paninian perspective", 1st Edition, PHI, 2000.
2	Siddiqui T., Tiwary U. S. "Natural language processing and
	Information retrieval", 1st Edition, OUP, 2008.

COs						F	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	ı	ı	-	1	ı	2	-	1	-	1	2	ı	2	
2	3	2	1	1	1	2	ı	3	-	1	ı	1	3	1	3	
3	2	1	-	-	1	2	-	3	-	1	-	-	2	1	3	
4	2	1	-	-	1	2	-	3	-	1	-	-	2	1	3	
5	3	2	1	1	-	3	3	3	3	3	3	-	3	-	3	
6	2	1	-	-	-	3	3	3	3	2	3	-	2	-	3	
Overall Correlation	3	2 PR.E.	1	1	1	3	1	3	1	2	1	1	3	1	3	

COLLEGE OF TECHNOLOGY

23AD045	DA	TA I	L	T	P	С				
		V	ISUA	LIZATIO	N	•	2	0	2	3
COURSE OF	BJECTIV	/ES:								
• Unde	erstand	the	core	principles	of F	Explo	orato	ory	Da	ıta

- Understand the core principles of Exploratory Data Analysis (EDA)
- Utilize various EDA tools and techniques to perform descriptive statistics, data transformation, and time series analysis.
- Analyze univariate, bivariate, and multivariate data using appropriate statistical and visualization methods to understand relationships and patterns.
- Implement 2D and 3D data visualization techniques
- Design interactive visualizations for text and document data

UNIT I THE FUNDAMENTALS OF EXPLORATORY DATA ANALYSIS

Overview of EDA – Identifying Data quality – Missing values – Irregular Cardinality – Outliers – handling data Quality – Describing Data, Preparing Data Tables, Understanding Relationships – Identifying and Understanding Groups, Building Models from Data.

UNIT II EDA TOOLS AND DESCRIPTIVE STATISTICS 6

Significance of EDA - Comparing EDA with classical and Bayesian analysis - Software tools for EDA - Visual Aids for EDA - EDA with Personal Email - Data Transformation - Descriptive Statistics - Grouping Datasets Correlation - Time Series Analysis.

UNIT III UNIVARIATE, BIVARIATE, MULTIVARIATE 6 DATA ANALYSIS

Univariate Data Analysis - Bivariate Association - Regression Analysis - Cluster Analysis - Visualization Design Principles - Tables - Univariate Data Visualization -

Bivariate Data Visualization - Multivariate Data Visualization - Visualizing Groups - Dynamic Techniques.

UNIT IV DATA VISUALIZATION (2D/3D)

6

Simple Line Plots - Simple Scatter Plots - Visualizing Errors - Density and Contour Plots - Histograms, Binnings, and Density - Customizing Plot Legends - Customizing Colorbars - Multiple Subplots - Text and Annotation - Customizing Ticks - Customizing Stylesheets - Three-Dimensional Plots - Geographic Data with Basemap - Visualization with Seaborn.

UNIT V | INTERACTIVE DATA VISUALIZATION

6

Text and Document Visualization - Levels of Text Representations -Single Document Visualizations - Document Collection Visualizations- Interaction Concepts and Techniques - Designing Effective Visualizations - Comparing and Evaluating Visualization Techniques - Visualization Systems - Systems based on Data Type - Systems based on Analysis Type - Text Analysis and Visualization - Modern Integrated Visualization Systems.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- Generate the data quality report in terms of identifying missing values, irregular cardinality and outliers for an insurance company.
- 2. Descriptive feature identification for predicting a target feature by visualizing relationships.
- 3. Data preparation for Exploration using normalization, binning and sampling methods.
- 4. Design and create data visualizations.
- 5. Conduct exploratory data analysis using visualization.

- 6. Craft visual presentations of data for effective communication.
- 7. Use knowledge of perception and cognition to evaluate visualization design alternatives.
- 8. Design and evaluate color palettes for visualization based on principles of perception.
- 9. Apply data transformations such as aggregation and filtering for visualization.
- 10. Develop data exploration and visualization for an application Mini Project

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Illustrate fundamentals of exploratory data analysis and its commonly used techniques.
- CO2: Apply statistical concepts to analyze data and explore the tools used for EDA.
- CO3: Develop multivariate data visualization and analysis.
- CO4: Interpret results of exploratory data analysis using stylesheets
- CO5: Build and Implement visualization techniques in web for applications
- **CO6:** Apply exploratory data analysis methods using Python.

TEXT BOOKS:

- 1 Suresh Kumar Mukhiya, Usman Ahmed, "Hands-On Exploratory Data Analysis with Python",1st Edition, Packt Publishing, 2020.
- 2 Jake VanderPlas, "Python Data Science Handbook", O'Reilly Media, 1st Edition, December 2016.

REFERENCES:

1 Thomas Cleff, "Exploratory Data Analysis in Business and Economics", Springer International, 2013.

2	Matthe	w	O.	W	ard	, (Geo	rges	; C	Grin	steir	ı, I	Dani	el	Kei	m,
	"Intera	ctiv	e I)ata	Vi	sua	liza	tio	n: F	our	ndat	ions	, Te	chn	iqu	es,
	and Ap	pli	cati	ons	", 2	nd 1	Edit	ion	, CI	RC 1	ores	s, 20	15.			
3	Glenn	J. N	I yat	t, V	Vay	ne l	P. Jo	ohn	son	," N	⁄laki	ng S	Sense	e O	f Da	ata
	I", Johr	ı W	iley	& 9	Son	s, 21	nd I	Edit	ion	, 20	14.					
4	Claus (O. V	Vilk	ке, '	'Fu	nda	me	ntal	s of	Da	ita V	⁷ isua	aliza	tion	ı", î	1st
	Edition	ı, Oʻ	'reil	lly p	oub	lica	tion	ıs, 2	019							
5	Andy	Kir	k,"	Da	ta	Vis	uali	sati	on:	Α	Haı	ndbo	ook	for	Da	ıta
	Driven Design", Second Edition, Sage Publications Ltd, 2020															
	2020. Mike Kahn, "Data Exploration and Preparation with															
6	Mike Kahn, "Data Exploration and Preparation with															
	BigQuery: A practical guide to cleaning, transforming, and															
	analyzing data for business insights", 1st Edition, Kindle															
	Edition															
7	Dursur		- 10	LPS.			- 41		- VI							
}	Learnin	_		A. VIII				10.				ers"	, 1s	t Ec	ditic	n,
	Pearson	n Bı	ısin	ess	An	alyt		1000	_	202	1.				- 1	
	COs		1	ÿ.				Os		-			-		PSC	
	1 0 6	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 WE	2	1	-	-	1	2	1	1	1	LE	1	3	2	1	1
	2	3	2	1	1	1	2	1	1	1	NIVER	1	3	3	1	1
	3	3	2	1	1	1	2	1	1	1	-	1	3	3	1	1
	4	2 1 1 2 1 1 1 - 1 3 2 1 1														
	5	3	2	1	1	1	2	1	1	1	-	1	3	3	1	1
	6	3	2	1	1	1	2	1	1	1	1	1	3	3	1	1

Overall

Correlation

23AD046	KNOWLEDGE ENGINEERING	L	T	P	C
		3	0	0	3

- Understanding Fundamental Concepts Knowledge Engineering.
- Develop Logical Reasoning Skills
- Explore Semantic Networks and Ontologies
- Apply Advanced Reasoning Techniques
- Integrate Knowledge Representation with AI Systems

UNIT I INTRODUCTION

9

Introduction: Definition and Importance, Types of Knowledge: Declarative Knowledge, Procedural Knowledge, Meta-Knowledge, Historical Background: Evolution of Knowledge Representation in AI, Key Concepts: Ontology, Epistemology, and the Role of Logic in Knowledge Representation, Applications: Real-world Examples and Applications in AI Systems.

UNIT II LOGIC-BASED REPRESENTATION

9

Propositional Logic: Syntax, Semantics, and Inference, First-Order Logic (FOL): Syntax and Semantics, Quantifiers, and Inference Mechanisms, Resolution and Unification: Techniques and Algorithms, Knowledge Bases: Structure, Creation, and Querying, Automated Reasoning: Tools and Techniques for Logical Inference.

UNIT III | SEMANTIC NETWORKS AND FRAMES

9

Semantic Networks: Concepts, Nodes, Arcs, and Types of Relationships, Frame-Based Systems: Definition, Structure, and Examples, Inheritance: Types, Mechanisms, and Issues, Conceptual Graphs: Basics and Usage in Representing Knowledge, Applications: Use Cases in Natural Language Processing and Expert Systems

UNIT IV ONTOLOGIES AND DESCRIPTION LOGICS

Ontologies: Definition, Components, and Development Processes, Concepts and Instances – Generalization Hierarchies – Object Features – Defining Features – Representation, Description Logics: Basics, Syntax, Semantics, and Reasoning, Ontology Engineering: Tools, Methodologies, and Best Practices, Case Studies: Real-world Applications and Success Stories.

UNIT V ADVANCE TOPICS IN KNOWLEDGE 9 REPRESENTATION 9

Probabilistic Reasoning: Bayesian Networks and Markov Models, Temporal and Spatial Representation: Methods and Applications, Non-Monotonic Reasoning: Default Logic, Circumscription, and Belief Revision, learning from Knowledge: Integrating Machine Learning with Knowledge Representation, Ethical and Practical Considerations: Challenges, Limitations, and Future Trends in Knowledge Representation in AI

TOTAL: 45 PERIODS

9

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain Knowledge Representation Techniques.
- CO2: Solve complex AI problems through logical inference.
- CO3: Identify uncertainty in AI systems effectively.
- CO4: Develop Ontologies and represent domain-specific knowledge in AI applications.
- CO5: Construct Knowledge Representation in AI Systems.
- CO6: Apply Ethical and Practical Considerations to develop AI systems.

TEXT BOOKS:

1 Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach, 4th Edition, Pearson, 2021.

- 2 John F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/Cole, Thomson Learning, 2000
- Ronald J. Brachman, Hector J. Levesque: Knowledge Representation and Reasoning, Morgan Kaufmann, 2004.
- 4 Michael Genesereth, Nils J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1987.

REFERENCES:

- 1 Dean Allemang, James Hendler. Semantic Web for the Working Ontologist, 2nd Edition, Morgan Kaufmann, 2011.
- 2 Judea Pearl. Probabilistic Reasoning in Intelligent Systems, 2nd Edition, Morgan Kaufmann, 1988.

COs	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
10/4	2	1	C	\ -	_	420	_	1	Y-	-	-	1	2	-	1
2	3	2	1	1	- 8	-	9	1	7	-8), 	1	3	-	1
3	3	2	1	1	_	-	1	1	7	1	1	1	3	1000	1
4	3	2	1	1	1	2	3	1	2	1	1	2	3	-	1
5 GINE	3	2	1	1	S	1	F	2	0	F	CH	2	3	5	2
6	3	2	1	1	AFE	1	2	3	NA U	NIVER	SHY	2	3	MON	3
Overall Correlation	3	2	1	1	-	1	1	2	1	1	1	2	3		2

23IT039	DATA SCIENCE	L	T	P	C			
		2	0	2	3			
COURSE OF	BJECTIVES:							
• To u	nderstand the data science fundamental	ls an	d p	roc	ess			
 To 1 	earn to describe the data for the data sci	ence	pr	oce	ss.			
 To 1 	earn to describe the relationship betwee	n da	ıta.					
 To t 	atilize the Python libraries for Data Wra	ngliı	ng.					
 To j 	present and interpret data using visualiz	zatio	n li	bra	ries			
in P	ython							
UNIT I IN	TRODUCTION				6			
Data Science	e: Benefits and uses - facets of data -	Data	a So	cier	ce			
Process: Overview - Defining research goals - Retrieving data -								
Data preparation - Exploratory Data analysis - build the model-								
presenting f	indings and building applications - D	ata	Mir	ning	5 -			
Data Wareho	ousing - Basic Statistical descriptions of	Data	1.	~				
UNIT II D	ESCRIBING DATA	K			6			
Types of Da	ta - Types of Variables -Describing Data	a wi	th]	[ab	es			
and Graphs	-Describing Data with Averages -	De	esci	ibi	ng			
Variability -	Normal Distributions and Standard (z) S	Scor	es	G)				
UNIT III D	ESCRIBING RELATIONSHIPS	AUTO	DNO	MON	6			
Correlation -	-Scatter plots -correlation coefficient for	qua	anti	tati	ve			
	outational formula for correlation o	_			_			
-	-regression line -least squares regre				_			
Standard error of estimate - interpretation of r2 -multiple								
regression equations –regression towards the mean.								
	THON LIBRARIES FOR DATA				6			
w	RANGLING							
Basics of Nu	mpy arrays -aggregations -computation	ns or	ı ar	rav				
	, masks, boolean logic – fancy indexing							
=	ta manipulation with Pandas – data i							
-	operating on data - missing data -		•					
. 1 .								

indexing – combining datasets – aggregation and grouping – pivot $\,$

tables.	
UNIT V DATA VISUALIZATION	6
Importing Matplotlib - Line plots - Scatter plots - visual	zing
errors – density and contour plots – Histograms – legends – co	olors
- subplots - text and annotation - customization - t	
dimensional plotting - Geographic Data with Basema	
Visualization with Seaborn	'P
TOTAL: 30 PERI	ODS
PRACTICAL EXERCISES:	.003
LIST OF EXPERIMENTS	
1. Download, install and explore the features of NumPy,	
SciPy, Jupyter, Statsmodels and Pandas packages.	
2. Working with Numpy arrays.	
3. Working with Pandas data frames.	
4. Reading data from text files, Excel and the web and	1
exploring various commands for doing descriptive and	llytics
on th <mark>e Iris d</mark> ata set. 5. Use the diabetes data set from UCI and Pima Indians	
Diabetes data set for performing the following: a. Univariate analysis: Frequency, Mean, Median,	
Mode, Variance, Standard Deviation, Skewness	
Kurtosis.	DUS
b. Bivariate analysis: Linear and logistic regression	n
modeling	
c. Multiple Regression analysis	
d. Also compare the results of the above analysis	or
the two data sets.	
6. Apply and explore various plotting functions on UCI of	lata
sets.	
a. Normal curves	
b. Density and contour plots	
c. Correlation and scatter plots	
b. Histograms	
c. Three dimensional plotting	
7 Vicualizing Coographic Data with Recomp	

tables.

7.

c. Three dimensional process.

Visualizing Geographic Data with Basemap.

TOTAL: 30 PERIODS

	COURSE OUTCOMES:															
COU																
	After co									stu	dent	s wi	ll be	abl	le to) :
	Explair															
CO2:	Compa	re c	liffe	eren	t ty	pes	of	data	a de	scri	iptio	n fo	r da	ta s	cier	ice
	process	3														
	Apply			_					-							
CO4:	Make u	ıse (of th	ne P	yth	on	Lib	rari	es f	or I)ata	Wra	ngli	ng		
CO5:	Apply Visualization Libraries in Python to interpret and															
	explore data															
CO6:	Analyze different plots for basic exploratory data analysis															
TEX	T BOOKS: David Ciolan Arno D. B. Mayeman, and Mahamad Ali															
1	David Cielen, Arno D. B. Meysman, and Mohamed Ali,															
	"Introducing Data Science", Manning Publications, 2016.															
2	Robert S. Witte and John S. Witte, "Statistics", Eleventh															
	Edition, Wiley Publications, 2017.															
3	Jake VanderPlas, "Python Data Science Handbook: Essential															
	Tools for Working with Data", Second Edition, 2022.															
4	Joel Gr	us,	"Da	ta S	Scie	nce	Fro	m S	Scra	itch	: Fir	st Pı	rinci	ples	s w	ith
	Python	", S	eco	nd l	Edit	ion	, 20	19.				-1.1				
REFI	ERENCE	ES:	EAL	A. C. C.		C	ZLI	-EV	JE	U	IE	UH	NO	LU	9	
1	Allen B	. Do	owr	iey,	"Tl	ninŀ	s Sta	ats:	Exp	lora	atory	y Da	ta A	nal	ysis	in
	Python															
2	Newell						l Tł	neoi	ries	of	Cog	gniti	on."	На	ırva	rd
	Univer	sity	Pre	ess,	199	υ.	T	Os						T.	PSC)c
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	-	-	1	1	1	1	2	2	2	1
	2	2	1	_	_	1	_	_	1	2	1	1	2	2	3	1
	3	3	2	1	1	2	1	1	1	1	2	1	3	2	2	1
	4	3	2	1	1	2	-	-	2	1	1	2	2	3	3	2
	5	3	2	1	1	2	-	-	1	1	1	1	2	2	2	1
	6	3	3	2	2	2	-	-	1	1	1	1	2	2	2	1
	verall relation	3	2	1	1	2	1	1	2	2	2	2	3	3	3	2

23IT040		L	T	P	C
		2	0	2	3
COURSE OB					
• To ur	nderstand the basics of deep neural netwo	ork	S		
• To u	inderstand CNN of architectures of o	dee	еp	neı	ıral
netwo	orks				
• To ur	nderstand the concepts of Artificial Neura	al N	Vet	wo	rks
• To lea	arn the basics of Data science in Deep lear	rni	ng		
• To lea	arn about applications of deep learning in	ΑI	an	dΓ)ata
Scien	ce.				
UNIT I DE	EP NETWORKS BASICS				6
Probability D	istributions - Gradient based Optimizati	ion	<i>-</i> I	$\sin \epsilon$	
•	ars Vectors Matrices and tensors				
	sics: Capacity Overfitting and und				P
10.75.30	eters and validation sets Estimators			_	
	cochastic gradient descent Challenges				
No.	; Deep Networks: Deep feedforward net	ч.			0
-	ONVOLUTIONAL NEURAL NETWORK				6
VINEE	COLLEGE OF TECHN	UI		9)	
	Operation Sparse Interactions Parame				_
-	ce Pooling Convolution Variants: Stric				
	ed and dilated convolutions; CNN				
•	Functions Loss Functions Regula	arız	zatı	on	
	Gradient Computation.	_			
UNIT III DE	EP LEARNING ALGORITHMS FOR A	I			6
Artificial Net	ural Networks - Linear Associative N	Vet	wo	rks	_
Perceptrons -	The Backpropagation Algorithm - Hopf	fiel	d N	Vet	s -
Boltzmann M	achines - Deep RBMs - Variational Auto	oer	co	der	s -
Deep Backpro	pp Networks- Autoencoders.				
UNIT IV DA	ATA SCIENCE AND DEEP LEARNING				6
Fundamentals	s of Data science and responsibilities	of	f a	da	ata

scientist - life cycle of data science - Data science tools - Data

modeling, and featurization - How to work with data variables and data science tools - How to visualize the data.

UNIT V | APPLICATIONS OF DEEP LEARNING

6

Object detection and classification -RGB and depth image fusion - NLP tasks - dimensionality estimation - time series forecasting - building electric power grid for controllable energy resources - guiding charities in maximizing donations and robotic control in industrial environments.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- Design a single unit perceptron for classification of a linearly separable binary dataset without using pre-defined models. Use the Perceptron() from sklearn,
- Identify the problem with single unit Perceptron. Classify using Or-, And- and Xor-ed data and analyze the result.
- Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Vary the activation functions used and compare the results.
- Build a Deep Feed Forward ANN by implementing the Backpropagation algorithm and test the same using appropriate data sets. Use the number of hidden layers >=4.
- Design and implement an Image classification model to classify a dataset of images using Deep Feed Forward NN. Record the accuracy corresponding to the number of epochs. Use the MNIST, CIFAR-10 datasets.
- Design and implement a CNN model (with 2 layers of convolutions) to classify multi category image datasets. Record the accuracy corresponding to the number of epochs. Use the MNIST, CIFAR-10 datasets.

- 6. Design and implement a CNN model (with 4+ layers of convolutions) to classify multi category image datasets. Use the MNIST, Fashion MNIST, CIFAR-10 datasets. Set the No. of Epoch as 5, 10 and 20. Make the necessary changes whenever required. Record the accuracy corresponding to the number of epochs. Record the time required to run the program, using CPU as well as using GPU in Colab.
- 7. Design and implement a CNN model (with 2+ layers of convolutions) to classify multi category image datasets. Use the concept of padding and Batch Normalization while designing the CNN model. Record the accuracy corresponding to the number of epochs. Use the Fashion MNIST/MNIST/CIFAR10 datasets.
- 8. Design and implement a CNN model (with 4+ layers of convolutions) to classify multi category image datasets. Use the concept of regularization and dropout while designing the CNN model. Use the Fashion MNIST datasets. Record the Training accuracy and Test accuracy corresponding to the following architectures:
 - a. Base Model
 - b. Model with L1 Regularization
 - c. Model with L2 Regularization
 - d. Model with Dropout
 - e. Model with both L2 (or L1) and Dropout
- 9. Use the concept of Data Augmentation to increase the data size from a single image.
- 10. Design and implement a CNN model to classify CIFAR10 image dataset. Use the concept of Data Augmentation while designing the CNN model. Record the accuracy corresponding to the number of epochs.

											TO	ΓΔΙ	• 30 1	PEL	2IO	DS
COL	RSE OU	ITC	ON	ЛES	·						101	AL	. 50	LLI	10	DS
	After co					he c	011r	Se ·	the	stii	dent	s wi	11 be	abl	e to	٠.
CO1·	Explair													u.		·•
	Apply												nro	COS	cina	·
	Explair														`	_
CO3.	learnin		le	vasi	CS	OI	ЛΙ	.IIIC.	ıaı	11110	emge	ence	us	nig	ue	ep
CO4:	Apply		p le	arn	ing	alg	orit	hm	s fo	r da	nta s	cien	ce.			
	Apply deep learning algorithms for variety applications.															
	Discuss a real world application using suitable deep neural															
	networks.															
TEX	T BOOKS:															
1	Ian Goodfellow, Yoshua Bengio, Aaron Courville. "Deep															
	Learning.", MIT Press, 2016.															
2	Stone, James. "Artificial Intelligence Engines: A Tutorial															
54	Introduction to the Mathematics of Deep Learning", Sebtel															
1	Press, United States, 2019.															
REFI	ERENCE	ES:	. 1	Ž/	7			1		1			-		1000	
1	Vance,	Wi	lliar	n. "	Dat	ta So	cien	ce:	A C	Com	prel	nens	ive I	Beg	inne	ers
	Guide			4.10												
2	Wani,	M.	Α.,	R	aj,	В.,	L	uo,	F.	, I	Dou.	"De	ер	Lea	rni	ng
	Applica	atio	ns.′	', V	olu	me :	3, S	prii	ngei	· Pu	blica	atior	ns,20	22.		
(COs						F	Os						I	PSC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	1	-	-	-	1	2	1	1
	2	3	2	1	1	2	-	-	1	1	1	1	1	2	2	1
	3	3	2	1	1	1	-	-	1	1	1	1	1	2	1	1
	4	3	2	1	1	1	-	-	1	1	1	1	1	2	1	1
	5	3	2	1	1	1	-	-	1	1	1	1	1	3	1	1
	6	2	1	_	-	2	-	-	1	_	-	-	1	2	2	1
	verall	3	2	1	1	2	_	_	2	1	1	1	2	3	2	2
Corr	elation											_		ì		

23IT041	COGNITIVE SYSTEMS	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To familiarize Use the Innovation Canvas to justify potentially successful products.
- To learn various ways in which to develop a product idea.
- To understand about how Big Data can play vital role in Cognitive Computing.
- To know about the business applications of Cognitive Computing.
- To get into all applications of Cognitive Computing

UNIT I | FOUNDATION OF COGNITIVE COMPUTING | 6

Foundation of Cognitive Computing: cognitive computing as a new generation - the uses of cognitive systems - system cognitive understanding cognition. Design Principles for Cognitive

- understanding cognition Design Principles for Cognitive Systems: Components of a cognitive system building the corpus
- bringing data into cognitive system machine learning hypotheses generation and scoring presentation and visualization services.

UNIT II NATURAL LANGUAGE PROCESSING IN COGNITIVE SYSTEMS

Natural Language Processing in support of a Cognitive System: Role of NLP in a cognitive system, semantic web - Applying Natural language technologies to Business problems - Representing knowledge in Taxonomies and Ontologies: Representing knowledge - Defining Taxonomies and Ontologies - knowledge representation - models for knowledge representation - implementation considerations.

UNIT III BIG DATA AND COGNITIVE COMPUTING 6

Relationship between Big Data and Cognitive Computing: Dealing with human-generated Big data - analytical data warehouses,

Hadoop, data in motion and streaming data - integration of big data with traditional data Applying Advanced Analytics to cognitive computing: Advanced analytics is on a path to cognitive computing - using advanced analytics to create value - Impact of open source tools on advanced analytics.

UNIT IV BUSINESS IMPLICATIONS OF COGNITIVE COMPUTING

O

Knowledge meaning to business - Difference with a cognitive systems approach - Meshing data together differently - Using business knowledge to plan for the future - Answering business questions in new ways - Building business specific solutions , Making cognitive computing a reality - Cognitive application changing the market - The process of building a cognitive application: defining the objective and domain - Understanding the intended users and their attributes - questions and exploring insights - Training and testing.

UNIT V APPLICATION OF COGNITIVE COMPUTING

6

Building a cognitive health care application: Foundations of cognitive computing for healthcare - Building on a foundation of big data analytics - Cognitive applications across the health care eco system - Using a cognitive application to enhance the electronic medical record Using cognitive application to improve clinical teaching

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Build a simple cognitive system that can process text input and generate insights. Use Watson's Natural Language Understanding (NLU) API to analyze text data.
- 2. Create a basic neural network to classify images or text. Experiment with training the model and observe how it learns from data.

- 3. Set up a Hadoop cluster, upload a large dataset, and perform basic Map Reduce operations to analyze the data.
- 4. Perform advanced data analysis on a big dataset using Spark. Implement machine learning algorithms to predict trends or classify data.
- 5. Analyze a case study where cognitive computing disrupted a traditional business model. Discuss the benefits and challenges faced during the implementation
- Develop a cognitive customer support chatbot that can understand and respond to customer queries using Watson Assistant.
- 7. Create user personas, define the domain, and design the application interface.
- 8. Create a cognitive simulation tool that presents medical scenarios to trainees and provides feedback based on data patterns and best practices.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain applications in Cognitive Computing.
- CO2: Implement Natural language API.
- CO3: Develop a Hadoop Cluster to Perform Map Reduce operations.
- CO4: Apply the process of taking a product to market.
- **CO5:** Build an application involved in cognitive domain.
- **CO6:** Summarize the foundation of big data analytics.

TEXT BOOKS:

Vijay V Raghavan, Venkat N.Gudivada, VenuGovindaraju, C.R. Rao. "Cognitive Computing: Theory and Applications: (Handbook of Statistics 35).", Elsevier publications, 2016

2	Judith	Hurwitz,	Marcia	Kaufman,	Adrian	Bowles.
	"Cogni	tive Compu	ıting and	Big Data	Analytics.'	', Wiley
	Publica	tions, 2015				

REFERENCES:

- 1 Robert A. Wilson, Frank C. Keil, "The MIT Encyclopedia of the Cognitive Sciences.", The MIT Press, 1999.
- 2 Noah D. Goodman, Joshua B. Tenenbaum. "Probabilistic Models of Cognition.", The ProbMods Contributors, Second Edition, 2016.

COs						F	Os						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
2	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
3	3	2	1	1	3	1	Ы	2	-	1	-	- 5	3	3	2
4 00W	3	2	1	1	3	-2	4	2	4		2	4	3	3	2
5	3	2	1	1	3	12	K-	2	Y-	-	-	_	3	3	2
6	2	1	% -	1	- Y	4	A	-\	1		1	[-]	2	-	-
Overall Correlation	3	2	1	1	2	-	-	2	-	-	-	-	3	2	2
COLLEGE OF TECHNOLOGY AFFILIATED TO ANNA UNIVERSITY AUTONOMOUS															

COURSE OBJECTIVES:	3												
	9												
 Understand the fundamental concepts of Big Data. 													
 Apply MapReduce algorithms to distributed file 													
systems													
Explore various Big Data technologies and understand													
workflow management													
 Implement streaming analytics techniques for 													
processing and analyzing stream data													
Analyze recommender systems and social network													
mining techniques													
UNIT I INTRODUCTION TO BIG DATA	6												
Introduction to Big Data - Need for processing Big Data - Need for	or												
analytics- Characteristics of big data, Domain-specific examples													
big data, Big Data Stack - Introduction to Hadoop - Setting up													
Hadoop.													
UNIT II MAPREDUCE AND NEW SOFTWARE STACK	6												
Distributed File System - MapReduce, algorithms using	ng												
MapReduce - Extensions to MapReduce - Communication-co	st												
model - Complexity Theory for MapReduce -Overview of Spark	ζ.												
UNIT III BIG-DATA TECHNOLOGY OVERVIEW	6												
Big Data Collection Systems - Apache Flume - Big data Storage	· –												
HDFS Systems - Pig and Hadoop - Grunt - Data Model - pig Lat	in												
- Hive Overview - Hive QL - Overview of HBase - Overview	of												
Workflow - Workflow and Scheduling using Apache Oozie	-												
Introduction to NoSQL Databases - Basics of MongoDB.													
UNIT IV STREAMING ANALYTICS AND LINK	6												
ANALYSIS													
	ng												
Introduction to Stream analytics - Stream data model - Samplir	Data – filtering streams – Count distinct elements in a stream,												

Counting ones, Estimating moments – Decaying windows – Link Analysis – PageRank Computation – Market Basket model – Limited pass algorithms for Frequent Item sets.

UNIT V RECOMMENDER SYSTEMS AND SOCIAL NETWORK MINING

6

Advertising on the Web - Online Algorithms - Matching problem - Adwords problem and Implementation - recommendation systems - Collaborative filtering - Dimensionality reduction - Mining Social Network graphs - Clustering of social network graphs - Partitioning of graphs - Simrank - Counting Triangles - Neighborhoods properties of Graphs.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Study: Installation and Setting up Hadoop
- 2. Write a map reduce program to compute and measure the runtime and study its scaling behaviour for the following:
 - a. Compute descriptive statistics such as mean, median, mode, standard deviation from a large dataset.
 - b. Compute box-plots and histograms of all the numerical variables in a large multi -variate dataset.
 - c. Compute correlation metrics between pairs of all the numerical variables in a large multi - variate dataset.
 - d. Perform clustering of a large multi-variate dataset.
 - e. Perform classification of a large multi-variate dataset into two or more classes.
- 3. Write a spark program to compute and measure the runtime and study its scaling behaviour for the following:

- a. Box-plots and histograms of all the numerical variables in a large dataset.
- b. Perform classification in a large dataset.
- c. Perform regression in a large dataset.
- 4. Write, run and debug Map reduce programs
 - a. To analyse and build models from streaming data efficiently using systems like Apache Spark.
 - b. To analyse and build models from non-streaming data efficiently using systems like Apache Spark.
- 5. Use graph dataset and perform the following:
 - a. Perform basic analysis such as calculating node degree centrality, identifying important nodes using between-ness centrality.
 - b. Find communities by using graph clustering.

TOTAL: 30 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: **CO1:** Explain the basics of Big Data. CO2: Develop MapReduce program to compute and measure the runtime and **CO3:** Apply HDFS concepts and interfacing with HDFS. **CO4:** Apply Big Data Technology, Tools, and Algorithms. CO5: Analyze the stream data and Link analysis. **CO6:** Apply big data in Recommender systems. **TEXT BOOKS:** 1 Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Third Edition, Cambridge University Press, New Delhi.2014 Arshdeep Bagha and Vijay Madisetti, "Big Data Science & 2 Analytics - A Hands-on Approach", New Delhi, 2016.

REFI	ERENCE	S:														
1	Sadalag	ge, I	rar	nod	l J. '	'Nc	SQ	L di	istil	leď	" , 2 0	13				
2	E. Capr	iolo	, D	. W	am	pleı	r, ar	nd J	. Rı	ıthe	ergle	n, "l	Prog	ran	nmi	ng
	Hive", O'Reilley, 2012.															
3	Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.															
4	Eric Sammer, "Hadoop Operations", O'Reilley, 2012.															
5	Alan Gates, "Programming Pig", O'Reilley, 2011.															
	COs POs											I	PSOs			
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	-	-		-	1				1	2	-	1
	2	3	2	1	1	2		-	1	1			1	3	2	1
	3	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1
	4	3	2	1	1	2		-	1	1			1	3	2	1
	5 3 2 1 1 2 1 - 1 1 1 1 1									3	2	1				
	6 3 2 1 1 2 1 - 1 1 1 1										3	2	1			
	verall 3 3 1 1 3 1 - 1 1 1 1 1										1	3	3	1		

COLLEGE OF TECHNOLOGY

23IT043	DATA MINING AND	L	T	P	C
	WAREHOUSING	2	0	2	3

COURSE OBJECTIVES:

- To understand data warehouse concepts, architecture, business analysis and tools.
- To understand data pre-processing and data visualization techniques.
- To study algorithms for finding hidden and interesting patterns in data.
- To understand and apply various classification and clustering techniques using tools.
- Apply data mining techniques for real-world problem solving.

UNIT I BUSINESS ANALYSIS AND ON-LINE ANALYTICAL PROCESSING

Basic Concepts - Data Warehousing Components - Building a Data Warehouse - Database Architectures for Parallel Processing - Parallel DBMS Vendors - Multidimensional Data Model - Data Warehouse Schemas for Decision Support, Concept Hierarchies - Characteristics of OLAP Systems - Typical OLAP Operations, OLAP and OLTP.

UNIT II DATA MINING INTRODUCTION 6

Introduction to Data Mining Systems - Knowledge Discovery Process - Data Mining Techniques Issues -applications- Data Objects and attribute types, Statistical description of data, Data Pre-processing - Cleaning, Integration, Reduction, Transformation and discretization, Data Visualization, Data similarity and dissimilarity measures.

UNIT II	DATA MINING - FREQUENT PATTERN	6
	ANALYSIS	

Mining Frequent Patterns, Associations and Correlations - Mining

Methods- Pattern - Evaluation Method -Pattern Mining in Multilevel, Multi-Dimensional Space -Constraint Based Frequent Pattern Mining, Classification using Frequent Patterns - Mining associations in real time data sets using WEKA / R.

UNIT IV | CLASSIFICATION

6

Decision Tree Induction - Bayesian Classification - Rule Based Classification Classification by Backpropagation - Support Vector Machines -- Lazy Learners - Model Evaluation and Selection-Techniques to improve Classification Accuracy - Classification of real time data sets using WEKA / R.

UNIT V | CLUSTERING

6

Clustering Techniques – Cluster analysis-Partitioning Methods – Hierarchical Methods – Density Based Methods – Grid Based Methods – Evaluation of clustering – Clustering high dimensional data- Clustering with constraints, Outlier analysis-outlier detection methods – Clustering real time data sets using WEKA/R.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Experiments: Build Data Warehouse and Explore WEKA
 - a. Build a Data Warehouse/Data Mart (using open source tools like Pentaho Data Integration tool, Pentoaho Business Analytics; or other data warehouse tools like Microsoft-SSIS, Informatica, Business Objects, etc.).
 - b. Identify source tables and populate sample data
 - c. Design multi-dimensional data models namely Star, snowflake and Fact constellation schemas for any one enterprise (ex. Banking, Insurance, Finance, Healthcare, Manufacturing, Automobile, etc.).

- d. Write ETL scripts and implement using data warehouse tools
- e. Perform various OLAP operations such slice, dice, roll up, drill up and pivot
- f. Explore visualization features of the tool for analysis like identifying trends etc.
- g. List the attribute names and they types
- h. Number of records in each dataset
- i. Identify the class attribute (if any)
- j. Plot Histogram
- k. Determine the number of records for each class.
- 1. Visualize the data in various dimensions
- 2. Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets
 - a. Explore various options available in Weka for preprocessing data and apply (like Discretization Filters, Resample filter, etc.) on each dataset
 - b. Load each dataset into Weka and run Aprori algorithm with different support and confidence values. Study the rules generated.
 - Apply different discretization filters on numerical attributes and run the Apriori association rule algorithm.
 - d. Study the rules generated. Derive interesting insights and observe the effect of discretization in the rule generation process.
- 3. Demonstrate performing classification on data sets
 - a. Load each dataset into Weka and run Id3, J48 classification algorithm. Study the classifier output. Compute entropy values, Kappa statistic.

b. Extract if-then rules from the decision tree generated by the classifier, Observe the confusion matrix and derive Accuracy, F-measure, TPrate, FPrate, Precision and Recall values. Apply cross-validation strategy with various fold levels and compare the accuracy results.

4. Demonstrate performing clustering on data sets

- a. Load each dataset into Weka and run simple k-means clustering algorithm with different values of k (number of desired clusters). Study the clusters formed. Observe the sum of squared errors and centroids, and derive insights.
- b. Load each dataset into Weka and perform Naïvebayes classification and k-Nearest Neighbour classification. Interpret the results obtained.
- c. Plot RoC Curves

5. Demonstrate performing Regression on data sets

- a. Load each dataset into Weka and build Linear Regression model. Study the clusters formed. Use Training set option. Interpret the regression model and derive patterns and conclusions from the regression results.
- b. Use options cross-validation and percentage split and repeats running the Linear Regression Model.

 Observe the results and derive meaningful results.
- c. Explore Simple linear regression technique that only looks at one variable.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Build a Data warehouse system and perform business analysis with OLAP tools.

	O2: Apply suitable pre-processing and visualization techniques															
CO2:				-	e-p	roc	essi	ng	and	vis	uali	zatio	on te	echr	niqu	ıes
	for data															
CO3:	Apply	frec	luei	nt p	atte	rn	for	data	a ar	aly	sis.					
	Apply	_	_									_				
CO5 :	Apply a	app	rop	riat	e cl	ust	erin	g te	echr	niqu	es fo	or da	ata a	nal	ysis	
CO6:	Apply	Dat	a n	nini	ng 1	tech	ıniq	ues	fo	r as	soci	atioı	n rul	le n	nini	ng
	techniq	ues	3													
TEX	Г ВООК	S:														
1	Jiawei Han and Micheline Kamber, "Data Mining Concepts															
	and Techniques", Third Edition, Elsevier, 2012.															
2	Inmon W H, Krishnan K, "Building the Data Lakehouse",															
	Morgan Kaufmann Publishers, Boston, 2023.															
REFI	ERENCES:															
1	Tan P N, Steinbach M, Kumar V, "Introduction to Data															
	Mining", Pearson Education, London, 2024.															
2	Han J, Kamber M, Pei J, "Data Mining: Concepts and															
	Techniques", Morgan Kaufmann Publishers, San Francisco,															
	2023. Kimball R, Ross M, "The Data Warehouse Toolkit", John															
3	Kimbal	1 R	, Ro	oss	M,	"Tl	ne l	Data	a W	/are	hou	se T	ooll	kit"	, Jo	hn
	Wiley &	& So	ons,	Ne	w)	ork	ς, 20	23	ν,						ال	
4	Aggarv	val	C	C,	"Da	ata	Mi	ning	g: T	he	Tex	tboo	οk",	Sp	ring	ger
	Interna	tion	nal,	Swi	itze	rlar	ıd, 2	2022	2			-6		ι'n	0	17
5	Inmon	W]	H, "	Bui	ldii	ng t	he l	Data	a W	are	hous	se",	Johr	ı W	iley	&
	Sons, N												AUT		MUU	
	70-						I	Os						I	PSC	s
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	1	3	-	ı	3	2	1	1
	2 3 2 1 1 3 1 2 3 2 2									1						
	3	3	2	1	1	-	-	ı	-	ı	-	2	3	1	1	ı
	4	3	2	1	1	-	-	-	1	-	-	-	2	1	3	1
	5	3	2	1	1	-	1	-	1	-	-	-	2	2	2	2
	6	3	2	1	1	-	2	-	-	-	-	2	2	2	2	-
_	erall	3	2	2	2	1	1	-	1	1	_	2	3	2	2	2
Corr	elation)	_	_	1		_		_	•		Į	9	1	1	1

VERTICAL 4: NETWORK & SECURITY

23EC049	NETWORK ESSENTIALS	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- Concept of network communication
- Importance of standards and protocols in network communications
- Configuration of an integrated wireless router and wireless client to connect securely to the internet.
- Connecting wireless PC clients to a wireless router
- Concept to build a simple computer network using Cisco devices and troubleshoot basic network connectivity issues.

UNIT I BASICS OF NETWORKING 6

The Fundamentals of Internet Connectivity - PC Basics - Overview of High-Speed and Dialup Connectivity - Web Browsers and Plug-Ins - Networking Terminology - Analogies That Describe Digital Bandwidth.

UNIT II INTRODUCTION TO NETWORK 6 SIMULATION AND COMMUNICATION

Network Simulation using Packet Tracer: Packet Tracer Network Simulator - Networking Models - Network Topologies - Wireless Communications.

UNIT III INTRODUCTION TO NETWORK 6 ADDRESSING 6

Introduction to TCP/IP: Comparing the OSI Reference Model Layers and the TCP/IP Reference Model Layers, Internet Architecture - IP Addresses: IPv4 Addressing, IP Address Classes, Reserved IP Addresses, Public and Private Addresses, Introduction to Subnetting, IPv4 Versus IPv6 - IP Address Assignment, Acquisition, and Hierarchy: Obtaining an Internet Address, Static Assignment of an IP Address, Address Resolution Protocol, RARP IP Address Assignment

UNIT IV INTRODUCTION TO TRANSPORT LAYER

6

Transport Layer Services - Understanding the TCP/IP Transport Layer: Flow Control, Session Establishment, Maintenance, and Termination Overview, Three-Way Handshake. Windowing: Acknowledgment, TCP, UDP, TCP and UDP Port Numbers.

UNIT V INTRODUCTION ROUTER TROUBLESHOOTING

6

Introduction to Network Testing - Troubleshooting Router Issues Using the show interface and show interfaces Commands - Troubleshooting Routing Issues Using the show CDP neighbors Command - Troubleshooting Routing Issues Using show IP route and show IP protocol - Troubleshooting Router Connections Using the show controllers serial Command.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Making of cross cable and straight cable.
- 2. Configuration of switches and routers
- Creation of different Topologies using switches and Routers for Connecting Computers
- 4. Transferring data in an established Computer Network using addressing schemes.
- 5. Creation of a simple Local Area Network.
- 6. Routing Protocols.
- 7. Simulation of unicast and multicast routing protocols

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the Basic concepts of Networking
- CO2: Illustrate about the various types of cabling used in the networking
- CO3: Interpret the various addressing scheme used in networking
- CO4: Explain the basic of Transport Layer

CO5 :	Summarize the basic of Network Security
--------------	---

CO6: Make use of the configuration to troubleshoot the devices

TEXT BOOKS:

- 1 Cisco Networking Academy Program CCNA 1 and 2 Companion Guide, third Edition by CISCO Press
- 2 Cisco Certified Network Associate Study Guide Seventh Edition, Todd Lammle, SYBEX

REFERENCES:

- 1 Beasley, J.S. and Nilkaew, P., 2018. Networking Essentials: A
 CompTIA Network+ N10-007 Textbook. Pearson IT
 Certification
- McMillan, T., 2015. Cisco networking essentials. John Wiley & Sons, 2nd Edition

COs		POs													PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
17/1	2	1	0	\ -	3	2	1	2	2	2	-	2	3	3	3			
2	2	1	1/4	1	3	2	1	2	2	2	1	2	3	3	3			
3	2	1,		1	3	2	1	2	2	2	1	2	3	3	3			
4	2	1	18	1	3	2	1	2	2	2	1	2	3	3	3			
5 SINE	2	1		1	3	2	1	2	2	2	5	2	3	3	3			
6	3	2	1	1	3	2	1	2	2	2	Y .	2	3	3	3			
Overall Correlation	3	2	1	1	3	2	1	2	2	2	-	2	3	3	3			

23EC050		NETWORK ENGINEERING	L	Т	P	С						
_02_000			2	0	2	3						
COURSE OBJECTIVES:												
		n the Network Models and datalink lay	er fı	anc	tior	ıs.						
		erstand routing in the Network Layer.										
		ore methods of communication and co	nges	stio	า							
con	trol	by the Transport Layer.										
		y the Network Security Mechanisms.										
 To 	lear	n various hardware security attacks and	d the	eir								
		measures.			-							
UNIT I	NE	TWORKING TODAY				6						
Networki	ทฐ	- Components, types, Internet	Con	nec	tio	 าร,						
	_	of a reliable network, Network (
-		presentations and Topologies, Commo		-								
		ternet Connections, Reliable Network										
	0 214	ork Security.			4							
UNIT II		SIC SWITCH AND END DEVICE NFIGURATION				6						
Cisco IOS	Acc	ess, IOS Navigation, The Command Str	uctı	ıre,	Bas	sic						
Device Co	onfig	guration, Save Configurations, Ports an	d A	ddr	ess	es,						
Configure	e IP	Addressing, Verify Connectivity.										
		OTOCOLS AND MODELS				6						
The Rule	s, P1	rotocols, Protocol Suites, Standards O	rgar	niza	tio	ns,						
		dels, Data Encapsulation, Data access.	Ü									
UNIT IV	ET	HERNET SWITCHING				6						
Ethernet	Fran	mes, Ethernet MAC Address, The M	AC	Ad	dre	255						
		Speeds and Forwarding Methods.	110	110	·	.00						
UNIT V		DDRESS RESOLUTION				6						
Introduct	ion.	MAC and IP, Packet Tracer – Identify	MA	C a	nd	ΙΡ						
		ARP, Video—ARP Request, Video—A										
		nmunications, IPv6 Neighbor Disc				v6						
		initialization, if to iteration bloc	J , C	·								

Neighbor Discovery – Address Resolution.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Basic Switch and End Device Configuration and examine the ARP Table ILM
- 2. Create network and assign Static IP address to the host using Supernetting and subnetting.
- 3. Design a network using VLANs, Wireless LANs and InterVLAN routing.
- 4. Design a simple firewall for host and network.
- 5. Configure and troubleshoot redundancy on a switched network using EtherChannel.
- 6. Simulation of Transport Layer Protocols and analysis of congestion control techniques in network.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basic of IOS Commands to configure the devices using CLI
- CO2: Interpret the usage of various transmission medium used in the connectivity
- CO3: Make use of the IP Addressing scheme to implement the VLSM Scheme, Subnetting to interconnect various active ports of routers
- **CO4:** Summarize the various protocols used in transport layer
- CO5: Interpret the protocols used in the Application Layer.
- CO6: Make use of the security features to configure the devise to enhance the security as well to protect from the threats.

TEXT BOOKS:

- 1 Introduction to Networks Companion Guide (CCNAv7), CISCO Press
 - 2 Juniper, 'Distinguished Network Engineering Book SET', Wiley, 2011

REFI	REFERENCES:															
1	CCNA	200)-30	1, V	/olı	ıme	1 (Offi	cial	Ce	rt G	uid	e, W	EN	DE	LL
	ODOM	I, C	CIE	No	. 16	24]	Eme	eritu	1s, (CISC	CO I	ress	3			
2	Keshav	,,	'An	ı I	Eng	ine	erin	g	Ap	pro	ach	To) (Com	npu	ter
	Networking: ATM Networks, The Internet, And The															
	Telephone Network', Pearson Education, 1997															
3	Jason Edelman, Scott S. Lowe, Matt Oswalt, 'Network															
	Programmability and Automation Skills for the Next-															
	Generation Network Engineer', O'Reilly Media, 2018															
4	Stallings, 'Computer Networking With Internet Protocols															
	And Technology', Pearson Education, 2003															
	COs	POs											I	PSC	s	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	3	2	1_	2	2	2	-	2	3	3	3
	2 00%	2	4	A	-	3	2	1	2	2	2		2	3	3	3
	3	3	2	1	1	3	2	1	2	2	2	-	2	3	3	3
Î	4	2	1	A	1	3	2	1	2	2	2	4	2	3	3	3
/	5	2	1,	/-	-	3	2	1	2	2	2	-	2	3	3	3
· ·	6	3	2	1	1	3	2	1	2	2	2	-	2	3	3	3
	verall relation	3	2	1	1	3	2	1	2	2	2	SITY	2	3	3	3

23EC051	SWITCHING, ROUTING, AND	L	T	P	C								
	WIRELESS ESSENTIALS	2	0	2	3								
COURSE O	BJECTIVES:												
Student will understand a switch functionality and able to													
configure VLANs.													
Students will gain knowledge of dynamic host configuration													
protocols, understand LAN security concepts.													
Students will study switch security issues and methods to													
address them. Understand Wireless LAN concepts and													
-	ing wireless security.												
	ts will study routing concepts and p	erto	orm	sta	atıc								
routing	configurations.												
UNIT I B	ASIC DEVICE CONFIGURATION				6								
Configure a	Switch with Initial Settings, Configure S	Swit	ch	Por	ts.								
	ote Access, Basic Router Configuration, V	- /		-000									
Connected 1													
UNIT II S	WITCHING CONCEPTS	1			6								
Frame Forw	arding, Collision and Broadcast Domain	ns. (Ove	rvie	w								
180	VLANs in a Multi-Switched Environment												
	on, VLAN Trunks.												
	WITCH SECURITY CONFIGURATION				6								
Implement 1	Port Security, Mitigate VLAN Attacks, Mi	itiga	te I)HC	CP CP								
-	igate ARP Attacks, Mitigate STP Attacks	_											
UNIT IV R	OUTING CONCEPTS				6								
Path Detern	nination, Packet Forwarding, IP Routing	Tal	ole,	Sta	tic								
and Dynam	ic Routing.												
UNIT V V	VIRELESS LAN				6								
Introduction	n to Wireless, WLAN Components, WLA	ΝO	per	atic	n,								
CAPWAP C	peration, WLAN Threats, Secure WLAN	s.											
	TOTAL:	30 P	ER	IOI	S								

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Basic Switch and Router Configuration using console mode
- 2. Configure VLANs and Trunking
- 3. Implementation of VLANs and Trunking
- 4. Configure Router-on-a-Stick Inter-VLAN Routing
- 5. Troubleshoot Inter-VLAN Routing
- Implement the Inter VLAN Routing

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain how Layer 2 switches forward data
- CO2: Explain how STP enables redundancy in a Layer 2 network.
- CO3: Make use of DHCPv4 to operate across multiple LANs
- CO4: Explain how to configure DTP and native VLAN to mitigate VLAN attacks
- CO5: Summarize the operation of SLAAC.
- CO6: Interpret how a router processes packets when a static route is configured

TEXT BOOKS:

- 1 Switching, Routing, and Wireless Essentials v7.0 (SRWE) Companion Guide, Cisco Press
- 2 James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, Eighth Edition, Pearson Education, 2021

REFERENCES:

- 1 CCNA 200-301, Volume 1 Official Cert Guide, WENDELL ODOM, CCIE No. 1624 Emeritus, CISCO Press
- 2 Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol Suite, Sixth Edition TMH, 2022
- Wendell Odom, CCNA Routing and Switching 200-125 Official Cert Guide, CISCO press, 1st edition

4	Bruce Hartpence, 'Packet Guide to Routing and Switching', O'Reilly Media, Inc. 2011															g',
	POs												PSOs			
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
	2	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
	3	3	2	1	1	3	2	1	2	2	2	-	2	3	3	3
	4	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
	5	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
	6	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3
Overall Correlation		3	2	1	1	3	2	1	2	2	2	-	2	3	3	3

23EC052	ENTERPRISE NETWORKING, L	Т	P	С
202002	SECURITY AND AUTOMATION 2	0	2	3
COURSE OB			_	
	vith routers and switches using OSPF in po	nint-	to-	
	nd multi-access networks.	,1116	•••	
-	e threats and enhance network security us	ing	ассє	ess
	lists and security	Ü		
• Develo	p critical thinking and problem-solving ski	ills ι	ısin	g
real equ	uipment and Cisco Packet Tracer.			
	stand virtualization, SDN, and how APIs a	nd		
	rration management tools enable network			
automa	NGLE-AREA OSPFV2			
UNIT I SIN	NGLE-AREA USPFV2			6
OSPF Featur	res and Characteristics- OSPF Packe	et-	OS	PF
Operations- (OSPF Router ID- Point-to-Point OSPF N	Vetv	vorl	S-
Multi access	OSPF Networks- Modify Single-Area	OS	PFv	72-
11.72	Propagation- Verify Single-Area OSPFv2.			ľ.
UNIT II NE	TWORK SECURITY CONCEPTS			6
Current State	of Cyber security- Threat Actors- Threat Ac	tors	То	ol-
Malware- Co	ommon Network Attacks- IP Vulnerabi	lities	s aı	nd
Threats- TCP	and UDP Vulnerabilities- IP Services-	Ne	two	rk
Security Best	Practices- Cryptography.			
UNIT III AC	L CONCEPTS			6
Purpose of A	CLs- Wildcard Masks in ACLs- Guideline	s foi	· A(<u> </u>
=	pes of IPv4 ACLs- ACLs for IPv4 Conf.			
, ,	andard IPv4 ACLs-Modify IPv4 ACLs- Se	_		
O	Standard IPv4 AC- Configure Extended II			
NAT for IPv4	S	. v =	. . C	ىد.
-	AN, VPN, IPSEC AND QOS			6
OTALL IV VVE	ii, viii, ii dec and Qob			U
Wan Concept	ts- Purpose of WANs- VPN Technology-	Typ	pes	of

Transmission

Quality-

Traffic

VPNs-

IPsec- Network

Characteristics- QoS Models.

UNI	ΓV	NETWORK TROUBLESHOOTING AND	6
		VIRTUALIZATION	
Netw	zork	Documentation- Troubleshooting Proc	000
		ooting Tools- Cloud Computing – Virtualization.	ess-
1100	Diesi	TOTAL: 30 PERIO)DS
PR A	CTIC	AL EXERCISES:	<i>J</i> D3
		EXPERIMENTS	
	_		
1. 2.		nfigure Single-Area OSPFv2 Nore DNS Traffic	
3.	-	offigure and Verify Extended IPv4 ACLs	
		offigure NAT for IPv4	
5.		estigate the Broadband distribution and analyse	the
		ess options for the Scenarios.	
		TOTAL: 30 PERIO	ODS
COU	RSE	OUTCOMES:	7
8	Afte	r completion of the course, the students will be able	to:
CO1:	Exp	ain how single-area OSPF operates in both point	t-to-
1	poir	ıt and broadcast multi access networks.	
CO2:	Sum	marize network security concepts with respect to	ГСР
	and	UDP vulnerabilities	
CO3:	Illus	trate the ACL and NAT and its types in IPv4	0.3
CO4:	Mak	te use of NAT services on the edge router to provide I	Pv4
	add	ress scalability	
CO5:	Inte	rpret how VPNs and IPsec secure site-to-site and ren	note
	acce	ss connectivity	
CO6:	Sum	marize how network automation is enabled thro	ugh
	Rest	ful APIs and configuration management tools.	
TEXT	ГВО	OKS:	
1		erprise Networking, Security, and Automation Cour	se
	Boo	klet (CCNAv7), CISCO Press	
2	Mik	te Shema, "Hacking Web Apps: Detecting and Preven	ntino
		o Application Security Problems", First edition, Syn	
		olishing, 2012	<i>-</i>

REF	ERENCE	ES:															
1	CCNA 2	200-	301	, Vo	olur	ne 1	l Of	fici	al C	ert	Gui	de, V	VEN	IDE	ELL		
	ODOM,	DDOM, CCIE No. 1624 Emeritus, CISCO Press															
2	Pallapa	Ver	Venkataram, Satish Babu, Wireless and Mobile														
	Networl	work Security, First Edition, Tata McGraw Hill, 2010															
3	Markus	arkus Schumacher, Security Patterns: Integrating Security															
	and Systems Engineering, Wiley Software Pattern Series, 2010																
4	Angular 6 for Enterprise-Ready Web Applications, Doguhan																
	Uluca, 1st edition, Packt Publishing																
	CO-		POs PSOs														
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3	
	2	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3	
	3	2	1	-	-	3	2	1	2	2	2	-	2	3	3	3	
	4	3	2	1	1	3	2	1	2	2	2	10	2	3	3	3	
	5	2	1	1	g -	3	2	1	2	2	2	7	2	3	3	3	
	6	2	1	1	1	3	2	1	2	2	2	-	2	3	3	3	
	verall relation	3	2	1	1	3	2	1	2	2	2		2	3	3	3	

23EC053 NETWORK DESIGN L T P 3 0 0												
COURSE OBJECTIVES:												
To inspire the students to learn the various switching.	ing											
technologies	0											
To design the networks for various categories												
To introduce the purpose of management of the network	ork											
systems												
UNIT I SWITCHING TECHNOLOGIES	9											
Switching technologies, multiplexing, circuit switching, pack	et											
switching X.25, frame relax, SMDs ATM, B-ISDN, traffic matri	ix,											
traffic pattern calculations, performance issues of pack	et											
networks, delay, availability and reliability.												
UNIT II NETWORK DESIGN FOR ACCESS	9											
Network Design for Access: Campus network design, leased li	ne											
and radio modems, DDR & ISDN Access Network design, X.												
remote access network design, Frame-relay interfaces & traff												
shaping VSAT & WLAN network design.	ic											
UNIT III NETWORK DESIGN FOR BACKBONE	9											
Weer REAL	,											
Network Design for Backbone: Identification & selection	of											
internetworking devices, CISCO routers & Nortel switched	es,											
EIGRP.												
UNIT IV NETWORK DESIGN FOR CONVERGENCE	9											
Network Design for convergence: UDP broadcasts, IP Network	ks											
for Voice, Data, Video, Fax, Soft & hard design examples for												
Technology networks, network design for digital video broadca												
UNIT V DATA NETWORK MANAGEMENT SYSTEMS	9											
Data Network Management Systems: Managing IP, ICMP, TC	Р,											
UDP, X.25 reporting Ethernet traffic, managing bridges & router												
Microsoft & HP, NMS Tools. Case Studies: selected from design												
architecture & topology areas of internetworks.	, ,											
TOTAL: 45 PERIOD	S											

COURSE OUTCOMES:																
	After co					ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to):
CO1:	Explair	_														
	design							0		•						
CO2:	Interpr	et tl	he r	etw	vorl	k de	sig	n fo	r th	e ac	cess	3				
CO3:	Summa	ariz	e th	ne n	etw	ork	c de	esig	n p	roc	ess (emp	loye	d f	or t	he
	backbo	ne s	syst	em												
CO4:	Explair						olve	ed i	n tł	ne d	lesig	n p	roce	ss f	or t	he
	conver															
CO5:	Interp		he	Vari	ious	s da	ta p	roc	essi	ng	tools	suse	ed in	Ne	two	rk
	Design Explain the various managing schemes used in the Network															
CO6:	Explain the various managing schemes used in the Network Design															
TET \$ /5	Design Γ BOOKS:															
2	Data Network Design; D L Spolin, Mc-Graw Hill, 1993															
	Network Design & Case Studies "CISCO Systems Inc." CISCO Press, 1993															
REFI	CISCO Press, 1993 FERENCES:															
1	Feit, 'SNMP GDE Networking Management', Mc-Graw Hill															
-	Inc., 1995															
2		Jeff Doyle, Jennifer Dehaven Carroll 'Routing TCP/IP',														
_	CISCO							SEZ				C1-1	0	110		
3	Design	_				_		_			rchi	itect	ures	(A	RC	H)
	Founda															
	Edition								`						,	
4	Tim Sz															
	Netwo															
	VPNs (Net	two	rkir	ng T	ech			')', î	lst I	Editi	on,	Cisc			
	COs					1		Os		1					PSO	
		1	2	3	4	5	6	7	8	9	10		12	1	2	3
	1	2	1	-	-	1	1	1	1	3	2	1	2	3	2	2
	2	2	1	-	-	2	1	1	2	2	1	3	3	3	2	2
	3	2	1	-	-	2	1	1	2	2	3	1	2	3	3	2
	4	2	1	-	-	1	3	1	2	3	2	1	1	3	3	2
	5	2	1	-	-	2	1	1	3	2	2	1	2	3	2	2
	6	2	1	-	-	3	3	1	3	2	3	1	2	3	3	2
	verall	2	1	_	_	2	2	1	3	3	3	2	2	3	3	2
Correlation 2 1 2 2 2 1 3 3 3 2 2 3 3																

23CB031	ETHICAL HACKING	L	T	P	C
		2	0	2	3
COURSE OBJECTIVES:					
• To	understand the basics of computer based				
	erabilities.				
scan	explore different foot printing, reconing methods.				
metl	expose the enumeration and vulneral nods.			•	,
	understand hacking options available less applications.	in	W	eb a	and
 To e 	xplore the options for network protectio	n.			
 To practice tools to perform ethical hacking to expose the 					
	erabilities.				
UNIT I IN	TRODUCTION				6
Ethical Hacl	king Overview - Role of Security and	l Pe	enet	rati	on
	netration-Testing Methodologies- Laws				
Overview o	TCP/IP- The Application Layer - T	he '	Γrai	nspo	ort
Layer - The	Internet Layer - IP Addressing N	Vetv	vor	k a	nd
	Attacks - Malware - Protecting Again				
Attacks Int	ruder Attacks - Addressing Physical Sec	urit	y		
UNIT II FC	OT PRINTING, RECONNAISSANCE	AN	D	MOU	6
sc	ANNING NETWORKS				
Footprinting	Concepts - Footprinting through Sea	rch	En	gin	es,
Web Service	es, Social Networking Sites, Websi	te,	En	nail	-
Competitive	Intelligence - Footprinting thro	ougl	n	Soc	ial
Engineering	- Footprinting Tools - Network Scannir	ıg C	Conc	cept	s -
Port-Scanning and Firewall	g Tools - Scanning Techniques - Scanning	g Be	yor	nd II	DS
	UMERATION AND VULNERABILIT	Y			6
	NALYSIS	_			3
111					

ANALYSIS

Enumeration Concepts - NetBIOS Enumeration - SNMP, LDAP,
NTP, SMTP and DNS Enumeration - Vulnerability Assessment

Concepts - Desktop and Server OS Vulnerabilities - Windows OS Vulnerabilities - Tools for Identifying Vulnerabilities in Windows-Linux OS Vulnerabilities- Vulnerabilities of Embedded OS.

UNIT IV SYSTEM HACKING

6

Hacking Web Servers - Web Application Components-Vulnerabilities - Tools for Web Attackers and Security Testers Hacking Wireless Networks - Components of a Wireless Network - Wardriving- Wireless Hacking - Tools of the Trade.

UNIT V | NETWORK PROTECTION SYSTEMS

6

Access Control Lists - Cisco Adaptive Security Appliance Firewall

- Configuration and Risk Analysis Tools for Firewalls and Routers
- Intrusion Detection and Prevention Systems Network- Based and Host-Based IDSs and IPSs Web Filtering Security Incident Response Teams Honeypots.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Install Kali or Backtrack Linux / Metasploitable/ Windows XP
- 2. Practice the basics of reconnaissance.
- 3. Using FOCA / SearchDiggity tools, extract metadata and expanding the target list.
- 4. Aggregates information from public databases using online free tools like Paterva's Maltego.
- 5. Information gathering using tools like Robtex
- 6. Scan the target using tools like Nessus
- 7. View and capture network traffic using Wireshark.
- 8. Automate dig for vulnerabilities and match exploits using Armitage
 - FOCA: http://www.informatica64.com/foca.aspx.

- Nessus: http://www.tenable.com/products/nessus.
- Wireshark: http://www.wireshark.org.
- Armitage: http://www.fastandeasyhacking.com.
- Kali or Backtrack Linux, Metasploitable, Windows XP

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the basic concepts of computer based vulnerabilities.
- CO2: Make use of the tools for foot printing, reconnaissance and scanning methods.
- CO3: Experiment with the enumeration and vulnerability analysis methods.
- CO4: Explain the hacking options available in Web and wireless applications.
- CO5: Analyze and choose the options for network protection.
- CO6: Make use of tools to perform ethical hacking to expose the vulnerabilities.

TEXT BOOKS:

- Simpson, Michael T., Kent Backman, and James E. Corley.
 "Hands-On Ethical Hacking and Network Defense." Course
 Technology, Delmar Cengage Learning, 2010.
- **2** Engebretson, Patrick. "The Basics of Hacking and Penetration Testing." SYNGRESS, Elsevier, 2013.

REFERENCES:

- 1 Stuttard, Dafydd, and Marcus Pinto. "The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws." 2011.
- 2 Seitz, Justin. "Black Hat Python: Python Programming for Hackers and Pentesters." 2014.

COs						F	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	1	-	-	2	1	1	2	2	1	-	
2	3	2	1	1	2	ı	-	-	3	2	2	2	3	2	1	
3	3	2	1	1	2	ı	-	-	1	1	1	3	3	2	1	
4	2	1	-	-	3	ı	-	-	3	2	1	2	2	3	1	
5	3	3	2	2	3	-	-	-	3	1	1	1	3	3	-	
6	3	2	1	1	2	-	-	-	2	1	1	2	3	2	-	
Overall Correlation	3	2	1	1	3	-	ı	ı	3	2	2	2	3	3	ı	

23CB03	4 SECURITY IN COMPUTING	L	T	P	C				
		2	0	2	3				
COUR	COURSE OBJECTIVES:								
•	To understand security design principles.								
•	To learn secure programming techniques.								

- To know the standard algorithms used to provide
- confidentiality, integrity and authenticity in web application.
- To understand the security requirements in operating systems.

To learn about the emerging security applications.

SECURITY DESIGN PRINCIPLES UNIT I

6

Security Goals - Secure System Design - Understanding Threats -Designing in Security -Convenience and Security - Security in Software Requirements - Security by Obscurity - Secure Design Principles - Defense in Depth - Diversity in Defense - Securing the Weakest Link - Failsafe Stance.

UNIT II | SECURE PROGRAMMING TECHNIQUES

6

Worms and Other Malware - Buffer Overflows - Client State Manipulation - SQL Injection Password Security - Cross Domain Security in Web Applications - Attack Patterns - Preventing XSRF - Preventing XSSI - Preventing XSS.

UNIT III WEB APPLICATIONS SECURITY

6

Introduction - Security Testing - Security Incident Response Planning - Microsoft Security Development Lifecycle (SDL) -OWASP Comprehensive Lightweight Application Security Process (CLASP) - The Software Assurance Maturity Model (SAMM).

UNIT IV SECURITY IN OPERATING SYSTEMS

6

Introduction - Security in the Design of OS - Rootkit- Windows Security - Windows Protection System - Windows Authorization Windows Security Analysis - Windows Vulnerabilities

Address Space Layout Randomizations.	
UNIT V EMERGING TOPICS IN SECURITY	6
Internet of Things- Medical Devices - Mobile Phones- Security	in
the Internet of Things-Economics-Making a Business Case	
Quantifying Security -Current Research and Future Direction	
Electronic Voting Fair Election - Critical Issues - Cyber Warfai	
Examples of Cyber Warfare	. C
TOTAL: 30 PERIO	חכ
PRACTICAL EXERCISES:	כטי
LIST OF EXPERIMENTS	
1. Implement the SQL injection attack.	
2. Implement the Buffer Overflow attack	
3. Implement Cross Site Scripting and Prevent XSS.	
4. Understanding Malwares working and detection	6
5. Implement Hacking windows - Windows login passwor	
6. Implement Hacking windows - Accessing restricted	ed
drives.	
7. Install wire shark and explore the various protocols	
a. Analyze the difference between HTTP vs HTTPSb. Analyze the various security mechanism	
embedded with different protocols.	115
8. Identify the vulnerabilities using OWASP ZAP tool	
9. Installation of rootkits and study about the variety	of
options	01
TOTAL: 30 PERIO	DS
COURSE OUTCOMES:	
After completion of the course, the students will be able to	o:
CO1: Explain fundamental security goals and principles in syst	em
design.	
CO2: Identify and mitigate risks from malware, including wor	ms
and buffer overflows.	
CO3: Develop skills in conducting security audits and manage	ing
vulnerabilities in web applications.	
CO4: Apply best practices for password security and cro	SS-
domain security in web applications.	
CO5: Develop a secure operating system.	

CO6:	Analyze	case	studies	and	examples	of	cyber	warfare	to
	understa	nd its	impact	and s	trategies.				

TEXT BOOKS:

- 1 Charles P. Pfleeger, Shari Lawrence P fleeger and Jonathan Margulies, "Security in Computing", Fifth Edition, Pearson Education, 2015.
- William Stallings, "Cryptography and Network Security: Principles and Practices", Sixth Edition, Pearson Education, 2014.

- Neil Daswani, Christoph Kern, and Anita Kesavan, "Foundations of Security: What Every Programmer Needs to Know", Frist Edition, A press, 2007.
- Bruce Schneier, "Applied Cryptography Protocols, Algorithms and Source Code in C", Second Edition, John Wiley and Sons Inc., 2006.
- Matt Bishop, "Computer Security: Art and Science", First Edition, Addison Wesley, 2002.
- 4 Georgia Weidman, "Penetration Testing: A Hands-on Introduction to Hacking", 2nd edition, 2014.
- N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Kari Kostianen, Elena Reshetova, Ahmad-Reza Sadeghi, "Mobile Platform Security", First Edition, Morgan and Claypool Publishers Series, 2014.

COs						F	'Os						PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	1	1	1	1	2	2	1	2	1	1
2	3	2	1	1	-	-	-	-	-	2	2	-	3	-	1
3	3	2	1	1	2	ı	ı	ı	1	ı	1	2	3	2	ı
4	3	2	1	1	2	1	1	1	1	2	2	1	3	2	1
5	3	2	1	1	2	1	1	1	2	2	2	1	3	2	1
6	3	3	2	2	3	-	-	-	2	-	2	2	3	3	1
Overall	3	2	1	1	2				1	2	2	2	3	2	
Correlation	3	_	1	1	_	1	1	1	1	4	4	4	5	۷	1

23CS039	CRYPTOCURRENCY AND	L	T	P	С
	BLOCKCHAIN TECHNOLOGY	3	0	0	3
COURSE	DBJECTIVES:			· ·	
• [To understand the basics of Blockchain				
• [To learn Different protocols and bitcoi	n c	ons	ens	us
á	lgorithms in Blockchain				
• [o learn the Blockchain implementation fr	ame	woı	ks	
• [o understand the Blockchain Application	s			
• [o experiment the Hyperledger Fabri	c, E	Ethe	reu	m
1	networks				
UNIT I	NTRODUCTION TO BLOCKCHAIN				6
Blockchain	- Public Ledgers-Blockchain as Public Led	gers	- B	loc1	k in
	in, Transactions-The Chain and the Lo	0			
	ed Model of Blockchain, Cryptographic -I	0			
	of a hash function-Hash pointer and Merk			4	
UNIT II	BITCOIN AND CRYPTOCURRENCY				6
A legis and	unto appropriate of acing Pourson	La co	1	d a .	la la
1 1 1 1 1 1 1 1	pto currency-Creation of coins, Paymen FORTH - the precursor for Bitcoin scri				
- 30,77730	tcoin P2P Network, Transaction in Bitco				
	ng, Block propagation and block relay.	AUTO	NO	400	ЛΚ,
UNIT III	BITCOIN CONSENSUS				6
	sensus, Proof of Work (PoW)- Hashcash				
	ks on PoW ,Monopoly Problem- Proof of S				
	of of Elapsed Time - Bitcoin Miner, Min	ing	Dif	ficu	lty,
	ol-Permissioned model and use cases.				
UNIT IV	HYPERLEDGER FABRIC & ETHEREUM	1			6
Architectu	e of Hyperledger fabric v1.1- chain coo	de-	Eth	erei	ım:
Ethereum 1	etwork, EVM, Transaction fee, Mist Brows	ser, I	Ethe	er, C	Gas,
Solidity.					
UNIT V	BLOCKCHAIN APPLICATIONS				6
Smart cont	acts, Truffle Design and issue- DApps- N	FT F	3100	kch	ain
JIIMI COIII	acts, Traine Designation 1550c Dripps-141		,100	.,	MII

Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc- Case Study. TOTAL: 45 PERIODS **COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Demonstrate the emerging abstract models for Blockchain Technology. CO2: Identify major research challenges and technical gaps existing between theory and practice in the crypto currency domain. CO3: Explain the conceptual understanding of the function of Blockchain as a method of securing distributed ledgers. CO4: Apply hyperledger Fabric and Ethereum platform to implement the Block chain Application. CO5: Apply transactions and requests against blockchain networks. CO6: Develop applications in supply chain management, small cities, banking etc. **TEXT BOOKS:** Bashir and Imran, "Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks", Packt Publishing, 2020, Andreas Antonopoulos, "Mastering Bitcoin: Unlocking 2 Digital Cryptocurrencies", O'Reilly, 2015. REFERENCES: Daniel Drescher, "Blockchain Basics", First Edition, Apress, 1 2017. 2 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder,"Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016. Melanie Swan, "Blockchain: Blueprint for a New Economy", 3 O'Reilly, 2015 Ritesh Modi, "Solidity Programming Essentials: A Beginner's 4 Build Smart Contracts for Ethereum Blockchain", Packet Publishing, 2018

5	Saravanan Krishnan , Valentina Emilia Balas," Handbook of
	Research on Blockchain Technology", Elsevier Inc. ISBN:
	9780128198162, 2020.

COs						F	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	-	-	-	1	-	-	2	2	1	-	
2	3	2	1	1	1	-	-	-	2	-	-	2	3	1	-	
3	2	1	-	-	2	-	-	-	3	-	-	2	2	2	-	
4	3	2	1	1	3	-	-	-	3	-	-	2	3	3	-	
5	3	2	1	1	1	-	-	-	3	-	-	2	3	1	-	
6	3	2	1	1	1	ı	ı	ı	3	-	-	2	3	1	-	
Overall Correlation	3	2	1	1	2	-	-	-	3	-	-	3	3	2	-	

VERTICAL 5 : SOFTWARE ENGINEERING

23IT044	SOFTWARE DESIGN	L	T	P	C
		3	0	0	3
COURSI	E OBJECTIVES:				
•	Understand the fundamentals of object me	odeli	ing.		
•	Learn the unified process phases.				
•	Prepare the requirements for various case	stuc	lies.		
•	Appreciate the idea behind Design Pattern	ns in	har	ndli	ng
	common problems faced during building	ıg an	1		
	application.				

To practice object modeling using UML UNIT I INTRODUCTION

Introduction to OOAD; typical activities / workflows / disciplines in OOAD, Introduction to iterative development and the Unified Process, Introduction to UML; mapping disciplines to UML artifacts, Introduction to Design Patterns – goals of a good design, Introducing a case study & MVC architecture.

UNIT II INCEPTION 9


Artifacts in inception, understanding requirements – the FURPS model, Understanding Use case model – introduction, use case types and formats, writing use cases – goals and scope of a use case, elements / sections of a use case, Use case diagrams, Use cases in the UP context and UP artifacts, identifying additional requirements, Writing requirements for the case study in the use case model.

UNIT III ELABORATION 9

System sequence diagrams for use case model, Domain model: identifying concepts, adding associations, adding attributes, Interaction Diagrams, Introduction to GRASP design Patterns, Design Model: Use case realizations with GRASP patterns, Design Class diagrams in each MVC layer Mapping Design to Code, Design class diagrams for case study and skeleton code.

UNI	Γ IV DESIGN PATTERNS	9
Fabri	cation, Indirection, Singleton, Factory, Facade, Publ	ish-
Subs	<i>;</i>	
UNI	Γ V UML DIAGRAMS	9
State	-Chart diagrams, Activity diagrams, Component Diagra	ms,
Depl	oyment diagrams, Object diagrams. Advanced concepts	s in
OOA	D: Use case relationships, Generalizations Domain Mo	odel
refine	ements, Architecture, Packaging model elements.	
	TOTAL: 45 PERIO	ODS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Explain UML notations Apply UML Use Case Notation	s to
	applications.	
CO2:	Explain apply unified process in software development	>
CO3:	Discuss the best use of Object-Oriented concepts for crea	ting
ì	truly OOP	
CO4:	Describe design patterns for better class and ob-	ject
	composition.	
CO5:	Explain the concepts of Model refinement and diagrams	Υ
CO6:	Explain Design Patterns in handling common problems.	US
TEX	F BOOKS:	
1	Craig Larman, "Applying UML and patterns" by Pears	son,
	2005	
2	Grewal.B.S., "Higher Engineering Mathematics", Kha	nna
	Publishers, New Delhi, 44th Edition, 2018.	
REFI	ERENCES:	
1	Martin Fowler, "UML distilled", Addison Wesley, Tl	nird
	Edition 2003.	
2	Eric Freeman, "Head-First Design Patterns", O'Reilly, 20	04.
3	Hans-Erik Eriksson, Magnus Penker, Brian Lyons, Da	vid
	Fado, "UML2 Toolkit" Wiley India Edition, Year 2003.	
	· · · · · · · · · · · · · · · · · · ·	

COs						F	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	-	-	-	1	-	1	-	1	2	-	1	
2	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
3	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
4	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
5	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
6	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
Overall Correlation	3	2	2	2	-	-	-	2	-	2	-	2	3	-	2	

23IT045		SOFTWARE PROJECT	L	T	P	C
		MANAGEMENT	3	0	0	3
COURSE	OB	JECTIVES:	l l	,		
•	To	understand why the architectural desig	n of	sof	twa	ire
	is iı	mportant				
•	To	understand the five important dimensi	ons	of		
	dep	endability, namely, availability, reliabi	lity,	safe	ety,	
	sec	urity, and resilience.				
•	To	understand the basic notions of a web s	servi	ce,	wel)
	serv	vice standards, and service oriented arc	hite	ctui	e;	
•	To	understand the different stages of testing	ng fr	om		
	test	ing during development of a software	syste	em		
UNIT I	PH	ASES AND LIFE CYCLE MODELS O	F			9
	SO	FTWARE DEVELOPMENT				
Coftware	En	gineering – importance – emergence	A	bac	200	of
7 AND C. AP.		velopment - Feasibility study,		4.0		
1/4		sign, Implementation, Testing, and				
/ 100		vare Life Cycle Models - Classic	- 1			
-		totyping, Spiral, and Agile - Compa				
models.	pro	RREAL			91	
UNIT II	RE	QUIREMENTS ANALYSIS AND DES			MOU	9
UNITI	KE	QUINEMENTS ANALISIS AND DES	olG!	. ``		9
-		Analysis - Analysis process, R	_			
specificat	ion,	desirable characteristics of an SRS, st	ruct	ure	of a	an
SRS doc	ume	ent, Data Flow Diagrams - Role	of :	Soft	twa	re
Architect	ure	and Architecture Views - Planning fo	or a S	Soft	twa	re
Project So	oftw	are Design - Software design concep	ts -	Fur	icti	on
Oriented	Des	ign and its Complexity Metrics - Obj	ject (Ori	ente	ed
Design a	nd it	s Complexity Metrics - Detailed Desi	gn.			
UNIT III	SY	STEM DEPENDABILITY AND SECU	RIT	Y		9
Dependa	ble	Systems - Dependability Pr	ope	rtie	s	-
Sociotech	nica	al Systems - Redundancy and	Div	ersi	ty	-
Dependa	ble 1	Processes - Formal Methods and Dep	enc	labi	ility	<i>-</i>

Reliability Engineering – Availability and Reliability – Reliability Requirements – Fault-tolerant Architectures – Programming for Reliability – Reliability Measurement – Safety Engineering – Safety-critical Systems – Safety Requirements – Safety Engineering Processes – Safety Cases – Security Engineering – Security and Dependability – Safety and Organizations – Security Requirements – Secure System Design – Security Testing and Assurance – Resilience Engineering – Cybersecurity – Sociotechnical Resilience – Resilient Systems Design.

UNIT IV | SOFTWARE PROJECT MANAGEMENT

9

Software Project Management Framework - methods to estimate project time and cost, Resource Management, Identification, Analysis, mitigation, and monitoring of Project Risks - Ensuring Project quality and quality management, Configuration Management, Change management, CMMI, different levels and need of accreditation.

UNIT V SOFTWARE TESTING AND SOFTWARE CONFIGURATION MANAGEMENT

9

Software Testing Strategy - Unit Testing - Integration Testing - Validation Testing - System Testing - Debugging - White-Box Testing - Basis Path Testing - Control Structure Testing - Black-Box Testing - Software Configuration Management (SCM) - SCM Repository - SCM Process - Configuration Management for Web and Mobile Apps.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Identify appropriate process models based on the Project requirements
- CO2: Understand the importance of having a good Software Architecture.

- CO3: Understand the five important dimensions of dependability, namely, availability, reliability, safety, security, and resilience.
- CO4: Understand the basic notions of a web service, web service standards, and service-oriented architecture;
- CO5: Be familiar with various levels of Software testing.
- CO6: Understand the importance of having a good Safety Engineering Processes

TEXT BOOKS:

- 1 Bob Hughes, Mike Cotterell, "Software Project Management", Fifth Edition, Tata McGraw Hill, 2011
- 2 Adolfo Villafiorita, "Introduction to Software Project Management", CRC Press 2014

- Software Engineering: A Practitioner's Approach, 9th Edition. Roger Pressman and Bruce Maxim, McGraw-Hill 2019.
- 2 Software Engineering, 10th Edition, Ian Somerville, Pearson Education Asia 2016.
- 3 Software Architecture In Practice, 3 rd Edition, Len Bass, Paul Clements and Rick Kazman, Pearson India 2018.

COs						F	Os						PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	3	-	-	3	2	2	3	1	1	3	3
2	3	3	2	3	2	ı	ı	2	2	2	3	3	2	3	2
3	3	3	3	2	3	ı	ı	2	2	2	1	2	2	3	3
4	2	3	3	3	3	1	1	2	2	2	3	2	3	3	2
5	3	3	3	3	3	ı	ı	2	3	1	3	2	3	2	3
6	3	3	3	3	3			3	3	1	3	2	3	2	2
Overall Correlation	3	3	3	3	3	ı	1	1	3	2	3	2	3	3	3

23IT046	HUMAN COMPUTER	L	T	P	С
	INTERACTION	3	0	0	3

COURSE OBJECTIVES:

- To learn the guidelines for user interface.
- To learn the foundations of Human Computer Interaction.
- To understand the process of Evaluation of Interaction Design.
- To become familiar with the design technologies for individuals and persons with disabilities.
- To be aware of mobile HCL.

UNIT I FOUNDATIONS OF HCI

9

The Human: I/O channels - Memory - Reasoning and problem solving; The Computer: Devices - Memory - processing and networks; Interaction: Models - frameworks - Ergonomics - styles - elements - interactivity- Paradigms. - Case Studies.

UNIT II DESIGN & SOFTWARE PROCESS

9

Interactive Design: Basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process: Software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules: principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.

UNIT III MODELS AND THEORIES

9

HCI Models: Cognitive models: Socio-Organizational issues and stakeholder requirements -Communication and collaboration models-Hypertext, Multimedia and WWW.

UNIT IV MOBILE HCI

9

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools. - Case Studies.

UNIT V WEB INTERFACE DESIGN 9 Designing Web Interfaces - Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow - Case Studies. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain the basic concepts and foundations of HCI. CO2: Explain interactive design process rules and evaluation techniques. CO3: Develop different cognitive and communication models of HCI. **CO4:** Explain the ways to produce interactive content on dynamic and static web. CO5: Explain the elements of mobile HCI design, Tools and /architecture. CO6: Explain HCI implications for designing effective web interfaces. TEXT BOOKS: Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004. Brian Fling, "Mobile Design and Development", First 2 Edition, O'Reilly Media Inc., 2009. **REFERENCES:** D. R. Olsen, "Human Computer Interaction", Cengage Learning. Helen Sharp, Jennifer Preece, Yvonne Rogers, "Interaction 2 Design", Wiley, 2017.

COs						F	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	2	-	1	-	1	-	1	2	1	2	
2	2	1	-	-	1	2	-	1	-	2	-	1	2	1	2	
3	3	2	1	1	1	2	-	1	-	2	-	1	3	1	2	
4	2	1	-	-	1	2	-	1	-	2	-	1	2	1	2	
5	2	1	-	-	1	2	-	1	-	2	-	1	2	1	2	
6	3	2	-	-	2	2	-	2	-	2	-	2	3	2	2	
Overall Correlation	3	1	1	1	1	2	-	1	-	2	-	2	2	2	2	

23IT047	SOFTWARE QUALITY	L	T	P	C
	ASSURANCE AND TESTING	3	0	0	3
COURSE	OBJECTIVES:				
• 1	Jnderstand the basic tenets of software qu	ality	an	d	
(quality factors.				
•]	Be exposed to the Software Quality Assura	nce	(SQ	(A)	
á	rchitecture and the details of SQA compo	nent	s.		
• 1	Inderstand of how the SQA components of	an l	e e		
i	ntegrated into the project life cycle.				
•]	Be familiar with the software quality				
i	nfrastructure.				
•]	Be exposed to the management component	ts of	sof	twa	are
(quality.				
UNIT I	INTRODUCTION TO SOFTWARE QUA	LIT	Y		9
Need for S	oftware quality - Quality challenges - Soft	wai	e ai	ual [.]	itv
1000	(SQA) – Definition and objectives – Soft		1000		_
	Call"s quality model – SQA system and a		_		
	Project life cycle Components - Pre pr				
	s - Development and quality plans.	-	_		,
70007	SQA COMPONENTS AND PROJECT LI			_	9
	CYCLE				
Software	Development methodologies - Qualit	y a	ssu	rar	ice
	the development process- Verification &	-			
Reviews -	Software Testing – Software Testing imple	mer	ntati	on	s –
	software maintenance - Pre-Maintenance				
quality cor	nponents - Quality assurance tools - CA	ASE	too	ls f	or
software o	quality – Software maintenance qualit	y -	- P	roje	ect
Manageme				-	
UNIT III	SOFTWARE QUALITY INFRASTRUCT	URE	<u> </u>		9

Procedures and work instructions - Templates - Checklists - 3S developmenting - Staff training and certification Corrective and preventive actions - Configuration management - Software

change	control - Configuration management audit	-
Documen	ntation control - Storage and retrieval.	
UNIT IV	SOFTWARE QUALITY MANAGEMENT &	9
	METRICS	
Project p	rocess control - Computerized tools - Software qua	lity
metrics -	Objectives of quality measurement - Process metric	cs -
Product	metrics - Implementation - Limitations of softw	are
metrics -	Cost of software quality - Classical quality cost mod	el -
Extended	l model - Application of Cost model.	
UNIT V	STANDARDS, CERTIFICATIONS &	9
	ASSESSMENTS	
Ouglitz	 management standards	2
	y Maturity Models – CMM and CMMI assessm	
	logies - Bootstrap methodology - SPICE Project - S	
	rocess standards - IEEE st 1012 & 1028 - Organization	
	Assurance – Department management responsibilitie	
	nanagement responsibilities - SQA units and other ac	
in SQA s		1015
11100110	TOTAL: 45 PERIO	ODS
COURSI	E OUTCOMES:	US
	er completion of the course, the students will be able	to.
	plain concepts in software development life cycle.	
	strate their capability to adopt quality standards.	
	plain the metrics available to measure the quality	z of
	tware products.	OI
	ate the concepts in preparing the quality plan	- ℓ-
	cuments.	· · ·
	plain the Use of various testing methods.	
	plain the various Quality standards and certifications	
	Juni die various Quanty standards and termications	

Daniel Galin, "Software Quality Assurance", Pearson

TEXT BOOKS:

Publication, 2009.

1

Irappa A. Dhotre, Dr. Sunil Sudam Khatal, Dr. Monika Dhananjay Rokade, Dr. Uday Chandrakant Patkar, "Software Testing and Quality Assurance", Technical Publications, January 2022

- 1 Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 1997.
- Mordechai Ben-Menachem, "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, 1997.

COs						F	Os						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	-	П	-	Ы	1	-	1	-	1	2	1	1
2 ,00W	3	2	1	-	-	7		1		1	<u></u>	1	3		1
3	3	2	1	\ -	-		2	1	Y-	1	-	1	3	-	-
4	3	2	1	7	- 8	4	À	1	7	1	7	1	3	-	-
5	3	2	1	7	_	-	1	1	1	1	_	1	3	-	1
6	3	2	1	//2	-	-	-	1	-	1	-	1	3	-	-
Overall Correlation	3	2	1	-	AFF	DLI	EO T	2	OF	2	CH siTy	2	3	G)	5

23IT048	AGILE METHODOLOGY	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To obtain practical knowledge of agile development frameworks and be able to distinguish between agile and traditional project management methodologies
- To Examine various metrics for adopting agile software engineering
- Describe how a unit tests is executed from beginning to end.
- Identify the approaches, tools and scenarios to introduce Agile to your organization effectively
- To design automated build tools, version control and continuous integration

UNIT I FUNDAMENTALS OF AGILE

9

The Genesis of Agile- Introduction and background- Agile Manifesto and Principles- Overview of Scrum- Extreme Programming- Feature Driven development- Lean Software Development- Agile project management- Design and development practices in Agile projects- Test Driven Development- Continuous Integration- Refactoring- Pair Programming- Simple Design- User Stories- Agile Testing- Agile Tools.

UNIT II | AGILE SCRUM FRAMEWORK

9

Introduction to Scrum-Project phases- Agile Estimation- Planning game- Product backlog- Sprint backlog- Iteration planning- User story definition- Characteristics and content of user stories- Acceptance tests and Verifying stories Project velocity- Burn down chart- Sprint planning and retrospective- Daily scrum- Scrum roles - Product Owner Scrum Master- Scrum Team- Scrum case study- Tools for Agile project management.

UNIT III AGILE TESTING

9

The Agile lifecycle and its impact on testing- Test-Driven

Development (TDD)- xUnit framework and tools for TDD Testing user stories - acceptance tests and scenarios- Planning and managing testing cycle- Exploratory testing- Risk based testing-Regression tests- Test Automation- Tools to support the Agile tester

UNIT IV AGILE SOFTWARE DESIGN AND DEVELOPMENT

9

Agile design practices- Role of design Principles including Single Responsibility Principle- Open Closed Principle Liskov Substitution Principle- Interface Segregation Principles- Dependency Inversion Principle in Agile Design- Need and significance of Refactoring- Refactoring Techniques- Continuous Integration- Automated build tools- Version control.

UNIT V | INDUSTRY TRENDS

9

Market scenario and adoption of Agile- Agile ALM- Roles in an Agile project- Agile applicability- Agile in Distributed teams-Business benefits- Challenges in Agile- Risks and Mitigation- Agile projects on Cloud- Balancing Agility with Discipline- Agile rapid development technologies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Identify the fundamentals of agile and scrum framework.
- CO2: Apply design principles and refactoring to achieve Agility.
- CO3: Reduce the risks in Test driven approach in agile projects
- CO4: Implement a real software project that implements agile execution techniques
- CO5: Deploy a firm basis for adopting agile methodology, regardless of the industry.
- CO6: Deploy a firm basis for adopting agile methodology, regardless of the professional sector.

TEX	Т ВООК	S:														
1	Ken Sc	haw	beı	., M	like	Bee	edle	e, " <i>F</i>	\gil	e So	oftw	are	Dev	elop	ome	ent
	with Sc	run	n", I	Pear	rsor	ւ, 21	Ma	ar20	008.							
2	Robert	Robert C. Martin, "Agile Software Development, Principles,														
	Pattern	Patterns and Practices", Prentice Hall, 25 Oct 2002.														
REF	ERENCE	ENCES:														
1	Alistair	· C	ock	bur	'n,	"Aş	gile	Sc	ftw	are	De	evel	opm	ent	: T	he
	Cooper	Alistair Cockburn, "Agile Software Development: The Cooperative Game", Addison Wesley, 19 Oct 2006.														
2	Mike (ke Cohn Publisher, "User Stories Applied: For Agile														
	Softwar	re",	Ad	disc	on V	Ves	ley,	1 N	lar2	2004	1					
	COs						F	Os						I	PSC	s
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	1	2	1	3	2	2	1	-
	2	3	2	1	1	2	-	F	1	1	2	3	1	2	2	-
	3	3	3	2	2	3	-2	97	1	3	3	1	1	3	2	_
,	4	3	2	1	1	3	120	K -	1	2	3	3	1	1	1	ř -
	5	3	2	1	1	2	4	1	1	1	3	1	2	1	3	-
	6	3	2	1	1	1	-	1	1	1	1	1	1	1	1	-
_	veral1		12	A	7/-	_										

23IT049	SOFTWARE REQUIREMENTS	L	T	P	C
	ENGINEERING	3	0	0	3

COURSE OBJECTIVES:

- To perform a comprehensive feasibility analysis
- To lead a software project planning process, to include determining deliverables; effort, schedule and cost estimation; resource allocation; risk management; quality and plan management.
- To Apply the principles and processes of software engineering project enactment
- To perform software project reviews and evaluations according to best practices.

9

UNIT I SOFTWARE REQUIREMENTS: WHAT AND WHY?

Software Engineering – importance – emergence - Phases of software development - Feasibility study, Requirement Analysis, Design, Implementation, Testing, and Maintenance phases Essential Software Requirement- Good practices for requirement engineering- Improving requirements processes- Software Requirements and Risk Management.

UNIT II | SOFTWARE REQUIREMENTS ENGINEERING | 9

Requirements elicitation- Requirement analysis documentation, review, elicitation techniques, analysis models, software quality attributes- Risk reduction through prototyping, setting requirements priorities, verifying requirements quality, software requirements modelling- Use case modelling, Analysis model, dataflow diagrams, state transition diagram, class diagram, object analysis, problem frames.

UNIT III SOFTWARE REQUIREMENTS MANAGEMENT 9

Requirements management principles and practices- Requirement attributes, change management process- Requirement traceability matrix- Links in requirements chain Requirement management

tool, benefits of requirement management tools, commercial requirement management tools- Rational Requisite pro- Caliber-RM, Implementing requirement management automation.

UNIT IV | SOFTWARE PROJECT MANAGEMENT

9

Software Project Management Framework - methods to estimate project time and cost, Resource Management, Identification, Analysis, mitigation, and monitoring of Project Risks - Ensuring Project quality and quality management, Configuration Management, Change management, CMMI, different levels and need of accreditation.

UNIT V | SOFTWARE ESTIMATION

9

Components of software estimation, software estimation models, Problems associated with estimation, Key project factors that influence estimation- Size estimation- two views of sizing, Function point analysis, Mark II FPA, full function point, LOC estimation, conversions between size measures.- What is productivity, estimation factors, approaches to effort and schedule estimation- COCOMO II, Putnam estimation model- Algorithmic models, cost estimation, software estimation tools, desirable features of software estimation tools- IFPUG, USC's COCOMO II, SLIM (Software Lifecycle Management) tools.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the Knowledge about software requirements.
- CO2: Utilize requirement elicitation techniques and prototyping.
- CO3: Summarize the knowledge about requirement management, their principles and practices.
- **CO4:** Make use of case modelling and different data diagrams.
- CO5: Utilize the software in terms of size, cost, effort and schedule
- CO6: Explain the importance of having a good Safety Engineering Processes

TEXT BOOKS:

- 1 Swapna Kishore, Rajesh Naik, "Software Requirements and Estimation", 1st Edition, Tata McGraw Hill, 2001.
- Phillip A. Laplante, "Requirements Engineering for Software and Systems", Second Edition, CRC Press, 2013.

- 1 Karl E. Weigers, "Software Requirements", 2nd Edition, Microsoft Press, 2003.
- 2 Ian K. Bray, "An Introduction to Requirements Engineering", Addison Wesley, 2002.
- 3 Ian F. Alexander, Richard Stevens, "Writing better requirements", Addison-Wesley, 2002.

COs						F	Os						I	SO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1 DOW	2	41	1	-	3	-2		-7	2	2	3	1	1	3	-
2	3	2	1	1	2		7.3	-//	2	2	3	3	2	3	ř-
3	2	1	\ <u>-</u>	1	3	4	S.	-\	2	2	1	2	2	3	-
4	3	2	1	1	3	-	-	1	2	2	3	2	3	3	-
5	3	2	1	1	3	-	-	-	3	1	3	2	3	2	-
6 GINE	2	.1	-	-	3		F(эĿ.	3	1	3	2	3	2	-
Overall Correlation	3	2	1	1	3	LIAT	ED T	- AN	3	2	3	2	3	3	-

23IT050	SOFTWARE RELIABILITY	L	T	P	C
	METRICS AND MODELS	3	0	0	3
COURSEC	BJECTIVES:			<u> </u>	
• Lear	different definitions of software quality				
• Know	v different notions of defects and classify	ther	n		
• Und	erstand the basic techniques of data collec	tion	an	d h	ow
to ap	ply them				
• Lear	software metrics that define relevant	me	tric	s ii	ı a
rigor	ous way.				
· ·	confidence in ultra-high reliability.				
	NTRODUCTION TO SOFTWARE				9
1	ELIABILITY				
Basic Conce	pts - Failure and Faults - Environment -	Δ τ	aila	hili	157
	-uses – requirements reliability metrics – d			907	•
	etrics – testing reliability metrics.	31631	,11 (4		ac .
100	OFTWARE RELIABILITY MODELING	4			9
	L. C.				
700.7 / 700.6		J I		1	cal
	nt of models - Model Classification		cher	ne	
_		WALL		TPU.	-
Markovian	models - General concepts - General F				
Markovian Models - B	nomial Type Models - Poisson Type mo				
Markovian Models - E reduction fa	nomial Type Models - Poisson Type moctor for Poisson Type models.	odel	s -		ılt
Markovian Models - E reduction for	nomial Type Models - Poisson Type moctor for Poisson Type models. COMPARISON OF SOFTWARE RELIAE	odel	s -		
Markovian Models - E reduction for	nomial Type Models - Poisson Type moctor for Poisson Type models.	odel	s -		ılt
Markovian Models – E reduction fa UNIT III	nomial Type Models - Poisson Type moctor for Poisson Type models. COMPARISON OF SOFTWARE RELIAE	odel BILI	TY	Fau	ılt 9
Markovian Models - E reduction for UNIT III (nomial Type Models - Poisson Type models. COMPARISON OF SOFTWARE RELIAE MODELS	odel BILI of P	TY	Fau	alt 9
Markovian Models - E reduction for UNIT III (I Comparison Validity of	nomial Type Models – Poisson Type models. COMPARISON OF SOFTWARE RELIANTION ODELS Criteria – Failure Data – Comparison	BILI of P	TY red npa	Fau	ye on
Markovian Models - E reduction for UNIT III C Comparison Validity of of Time Do	nomial Type Models – Poisson Type models. COMPARISON OF SOFTWARE RELIANTION OF COMPAR	odel BILI of P Cor ing	TY Tred mpa Res	Fau icti iriso our	ye on
Markovian Models - E reduction for UNIT III O Comparison Validity of of Time Do Concept - Calendar T	nomial Type Models – Poisson Type models. COMPARISON OF SOFTWARE RELIANT MODELS Criteria – Failure Data – Comparison Model Groups – Recommended Models – mains – Calendar Time Modeling – Limit	odel Of P Cor ing Utili	TY Tred mpa Res	Fau icti iriso our	ye on oce

304

Measurements in Software Engineering - Scope of Software

		1
	ics - Measurements theory - Goal based Framewor	K –
	vare Measurement Validation.	
UNI	T V MEASURING SOFTWARE PRODUCT	9
	surement of Internet Product Attributes - Size and Structu	
Exte	rnal Product Attributes – Measurement of Quality – Softw	are
Relia	bility: Measurement and Prediction.	
	TOTAL: 45 PERIO	ODS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Explain the different definitions and dimensions of softw	are
	quality and their implications for software development.	
CO2:	Identify different types of software defects and classify the	nem
	effectively, demonstrating an understanding of their imp	oact
	on quality.	b
CO3:	Apply basic data collection techniques to gather and anal	yze
y y	information related to software quality.	
CO4:	Apply relevant software metrics to evaluate and impr	ove
1	software quality throughout the development lifecycle.	
CO5:	Utilize the skills and knowledge necessary to implem	ent
	practices that ensure ultra-high reliability in softw	are
	systems.	
CO6:	Summarize fundamental quality assurance principles is	into
	their software development practices, fostering a culture	e of
	quality throughout the development lifecycle.	
TEX	Γ BOOKS:	
1	Michael Minelli, Michelle Chambers, and AmbigaDh	iraj,
	"Big Data, Big Analytics: Emerging Business Intelligence	and
	Analytic Trends for Today's Businesses", Wiley, 2013.	
2	Eric Sammer, "Hadoop Operations", O'Reilley, 2012.	
REFI	ERENCES:	
1	E. Capriolo, D. Wampler, and J. Rutherglen, "Programm	ing
	Hive", O'Reilley, 2012.	
2	Lars George, "HBase: The Definitive Guide", O'Reilley, 20	011.

3	Eben H	ben Hewitt, "Cassandra: The Definitive Guide", O'Reilley,																	
	2010.	10.																	
4	Alan G	Alan Gates, "Programming Pig", O'Reilley, 2011.																	
COs		POs														PSOs			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
1		2	1	-	-	1	-	-	1	2	2	3	1	1	1	1			
2		2	1	-	-	1	-	-	1	2	2	3	3	2	1	1			
3		3	2	1	1	2	-	-	2	2	2	1	2	2	2	2			
4		3	2	1	1	2	-	-	2	2	2	3	2	3	2	2			
5		3	2	1	1	2	-	-	2	3	1	3	2	3	2	2			
6		2	1	-	-	1			1	3	1	3	2	3	1	1			
Overall		3	2	1	1	2			2	3	2	3	2	3	2	2			
Correlation		3	_	1	1	~	_	_	~	3	_	3	_	3	_	~			

23IT051	SOFTWARE ARCHITECTURE	L	T	P	C						
		3	0	0	3						
COURSE OBJECTIVES:											
Understand and apply object-oriented design techniques											

- Understand and apply object-oriented design techniques
- Develop and evaluate software architectures
- Select and use appropriate architectural styles
- Select and use appropriate software design patterns

UNIT I INTRODUCTION 9

Overview of Software development methodology and software quality model- different models of software development and their issues-introduction to software architecture- evolution of software architecture, software components and connectors-common software architecture frameworks - Architecture business cycle – architectural patterns – reference model.

UNIT II SOFTWARE ARCHITECTURE MODELS

Structural models, framework models, dynamic models, process models. Architectures styles: dataflow architecture, pipes and filters architecture, call-and return architecture, data-centered architecture, layered architecture, agent based architecture, Microservices architecture, Reactive Architecture, Representational state transfer architecture etc.

UNIT III SOFTWARE ARCHITECTURE 9 TECHNOLOGIES

Software Architecture Description Languages (ADLs), Struts, Hibernate, Node JS, Angular JS, J2EE – JSP, Servlets, EJBs; middleware: JDBC, JNDI, JMS, RMI and CORBA etc. Role of UML in software architecture.

UNIT IV SOFTWARE ARCHITECTURE ANALYSIS AND DESIGN 9

Requirements for architecture and the life-cycle view of architecture design and analysis methods, architecture-based economic analysis: Cost Benefit Analysis Method (CBAM),

Architecture Tradeoff Analysis Method (ATAM). Active Reviews for Intermediate Design (ARID), Attribute Driven Design method (ADD), architecture reuse, Domain –specific Software architecture.

UNIT V SOFTWARE ARCHITECTURE DOCUMENTATION

9

Principles of sound documentation, refinement, context diagrams, variability, software interfaces. Documenting the behavior of software elements and software, systems, documentation package using a seven-part template.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain about software architecture for large scale software systems.
- CO2: Interpret major software architectural styles, design patterns, and frameworks.
- CO3: Illustrate software architecture using various documentation approaches and architectural description languages.
- **CO4:** Explain architectural alternatives for a problem and select among them.
- CO5: Make use of well-understood paradigms for designing new system.
- CO6: Summarize about Software Architecture documentation.

TEXT BOOKS:

- 1 Len Bass, Paul Clements, Rick Kazman, "Software Architecture in Practice", Pearson Education Asia.
- **2** R. Taylor, N. Medvidovic, E. Dashofy, "Software Architecture Foundations, Theory, and Practice", Wiley India.

REFERENCES:

1 Christine Hofmeister, Robert Nord, Dilip Soni, "Aoolied Software Architecture", Addision-Wesley-Pearson Educations.

2	Dikel,	D.Met Al, "Software Architecture: Organizational																
Principles and Pattern", Prentice Hall.																		
COs		POs													PSOs			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1		2	1	-	-	-	-	-	1	-	3	-	1	3	-	1		
2		2	1	-	-	-	-	-	1	1	3	-	1	3	-	1		
3		2	1	-	-	-	-	-	1	1	3	-	1	3	-	1		
4		2	1	-	-	-	-	-	1	1	-	-	1	2	-	1		
5		3	2	1	1	-	-	-	1	1	-	-	1	2	-	1		
6		2	1	-	-	-	-	1	1	-	ı	-	1	2	1	1		
Overall		3	2	1	1				2		2		2	3		2		
Correlation		3	_	1	1	-	_	-	2	-	2	-	2	3	-			

