

REGULATIONS - 2023

CURRICULUM AND SYLLABI

(2023-2024)

B.TECH. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

VISION OF KCG

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

MISSION OF KCG

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

VISION OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

The Department of Artificial Intelligence and Data Science desires to become a: prominent Centre of Excellence for producing competent Data Architect for providing quality education by using the latest tools.

MISSION OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Provide quality education in the field of Artificial Intelligence and Data Science related domains.

- Facilitate Skill based value added education.
- Inculcate professional performance, an essence of entrepreneurship and promise to the growth of the country.
- Providing varying software development tools and required implementation facilities.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

The graduates will:

PEO 1	To provide graduates with the proficiency to utilize the fundamental knowledge of basic sciences, mathematics, Artificial Intelligence, data science and statistics to build systems that require management and analysis of large volume of data.
PEO 2	To enrich graduates with necessary technical skills to pursue pioneering research in the field of AI and Data Science and create disruptive and sustainable solutions for the welfare of ecosystems.
PEO 3	To enable graduates to think logically, pursue lifelong learning and collaborate with an ethical attitude in a multidisciplinary team
PEO 4	To Prepare Personality Skills, Provoke Social Commitment and Instill Societal Responsibilities in their Profession.

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering
specialization to the solution of complex
engineering problems.

PO 02	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 03	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 04	Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 05	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 07	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 08	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 09	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 01	Apply knowledge pertaining to Data engineering, Data pipelining and Programming skills to analyze socially relevant problems by means of Artificial Intelligence and Data Science.
PSO 02	Use Machine Learning tools related to Data Management, Data Manipulation, Data Visualization, Big Data and Deep Learning to analyze and interpret complex data sets to drive decision making.
PSO 03	Uphold professional standards and ethical principles in the development and deployment of AI and Data Science solutions, ensuring fairness, transparency, and accountability while respecting privacy, mitigating bias, and complying with legal and regulatory frameworks.

INDEX

Sl.No	Description	Page No.
1	Curriculum	1
2	I Semester Syllabus	16
3	II Semester Syllabus	44
4	III Semester Syllabus	76
5	IV Semester Syllabus	103
6	V Semester Syllabus	129
7	VI Semester Syllabus	146
8	VII Semester Syllabus	165
9	VIII Semester Syllabus	177
10	Vertical 1 : Generic Computer Engineering	180
11	Vertical 2 : Analytical Sciences	204
12	Vertical 3 : Full Stack Development	232
13	Vertical 4 : Computational Intelligence	258
14	Vertical 5 : Cyber Security And Cloud Computing	282

KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

REGULATIONS 2023

B. TECH ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

CHOICE BASED CREDIT SYSTEM CURRICULUM FOR SEMESTERS I TO VIII

SEMESTER-I

S1. No.	Course Code	Course Title	Category	0 ,			Total Contact	Credits
140.	Couc			L	T	P	Periods	
	23IP101	Induction Programme		-	_	-	-	-
			HEORY		l			
1	23HS101	Essential Communication	HSMC	3	0	0	3	3
2	23MA101	Matrices and Calculus	BSC	3	0	0	3	3
3	23AD101	Programming in Python	PCC	3	0	0	3	3
4	23HS102	Heritage of Tamils		1	0	0	1	1
	CAL	THEORY A	ND PRACT	TIC.	AL	S	VOLOG	Y
5	23PH111	Engineering Physics	BSC	3	0	2	AUTO510MC	4
6	23CY111	Engineering Chemistry	BSC	3	0	2	5	4
		PRA	CTICALS	•	•			
7	23AD121	Python Programming Laboratory	ESC	0	0	4	4	2
8	23HS121	Communication Skills Laboratory	HSMC	0	0	2	2	1
9	23HS122	General Clubs / Technical Clubs / NCC / NSS / Extension Activities	HSMC	0	0	2	2	1*
* 771.	1	TOTAL		16		12	28	21

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER -II

S1. No.	Course code	Course Title	Category		rio Pei Vee	: k	Total Contact Periods	Credits
		THE	ORY					
1	23HS201/ 23HS202	Professional English/ Foreign language	HSMC	3	0	0	3	3
2	23MA202	Discrete Mathematics	BSC	3	1	0	4	4
3	23PH205	Physics for Information Science	BSC	3	0	0	3	3
4	23AD201	C and Data Structures	ESC	3	0	0	3	3
5	23HS203	Tamils and T <mark>ec</mark> hnology	HSMC	1	0	0	1	1
	N. W.	THEORY AND	PRACTI	CA	LS			
6	23EE281	Basic Electrical and Electronics Engineering	ESC	2	0	2	NQLO AUTONOM	3
7	23ME211	Engineering Graphics	ESC	3	0	2	5	4
		PRACT	ΓICALS					
8	23ME221	Engineering Practices Laboratory	PCC	0	0	4	4	2
9	23AD221	C and Data Structures Laboratory	PCC	0	0	4	4	2
10	23HS221	Soft Skills	EEC	0	0	2	2	1*
* 771.		TOTAL	11 1	18	1	14	33	25

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-III

S1. No.	Course code	Course Title	Category	vveek			Total Contact Periods	Credits	
				L	T	P	1 errous		
	THEORY								
1	23MA301	Linear Algebra	BSC	3	1	0	4	4	
2	23CS302	Database Management Systems	PCC	3	0	0	3	3	
3	23AD301	Object Oriented Programming in C++ and Java	PCC	3	0	0	3	3	
4	23HS301	Universal Human Values and Ethics	HSMC	3	0	0	3	3	
	No.	THEORY AND	PRACTIC	ALS	3			ĺ	
5	23AD311	Fundamentals of Data Science	PCC	3	0	2	5	4	
6	23CB311	Digital Principles and Computer Organization	PCC	3	0	2	PLOGY	4	
		PRACTI	CALS						
7	23CS322	Database Management Systems Laboratory	PCC	0	0	4	4	2	
8	23AD322	Object Oriented Programming in C++ and Java Laboratory	PCC	0	0	4	4	2	
9	23ES391	Presentation Skills	EEC	0	0	2	2	1*	
	I	TOTAL	l	18	1	14	33	25	

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-IV

S1.	Course	Course Title	Category	Periods Per Week		Total Contact	Credits	
No.	code			L	T	P	Periods	
		TI	HEORY					
1	23AD401	Algorithm Design and Analysis	PCC	3	0	0	3	3
2	23CS401	Operating Systems	PCC	3	0	0	3	3
3	23AD402	Big Data Computing	PCC	3	0	0	3	3
4	23AD403	Data Warehousing and Data Mining	PCC	3	0	0	3	3
	-	THEORY AN	ID PRACT	ГІСА	LS			
5	23AD411	Fundamentals of Artificial Intelligence	PCC	3	0	2	5	4
6	23MA411	Mathematical Modeling for Data Science	BSC TED TO ANNI	3	0		IOEOG	4
		PRA	CTICALS					
7	23CS421	Operating Systems Laboratory	PCC	0	0	4	4	2
8	23AD421	Big Data Computing Laboratory	PCC	0	0	4	4	2
9	23ES491	Aptitude and Logical Reasoning - 1	EEC	0	0	2	2	1*
		TOTAL		17	0	14	31	24

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-V

S1. No.	Course Code	Course Title	Category	vveek			Total Contact Periods	Credits			
	THEORY										
1	23RE501	Research Methodology and Intellectual Property Rights	ESC	2	0	0	2	2			
2	23AD501	Machine Learning	PCC	3	0	0	3	3			
3		Department Elective 1	DEC	-	-	-	-	3			
4	THPOWE	Department Elective 2	DEC		1	-		3			
5		Open Elective – 1 (Emerging Technologies)	OEC	3	0	0	3	3			
	GAME.	THEORY AND	PRACTI	CAI	LS	H	NOLO	GY			
6	23AD511	Statistics for AI and ML	PCC	3	0	2	AUTONO/ 5	4			
		PRACT	TICALS								
7	23AD521	Machine Learning Laboratory	PCC	0	0	4	4	2			
8	23AD522	Mini Project	EEC	0	0	3	3	2			
9	23AD523	Summer Internship	EEC	0	0	0	0	1			
10	23ES591	Aptitude and Logical Reasoning-2	EEC	0	0	2	2	1*			
* 701	TOTAL						29	22			

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VI

S1. No.	Course Code	Course Title	Category		erio Per Wee		Total Contact	credits	
				L	T	P	Periods		
		THI	EORY						
1		Department Elective 3	DEC	-	-	-	-	3	
2		Department Elective 4	DEC	1	-	1	1	3	
3		Open Elective-2 (Management /Safety Courses)	OEC	3	0	0	3	3	
	THEORY AND PRACTICALS								
4	23CE611	Environmental Science and Engineering	ESC	3	0	2	5	4	
5	23AD611	Fundamentals of Deep Learning	PCC	3	0	2	NO ⁵ LO	GY ⁴	
6	23AD612	AI in IoT Applications	PCC	3	0	2	5	4	
		PRAC	TICALS						
7	23AD621	Project Work - Phase 1	EEC	0	0	4	4	2	
8	23AD622	Technical Training	EEC	0	0	2	2	1	
9	23AD623	Technical Seminar- 1	ESC	0	0	2	2	1	
		TOTAL		-	-	-	-	25	

SEMESTER -VII

S1. No.	Course Code	Course Title	Category	Periods Per Week L T P		k	Total Contact Periods	Credits
	•	TH	EORY					
1		Open Elective-3 (Management Courses)	OEC	3	0	0	3	3
2		Department Elective	DEC	-	-	-	-	3
3		Department Elective	DEC	-	-	-	-	3
4	23AD701	Technical Comprehension	EEC	2	0	0	2	2
	WOO	THEORY AN	D PRACT	ICA	LS	-		
5	23AD711	Generative AI	PCC	3	0	2	5	4
	W	PRAC	CTICALS		-			
6	23AD721	Project Work – Phase 2	EEC	0	0	6	6	3
7	23AD722	Technical Seminar - 2	ESC	0	0	4	AU4DNO	1002
		TOTAL		-	-	-	-	20

SEMESTER -VIII

Sl. No	Course code	Course Title	Category		rio W T		Total Contact Periods	Credits	
	PRACTICALS								
1	23AD821/ 23AD822	Capstone Project / Internship cum project	EEC	0	0	20	20	10	
	TOTAL					20	20	10	

TOTALCREDITS: 173

DEPARTMENT ELECTIVE COURSES: VERTICALS

VERTICAL 1: GENERIC COMPUTER ENGINEERING

S1. No.	Course Code	Course Title	Category]	rio Per Vee		Total Contact periods	Credits
				L	T	P	Porrous	
1	23AD031	Digital Image Processing	DEC	3	0	0	3	3
2	23AD032	Unified Modeling Language	DEC	2	0	2	4	3
3	23AD033	Web Essentials	DEC	2	0	2	4	3
4	23AD034	Software Engineering Principles	DEC	3	0	0	3	3
5	23AD035	Distributed Systems	DEC	3	0	0	3	3
6	23AD036	Cryptography and Network Security	DEC	2	0	2	4	3
7	23AD037	Data Communications and Networking	DEC	3	0	0	AUTONOA 3	3
8	23AD038	Automata Theory and Compiler Design	DEC	3	0	0	3	3

VERTICAL 2: ANALYTICAL SCIENCES

S1. No.	Course Code	Course Title	Category		riods Per Veek		Total Contact periods	Credits
1	23AD039	Responsible AI	DEC	3	0	0	3	3
2	23AD040	Natural Language Processing	DEC	2	0	2	4	3
3	23AD041	Exploratory Data Analysis	DEC	2	0	2	4	3
4	23AD042	Data Analytics	DEC	3	0	0	3	3
5	23AD043	Intelligent Robots	DEC	3	0	0	3	3
6	23AD044	Reinforcement Learning	DEC	3	0	0	3	3
7	23AD045	Data Exploration and Visualization	DEC	2	0	2		3
8	23AD046	Knowledge Engineering	DEC	3	0	0	3	3

VERTICAL 3

FULL STACK DEVELOPMENT

Sl. No.	Course Code	Course Title	Category	W	Periods Per Week		Total Contact Periods	Credits
				L	T	P		
1	23CS031	Java Full Stack Development	DEC	2	0	2	4	3
2	23CS032	Mobile App Development	DEC	2	0	2	4	3
3	23CS033	UI and UX Design	DEC	2	0	2	4	3
4	23CS034	MERN Stack Web Development	DEC	2	0	2	4	3
5	23CS035	DevOps	DEC	2	0	2	4	3
6	23CS038	Python Full Stack Development with Machine Learning (Industry Supported Course)	DEC	2	0	2	INOLO	3
7	23AD047	Software Design Thinking	DEC	3	0	0	3	3
8	23CS044	Explainable AI	DEC	3	0	0	4	3

VERTICAL 4

COMPUTATIONAL INTELLIGENCE

Sl. No.	Course Code	Course Title	Category		iod Per Veel		Total Contact Periods	Credits
				L	T			
1	23AD048	Intelligent Agents	DEC	3	0	0	3	3
2	23AD049	Immersive Technologies	DEC	2	0	2	4	3
3	23AD050	Ethics of AI	DEC	2	0	2	4	3
4	23AD051	Fundamental of Speech Processing	DEC	2	0	2	4	3
5	23AD052	Evolutionary Computation	DEC	3	0	0	INOLO	3
6	23AD053	Computer Vision	DEC	2	0	2	4	3
7	23CB058	Cryptocurrency	DEC	2	0	2	3	3
8	23CS041	Game Development	DEC	2	0	2	4	3

VERTICAL 5

CYBER SECURITY AND CLOUD COMPUTING

S1.	Course code	Course Title	Category		riod Per Veel		Total Contact periods	Credits
				L	T	P	1	
1	23AD054	Web Security	DEC	2	0	2	4	3
2	23AD055	AI for Cyber Security	DEC	2	0	2	4	3
3	23AD056	Cyber Threat Intelligence	DEC	3	0	0	3	3
4	23AD0 <mark>57</mark>	Information Security Analysis and Audit	DEC	3	0	0	3	3
5	23AD058	Steganography and Digital Watermarking	DEC	2	0	2	INOLO	3
6	23AD059	Utility Computing	DEC	2	0	2	3	3
7	23AD060	Cloud Databases	DEC	2	0	2	4	3
8	23CB043	Security in Cloud Computing	DEC	2	0	2	3	3

OPEN ELECTIVE - EMERGING TECHNOLOGIES

S1. No.	Course code	Course title	Category	W	pe ree	k	Total	Credits
				L	T	P		
1	23OAE971	Aviation Management	OEC	3	0	0	3	3
2	23OAS971	Space Engineering	OEC	3	0	0	3	3
3	23OEC972	Fundamentals of Wearable Devices	OEC	3	0	0	3	3
4	23OEE973	Electric and Hybrid Vehicles	OEC	3	0	0	3	3
5	23OMA971	Resource Management Techniques	OEC	3		0	VC3_O	G13
6	23OMT971	Foundation of Robotics	OEC	3	0	0	3	3

OPEN ELECTIVE - MANAGEMENT COURSES

S1. No.	Course Code	Course Title	Category]	rio Per	_	Total Contact Periods	Credits
				L	T	P	1 0110 010	
1	23OMG971	Total Quality Management	OEC	3	0	0	3	3
2	23OMG972	Engineering Economics and Financial Accounting	OEC	3	0	0	3	3
3		Engineering Management and Law	OEC	3	0	0	3	3
4	23OMG974	Knowledge <mark>M</mark> anagement	OEC	3	0	0	3	3
5	23OMG975	Industrial Management	OEC	3	0	0	3	3
6	23OMG976	Entrepreneurship and Business Opportunities	OEC	3	0	0	О <u>ГО</u> ЗОМ(3
7	23OMG977	Modern Business Administration and Financing	OEC	3	0	0	3	3
8	23OMG978	Essentials of Management	OEC	3	0	0	3	3

OPEN ELECTIVE - SAFETY RELATED COURSES

Sl. No.	Course Code	Course Title	Category		rio Per Vec	r ek	Total Contact Periods	
1	230AU981	Automotive Safety	OEC	3	0	0	3	3
2	23OCE981	Disaster Management	OEC	3	0	0	3	3
3	23OME981	Industrial Safety	OEC	3	0	0	3	3

SEMESTER-WISE CREDIT DISTRIBUTION

SEMESTER	HSMC	BSC	ESC	PCC	DEC	OEC	EEC	Total
Semester I	5	11	5		_			21
Semester II	4	7	9	5				25
Semester III	3	4 -	OLLE	18		EBSTA	21.00	25
Semester IV	REAL	4	FILIATED	20	UNIVERSI	TY AU	TONOMO	24
Semester V			2	9	6	3	3	23
Semester VI			5	8	6	3	3	25
Semester VII			2	4	6	3	5	20
Semester VIII							10	10
Total	12	26	23	64	18	9	21	173

SEMESTER -I

23IP101	IP101 INDUCTION PROGRAMME	L	T	P	C
231F101	INDUCTION TROGRAMME	-	-	-	0

COURSE OBJECTIVES:

- This is a mandatory 2 weeks Programme to be conducted as soon as the students enter the institution.
 Normal classes start only after the induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character
- Hence, the purpose of this Programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create

bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature

• Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

• Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

Value Based Communication

This module will focus on improving the communication skills of students

Lectures by Alumni

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

Familiarization to Dept/Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities

Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests / assessments during this Programme.

REFERENCES:

Guide to Induction program from AICTE

23HS101	ESSENTIAL COMMUNICATION	L	T	P	C
23113101	ESSENTIAL COMMUNICATION	3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

9

UNIT I FORMATION OF SENTENCES

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing- framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development-Parts of Speech, Wh- Questions, yes or no questions, direct and indirect questions. Vocabulary development- prefixes- suffixes-articles – countable and uncountable nouns

UNIT II NARRATION AND DESCRIPTION 9

Reading – Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development – Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing – Write short narrative paragraphs, biographies of friends/relatives - writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures.

UNIT III COMPARING AND CONTRASTING

9

Reading- short texts and long texts -understanding different types of text structures, -coherence-jumbled sentences. Language development- degrees of comparison, concord- Vocabulary development – single word substitutes- discourse markers- use of reference words Writing - comparative and contrast paragraphs writing- topic sentence- main idea, free writing, compare and contrast using some suggested vocabulary and structures.

UNIT IV SOCIAL MEDIA COMMUNICATION

9

Reading- Reading blogs, social media reviews, posts, comments, process description, Language development - relative clause, Vocabulary development- social media terms-words, abbreviations and acronyms Writing- -e-mail writing-conventions of personal email, descriptions for simple processes, critical online reviews, blog, website posts, commenting to posts.

UNIT V ESSAY WRITING

9

Reading- Close reading non-technical longer texts Language development - modal verbs, phrasal verbs- Vocabulary development - collocation. Writing- Writing short essays-brainstorming - developing an outline- identifying main and subordinate ideas.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize simple, level-appropriate texts of around 300 words recognizing main ideas and specific details.
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing.

CO3:	Use appropriate expressions to describe, compare and contrast people, things, situations etc., in writing.															
CO4.	1 1 0															
CO4:	Establish the ability to communicate effectively through emails.															
COE																
CO3:	Determine the language use appropriate for different social															
COC	media platforms.															
CO6:	Use appropriate expressions for narrative descriptions and															
TEV	process descriptions.															
	EXT BOOKS:															
1	Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange															
	Level 2. Cambridge University Press and Assessment															
2	Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange															
	Level 3. Cambridge University Press and Assessment															
	EFERENCES:															
1																
	Skills, F		- 51	N/				D						10		
2	Means,										_		16000			
	Commu	ınic	atic	n fo	or C	Colle	_		eng	age	Lea	rnin	g,L			
(COs	7	=	2			0.00	POs						PSOs		
	VINE	_R 1,	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	-	-	-	-	_	1	1	PACINI	2	3		2	_	100	-
	2	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
	3	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
	4	-	-	-	-	-	-	-	-	-	3	-	2	-	-	-
	5	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	6	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	verall relation	-	-	-	-	_	1	1	_	3	3	-	2	-	_	-
C011							L,									
Reco	mmende	Recommended by Board of Studies 28-07-2023 Approved 1st ACM Date 09-09-2023														
Reco					of S	Stud	ies					Date	<u> </u>	<u></u>	19-20	023

23MA101	MATRICES AND CALCULUS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

UNIT IV INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques of

Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V MULTIPLE INTEGRALS

9

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2: Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3: Find the derivative of functions of several variables
- **CO4:** Examine the application of partial derivatives
- CO5: Compute integrals by different techniques of Integration.
- CO6: Apply the concept of integration to compute multiple integrals.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

REFERENCES:

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2 Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016

- 3 Bali. N., Goyal. M. and Watkins. C., —Advanced Engineering MathematicsII, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- Narayanan. S. and Manicavachagom Pillai.T. K., —Calculus" 4 Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.

COs	POs											PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	-	-	-	-	•	1	3	-	-
2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
5	3	2	1	1	-	-	-	-	-	-	•	1	3	-	-
6	3	2	1	1	-	-	1	1	1		1	1	3	1	-
Overall Correlation	3	2	1	1	-	4	-	-/	-	-	-	1	3	-	ī
Recommende	d by	Во	ard	of S	Stud	ies	02-	08-2	023	a - 50					

1st ACM Date 09-09-2023 Approved

23AD101	PROGRAMMING IN PYTHON	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To know the basics of Programming.
- To convert an algorithm into a Python program.
- To construct Python programs with control structures.
- To structure a Python Program as a set of functions.
- To use Python data structures-lists, tuples, dictionaries and files.

UNIT I COMPUTATIONAL THINKING

(

Introduction to Computing and Problem Solving: Fundamentals of Computing –Computing Devices – Identification of Computational Problems – Pseudo Code and Flowcharts – Instructions – Algorithms – Building Blocks of Algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion).

UNIT II INTRODUCTION TO PYTHON

9

Introduction to Python Programming: Python Interpreter and Interactive Mode- Variables and Identifiers - Arithmetic Operators - Values and Types - Statements, Reading Input, Print Output, Type Conversions, type () Function and Is Operator, Dynamic and Strongly Typed Language. Control Flow Statements: if, if...else, if...else Decision Control Statements, Nested if Statement, while Loop, for Loop, continue and break Statements.

UNIT III | FUNCTIONS AND STRINGS

9

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the Function, The return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments. Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

UNIT IV LISTS, TUPLES, DICTIONARIES AND FILES 9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list Parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension. Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages.

UNIT V OBJECT-ORIENTED AND FUNCTIONAL 9 PROGRAMMING

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, Polymorphism. Functional Programming: Lambda. Iterators, Generators, List Comprehensions.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs using Control Statements
- CO3: Develop simple Python programs for solving problems using Functions and Strings
- CO4: Build a Python program using lists, tuples, dictionaries and files.
- CO5: Construct a code related to Object-Oriented Programming Concept
- **CO6:** Construct a code related to Functional Programming.

TEXT BOOKS:

Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/think-python/).

	T/ 1 D			" ~				- 1	1 ·	1.		4 D			".	
2	Karl Be				-						_		_			
	Guide t						_			_		_		t Ec	ditic	n,
	BCS Lea		ing	&aı	np;	De	vel	opn	nen	t Li	mit€	ed, 20	017.			
REF	ERENCE	S:														
1	Learnin	_		_	ran	ı w	ith	Py	tho	n. I	Richa	ard I	J. Н	alte	rma	an.
	Copyrig															
2	Python	for	Ev	eryl	ood	y, E	Exp	lori	ng i	Dat	a Us	sing	Pyth	non	3. I	Or.
	Charles	Charles R. Severance. 2016.														
3	Paul Deitel and Harvey Deitel, "Python for Programmers",															
	Pearson	Ec	luca	tio	n, 1	st E	dit	ion,	202	21.						
4	Pearson Education, 1st Edition, 2021. G Venkatesh and Madhavan Mukund, "Computational															
	Thinking: A Primer for Programmers and Data Scientists",															
	1st Edition, Notion Press, 2021.															
5	John V Guttag, "Introduction to Computation and															
	Programming Using Python: With Applications to															
	Computational Modeling and Understanding Data", Third															
	Edition, MIT Press , 2021															
6	Eric Matthes, "Python Crash Course, A Hands - on Project															
1	Based Introduction to Programming", 2nd Edition, No															
	Starch I	res	ss, 2	019												Р.
7	https:/						_									
8	Martin	C.	Bro	wn	, "F	yth	on	: Th	ie C	Con	ıplet	e Re	efere	nce	", 4	lth
	Edition,										NIVE	SITY				
	COs					1000		POs	3		and the same	eti estador	and the said	I	PSC	s
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	-	ı	ı	-	1	3	1	-
	2	3	2	1	1	1	-	-	-	ı	ı	-	1	3	1	-
	3	3	2	1	1	1	-	-	-	ı	ı	ı	1	3	1	ı
	4	3	2	1	1	1	-	-	-	1	ı	1	1	3	1	-
	5	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	6	3 2 1 1 1 1 1 1 1 1 3 1 3										1				
	verall	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
	relation											1	1	,	1	1
Reco	mmended				of S	tud	ies									
	Approved							1st ACM Date 09-					09-0	9-20)23	

23HS102	HERITAGE OF TAMILS	L	T	P	C
		1	0	0	1

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil Nadu.

UNIT I LANGUAGE AND LITERATURE 3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism & Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO 3 MODERN ART - SCULPTURE

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

UNIT III	FOLK AND MARTIAL ARTS	3
Therukoot	hu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillati	tam,
Leatherpu	ppetry, Silambattam, Valari, Tiger dance - Sports	and
Games of T	Γamils.	
UNIT IV	THINAI CONCEPT OF TAMILS	3
Flora and	Fauna of Tamils & Aham and Puram Concept f	rom
	yam and Sangam Literature – Aram Concept of Tam	
Education	and Literacy during Sangam Age - Ancient Cities	and
Ports of Sa	angam Age – Export and Import during Sangam Ag	ge -
Overseas (Conquest of Cholas	
UNIT V	CONTRIBUTION OF TAMILS TO INDIAN	3
	NATIONAL MOVEMENT AND INDIAN	
	CULTURE	
Contributi	on of Tamils to Indian Freedom Struggle - The Cult	ural
11.77	of Tamils over the other parts of India - Self-Res	
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t - Role of Siddha Medicine in Indigenous System	•
Medicine	- Inscriptions & Manuscripts - Print History of Ta	amil
Books.	COLLEGE OF TECHNOLOGY	**) 63
	TOTAL: 15 PERI	ODS
COURSE	OUTCOMES:	
After comp	pletion of the course, the students will be able to:	
CO1: Expl	ain the evolution of Tamil language and literature,	
focus	sing on its cultural, ethical, and secular themes.	
CO2: Outli	ine the making of musical instruments related to Tam	il
herit	O .	
	uss the sports and games of Tamils	
	ain the education and literacy during Sangam age.	
_	ess the importance and contribution of Tamils to Indi	an
	dom Struggle	
CO6: Outli	ine the print history of books in Tamil Nadu	

TEXT I	BOOK	S:															
1	தமிழ்														-		
5	தமிழக	ഖ	ரலா	று-ம	க்களு	ம் ப	ळा	பாடு	ம்-ே	க.ே	கபிள்	ளை (G	ിഖണ്	յու	† :		
2	ക ഞ്ഞിര	ரித்	தமி	<u>і</u> р – (ழன	ഞ	υij	മ്പ	ა. წ ე	ந்து	ரம் (6	<u></u> பிகட	ன் ப	பிரச	ஈ ரம்)		
REFER					_					_							
	. அஆ்			சை	Б. ПБ (கிச்	ж	டை	ru¶	ຄ່າ	சந்	ж ж	πаз	ГБA	<u></u>		
	ுச் நாகரி														<i>.</i> ,,		
) DUL(II														பெ	ல்	
	ப துறை											` -	_				
COs									POs								
CC	JS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1		-	-	-	-	-	2	2	-	-	-	-	-	-	-	-	
2		-	-	-	-	-	2	2	-	-	-	-	-	-	-	-	
3	THE STATE OF THE S	17:	Dio.	1	-	-	2	2	r-3	4		-		-		-	
4	0	-	-	6	-	-	2	2	4	-	-	-/	Y-	-	-	-	
5	7.15	-	-	1	\-	-/	2	2	4	F		-	1	-]-	-	
6	A	-		y.	<i>)-</i>	_	2	2	M.,	7	_	-	1	-	-	-	
Over	W. Colombia	7	REAL		-	co	2	2	E	OF	TE	CHI	101	.0	GY	-	
Recomi	mende	d b	у Во	oard	of S	tudi	es	28-0)7-2()23	NIVER	MILITARY.	4010	ONOMOUS			
Approved								1st ACM Date 09-09-202							-09-2	023	

23PH111	ENGINEERING PHYSICS	L	T	P	C
		3	0	2	4

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses-factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule – torque –rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

UNIT II | ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

UNIT III	OPTICS AND LASERS	9
Reflection	and refraction of light waves - total internal reflection	on -

types of optical fiber, Numerical Aperture and acceptance angle - interference -Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating
- 6. Airwedge- Determination of thickness of a thinsheet / wire

- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
 - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Determine the mechanical properties of materials.
- CO2: Apply the principles of electromagnetic waves to real world system.
- CO3: Determine the thickness of thin wire and the characteristic parameter of an optical fiber.
- CO4: Apply the principles of lasers to real world application.
- CO5: Organize the quantum mechanical properties of particles and waves.
- **CO6:** Utilize the quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1 D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", McGraw Hill Education (Indian Edition), 2017.
- **2** Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", McGraw-Hill (Indian Edition), 2017.

REFI	EFERENCES:															
1	R.Wolfs	son	," E	Esse	ntia	al U	Jniv	ers	ity	Phy	sics	", V	olur	ne î	1 &	2.
	Pearson	Ed	luca	tio	n (Iı	ndia	an E	Edit	ion)	, 20	009.					
2	Paul A	Paul A. Tipler, "Physic - Volume 1 & 2", CBS, (Indian														
	Edition), 2004.															
3	K.Thya	gar	ajar	n ai	nd	A.C	Gha	tak,	"La	ser	s: F	unda	ame	ntal	s a	nd
	K.Thyagarajan and A.Ghatak,"Lasers: Fundamentals and Applications," Laxmi Publications, (Indian Edition), 2019.															
4	D.Hallio	day	, R.	Res	nicl	k ar	ıd J	.Wa	lke	r, "]	Prin	ciple	es of	Phy	ysic	s",
	Wiley (I	Indi	ian i	Edi	tior	1), 2	015									
5	N.Garc	ia,	A.D	am	ask	ano	1 S.	Sch	war	z, "	Phy	sics	for (Con	ıpu	ter
	Science Students", Springer Verlag, 2016.															
	POs PSOs PSOs															
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	1	_	-/	7	-		1	3	þ	-
Į.	2/4	3	2	1	1	-	Ā	<u>_</u>	-(-	-	-	1	3	-	-
	3	3	2	1	1	-	-		-		1		1	3	1	J-
1	4	3	2	1	1	Ξ	-	-	-	1	-	1	1	3	1	-
	5	3	2	1	1	ce	ìΩ	E	Æ	OF	TE	CH	No	3	G)	65
	6	3	2	1	1	AFF	LIAT	EO T	οĀN	NA U	NIVER	SITY	AT	3	400	-
	verall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_
	relation							20								
Keco	mmende				of S	tud	ies					D-1		00.0	0.00	200
	A	ppr	ove	a				Isi	AC	.I VI		Date	?	09-0	19-2(J23

23CY111	ENGINEERING CHEMISTRY	L	T	P	C
		3	0	2	4

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO₂ system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

UNIT IV | FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO₂ emission and carbon sequestration, Green Hydrogen.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid battery and lithium-ion battery; Electric vehicles – working

principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2: Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3: Estimate the knowledge of phase rule and composites for material selection requirements
- CO4: Choose a suitable fuel for engineering processes and applications
- CO5: Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6: Explain the different types of batteries, fuel cells and working principles of Electric vehicles

TELYTE DOOL															
TEXT BOOK															
1 P. C. Ja								_		_			•		
Edition			pat	Ra	i P	ubl	ishi	ng	Co	mpa	ny	(P) 1	Ltd,	, No	ew
Delhi, 2															
2 Sivasar												Mc(Gra	w-F	Hill
Publish															
3 S.S. Dat															
Publish	0											.S.,			
	Engineering Mathematics", Khanna Publishers, New Delhi,														
	44 th Edition, 2018.														
	RENCES:														
	B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James														
	Murday, "Text book of nanoscience and nanotechnology",														
	Universities Press-IIM Series in Metallurgy and Materials														
	Science, 2018.														
	O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.														
400 100	Friedrich Emich, "Engineering Chemistry", Scientific														
All District Control of the Control	International PVT, LTD, New Delhi, 2014New Delhi, 2018.														
	ShikhaAgarwal, "Engineering Chemistry-Fundamentals and														
	Applications", Cambridge University Press, Delhi, Second														
Edition			4									NO			
5 O.V. Ro			and	1 H	.D.	Ges	sser	, A	ppl	ied (Che	mist	rv-A	Λ T	ext
Book f															
Busines															
COs]	POs	,					I	PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
2	2	1	-	_	_	_	2	-	_	-	_	1	2	_	_
3	2	1	_	_	_	_	2	_	_	_	_	1	2	_	_
4	3	2	1	1	_	_	3	_	_	_	_	2	3	_	_
5	3	2	1	1	_	_	3	_	_	_	-	2	3	_	_
6	2	1	_	_	_	_	2	_	_	_	_	1	2	_	_
Overall															
Correlation	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	1			<u> </u>								L			
Recommende	d by	Bo Bo	ard	of S	Stud	lies	28-	07-2	2023						

23AD121	PYTHON PROGRAMMING	L	T	P	C
	LABORATORY	0	0	4	2

The main objective of this laboratory is to put into practice computational thinking. The students will be expected to write, compile, run and debug Python programs to demonstrate the usage of:

- Operators and Conditional Statements
- Control Structures and Functions (both recursive and iterative) and Recursion.
- String functions
- Lists, Sets, Dictionaries, Tuples and Files.
- Object-Oriented Programming

Exercise 1 Programs to demonstrate the usage of operators and conditional statements.

- 1. Write a program that takes two integers as command line arguments and prints the sum of two integers.
- 2. Program to display the information:
 Your name, Full Address, Mobile Number,
 College Name, Course Subjects
- 3. Program that reads the URL of a website as input and displays contents of a webpage.

Exercise 2 Programs to demonstrate usage of control structures.

- 4. Program to find the sum of all prime numbers between 1 and 1000.
- 5. Program to find the product of two matrices.
- 6. Program to find the roots of a quadratic equation.

Exercise 3 Programs to demonstrate the usage of Functions and Recursion

- 7. Write both recursive and non-recursive functions for the following:
 - a. To find GCD of two integers
 - b. To find the factorial of positive integer
 - c. To print Fibonacci Sequence up to given number n

- d. To convert decimal number to Binary equivalent
- 8. Program with a function that accepts two arguments: a list and a number n. It should display all the numbers in the list that are greater than the given number n.
- 9. Program with a function to find how many numbers are divisible by 2, 3,4,5,6 and 7 between 1 to 1000.

Exercise 4 Programs to demonstrate the usage of String functions.

- 10. Program that accepts two strings S1, S2, and finds whether they are equal are not.
- 11. Program to count the number of occurrences of characters in each string.
- 12. Program to find whether a given string is palindrome or not.

Exercise 5 Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

- 13. Simple sorting, Histogram, Students marks statement, Retail bill preparation
- 14. Write a program that combines lists L1 and L2 into a dictionary.
- 15. Program to display a list of all unique words in a text file and word count, copy file, Voter's age validation, Marks range validation (0-100).

Exercise 6 Programs to demonstrate the usage of Object-Oriented Programming

- 16. Program to implement the inheritance.
- 17. Program to implement polymorphism

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs.

CO3: Constru	CO3: Construct programs in Python using conditionals and loops														
for solvi	for solving problems.														
CO4: Utilize f	L'Utilize functions to decompose a Python program.														
CO5: Analyse	05: Analyse compound data using Python data structures.														
CO6: Interpret data from/to files in Python Programs															
COs	COs POs PSOs														
COs	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3											3		
1	3	2	1	1	1	1	1	-	-	-	-	1	3	1	_
2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	_
4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	_
5	3	3	2	2	1	-	-	-	-	-	-	1	3	1	-
6	2	1	-	-	1	-	-	1	1	1	1	1	3	1	1
Overall	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
Correlation	334	RE											J	4	
Recommende	d by	Во	ard	of S	Stud	lies	28-	07-2	2023						ri .
A		1st ACM Date 09-09-2				9-20	23								

23HS121	COMMUNICATION SKILLS	L	T	P	С
	LABORATORY	0	0	2	1
COURSE O	BJECTIVES:	1		•	
• To ena	able the students to comprehend the mai	n id	ea a	and	
specif	ic information of the listening passage				
	p students express themselves clearly, a	nd			
	unicate effectively with others.				
	roduce authentic language use and conte		-		
vocab	ulary that might not be encountered in to	extb	ook	S.	
Exercise:1	Listening to conversations set in everyda	ay s	ocia	al	
	context and complete gap-filling exercise	e			
Exercise: 2	Listening to a monologue in everyday so	ocia	l co	ntex	ĸt.
	Diagram labelling and MCQ				
Exercise: 3	Listening to a group conversation in aca	den	nic s	setti	ng
(00)	and answer MCQ			V	
Exercise: 4	Listening to a lecture and answer MCQ	or g	ap:	filliı	ng
Exercise: 5	Listening to Ted Talks, podcasts, docum	ent	arie	s -	J.
1 3	discussion	-			
Exercise: 6	Listening to a lecture and reading a text	on	the	san	ne
	subject- compare and contrast				
Exercise:7	Speaking Introducing oneself			12,300,300	
Exercise:8	Answering questions based on the intro	duc	tior	ı	
Exercise:9	Speaking on a given prompt for 2 mins.				
Exercise :10	Answering questions based on the topic	spo	okei	n	
Exercise :11	Role play- Engaging in conversation				
Exercise :12	Engaging in Podcast Discussion				
L	TOTAL	L: 2 5	5 PI	ERIC	ODS
COURSE O	UTCOMES:				
After c	ompletion of the course, the students wil	1 be	abl	e to	:
	nstrate fluency in speaking in variety of s				

42

CO2: Express their knowledge by talking continuously for more

than two minutes on a topic

CO3:	Develop	o ac	tive	list	teni	ng	for	moi	re n	near	ning	ful i	nter	acti	ons	and
	convers	atic	ns													
CO4:	Use a fu	ıll r	ang	ge of	f str	uct	ure	s na	tur	ally	and	lapp	orop	riat	tely	
CO5:	Identify	the	e sp	ecif	ic iı	nfor	ma	tior	in	cor	vers	atio	ns, i	nte	rvie	ws,
	talks an	d le	ectu	res												
CO6:	Develop	o th	e al	oilit	y to	COI	npa	are a	and	an	alyse	e dif	fere	nt f	orm	s of
	information, identifying key similarities and differences.															
	COs POs PSOs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
•	1 2 3 4 5							7	8	9	10	11	12	1	2	3
	1	-	1	1	-	-	1	1	-	2	3	-	2	-	-	_
	2	ı	ı	ı	-	-	-	-	-	2	3	ı	2	-	-	-
	3	-	ı	ı	-	-	1	1	-	2	3	1	2	-	-	_
	4	-	1	ı	-	-	-	-	-	-	3	-	2	-	-	-
	5	ı	ı	ı	-	1	1	1_	Ţ	3	3	1	2	-	1	-
	6 .ow	ER L	NE.	-	-	-	1	1	-7	2	3	<u></u>	A	-	4	_
	verall elation	1 <	111	3	-	-	1	1	-(3	3	-	2	_1	1	-
Reco	mmende	d by	во Во	ard	of S	tud	ies	28-	07-2	023					The same	P. I.
¥	Approved								1st ACM D				Date 09-09-2023			

SEMESTER - II

23HS201	PROFESSIONAL ENGLISH	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays.
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

UNIT I WORKPLACE COMMUNICATION

9

Reading – Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing – Writing emails –emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development– Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary – One-word substitutes; Abbreviations & Acronyms as used in technical contexts and social media.

UNIT II EXPRESSING CAUSE AND EFFECT

9

Reading - Reading longer technical texts- Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development- Active, Passive and Impersonal Passive Voice transformations, Infinitive and Gerunds Vocabulary - Synonyms- contextual meaning of

words, Same word acting as different parts of speech, causal expressions.

UNIT III | PROVIDING SOLUTIONS TO PROBLEMS

9

Reading - Case Studies, editorials, news reports etc. Writing - Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional sentences Vocabulary - Compound Words, discourse markers.

UNIT IV | INTERPRETATION OF GRAPHICS

9

Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. Language development-Possessive & Relative pronouns, numerical adjectives Vocabulary Homonyms and Homophones, sequence words.

UNIT V REPORT WRITING AND RESUME WRITING

9

Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing
- CO3: Use appropriate expressions to describe process and product, compare and contrast data, analyze problems, provide solutions and prove an argument in writing

ability to communicate **CO4:** Establish the effectively in professional environment through emails and reports CO5: Determine the language use appropriate for different social media platforms used for digital marketing CO6: Convert skills to assets and position themselves in job market through their own professional narratives TEXT BOOKS: V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 1 Priyadharshini, Veena Selvam, English for Science & Technology I, Cambridge University Press and Assessment V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 2 Priyadharshini, Veena Selvam, English for Science & Technology II, Cambridge University Press and Assessment **REFERENCES:** Business Correspondence and Report Writing by Prof. R.C. 1 Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi. Developing Communication Skills by Krishna Mohan, 2 Meera Bannerji- Macmillan India Ltd. 1990, Delhi. **POs PSOs** COs 2 5 6 9 12 2 1 3 7 8 10 11 1 2 2 3 1 1 1 2 2 3 2 3 1 2 3 2 4 2 3 2 2 3 2 5 1 6 2 3 3 **Overall** 2 3 3 1 1 Correlation

28-07-2023 1st ACM

Date

09-09-2023

Recommended by Board of Studies

Approved

23MA202	DISCRETE MATHEMATICS	L	T	P	С
		3	1	0	4

- To develop student's logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science related courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures
- To understand the concepts and significance of Lattices and Boolean algebra which are widely used in computer science and engineering.

UNIT I LOGIC AND PROOFS

9+3

Propositional logic – Propositional equivalences - Predicates and quantifiers – Nested quantifiers – Rules of inference - Introduction to proofs – Proof methods and strategy.

UNIT II | COMBINATORICS

9+3

Mathematical induction - The basics of counting - Well ordering - Strong induction - The pigeonhole principle - Permutations and Combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.

UNIT III | GRAPHS

9+3

Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV | ALGEBRAIC STRUCTURES

9+3

Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets - Lagrange's theorem - Definitions and examples of Rings and Fields.

UNIT V LATTICES AND BOOLEAN ALGEBRA 9+3 Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra -Boolean Homomorphism. **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply the concepts of propositional and predicate calculus to the given logical statements. CO2: Apply the idea of combinatorial techniques to various engineering problems. **CO3:** Find the solutions for technical problems using graphs. CO4: Apply the concepts and properties of algebraic structures in computational theory. CO5: Apply the lattice structure and its properties to engineering problems. CO6: Apply Boolean expressions in areas like computational theory. TEXT BOOKS: Rosen. K.H., "Discrete Mathematics and its Applications", 1 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2017. Tremblay. J.P. and Manohar. R, "Discrete Mathematical 2 Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011. **REFERENCES:** Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari, Discrete 1 Mathematics Pearson Publications. Grimaldi. R.P. "Discrete and Combinatorial Mathematics: 2 An Applied Introduction", 5thEdition, Pearson Education Asia, Delhi, 2013

	1															
3	Koshy.	Τ.	. "	Dis	cret	te	Ma	the	mat	tics	Wi	th	App	olica	atioı	ıs",
	Elsevie	r Pı	ıbli	cati	ons	, 20	06.									
4	Lipschu	ıtz.	S.	an	d N	/lar	k L	ips	on.,	, "I	Discr	ete	Mat	her	nati	cs",
	Schaum	ı's (Out	line	es, ˈ	Tata	a M	[cG	raw	т Н	ill P	ub.	Co.	Ltd	l., N	ew
	Delhi, 3	Delhi, 3rd Edition, 2010.														
COs PSOs																
•	1 2 3 4 5									9	10	11	12	1	2	3
1 3			2	1	1	-	ı	ı	ı	ı	-	•	1	3	-	•
	2 3 2 1 1 -						1	1	1	ı	-	-	1	3	-	-
	3	3	2	1	1	-	1	1	1	ı	-	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	verall relation	erall 3 2 1 1 1 3														
Recon	Recommended by Board of Studies 08-04-2023															

Date

25-05-2025

2nd ACM

Approved by Academic

23PH205	PHYSICS FOR INFORMATION	L	T	P	C
	SCIENCE	3	0	0	3

- To make the students understand the importance in studying electrical properties of materials.
- To enable the students to gain knowledge in semiconductor physics
- To instill knowledge on magnetic properties of materials.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement, ensuing nano device applications and quantum computing.

UNIT I ELECTRICAL PROPERTIES OF MATERIALS

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Wiedemann-Franz law - Success and failures - electrons in metals - Particle in a three-dimensional box - degenerate states - Fermi- Dirac statistics - Density of energy states - Electron in periodic potential - Energy bands in solids - tight binding approximation - Electron effective mass - concept of hole.

UNIT II SEMICONDUCTOR PHYSICS

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – variation of Fermi level with temperature and impurity concentration – Carrier transport in Semiconductor: random motion, drift, mobility and diffusion (qualitative) – Hall effect and devices – Ohmic contacts – Schottky diode – introduction to solid state drive (SSD)

UNIT III | MAGNETIC PROPERTIES OF MATERIALS 9

Magnetic dipole moment – atomic magnetic moments- magnetic permeability and susceptibility - Magnetic material classification:

diamagnetism – paramagnetism – ferromagnetism – antiferromagnetism – ferrimagnetism – Ferromagnetism: origin and exchange interaction- saturation magnetization and Curie temperature – Domain Theory- M versus H behaviour – Hard and soft magnetic materials – examples and uses-– Magnetic principle in computer data storage – Magnetic hard disc (GMR sensor).

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques.

UNIT V NANODEVICES AND QUANTUM COMPUTING

9

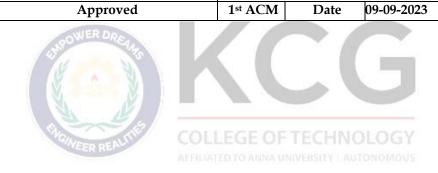
Introduction - quantum confinement - quantum structures: quantum wells, wires and dots -- band gap of nanomaterials. Tunneling - Single electron phenomena: Coulomb blockade - resonant- tunneling diode - single electron transistor - quantum cellular automata - Quantum system for information processing - quantum states - classical bits - quantum bits or qubits -CNOT gate - multiple qubits - Bloch sphere - quantum gates - advantage of quantum computing over classical computing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the knowledge of classical and quantum electron theories to energy band structures.
- CO2: Utilize the basics of intrinsic and extrinsic semiconductor physics and its application in various devices.
- CO3: Apply the knowledge of magnetic properties of materials in data storage.
- CO4: Explain the electro optical properties and optoelectronic devices.
- CO5: Explain the quantum structures, quantum confinement and Nano devices.


CO6	Explain	th	e r	ole	of	αι	ıani	tum	st	ruc	ture	s in	inf	forn	nati	on
	processi					_										
TEX	ТВООК				1											
1	Jasprit Si	ing	h, "	Sen	nico	ndı	acto	or D	evi	ces:	Bas	ic Pr	inci	ples	s",	
	Wiley (I1	_												F	,	
2	S.O. Kas							tro	nic	Ma	teria	ls ar	nd D	evi	ces,	
	McGraw	-		-											,	
3	Parag K.												er's			
	Introduc	tio	n, N	ſcG	raw	7-H	ill E	du	catio	on (Indi	an E	Editio	on),	202	20.
REF	ERENCE	S:														
1	Charles	Ki	ttel	, In	tro	duc	tior	ı to	Sc	lid	Stat	te P	hysi	cs,	Wi	ley
	India Ed	litio	on,	201	9.								•			
2	Y.B.Ban	d	and	d	Y.A	vis	hai,	ς.	Qua	ntu	m	Med	han	ics	W	ith
	Applica	tio	ns t	o N	Jan	otec	chn	olog	зу а	and	Info	orma	atior	ı Sa	cien	ce,
	Academ	Academic Press, 2013.														
3		V.V.Mitin, V.A. Kochelap and M.A.Stroscio, Introduction to														
		Nanoelectronics, Cambridge Univ.Press, 2008.														
4		G.W. Hanson, Fundamentals of Nanoelectronics, Pearson														
		Educ <mark>ation (In</mark> dian Edition) 2009.														
5	B.Roger													chn	olog	gy:
	Underst	tano	ding	g Sn	nall	Sys				C P1	ess,	2014	4.			
١.,	COs		770			00)LI	POs	SE.	OF	TE	CH	NO	LO	PSC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1 0	2	3
	1	3	2	1	1	-	ı	-	-	ı	ı	ı	1	3	ı	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	5	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	6	2	1	-	-	-	-						1	2		
	verall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_
	relation															
Reco	Recommended by Board of Studie				ies					Dati		09-09-2023				
	Approved					1st ACM			Date 09-09-2023							

22 A D201	C AND DATA CTRUCTURES	т	т	D	
23AD201	C AND DATA STRUCTURES	1 3	T 0	P 0	3
COURSE OB	 ECTIVES:	3	U	U	
		1000	~110	~~	
	troduce the basics of C programming	•		ge.	
	arn the concepts of advanced features		-•		
	arn the concepts of linear data structur				
	ow the concepts of non-linear data str	uct	ure	anc	i
hashi					
	miliarize the concepts of sorting and s	earc	hin	g	
	iques.				
UNIT I C	PROGRAMMING FUNDAMENT	AL	S		9
Data Types - '	Variables - Operations - Expressions ar	nd St	ate	mei	nts
	Statements – Functions – Recursive				
Arrays - Sing	le and Multi- Dimensional Arrays.				
	PROGRAMMING - ADVANCED	7		7	9
FE	ATURES	L			
Structures - L	Jnion – Enumerated Data Types – Poin	ters	: Po	inte	ers
to Variables, A	Arrays and Functions - File Handling -	Pre	pro	cess	or
Directives.	COLLEGE OF TECHI				
UNIT III LI	NEAR DATA STRUCTURES			40U	9
Abstract Dat	ta Types (ADTs) - List ADT -	Arr	ay-	Bas	ed
Implementati	on – Linked List – Doubly- Linked Lis	sts -	· Ci	rcu	lar
Linked List -	Stack ADT - Implementation of Stack -	App	plica	atio	ns
- Queue AD	T - Priority Queues - Queue Imple	eme	ntat	ion	-
Applications.					
UNIT IV NO	ON-LINEAR DATA STRUCTURE	\mathbf{S}			9
Trees - Binary	Trees - Tree Traversals - Expression T	rees	s – E	Bina	ry
Search Tree -	Hashing - Hash Functions - Separat	e Cl	hair	ning	, –
Open Addres	sing – Linear Probing– Quadratic Prob	ing	- D	oul	ole
TT1-1 D-1	1 •				

Hashing - Rehashing.

UNI	TV SORTING AND SEARCHING	9
	TECHNIQUES	
Incom	tion Sort - Quick Sort - Heap Sort - Merge Sort -Line	00#
	thon Sort - Quick Sort - Heap Sort - Merge Sort -Line ch - Binary Search.	ear
Searc	TOTAL: 45 PERIO	DS
COU	RSE OUTCOMES:	,,,,,
	After completion of the course, the students will be able to	0:
CO1:	Develop C programs for any real world/technic	
	application.	
CO2:	Apply advanced features of C in solving problems.	
CO3:	Utilize functions to implement linear data structu	ure
	operations.	
CO4:	Make use of appropriate non-linear data structu	ure
	operations.	
CO5:	Apply sort algorithms for a given application.	
CO6:	Utilize search algorithms for a given application	
TEX	T BOOKS:	
1	Reema Thareja, -Programming in CI, Second Edition	on,
	Oxford University Press, 2016.	γ.
2	Mark Allen Weiss, —Data Structures and Algorithm Analy	/sis
	in CI, Second Edition, Pearson Education, 1997.	
3	Gilberg and Forouzan: -Data Structure- A Pseudo co	ode
	approach with C∥ by Thomson publication	
4	Data structure in CI by Tanenbaum, PHI publication	ı /
	Pearson publication	
	ERENCES:	
1	Brian W. Kernighan, Rob Pike, —The Practice	of
	Programming, Pearson Education, 1999.	. 1
2	Paul J. Deitel, Harvey Deitel, —C How to Program, Sever	nth
	Edition, Pearson Education, 2013.	
3	Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, —Da	ata
	Structures and Algorithms , Pearson Education, 1983.	

4	Ellis	Hor	'OW	itz.	Ç	Sarta	aiSa	hni	а	ınd	Sı	ısan	. A	\nd	erso	m,	
	–Funda						,									,	
	Cos						I	POs						PSOs			
'	Cus	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
	2 3 2 1 1 1 -				-	-	-	-	-	-	3	1	-				
	3	3	2	1	1	1	-	-	-	-	-	-	-	3	1	-	
	4	3	2	1	1	1	-	-	-	-	-	-	-	3	1	-	
	5	3	2	1	1	1	-	-	-	-	-	-	-	3	1	-	
	6	3	2	1	1	1	-	-	-	1	-	1	1	3	1	-	
	Overall Correlation 3 2 1 1 1 1						1	-	1	1	-	1	1	3	1	1	
Reco	Recommended by Board of Studies						lies	28-	07-2	023						•	

23HS203	TAMILS AND TECHNOLOGY	L	T	P	C
		1	0	0	1

- To summarize the weaving industry and ceramic technology during Sangam Age
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola, Pallava and Pandya period
- To Explain about the water bodies of Sangam age and relate it to the agricultural usage
- To Outline to students the agriculture and irrigation technology during the Chola Period
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software

UNIT I WEAVING AND CERAMIC TECHNOLOGY 3 Weaving Industry during Sangam Age - Ceramic technology Black and Red Ware Potteries (BRW) - Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION 3 TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III | MANUFACTURING TECHNOLOGY

3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV | AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries - Pearl - Conche diving - Ancient Knowledge of Ocean -Knowledge Specific Society. UNIT V | SCIENTIFIC TAMIL & TAMIL COMPUTING 3 Development of Scientific Tamil - Tamil computing Digitalization of Tamil Books -Development of Tamil Software -Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize the weaving industry and ceramic technology during Sangam Age CO2: Explain the design and construction of houses during Sangam Age CO3: Explain the sculptures and temples of Chola, Pallava and Pandya period. **CO4:** Explain about the water bodies of Sangam age and relate it to the agricultural usage CO5: Outline the agriculture and irrigation technology during the Chola Period. CO6: Interpret and explain the digitalization of tamil books and development of Tamil software **TEXT BOOKS:** Dr.K.K.Pillay, "Social Life of Tamils", A joint publication of 1

TNTB & ESC and RMRL

REFI	ERENCE	S:														
1	Dr.S.Sir	nga	rav	elu	,"S	ocia	al L	ife	of	the	Tan	nils -	- Th	e C	lass	ical
	Period"	', F	ubl	lish	ed	by:	In	ite	rna	tion	al I	nsti	tute	of	Ta	mil
	Studies					•										
2	Dr.S.V.	Sub	ata	ma	nia	n	,	Г	r.K	.D.	Т	hiru	ınav	ukl	kara	ısu,
	"Histor	ical	l F	Ieri	itag	e	of	th	.e	Tar	nils′	', F	ubli	ishe	ed	by:
	Interna	tior	nal l	Inst	itut	te o	f Ta	ım	il S	tud	ies					•
COs PSOs PSOs																
1 2 3 4 5							6	7	8	9	10	11	12	1	2	3
	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-	
	2	-	-	-	-	-	1	1	1	ı	-	-	-	-	-	-
	3	-	-	•	-	-	1	1	1	ı	-	-	-	-	-	-
	4	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-
	5	-	-	-	-	-	1	1	1	_	-	1	-	Į.	-	
	6 .ow	EP /	4	1	-	-	1	1	1	1	-	P	- 1	4)	-
	verall relation	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
Recon	nmend <mark>ed</mark>	by	Boa	rd o	of S	tud	ies	28	3-07	-202	23		e 3			
1	Approved								1st ACM Date 09-09-20					023		

C												
3												
es												
5												
6												
r,												
Capacitor - Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh												
analysis with independent sources only (Steady State)-												
ıd												
6												
Œ												
IF												
C												
n,												
er.												
6												
s-												
V												
Characteristics and Applications – Rectifier. UNIT IV DIGITAL ELECTRONICS 6												
Review of number systems, Combinational logic (adder and												
ıs,												
3												

UNIT V MEASUREMENTS AND INSTRUMENTATION Functional elements of an instrument, Standards and calibration, Operating Principle, types- Moving Coil and Moving Iron meters, Instrument Transformers- CT and PT, DSO-Block Diagram Total: 30 PERIODS LAB COMPONENT 1. Verification of Ohms and Kirchhoff's Laws. 2. Load test on DC Shunt Motor. 3. Characteristics of PN and Zener Diodes 4. Design and analysis of Half wave and Full Wave rectifiers 5. Implementation of Binary Adder and Subtractor 6. Study of DSO Total: 30 + 30 = 60 Periods **COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Apply fundamental laws to DC electric circuits and demonstrate it experimentally. CO2: Explain the steady state AC circuits with RL, RC, and RLC circuits CO3: Identify the working principle and applications of electrical machines with experimental results **CO4:** Demonstrate the characteristics of various analog electronic devices **CO5:** Experiment with the basic concepts of digital electronics and demonstrate the implementation of Binary Adder and Subtractor **CO6:** Illustrate the operating principles of measuring instruments

TEXT BOOKS:

1 Kothari D P and I.J Nagrath,—Basic Electrical and Electronics Engineering , Second Edition, McGraw Hill Education, 2020

and demonstrate DSO for the basic measurements.

2 Sedha R. S.,—A textbook book of Applied Electronics, S. Chand & Co.,2008

_	A T/ C	1		ъ						<u> </u>	,		T71		1 0	
3	A.K. Sawhney, Puneet Sawhney _A Course in Electrical &															
	Electronic Measurements & Instrumentation', Dhanpat Rai															
	and Co,		15.													
REF	ERENCE															
1	Kothari D P and I.J Nagrath, —Basic Electrical Engineering I,															
	Fourth Edition, Mc Graw Hill Education, 2019.															
2	S.K. Bha	atta	cha	rya	—В	asic	Ele	ectr	ical	and	d Ele	ectro	nics			
	Enginee	rin	g∥, I	Pear	rsor	ı Ec	luca	atio	n, S	eco	nd I	Editi	on, 2	2017	7.	
3	Thomas	L.:	Floy	yd,	_ Di	igita	al F	und	lam	ent	als',					
	11thEdi	11thEdition,Pearson Education,2017.														
4	Albert N	Albert Malvino, David Bates, _Electronic Principles,														
	McGraw Hill Education; 7th edition, 2017.															
5	Mahmo	od i	Nal	ıvi	and	l Jos	sepl	ιA.	. Ed	miı	niste	r, —]	Elect	ric		
	Circuits	1, 86	6 Sc	hat	ım '	Ou	tlin	e Se	erie	s, N	1cGr	aw I	Hill,	200	2.	
6	H.S. Ka	lsi,	_Ele	ectr	oni	c In	stru	ıme	nta	tior	ı', T	ata I	McG	raw	7 - H	ill,
	H.S. Kalsi, <u>Electronic Instrumentation</u> , Tata McGraw-Hill, New Delhi, 2010															
	James A. Svoboda, Richard C. Dorf, — Dorf's Introduction to												- 4			
7	James A				, Ri	cha	rd (C. E	Orf	<u>,–1</u>	Dorf	's In	trod	uct	ion	to
7	James A Electric	. St	obo	oda					Orf	,—1	Dorf	's In	trod	-		ř.
	Electric	. St	obo	oda			201			,–1	Dorf	's In	trod	-	ion PSO	ř.
	200 A 7 200	. St	obo	oda			201	8.		,—1 9	Dorf	's In	trod	-		ř.
	Electric	Cir	ob cuit	oda :sI, '	Wil	ey,	201 I	8. POs			0 00			I	PSO	s
	Electric COs	Cir	obecuit	oda s , '	Wil 4	ey,	201 I	8. POs	8	9	10		12	1 1	PSO)s 3
	Electric COs 1	Cir	70b0 cuit 2 2	oda :s , \' 3 1	Wil 4 1	5 -	201 I 6 -	8. POs 7	8	9	10		12 1	1 3	2 -	0s 3
	Electric COs 1 2	1 3 2	2 2 1	3 1	Wil 4 1	5 -	201 I 6 -	8. POs 7 -	8 1 1	9 1 1	10 1 1	11	12 1 1	1 3 2	PSO 2 -	0s 3 1
	Electric COs 1 2 3	Cir 1 3 2	2 2 2 1	3 1 -	Wil 4 1	5 -	201 6 - - 1	8. 7 - 1	8 1 1	9 1 1	10 1 1	11 	12 1 1 1	1 3 2 3	2 - -	9s 3 1 1
	Electric COs 1 2 3 4	Cir 1 3 2 3	2 2 1 2	3 1 -	4 1 - 1	5	201 6 - 1 1	8. 7 - 1	8 1 1 1 1	9 1 1 1	10 1 1 1 1	11 	12 1 1 1 1	1 3 2 3 2	2 - -	9s 3 1 1 1 1
	Electric COs 1 2 3 4 5	1 3 2 3 2 3 2	2 2 1 2 1 2	3 1 - 1 -	4 1 - 1 -	5	201 6 - 1 1 -	8. 7 - 1 1	8 1 1 1 1 1	9 1 1 1 1 1 -	10 1 1 1 1 1	11 	12 1 1 1 1 1	1 3 2 3 2 3 3	2 - - -	3 1 1 1 1 1
O	Electric COs 1 2 3 4 5 6	1 3 2 3 2 3	2 2 1 2 1 2	3 1 -	4 1 - 1	5	201 6 - 1 1	8. 7 - 1 1	8 1 1 1 1	9 1 1 1	10 1 1 1 1	11 	12 1 1 1 1 1	1 3 2 3 2 3	2 - - -	9s 3 1 1 1 1
O	Electric COs 1 2 3 4 5 6 everall	1 3 2 3 2 3 2 3	2 2 1 2 1 2	3 1 - 1 - 1	4 1 - 1 - 1	5 - - -	201 6 - 1 1 - 1	8. 7	8 1 1 1 1 1	9 1 1 1 1 -	10 1 1 1 1 1 -	11 	12 1 1 1 1 1	1 3 2 3 2 3 3	2 - - -	3 1 1 1 1 1

23ME211	ENGINEERING GRAPHICS	L	T	P	C
		3	0	2	4

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

UNIT II	PROJECTION OF POINTS, LINES AND	9+6
	PLANE SURFACE	

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method. Projection of planes (hexagonal and pentagonal planes

only) inclined to both the principal planes by rotating object method.

LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

UNIT III PROJECTION OF SOLIDS AND FREE HAND 9+6 SKETCHING

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

UNIT I	V	PROJECTION OF SECTIONED SOLIDS AND	9+6
		DEVELOPMENT OF SURFACES	

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section plane inclined to the horizontal plane

UNIT V ISOMETRIC PROJECTION 9+6

Principles of isometric projection - Isometric scale - Isometric view - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions.

LIST OF EXERCISES:

- 1. Drawing Isometric view and projection of simple solids.
- 2. Drawing three dimensional modeling of isometric projection of combination of solids.

TOTAL: 75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Construct the conic curves, involutes and cycloids.
- CO2: Develop and Sketch the orthographic projections of points, lines and plane surfaces.
- CO3: Develop and Sketch the orthographic projections of simple solids.
- **CO4:** Construct the projections of sectioned solids and development of the lateral surfaces of solids.
- CO5: Develop and Sketch the isometric sections of solids.
- CO6: Develop and Sketch the orthographic projection 2D and 3D objects using Auto CAD.

TEXT BOOKS:

- 1 Bhatt N.D. and Panchal V.M., —Engineering Drawingl, Charotar Publishing House, 53rd Edition, 2019.
- 2 Basant Agarwal and Agarwal C.M.,—Engineering Drawingl, McGraw Hill, 2nd Edition, 2019

REFERENCES:

- 1 Natrajan K.V., —A Text Book of Engineering Graphicsl, Dhanalakshmi Publishers, Chennai, 2018.
- **2** Gopalakrishna K.R., —Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition, 2017.

3	Luzzad	er, Warren.J. and Duff, John M., —Funda	mentals of
	Engine	ering Drawing with an introduction to	Interactive
	Compu	ter Graphics for Design and Production	n, Eastern
	Econom	ny Edition, Prentice Hall of India Pvt. Ltd, N	New Delhi,
	2005.		
4	Parthas	arathy N. S. and Vela Murali, —Ei	ngineering
	Graphic	csl, Oxford University, Press, New Delh	i, 2015. 5.
	Shah M	.B., and Rana B.C., —Engineering Drawing	gl, Pearson
	Educati	on India, 2nd Edition, 2009.	
5	Venugo	pal K. and Prabhu Raja V., —Engineering	Graphics",
	New Ag	ge International (P) Limited, 2008.	
	COs	POs	PSOs

COs						I	POs	•						PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	2	-	-2	1	-	3	2	2	2	2	-
2 DOW	3	2	1	1	2	- ,	B	1	A	3	2	2	2	2	ē-
3	3	2	1	1	2	4	-	1	-	3	2	2	2	2	-
4	3	2	1	1	2	-	9	1		3	2	2	2	2	-
5	3	2	1	1	2	_	-1	1	-	3	2	2	2	2	_
6	3	2	1	1	2	-	1	1	-	3	2	2	2	2	
Overall Correlation	3	2	1	1	2	DL HEA	LE	GE J	O INTA	3	2	2	2	2	Y 15
Recommended	d by	Во	ard	of S	Stuc	lies	28-	07-	2023	3					
			-				4.1		73.6		D :			20.	

Approved 1st ACM Date 09-09-2023

23ME221	ENGINEERING PRACTICES	L	T	P	C
	LABORATORY	0	0	4	2

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment; Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

GROUP A (CIVIL and MECHANICAL)

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK

- a) Sawing
- b) Planning
- c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture
- b) Study of common industrial trusses using models.

PART II MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

BASIC MACHINING PRACTICE

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

SHEET METAL WORK

- a) Forming and Bending
- b) Making of a square Tray

MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.

P	paration.	
	TOTAL: 30 PERI	ODS
	GROUP B (ELECTRICAL & ELECTRONICS)	
PART III	ELECTRICAL ENGINEERING PRACTICES	15
1 Dag	idential Harres reining rains Creitales Franches India	24242

- 1. Residential House wiring using Switches, Fuse, Indicators, Lamp and Energy Meter.
- 2. Staircase Wiring.

- 3. Fluorescent Lamp Wiring with Introduction to CFL and LED Types.
- 4. Measurement of Energy using Single Phase Energy Meter.
- 5. Study of Iron Box Wiring and Assembly
- 6. Study of Fan Regulator Electronic Type

PART IV | ELECTRONICS ENGINEERING PRACTICES | 15

- 1. Study of Electronic components and equipment Resistors, Colour coding measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.

and Smart phone.

- 4. Soldering simple electronic circuits and checking continuity.
- 5. Study the elements of smart phone
- 6. Study of LED TV (Block diagram

After completion of the course, the students will be able to: CO1: Plan the pipeline layout for common household plumbing work. CO2: Make use of welding equipment and carpentry tool for making joints. CO3: Demonstrate on centrifugal pump, air conditioner and foundry operations. CO4: Demonstrate the electrical wiring connections for household applications and study the working of iron box and fan regulator. CO5: Identify the basic electronic components and explain the gates and soldering methods. CO6: Examine the performance and operation of CRO, LED TV

COs						I	POs	,]	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	1	1	ı	2	2	2	2	1	-
2	3	2	1	1	1	1	1	ı	ı	2	2	2	2	1	-
3	3	2	1	1	1	1	1	ı	ı	2	2	2	2	1	-
4	3	2	1	1	1	1	1	•	ı	2	2	2	2	1	1
5	3	2	1	1	1	1	1	-	-	2	2	2	2	1	1
6	3	2	1	1	1	1	1	-	-	2	2	2	2	1	1
Overall	3	2	1	1	1	1	1			2	2	2	2	1	
Correlation	3		1	1	1	1	1	•	1	2	2	4		1	-
Recommended	d by	Во	ard	of S	Stud	lies	28-	07-2	2023						
A	Approved 1st ACM Date 09-09-2023														

23AD221	C AND DATA STRUCTURES	L	T	P	C
	LABORATORY	0	0	4	2

- To write basic level programming in C
- Developing applications in C
- To implement linear and non-linear data structures
- To understand the different operations of search trees
- To get familiarized with sorting and searching algorithms

PRACTICALS:

- 1. Practice of C programming using statements, expressions, decision making and iterative statements.
- Practice of C programming using Functions and Arrays
- 3. Implement C programs using Pointers and Structures
- 4. Implement C programs using Files
- 5. Development of real-time applications
- 6. Array implementation of List ADT
- 7. Array implementation of Stack and Queue ADTs
- 8. Linked list implementation of List, Stack and Queue ADTs
- 9. Applications for List, Stack and Queue ADTs
- 10. Implementation of Binary Trees and operations of Binary Trees
- 11. Implementation of Binary Search Trees
- 12. Implementation of searching techniques
- 13. Implementation of Sorting algorithms: Insertion Sort, Quick Sort, Merge Sort
- 14. Implementation of Hashing any two collision techniques

TOTAL: 60 PERIODS

COU	RSE OU	TC	ON	1ES	5:											
	After co	mp	leti	on o	of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to):
CO1:	Make 1	Use	O	f d	liffe	ren	t c	ons	tru	cts	of	C	and	de	evel	op
	applications.															
CO2:	Build	fun	ctio	ns	to	ir	npl	eme	ent	lir	near	da	ıta	strı	ıctu	ıre
	operatio	ns.														
CO3:	Constru	ıct a	app:	rop	riat	e no	on-1	inea	ar d	ata	stru	ctur	e op	era	tion	ıs.
CO4:	Choose	ap	proj	pria	ite S	Sort	ing	and	d se	earc	hing	g alg	oritl	nms	s for	r a
	given ap	opli	icati	ion.												
CO5:	Apply a	app	rop	riat	e h	ash	fui	ncti	ons	tha	t re	sult	in a	co	llisi	on
	free scer															
CO6:	Choose	_	_	opri	iate	se	arc	hing	g a	algo	rithi	ns	for	a	giv	en
	applicat	ion	ι.													
(COs				1			POs							PSC	
	NOW.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
j.	1	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1
- I	2	3	2	1	1	1	- 1	9	-1	2		5	-	3	1	-
A	3	3	2	1	1	1	-	4	-	-	-	-		3	1	-
	4	3	2	1	1	1	ı.	Ė	-	o.	Ť	-iu	NO	3	1	-
	5 ONE	3	2	1	1	1	LIAT		J. KN	UA U	NIVER	SILV	AUT	3	1	-
	6	3	2	1	1	1	1000			1		1	1	3	1	-
	verall	3	2	1	1	1	1	_	1	1	-	1	1	3	1	1
Corr	elation															
Dage	mmended	1 1	. D	1	~ ((L 1	اءمادا	20	07.0	000						

23HS221	SOFT SKILLS	L	T	P	C
		0	0	2	1*

- To help learners improve their interpersonal skills and critical thinking
- To familiarize learners with the attributes of a leader to enhance team performance
- To prepare students to face job interviews
- To help learners to know the importance of ethics in work place

UNIT I INTERPERSONAL COMMUNICATION

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

UNIT II TEAM WORK AND LEADERSHIP

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

UNIT III | TIME MANAGEMENT AND STRESS | MANAGEMENT

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self- awareness and regulation.

UNIT IV CRITICAL THINKING AND WORK ETHICS

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance,

attitude, character, organizational skills, productivity, respect.
UNIT V INTERVIEW SKILLS AND RESUME
BUILDING TECHNIQUES
Telephonic interview, online interviews, f2f interviews, FAQ soft
skills interview questions, drafting error-free CVs/ Resumes and
Cover Letters, selecting the ideal format for resume, content
drafting along with sequencing, art of representing one's
qualifications and most relevant work history, video resume,
website resume.
TOTAL: PERIODS
COURSE OUTCOMES:
After completion of the course, the students will be able to:
CO1: Express their thoughts, opinions and ideas confidently to
one or more people in spoken form
CO2: Develop evolving competences required for professional
success
CO3: Demonstrate knowledge and skills in a group as team player
and leader
CO4: Compose a comprehensive resume reflecting qualifications,
exposure and achievements
CO5: Exhibit knowledge and skills confidently during job
interviews
CO6: Demonstrate ethical and professional behaviour at
workplace in all situations
TEXT BOOKS:
1 Soft Skills: Key to Success in Workplace and Life by
Meenakshi Raman & Shalini Upadhyay. Cengage
REFERENCES:

74

Business Benchmark by Norman Whitby. Cambridge

English for Job Seekers (Language and Soft Skills for the Aspiring) by Geetha Rajeevan, C.L.N. Prakash) Cambridge

University Press pvt, Ltd.

University Press pvt, Ltd

2

COs						P	Os						P	SO	S
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	-	-	-	-	-	-	2	2	-	-	-	-	-
2	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2
3	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-
4	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-
5	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-
6	-	-	-	-	-	-	-	3	3	3	-	-	-	-	3
Overall Correlation	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2
Recommended	Recommended by Board of Studies								28-07-2023						
Approved						•	1st ACM Date 09-				09-09	09-09-2023			

SEMESTER -III

23MA301	LINEAR ALGEBRA	L	T	P	С
		3	1	0	4
COURSE OBJ	ECTIVES:	ı			
To test	the consistency and solve system of li	near	equ	ıatio	ons
	d the basis and dimension of vector sp		•		
• To ob	tain the matrix of linear transform	atio	n a	nd	its
eigenv	alues and eigenvectors				
• To find	d orthonormal basis of inner product	spac	e		
	l eigenvalues of a matrix using numer	ical t	ech	niqı	ıes
	erform matrix decomposition.				
	TRICES AND SYSTEM OF LINEAR	2		Ì	9+3
~	UATIONS				
Matrices - R	Row echelon form - Rank - Syst	em	of	lin	ear
	Consistency - Gauss elimination me	etho	d -	Ga	uss
486.7 \$486	od - Gauss Seidel Method	Δ		4	
	CTOR SPACES			4	9+3
	<mark>es -</mark> Subspace - Linear indepe				nd
	- Linear Span - Basis and dimension	on -	M	axir	nal
	pendent Subsets.				
0/38	NEAR TRANSFORMATION	IN()L(9+3
	ormation - Rank space and null spa				
-	ension theorem - Matrix representa				
	on - Eigenvalues and eigenvecto				
	on – Invertibility and Isomorphisms	- Dt	ialS		
	NER PRODUCT SPACES)+3
	ict and norms - Properties -				
	vectors - Gram Schmidt ortho				
	joint of Linear operator – Normal ar				
_	Unitary and orthogonal operator	rs	and	tn	eır
Matrices	GENVALUE PROBLEMS AND MAT	TDIN	<u> </u>	1	
	GENVALUE PROBLEMS AND MAI COMPOSITION	KI)		3	9+3
Eigenvalue P	roblems - Power method, Jacobi rot	atio	n n	neth	od
	value decomposition - QR deco				
Generalized I	nverse - Least square solution				
	TOTAL	: 60	PEI	RIO	DS

COL	RSE OU	ITC	ON	ЛES	3.											
-	After co					he o	2011	rse	the	stı	ıder	its w	7i11 h	e al	ale t	0.
CO1·												ILS VI	111 6	c a	oic t	0.
		Solve the system of linear equations. Find the basis and dimension of vector space.														
	Find 1											_		a.	nd	its
CO3.										паі	13101	ıııa	uon	a	iid	113
CO4·	eigenvalues and eigenvectors. Find orthonormal basis of inner product space.															
	Find eigenvalues of a matrix using numerical techniques															
	Find Matrix Decomposition using different techniques															
	T BOOKS:															
1																
•	Prentice Hall of India, New Delhi, 2004.															
2																
_	Brooks/Cole (Thomson Publications), New Delhi, 2002.															
REFI	ERENCES:															
1	Kumaresan S, "Linear Algebra - A geometric approach",															
		Prentice Hall of India, New Delhi, Reprint, 2010.														
2	P.S.Das						_				_				atio	ns,
1	New D									W						
3	Richard		_			Mat	trix	Or	era	atio	ns",	Sch	aun	n's	outl	ine
1	series,							•								
	2016			(8)		0	o I	POs	ra E	0	E TI	er.	HNE	NI /	PSC)s
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	ı	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	ı	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
O	verall	3	2	1	1								1	3		
	relation					_	_	_	_	_	_	_	1	3	_	_
Reco	mmende				of S	Stuc	lies						1			
	Approved 2 nd ACM Date 25-05-2024															

23CS302	DATABASE MANAGEMENT	L	T	P	C
	SYSTEMS	3	0	0	3

- To learn the fundamentals of data models, conceptualize and depict a database system using ER diagram.
- To study the principles to be followed to create an effective relational database and write SQL queries to store/retrieve data to/from database systems.
- To know the fundamental concepts of transaction processing, concurrency control techniques and recovery procedure.
- To learn about the internal storage structures using different file and indexing techniques and the basics of query processing and optimization.
- To study the basics of distributed databases, semistructured and un-structured data models.

UNIT I RELATIONAL DATABASES 9

Purpose of Database System - Views of Data - Data Models - Database System Architecture - Introduction to Relational Databases - Relational Model - Keys - Relational Algebra - Relational Calculus - SQL Fundamentals - Advanced SQL features - Triggers - Embedded SQL

UNIT II DATABASE DESIGN 9

Mapping Entity-Relationship Model – ER Diagrams – Functional Dependencies – Non-Loss Decomposition Functional Dependencies – First Normal Form – Second Normal Form – Third Normal Form – Dependency Preservation – Boyce/Codd Normal Form – Multi-Valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form.

UNIT	III TRANSACTION MANAGEMENT	9
Transa	ction Concepts - ACID Properties - Serializability	7 _
	ction Isolation Levels - Concurrency Control - Need	
	rrency – Lock-Based Protocols – Deadlock Handling	
	ery System - Failure Classification - Recovery Algorithm	
UNIT	IV IMPLEMENTATION TECHNIQUES	9
O	Dhariad Chara Madia DAID File Occasion in	
	ew of Physical Storage Media – RAID – File Organizatio	
_	zation of Records in Files – Indexing and Hashing	-
	ed Indices - B+ tree Index Files - Static Hashing - Dynar	
	ng – Query Processing Overview – Catalog Information	ior
	stimation – Query Optimization.	
UNII	V NOSQL DATABASE	9
Overvi	ew of Distributed Databases - Data Fragmentation	ı –
	ation - NOSQL Database: Characteristics - CAP theorem	P
Outline	e of N <mark>OSQ</mark> L Datastores: Column Oriented, Document, K	ey-
Value a	and Graph Types - Applications - CRUD Operations.	
1	TOTAL: 45 PERIO	DS
COUR	SE OUTCOMES:	Y
Α	after completion of the course, the students will be able t	o:
CO1: E	Explain the concepts of Database Management Systems a	ınd
A	Apply SQL Queries Using Relational Algebra	
CO2: A	Apply conceptual modeling to real world applications a	ind
d	lesign database schemas	
CO3: A	Apply the knowledge of normalization theory to normal	ize
d	latabase.	
CO4: E	Explain the concepts of Transaction Processing and maint	ain
С	onsistency of the database.	
CO5: E	Explain basic database storage structures, access techniq	ues
a	nd query processing.	
CO6: I	llustrate distributed, semi-structured and unstructure	red
d	latabase systems.	

TEV	TROOK	C.														
	T BOOK		0.11													
1	Abraha															
2	Ramez	Eln	nası	i, S	Shai	mka	int	В.	Nav	vath	ne, "	Fun	dam	ent	als	of
	Databas	se S	Syst	em	s",	Sev	ent	h I	Edit	ion	, Pe	arso	n E	duc	atio	n,
	2021.															
REF	ERENCE	S:														
1	C. J. Da	te, A	4. K	anı	nan	, S.	Swa	amy	mat	thar	n, "A	n Ir	itroc	luct	ion	to
	Database Systems", Eighth Edition, Pearson Education, 2006.															
2	Raghu Ramakrishnan, Johannes Gehrke, "Database															
	Management Systems", Fourth Edition, Tata McGraw Hill,															
	2010.															
3	G. K.	G. K. Gupta, "Database Management Systems", Tata														
		McGraw Hill, 2011.														
4	Carlos	·														
	Implem							- 400	7	- 4			100			_
	Learnin			POL			A			7						
		A	1	A	1	1	I	POs	. 1	A	a 60			I	PSO	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1000	2	1	(2)	-	10)El	.EK	3E	2	1 _E	c <mark>1</mark> H	2	2	<u>4</u>)	*)
	2	3	2	1	1	1	LIAT	(Q.T)	DAN	2	NI1E	51 1 Y	2	3	410	9.
	3	3	2	1	1	1	-	-	-	2	1	1	2	3	1	-
	4	2	1	-	-	-	-	-	-	2	1	1	1	2	-	-
	5	2	1	ı	1	-	ı	-	-	1	1	ı	1	2	ı	ı
	6	2	1	ı	ı	1	ı	-	-	-	1	ı	2	2	1	ı
	verall	3	2	1	1	1				2	1	1	2	3	1	
	relation							_	_			1	_	3	1	_
Reco	mmende				of S	Stud	ies									
	A	ppr	ove	d				2no	¹ A(CM		Date	9	25- 0	5-20)24

23AD301	OBJECT ORIENTED	L	T	P	C
	PROGRAMMING IN C++ AND	3	0	0	3
	JAVA				

- Understand the concepts of Object-oriented Programming and discuss the important elements of C++.
- To understand and apply the concepts of classes, Inheritance, and exception handling.
- To understand and apply the concepts of packages, interfaces, and Multithread.
- To develop applications using Event Driven Programming.
- To develop applications using Swing Programming.

UNIT I OBJECT ORIENTED PROGRAMMING AND C++

Basic Concepts of Objects Oriented Programming - Operators - Control Structures Functions in C++ - Function Overloading - Class - Member Function - Nesting of Member function - Constructors - Destructors - Array with Class - Static Data Member - Friend functions - Returning Objects - Operator Overloading - Type Conversion - Basic type to Class - Class to Basic - Class to Class.

UNIT II	OVERVIEW OF JAVA AND EXCEPTION	9
	HANDLING	

An overview of Java, data types, variables and arrays, operators, control statements, classes, objects, methods – Inheritance. Exceptions – exception hierarchy – throwing and catching exceptions – built-in exceptions, creating own exceptions.

UNIT III JAVA PROGRAMMING 6

Packages and Interfaces, Multithreaded programming, Strings, Input / Output, Generic Programming – Generic classes – generic methods.

UNI	Γ IV EVENT DRIVEN PROGRAMMING	9
	hics programming – Frame – Components – working with	
_	es - Using color, fonts, and images - Basics of event hand	_
- eve	nt handlers – adapter classes – actions – mouse events – A	WT
even	t hierarchy.	
UNI	T V JAVA PROGRAMMING USING SWING	9
Intro	duction to Swing - layout management - Swing Compone	ents
- Tex	ct Fields, Text Areas – Buttons- Check Boxes – Radio Butt	tons
- Lis	ts- choices- Scrollbars - Windows - Menus - Dialog Boxes	
	TOTAL: 45 PERIO	ODS
COU	IRSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Develop C++ programs using OOP principles.	
CO2:	Develop Java programs with the concepts of inheritance	and
19	interfaces.	
CO3:	Build Java applications using exceptions, threads	and
1	generics classes.	
CO4:	Develop Java applications with event driven program.	
CO5:	Develop interactive Java programs using swings.	110
CO6:	Develop and understand exception handling, multithrea	ded
	applications with synchronization.	
TEX	Γ BOOKS:	
1	K.R. Venugopal, Rajkumar Buyya, Ravishankar, "Master	ring
	Develop interactive Java programs using swings++", TN	ИH,
	2017. (Unit I)	
2	Herbert Schildt, "The Java 2: Complete Reference", Eig	ghth
	Edition, TMH, 2018. (Unit II, Unit III, Unit IV, and Unit-	V)
REFI	ERENCES:	
1	Ira Pohl, "Object oriented programming using C-	++",
	Pearson Education Asia,2003.	
2	Bjarne Stroustrup, "The C++ programm	ning
	language" Addison Wesley, 2000	

_	T 1 TT	1 1	1	шт				,	٠.	1 6	7 11	C 1			.1.	
3	John Hu	ıbb	ard	, "ľ	rog	gran	nmı	ıng	W1t	n C	,++" _,	, Sci	naun	ns c	outli	ne
	series, TMH, 2003.															
4	H.M. Deitel, P.J. Deitel, "Java: how to program", Fifth edition,															
	Prentice Hall of India private limited.															
5	E. Balagurusamy "Object Oriented Programming with															
	C++", TMH 2/e.															
	POs PSOs															
'	COs															
	1	1 3 2 1 1 1 - 1 1 1 1 1 3 1 1														
	2	3	2	1	1	1	-	-	-	1	-	1	1	3	1	-
	3	3	2	1	1	1	-	1	-	1	1	1	1	3	1	-
	4	3	2	1	1	1	-	-	-	1	-	1	1	3	1	-
	5	3	2	1	1	1	-	-	-	1	-	1	1	3	1	-
	6	3	2	1	1	1	1	-	Ī	1	_	1	1	3	1	-
	verall relation 3 2 1 1 1 1 1 1 1 1 3 1 1															
Re	Recommended by Board of 08-04-2024 Studies															
	A	ppr	ove	d	//			2nd	AC	CM		Date	e	25-()5-2	024

23HS301	UNIVERSAL HUMAN VALUES	L	T	P	C
	AND ETHICS	3	0	0	3

- Development of a holistic perspective based on selfexploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.
- Strengthening of self-reflection.
- Development of commitment and courage to act.

UNIT I	COURSE INTRODUCTION	9

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration - Continuous Happiness and Prosperity- A look at basic Human Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority -Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

	· · · · · · · · · · · · · · · · · · ·	
UNIT II	UNDERSTANDING HARMONY IN THE	9
	HUMAN BEING	

Harmony in Myself- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body'- Sukh and Suvidha- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Harmony in Human-Human Relationship -Understanding Harmony in the family – the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust(Vishwas) and Respect as the foundational values of relationship -Understanding the meaning of Vishwas; Difference between intention and competence -Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family)-Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order- from family to world family.

UNIT IV ENGINEERING ETHICS

9

9

Senses of <u>_Engineering</u> Ethics, - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

UNIT V | SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination-Moral Leadership -Code of Conduct - Corporate Social Responsibility.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Understand the need of value education.

CO2: Comprehend the difference between self and body.

CO3: Understand the need to exist as an unit of Family and society. CO4: Understand Harmony at all levels. **CO5:** Apply the values acquired in the professional front. CO6: Identify appropriate technologies for ecofriendly production systems. **TEXT BOOKS:** Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010 3. Mike W. Martin and Roland Schinzinger, -Ethics in 2 Engineering, Tata McGraw Hill, New Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. S, 3 -Engineering Ethicsl, Prentice Hall of India, New Delhi, 2004 REFERENCES: Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya 1 Prakashan, Amarkantak, 1999. Human Values, A.N. Tripathi, New Age Intl. Publishers, 2 New Delhi, 2004. The Story of Stuff (Book). 3 The Story of My Experiments with Truth - by Mohandas 4 Karamchand Gandhi AICTE Model Curriculum Humanities, Social Science and Management Courses (UG Engineering & Technology) 169 | Page . Small is Beautiful - E. F Schumacher. 6 Slow is Beautiful - Cecile Andrews. 7 Economy of Permanence - J C Kumarappa 8. Bharat Mein Angreji Raj - Pandit Sunderlal. Rediscovering India - by Dharampal. 8 Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi 9 India Wins Freedom - Maulana Abdul Kalam Azad. 10 Vivekananda - Romain Rolland (English) 13. Gandhi -11 Romain Rolland (English).

12	Charles B. Fleddermann, —Engineering EthicsI, Pearson															
	Prentice	На	11, I	Nev	v Je	rsey	y, 2	004								
13	Charles	E. I	Har	ris,	Mi	cha	el S	. Pr	itch	ard	and	Mic	chae	1 J.		
	Rabins,	— Е	ngi	nee	ring	g Etl	hics	s – (Con	сер	ts ar	nd C	ases	∥,		
	Cengag	Cengage Learning, 2009.														
WEB	SOURCES:															
1	www.oi	www.onlineethics.org														
2	www.ns	www.nspe.org														
3	www.globalethics.org															
	COs POS PS												SO	s		
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	ı	-	-	-	-	3	3	3	3	3	-	-	-	-	3
	2	ı	-	-	-	-	3	3	3	3	3	-	-	-	-	3
	3	-	-	-	-	_	3	3	3	3	3	-	- 5	-	-	3
	4 .ow	12/1	RES	-	-	-	3	3	3	3	3	2	A	-	-	3
	5	ı	-	9	-	-	3	3	3	3	3	-	-	-	-	3
	6	7	-7	λ	1	- 9	3	3	3	3	3	7		, 	-	3
	verall relation	-		1	}-	-	3	3	3	3	3	-	-	-	-	3
Reco	Recommended by Board of Studies 08-04-2024															
	Approved								2nd ACM Date 25-05-2						5-20)24

23AD311		FUNDAMENTALS OF DATA	L	T	P	C					
	SCIENCE 3 0 2										
COURSE OBJECTIVES:											
Will gain knowledge in the basic concepts of Data											
Science.											
To acquire skills in data preparatory and pre-processing											
	steps.										
 To learn the tools and packages in Python for data science. 											
•	То	acquire knowledge in data interp	retat	ion	ar	nd					
		alization techniques.									
•	Του	inderstand the ethics for data science.									
UNIT I	IN	TRODUCTION				9					
Need for	data	science -benefits and uses -facets of	of da	ıta	-da	ıta					
science process -setting the research goal -retrieving data -											
cleansing, integrating, and transforming data –exploratory data											
analysis -b	analysis -build the models -presenting and building applications										
UNIT II	DA	TA HANDLING - PART I				9					
Understan	ding	g Data Types in Python - Basics of Nu	mPy	arı	ays	3 –					
Computati	ion	on NumPy Arrays: Universal	Fun	ctio	ns	-					
Aggregation	ons:	Min, Max, and Everything in	Be	twe	en	-					
Computati	ion (on Arrays: Broadcasting - Comparison	s, M	ask	s, aı	nd					
Boolean Lo	ogic	-fancy indexing - Sorting Arrays - Str	uctu	red	Da	ta					
UNIT III	DA	TA HANDLING - PART II				9					
Introducin	ıg Pa	ndas Objects: Data manipulation with	Pano	das	-da	ıta					
indexing	and	selection -operating on data -mis	ssing	, d	ata	-					
hierarchica	al in	dexing - Combining Datasets: Concat	and	Αp	pei	nd					
- Merge a	and	Join -aggregation and grouping -p	ivot	tal	oles	; -					
		Time Series.									
UNIT IV	DA	TA VISUALIZATION				9					
Visualizati	ion v	vith matplotlib -line plots -scatter plots	s –vi	sua	lizi	ng					
		y and contour plots -histograms, bi				_					

density -three-dimensional plotting -geographic data -data analysis using stat models and seaborn -graph plotting using Plotline -interactive data visualization using Bokeh.

UNIT V ETHICS AND DATA SCIENCE

9

Data Ownership, The Five Cs, Implementing the Five Cs, Ethics and Security Training, Developing Guiding Principles, Building Ethics into a Data-Driven Culture, Regulation, Building Our Future, Case Study.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- 1. Install the data Analysis and Visualization tool: R/ Python.
- 2. Perform exploratory data analysis (EDA) on with datasets like email data set. Export all your emails as a dataset, import them inside a panda's data frame, visualize them and get different insights from the data.
- 3. Working with NumPy arrays, Panda's data frames, Basic plots using Matplotlib.
- 4. Explore various variable and row filters in R for cleaning data. Apply various plot features in R on sample data sets and visualize.
- 5. Perform Time Series Analysis and apply the various visualization techniques
- 6. Perform EDA on Wine Quality Data Set.
- 7. Use a case study on a data set and apply the various EDA and visualization techniques and present an analysis report.

TOTAL: 45 +30 =75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Compare the concepts of Big Data and Data Science

CO2: Outline the basic concepts of Data Science

CO3: Make use of data handling techniques using numpy package

00.1			-		- 1					- 1		_	4 .			
CO4:	Apply	_		s p	ack	age	u	sing	g P	yth	on	tor	data	a so	cien	ice
	applicat															
CO5:	Utilize 1	kno	wle	edge	e in	Da	ta I	nte	rpre	etat	ion a	and	Vist	ıali	zati	on
	techniq	echniques														
CO6:	Infer the ethics of Data Science.															
TEXT	Г ВООК	S:														
1	David (Ciel	en,	Ar	no	D.	B.	Me	ysn	nan	, an	d M	Ioha	me	d A	li,
	"Introd	David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016.														
2	Jake V	anc	lerI	Plas	, .	'Py	tho	n]	Dat	a	Scie	nce	На	ndl	ool	ς",
	O'Reilly	, 20)16.			-										
3	Mike Lo	ouk	ides	s, H	ilar	y M	lasc	n a	nd l	D J	Patil	"Et	hics	anc	l Da	ata
	Mike Loukides, Hilary Mason and D J Patil "Ethics and Data Science", O'Reilly, 1st edition, 2018.															
REFERENCES:																
REFE					,			•								
REFE 1		S:									atory	7 Da	ta A	nal	ysis	in
	ERENCE	S: Do	wn	ey,	"Th	nink	Sta	nts:	Ехр		atory	7 Da	ta A	naly	ysis	in
1	ERENCE Allen B. Python'	S: Do	wn	ey,	"Th	nink	Sta s, 20	nts:	Ехр		atory	7 Da	ta A		ysis PSO	
1	ERENCE Allen B.	S: Do	wn	ey,	"Th	nink	Sta s, 20	ats: 1	Ехр		atory	7 Da	ta A			
1	ERENCE Allen B. Python'	S : Do ', G	wn ree:	ey, n Te	"Th ea F	nink Pres	Sta s, 20	ats: 1 014. POs	Ехр	lora			P	I	PSO	s
1	ERENCE Allen B. Python' COs	S: Do ', G	own reer	ey, n Te	"Th ea F	res	Sta s, 20 I	nts: 1 014. POs	Exp	lora	10	11	12	I 1	PSO 2)s
1	ERENCE Allen B. Python' COs	S: Do ', G 1 2	own rees 2	ey, n Te	"Th ea F	res 5	Sta s, 20 I 6	nts: 1 014. POs 7	Exp	lora	10	11	12	1 2	2 1)s 3
1	ERENCE Allen B. Python' COs 1 2	S: Do /, G / 1 2 2	wn rees 2 1 1	ey, n Te	"Thea F	res 5 1	Sta s, 20 I 6 1	nts: 1 014. POs 7	Exp	9 1	10 1 -	11 1 -	12 1 1	1 2 2	PSO 2 1 1	9s 3 1 1
1	Allen B. Python' COs 1 2 3	S: Do ', G 1 2 2 3	2 1 1 2	ey, n Te 3 - 1	"Thea F	ress 5 1 1	Sta s, 20 6 1 1	7 1 1	Exp	9 1	10 1	11 1 -	12 1 1	1 2 2 3	2 1 1 1	9s 3 1 1
1	Allen B. Python' COs 1 2 3	S: Do ', G 1 2 2 3 3	2 1 1 2 2	ey, n Te 3 - - 1	"Thea F 4 - 1 1	5 1 1 1	Sta	7 1 1	Exp	9 1	10 1	11 1 -	12 1 1 1	1 2 2 3 3	2 1 1 1	9s 3 1 1
1	Allen B. Python' COs 1 2 3 4 5	S: Do / , G / 1 / 2 / 2 / 3 / 3 / 2 / 2	2 1 1 2 2 2 1	ey, n Te	"Thea F	5 1 1 1 1	Sta	7 1 1	8 1 1 - - 3	9 1 - -	10 1	11 1 -	12 1 1 1 1 1	1 1 2 2 3 3 3 3	2 1 1 1 1 -	3 1 1 - - 3
1 (C)	Allen B. Python' COs 1 2 3 4 5	S: Do /, G / 1 2 2 3 3 3 3	2 1 1 2 2 2	ey, n Te 3 - - 1	"Thea F 4 - 1 1	5 1 1 1	Sta	7 1 1	8 1 1 -	9 1	10 1	11 1 -	12 1 1 1 1 1	1 2 2 3 3 3	PSO 2 1 1 1 1 1 1 1 1	3 1 1 -

2nd ACM

Date

25-05-2024

Approved

23CB311	DIGITAL PRINCIPLES AND	IPLES AND L T P								
	COMPUTER ORGANIZATION	3	0	2	4					
COURSE OB	JECTIVES:	Į.		l						
To analyse and design combinational circuits.										
To analyse and design sequential circuits.										
To learn the basic structure and operation of a digital										
computer.										
• To s	study the design of data path unit, co	ntr	ol ur	it f	or					
prod	cessor and hazards.									
• To	learn the concept of various memor	ries	and	l I/	O					
inte	rfacing.									
UNIT I CO	OMBINATIONAL LOGIC				9					
Combination	al Circuits - Karnaugh Map - Half and	1 fu	11 Ac	lde	· _					
	Binary parallel adder - Magnitude (
	Encoder - Multiplexers - Demultip		-							
converters										
UNIT II SY	NCHRONOUS SEQUENTIAL LOGI	C			9					
Elin Elons	angustian and avaitation tables. Twice	~~*	in a	of T	err.					
	operation and excitation tables, Trig design of clocked sequential circuit	TV 1.7								
	models, state minimization, state									
-	ounters- Ripple counters	assi	giiiii	CIII,						
	OMPUTER FUNDAMENTALS				9					
	Jnits of a Digital Computer: Vo									
	 Operation and Operands of Computer 									
	Instruction Set Architecture (ISA):- Ir									
	equencing – Addressing Modes, Encodi	_								
	Interaction between Assembly and	l H	igh	Lev	æl					
Language.										
UNIT IV PI	ROCESSOR				9					
Instruction Ex	Instruction Execution – Building a Data Path – Designing a Control									
	dwired Control, Microprogrammed	•	Cont		_					
	the state of the s									

Pinelining Data Hazard Control Hazards	
Pipelining – Data Hazard – Control Hazards. UNIT V MEMORY AND PROGRAMMABLE LOGIC	0
UNIT V MEMORY AND PROGRAMMABLE LOGIC	9
Memory Concepts and Hierarchy - Memory Management - Cao	che
Memories: Mapping and Replacement Techniques - Virt	ual
Memory - DMA - ROM-Programmable Logic Arr	ay-
Programmable Array logic.	
TOTAL: 45 PERIO	DDS
PRACTICAL EXERCISES: 30 PERIODS	
1. Verification of Boolean theorems using logic gates.	
2. Design and implementation of combinational circu	uits
using gates for arbitrary functions.	
3. Implementation of 4-bit binary adder/subtractor circuit	ts.
4. Implementation of code converters.	
5. Implementation of BCD adder, encoder and decoder	der
circuits.	
6. Implementation of functions using Multiplexers.	
7. Implementation of the synchronous counters.	
8. Implementation of a Universal Shift register.	
9. Simulator based study of Computer Architecture	V.
TOTAL: 45 +30 =75 PERIO	DDS
COURSE OUTCOMES:	
After completion of the course, the students will be able to	
CO1: Develop digital fundamentals using number systems, lo	gic
gates, Boolean algebra and Karnaugh map.	
CO2: Build various combinational circuits using logic gates.	
CO3: Construct sequential circuits such as flip flops, counters a	ınd
registers.	
CO4: Analyse the functional units of computers, instruction	set
and addressing modes	
CO5: Apply the various functional units of processor, pipeling	ing
and hazards.	
CO6: Identify the various memory concepts of the processor a	ınd
programmable logic devices.	

TEV	T DOOL	c.														
TEXT BOOKS: 1 M. Morris Mano, Michael D. Ciletti, "Digital Design: With																
1											_			_		
	an Introduction to the Verilog HDL, VHDL, and System															
	Verilog", Sixth Edition, Pearson Education, 2018.															
2	David A. Patterson, John L. Hennessy, "Computer															
	Organization and Design, The Hardware/Software Interface", Sixth Edition, Morgan Kaufmann/Elsevier, 2020.															
			Six	th E	dit	ion,	, Mo	orga	an I	Kau	fma	nn/	Else	vier,	202	20.
	ERENCE															
1	Floyd 7						nda	ıme	nta	ls",	Cha	arles	5 E.	, Ele	ven	ıth
	edition															
2	Charles	H.	Ro	th,	Jr,	'Fu	nda	ıme	nta	ls c	of Lo	ogic	Des	sign',	Jai	.co
	Books, 7				•											
3	M. Moi	ris	Ma	ano	, "I	Dig	ital	Lo	gic	and	d Co	omp	ute	r De	sigr	ı",
	Pearson	Ed	luca	atio	n, 2											
4	Carl	Η	am	ach	er,		Zv	onl	koV	rar	esic	,	Sa	fwat	Zak	ζy,
	Naraig	Mar	ıjiki	ian,	"C	om	put	er (Org	ani	zatio	on a	nd I	Embe	edd	ed
1	Systems	s", S	Sixt	h E	diti	on,	Tat	a M	IcG	raw	-Hi	11, 20)12.			
5	William	ı	Sta	ıllin	gs,		"Co	omp	oute	er	Or	gan	izat	ion	aı	nd
1	Archite											e", ˈ				
	Pearson	Ed	luca	itio	n, 2	016	PLI	LE	oĿ	U	11:	Ch	INC	DLO	(9)	
	COs					AFF	P	Os	O AT	INIA	MIVE	H511 Y	AU	P	SO	S
`	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	ı	2	1	ı	2	3	1	ı
	2	3	2	1	1	1	-	-	ı	2	1	1	-	3	1	ı
	3	3	2	1	1	1	-	-	-	2	1	-	2	3	1	-
	4	3	3	2	2	1	1	-	-	3	2	-	2	3	1	-
	5	3	2	1	1	1	-	1	-	2	1	-	-	3	1	-
	6	3	2	1	1	1	1	-	-	2	1	-	2	3	1	-
O	verall	3	3	2	2	1	1	1	-	3	2	_	2	3	1	-
	relation								_					3	1	_
Reco	mmended				of S	Stud	lies									
Approved						2nd	A(CM		Date	!	25-05	-20 2	24		

23CS322	DATABASE MANAGEMENT	L	T	P	C
	SYSTEMS LABORATORY	0	0	4	2

- To learn and implement important commands in SQL.
- To learn the usage of nested and join queries.
- To understand functions, procedures and procedural extensions of databases.
- To understand design and implementation of typical database applications.
- To understand design of NoSQL
- To be familiar with the use of a front end tool for GUI based application development and its integration with databases

LIST OF EXPERIMENTS:

- 1. Create a database table, add constraints (primary key, unique, check, Not null), insert rows, update and delete rows using SQL DDL and DML commands.
- 2. Create a set of tables, add foreign key constraints and incorporate referential integrity.
- 3. Query the database tables using different 'where' clause conditions and also implement aggregate functions.
- 4. Query the database tables and explore sub queries and simple join operations.
- 5. Write user defined functions and stored procedures in SQL.
- 6. Create View and index for database tables with a large number of records.
- 7. Write row level and statement level SQL Triggers.
- 8. Create Document, column and graph based data using NOSQL database tools.
- 9. Add Implement CRUD operation using NOSQL Database.
- 10. Develop a simple GUI based database application and incorporate all the above mentioned features

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Create databases with different types of key constraints.

CO2:	Create j	Create join queries and explore sub queries.														
CO3:	Implem	Implement queries using aggregate functions.														
CO4:	Use adv	Use advanced features such as stored procedures and														
	triggers	triggers and incorporate in GUI based application														
	develop	development.														
CO5:	Create a	nd	ma	nip	ula	te d	ata	usi	ng I	NOS	5QL	data	abas	e.		
CO6:	Develop	ap	plio	catio	ons	tha	t re	qui	re a	Fro	nt-e	nd [Γool	lin	ked	
	with da	taba	ase													
	COs						I	POs						I	PSC	s
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1
	2	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1
	3	3	2	1	1	2	_	-	1	1	1	-	1	3	2	1
	4	3	2	1	1	2	-	Į.	1	1	1	-	1	3	2	1
	5 LOW	3	2	1	1	2	-7		1	1	1	P 2	1	3	2	1
	6	3	2	1	1	2		-	1	1	1	-	1	3	2	1
- 1	verall							1								
Reco	mmende	d by	Во	ard	of S	Stud	ies	08-	04-2	024						
	Approved 2 nd ACM Date 25-05-2024															

23AD322	OBJECT ORIENTED	L	T	P	C
	PROGRAMMING IN C++ AND	0	0	4	2
	JAVA LABORATORY				

- To strengthen problem solving ability by using the characteristics of an object-oriented approach.
- To design applications using object-oriented features.
- To handle Exceptions in programs.
- The students will be expected to write, compile, run and debug the programs to demonstrate the usage of objectoriented concepts both in C++ and JAVA.
- Design event driven GUI and web related applications which mimic the real word scenarios.

LIST OF EXPERIMENTS:

- 1. Programs to demonstrate the usage of Class, Operator Overloading and Friend Functions.
- 2. Write a C++ program to display Names, Roll No., and grade of 3 students who have appeared in the examination. Declare the class of name, roll no., and grade. Create an array of class objects. Read and display the contents of the array.
- 3. Write a Program using copy constructor to copy data of an object to another object.
- 4. Write a program to design a class representing complex numbers and having the functionality of performing addition & multiplication of two complex numbers using operator overloading.
- 5. Write a Program to design a class complex to represent complex numbers. The complex class should use an external function (use it as a friend function) to add two complex numbers. The function should return an object of type complex representing the sum of two complex numbers.

II. Basics of Java and Exception Handling

- 6. Develop a java application with Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.
- 7. Write a Java Program to create an abstract class named Shape that contains two integers, and an empty method named print Area (). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.
- 8. Write a Java program to implement user defined exception handling.
- 9. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file in bytes.

III. The usage of Packages and Interfaces, Multithreaded programming, Generic Programming

10. Write a Java program to perform employee payroll processing using packages. In the java file, Emp.java creates a package employee and creates a class Emp. Declare the

- variables name, empid, category, bpay, hra, da, npay, pf, gross pay, income tax, and allowance. Calculate the values in methods. Create another java file Emppay.java. Create an object e to call the methods to perform and print values.
- 11. Write a Java program to create an interface Shape with the get Area () method. Create three classes Rectangle, Circle, and Triangle that implement the Shape interface. Implement the get Area() method for each of the three classes.
- 12. Write a java program that implements a multi-threaded application that has three threads. The first thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
- 13. Write a java program to find the maximum value from the given type of elements using a generic function.

IV. The usage of Event Driven Programming

- 14. Write a java program to draw lines, arcs, figures, images and text in different Fonts, styles and colors.
- 15. Write a java program to create Frames using swing
- 16. Design a calculator using event-driven programming paradigm of Java with the following options.
- 17. Decimal manipulations
- 18. Scientific manipulations
- 19. Write a java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "stop" or "ready" or "go" should

appear above the buttons in a selected color. Initially there																
	is no m													·		
										1	TOT	AL:	45	PEI	RIO	DS
COU	RSE OU	JTC	ON	1ES	5:											
	After co	mp	leti	on (of tl	ne c	our	se,	the	stu	dent	s w	ill be	ab	le to):
CO1:	CO1: Demonstrate the problems using the characteristics of an															
	object-oriented approach.															
CO2:	2: Construct applications using object-oriented features.															
CO3:	Develop and implement Java programs that make use of															
	classes, packages and interfaces.															
CO4:	4: Develop and implement Java programs with exception															
	handling and multithreading.															
CO5:	5: Construct applications using file processing, generic															
	programming and event handling.															
CO6:	Build an	า ur	nde	rsta	ndi	ng	of c	lier	ıt/ s	serv	er iı	ntera	actio	ns.	~	
	COs		1	N			\[\]	POs	. (I	PSC)s
ì	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
4	1	2	1	1/	J ,	2	-	-	1	1	1	-	1	2	2	1
	2	3	2	1	1	2	NE I	EZ	1	1	1		1	3	2	,1
	3	3	2	1	1	2	LIAT	EDI	1	1	1	SITY	1.	3	2	1
	4	3	2	1	1	2	-	-	1	1	1	1	1	3	2	1
	5	3	2	1	1	2	-	-	1	1	1	ı	1	3	2	1
	6	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1
	Overall 3 2 1 1 2 1 1 1 - 1 3 2 1															
	relation		_				Ĺ <u>.</u>	_			_	_	1	,	_	1
Recommended by Board of Studies										<u> </u>						
	Approved									CM		Date	2	25- 0)5-2()24

23ES391	PRESENTATION SKILLS	L	T	P	C
		0	0	2	1*

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

UNIT I BRAINSTORMING AND OUTLINING 6

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

UNIT II | STRUCTURING THE PRESENTATION | 6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

UNIT III DELIVERY TECHNIQUES 6

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language- eye

contact, gestures, movement on stage.
UNIT IV USE OF TECHNOLOGICAL AIDS 6
Use of presentation software like MS Power Point, Google Slides
etc, incorporating images, graphs, charts and videos, using
interactive tools like quizzes and polls, using remote presentation
tools like zoom, MS Teams, WebEx for screen sharing, virtual
whiteboards and chat functionalities, incorporating AR/VR for
more immersive presentations.
UNIT V HANDLING QUESTIONS AND FEEDBACK 6
Audience engagement through questions DAP (Point Anguer
Audience engagement through questions, PAR (Point, Answer,
Redirect) strategy for structuring responses to questions.
Understanding feedback process - Receiving, interpreting and
evaluating constructively, active listening techniques for
processing feedback, responding to feedback- acknowledging,
clarifying and appreciating, Dealing with challenging feedback.
TOTAL: 30 PERIODS
COURSE OUTCOMES:
After completion of the course, the students will be able to:
CO1: Construct ideas for presentation through mind mapping
techniques CO2: Organize ideas and structure the presentation with
captivating introduction, body paragraphs illustrated with
examples and reasons and compelling conclusion
CO3: Apply vocal variety and body language techniques to
enhance delivery
CO4: Prepare engaging presentations by integrating multimedia
elements
CO5: Demonstrate proficiency in delivering presentations in remote platforms utilizing various technological tools and
strategies to engage audience in Virtual environments
CO6: Exhibit active listening skills by responding to questions
with clarity and confidence and incorporating constructive
feedback for professional development

TEXT BOOKS:

- 1 Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.
- **2** Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

REFERENCES:

1 Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

COs						I	POs]	PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
2	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
3	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
4	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
5	2	2	1	1	-	- 0	A	1	1	1	4	1	2	2	1
6	2	2	1	1	-	A	/-	1/	1	1	-	1	2	2	1
Overall Correlation	2	2	1	1	-	4		1	1	1	-	1	2	2	1
Recommended by Board of Studies 08-04-2024															

Approved 2nd ACM Date 25-05-2024

SEMESTER -IV

23AD401	ALGORITHM DESIGN AND	L	T	P	C
	ANALYSIS	3	0	0	3

COURSE OBJECTIVES:

- To analyze the efficiency of algorithmic solutions.
- To illustrate graph algorithms using various techniques.
- To explain divide and conquer, dynamic programming and greedy techniques for solving various problems.
- To apply the concept of iterative technique to solve optimization problems and backtracking.
- To familiarize the concept of the limitations of algorithmic power and handling it in different problems

UNIT I INTRODUCTION

9

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving –Fundamentals of the Analysis of Algorithm Efficiency – Analysis Framework - Asymptotic Notations and their properties – Solving Recurrences: substitution method - Lower bounds - hash function- String Matching: The naïve string - matching algorithm - Rabin-Karp algorithm

UNIT II GRAPH ALGORITHMS

9

Representations of graphs - Graph Traversal: DFS - BFS - Minimum spanning tree: Kruskal's and Prim's algorithm - Shortest Path: Bellman - Ford algorithm - Dijkstra's algorithm - Maximum flow: Flow networks - Ford-Fulkerson method - Maximum bipartite matching.

UNIT III | ADVANCED ANALYSIS TECHNIQUES

9

Divide and Conquer Methodology - Merge Sort - Multiplication of Large Integers and Strassen's Matrix Multiplication - Closest-Pair and Convex - Hull Problems.

Dynamic programming – Principle of optimality - Coin changing problem – Warshall's and Floyd's algorithms – Optimal Binary Search Trees - Multistage graph - Knapsack Problem and Memory

functions.

Greedy Technique – Dijkstra's algorithm - Huffman Trees and codes.

UNIT IV OPTIMIATION AND BACKTRACKING 9 TECHNIQUES 9

Branch and Bound: Assignment problem - Knapsack Problem - Travelling Salesman Problem - LIFO Search and FIFO Search

Backtracking - N Queens problem - Hamiltonian Circuit Problem

Backtracking – N Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem.

UNIT V NP COMPLETE AND APPROXIMATION 9 ALGORITHM

Lower - Bound Arguments - P, NP, NP- Complete and NP Hard Problems - NP-completeness - Problem reduction: TSP - 3 CNF problem - Approximation Algorithms for NP-Hard Problems - Traveling Salesman problem - Cook's Theorem - Bin Packing problem

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Infer the efficiency of various algorithms mathematically.
- CO2: Apply graph algorithms to solve problems and analyze their efficiency
- CO3: Build the problems using divide and conquer, dynamic programming techniques.
- CO4: Develop problems using greedy algorithmic techniques.
- CO5: Solve the problems using optimization and backtracking techniques
- CO6: Utilize the limitations of algorithmic power and solve the problems using branch and bound techniques.

TEXT BOOKS:

1 Anany Levitin, Introduction to the Design and Analysis of Algorithms, Third Edition, Pearson Education, 2012

REF	ERENCE	S:														
1	Ellis Ho		vitz	. Sa	arta	i Sa	hni	an	d S	ang	uthe	var	Raia	asek	arar	۱ <i>.</i> "
	Compu					•				_			_			
	Press, 2		_	, -		- /		,					, -			
2	Thomas			rme	en,	Cha	arle	s E	.Lei	iser	son,	Ro	nald	L. 1	Rive	est
	and Cl															
		Edition, PHI Learning Private Limited, 2012.														
3	1	S. Sridhar, "Design and Analysis of Algorithms", Oxford														
					_			•	,		C	,		,		
4		university press, 2014. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman,														
		"Data Structures and Algorithms", Pearson Education,														
	Reprint 2006.															
							F	Os					- 1			
4	COs													P	SO	S
`	COs	1	2	3	4	5	6	7	8	9	10	11	12	P 1	SOs	3
<u>'</u>	COs	1 2	2	3	4	5			8 1	9	10	11	12			
		_		3 -	4 - 1	5 -	6	7			10	11		1		3
	1 ,00W	2	1		-	5	6	7	1	1	10 - -	11	1	2		3
	1 00W	2 3	1 2	1	- 1	5	6	7	1	1	10	11	1 1	1 2 3		3 1 1
	1 2 3	2 3 3	1 2 2	1	- 1 1	5	6	7	1 1 1	1 1 1	10	11 -	1 1 1	1 2 3 3		3 1 1 1
	1 2 3 4	2 3 3 3	1 2 2 2	- 1 1 1	- 1 1	5	6	7	1 1 1 1	1 1 1 1	10	11	1 1 1 1	1 2 3 3 3		3 1 1 1 1
	1 2 3 4 5	2 3 3 3 3 3	1 2 2 2 2 2	1 1 1 1 1	- 1 1 1 1	5 - - - - - - -	6	7	1 1 1 1 1	1 1 1 1 1	10 - - - -	11 -	1 1 1 1 1 1	1 2 3 3 3 3 3	2 - - -	3 1 1 1 1 1 1
O	1 2 3 4 5 6	2 3 3 3 3	1 2 2 2 2	- 1 1 1	- 1 1 1	5	6	7	1 1 1 1 1	1 1 1 1 1	10 	11	1 1 1 1 1	1 2 3 3 3 3	2 - - -	3 1 1 1 1 1

2nd ACM

Approved

25-05-2024

Date

23CS401	OPERATING SYSTEMS	L	T	P	С
		3	0	0	3

- To understand the basics and functions of operating systems.
- To understand processes and threads
- To analyze scheduling algorithms and process synchronization.
- To understand the concept of deadlocks.
- To analyze various memory management schemes.
- To be familiar with I/O management and file systems.
- To be familiar with the basics of virtual machines and Mobile OS like iOS and Android.

UNIT I INTRODUCTION

10

Introduction to Operating Systems – Views of Operating system, Computer System organization, Computer System Architecture; Operating System Structures – Operating System Services - User Operating System Interface - System Calls – System Programs - Design and Implementation - Structuring methods; Processes - Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication – Shared Memory Systems, Message Passing Systems, Threads - Multithread Models.

UNIT II PROCESS MANAGEMENT

9

CPU Scheduling - Basic Concepts, Scheduling criteria - Scheduling algorithms; Process Synchronization - The Critical-Section problem, Synchronization hardware, Mutex Locks, Semaphores, Monitors, Classical problems of synchronization; Deadlock - Deadlock Characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

UNIT III | MEMORY MANAGEMENT

9

Main Memory - Address Binding, Logical and Physical Address

-	e, Contiguous Memory Allocation, Segmentation, Pag	
Struc	ture of the Page Table; Virtual Memory - Demand Pag	ing,
Copy	on Write, Page Replacement, Thrashing.	
UNI	Γ IV STORAGE MANAGEMENT	8
Mass	Storage system -Disk Scheduling and Management;	I/O
Syste	ems - I/O Hardware, Kernel I/O subsystem; File-Sys	tem
Inter	face - File concept, Access methods, Directory Structure,	File
syste	m mounting - File Sharing and Protection; File Sys	tem
Impl	ementation - File System Structure - Direc	tory
impl	ementation - Allocation Methods - Free Space Manageme	nt;
UNI	Γ V VIRTUAL MACHINES AND MOBILE OS	9
Virtu	al Machines - Benefits and Features, Building Blocks, Ty	pes
of Vi	rtual Machines and their Implementations, Virtualization	and
Oper	rating-System Components; Mobile OS - iOS and Androic	i
	TOTAL: 45 PERIO	ODS
COU	RSE OUTCOMES:	l)
Į.	After completion of the course, the students will be able	to:
CO1:	Explain operating system structures and various serv	
	provided by operating systems	Ϋ́
CO2:	Apply Process synchronization, process scheduling,	and
	deadlocks concepts in the given scenario to solve	the
	problems.	
CO3:	Apply algorithms and suitable techniques for men	nory
	management.	
CO4:	Apply disk scheduling algorithm and explain	the
	management schemes for storage systems such as file	and
	I/O systems.	
CO5:	Explain the concept of Virtual machines	
CO6:	Explain the functionalities of iOS and Android Opera	ting
	Systems.	

TEXT BOOKS:

Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 10th Edition, John Wiley and Sons Inc., 2018.

REFERENCES:

- 1 Ramaz Elmasri, A. Gil Carrick, David Levine, "Operating Systems A Spiral Approach", Tata McGraw Hill Edition, 2010.
- William Stallings, "Operating Systems: Internals and Design Principles", 7th Edition, Prentice Hall, 2018.
- 3 Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016.

COs						I	POs	;]	PSC	s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1 .oow	2	1	1	1	-	-2	4	- ,	4	-		A	2	-	-
2	3	2	1	1	-	1	-	-/	1	-	-	-	3	-	i'-
3	3	2	1	1	- 8		3	-/	1	g - g	1	-	3	-	-
4	2	1	Ú.	1	_	-	7		1		<u>-</u>	-	2	120	_
5	2	1	-	1	-	-	-	-	-	-	-	-	2	-	-
6 CINE	2	1	A STATE OF THE PARTY OF THE PAR	1	C)LI	-E	عاد	(0)	TE	CH	NC	2)G	-
Overall Correlation	3	2	1	1	AFE	LIA	ED T	O AN	NA L	NIVE	SITY	AUT	3	MOU	5
Recommended by Board of Studies 08-04-2024															
A		2 nd ACM Date 25-05-202						24							

23AD402	BIG DATA COMPUTING	L	T	P	С
		3	0	0	3
COURSE OBJ	ECTIVES:				
To Und	erstand the Fundamentals of Big Data				
 To Expl 	ore Big Data Storage Technologies				
• To Lear	n Basics of Hadoop Framework				
To Fam:	iliarize with Hadoop Ecosystem Tools				
To Deve	elop Proficiency in MapReduce Progra	mmi	ing		
To Integ	grate Big Data Concepts with Practical	App	lica	ıtioı	ns
UNIT I IN	TRODUCTION TO BIG DATA				9
Overview of B	ig Data: Definition - Characteristics -	unst	ruc	ture	ed
data - Import	ance Challenges and Opportunities	s in	Big	Da	ıta
Management -	- big data and marketing - Evolution	of	Big	Da	ıta
Technologies-	Batch Processing vs. Stream Processing	g.			
UNIT II BIO	G DATA STORAGE	4			9
Data Storage	Technologies: NoSQL databases - ag	greg	ate	da	ıta
1 1/2	value and document data models – re	Z (10)			
	es- master-slave replication- MongoDI			-	
_	ta model – cassandra examples – cassa				
7 T T T T	SICS OF HADOOP				
Data format	analyzing data with Hadoop – scaling (711t	На	do	
	Iadoop pipes - design of Hadoop di				_
	s) - HDFS concepts - Java interface -				
,	data integrity – compression – serializ				
	ta structures - Cassandra - Hadoop int				10
	DOOP RELATED TOOLS	legra	1110	T.	0
ONITIV	ADOOF RELATED TOOLS				9
Hbase - data	model and implementations - Hbase	clie	nts-	Thr	ift
implementatio	n – Hbase examples – Pig - Pig Latin so	cript	s -	Hiv	e-
HiveQL querie	es.				
UNIT V MA	APREDUCE APPLICATIONS				9
MapReduce w	orkflows - unit tests with MRUnit -	test	dat	a aı	nd

local tests – anatomy of MapReduce job run – classic Map-reduce – YARN – failures in classic Map-reduce and YARN – job scheduling – shuffle and sort – task execution – MapReduce types – input formats – output formats

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Illustrate big data and use cases from selected business domains.
- **CO2:** Summarize the concept of NoSQL big data management.
- CO3: Experiment with Hadoop and HDFS to install, configure and run.
- CO4: Utilize Hadoop to solve map-reduce analytics.
- CO5: Utilize Hadoop-related tools such as HBase, Cassandra, Pig, and Hive
- CO6: Utilize and implement the concept of YARN

TEXT BOOKS:

- 1 Balamurugan Balusamy, Nandhini Abirami R, Seifedine Kadry, Amir H. Gandomi, "Big Data: Concepts, Technology, and Architecture", Wiley, 2021.
- 2 Data Analytics with Hadoop, "Benjamin Bengfort, Jenny Kim", O'Reilly, 2016.

REFERENCES:

- 1 Balamurugan Balusamy, Nandhini Abirami R, Seifedine Kadry, Amir H. Gandomi, "Big Data: Concepts, Technology, and Architecture", Wiley, 2021.
- 2 Data Analytics with Hadoop, "Benjamin Bengfort, Jenny Kim", O'Reilly, 2016.
- 3 Jeff Carpenter, Eben Hewitt, "Cassandra: The Definitive Guide", 3rd, O'Reilly, 2020.

COs						P	Os						PSOs						
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
1	2	1	-	-	1	-	-	-	1	1	1	1	2	1	-				
2	2	1	-	1	1	-	ı	ı	1	1	1	1	2	1	-				
3	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-				
4	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-				
5	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-				
6	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-				
Overall Correlation	3	2	1	1	1	-	ı	ı	1	1	1	1	3	1	-				
Recommended by Board of Studies 08-04-2024																			
A		2 nd ACM Date 25-05-2					-202	24											

23AD403 DATA WAREHOUSING AND DATA L T P C MINING 3 0 0 3

COURSE OBJECTIVES:

- To understand the principles of Data warehousing
- Learn basic Data Mining concepts and architecture.
- To be familiar with the association mining.
- To know the classification algorithm implementation
- To understand the clustering algorithms and its application
- To know about the real time application of mining

UNIT I INTRODUCTION TO DATA WAREHOUSE 9

Data Warehousing and Business Analysis: - Data warehousing Components -Building a Data warehouse -Data Warehouse Architecture - DBMS Schemas for Decision Support - Data Extraction, Cleanup, and Transformation Tools - Metadata - Online Analytical Processing (OLAP) - OLAP and Multidimensional Data Analysis.

UNIT II DATA MINING AND ASSOCIATION 12 MINING

Data Mining: - Data Mining Functionalities - Data Preprocessing - Data Cleaning - Data Integration and Transformation - Data Reduction - Data Discretization and Concept Hierarchy Generation- Architecture of A Typical Data Mining Systems-Classification of Data Mining Systems.

Association Rule Mining: - Apriori Algorithm - Efficient and Scalable Frequent Item set Mining Methods - Mining Various Kinds of Association Rules - Association Mining to Correlation Analysis - Constraint-Based Association Mining.

UNIT III CLASSIFICATION MINING 9

Classification and Prediction: - Issues Regarding Classification and Prediction - Classification by Decision Tree Introduction - Bayesian Classification - Rule Based Classification - Classification

	-	ropagation - Support Vector Machines - Associ	ative
	sificati		
UNIT	ΓIV	CLUSTER ANALYSIS	9
Clus	ter A	nalysis: - Types of Data in Cluster Analysis	- A
Cate	goriza	tion of Major Clustering Methods - Partition	ning
Meth	ods -	Hierarchical methods - Density-Based Methods - 0	Grid-
Based	d Me	thods - Model-Based Clustering Methods -O	utlier
Anal	ysis.		
UNI	$\Gamma \mathbf{V}$	MINING OBJECT, SPATIAL, MULTIMEDIA,	9
		TEXT AND WEB DATA	
Mult	idime	nsional Analysis and Descriptive Mining of Con	nplex
Data	Objec	cts - Spatial Data Mining - Multimedia Data Min	ing -
Text	Minin	g - Mining the World Wide Web.	
		TOTAL: 45 PERI	ODS
COU	RSE (OUTCOMES:	
Ų.	After	completion of the course, the students will be able	to:
		Data warehousing concepts and Implementation.	
CO2:	Ident	tify the core principles of the mining process.	
CO3:	Utiliz	ze association mining principles.	V
CO4:	Appl	y classification mining across diverse applications.	200
CO5 :	Appl	y clustering algorithms to a range of datasets.	
CO6:	Infer	the utilization of mining across different sectors	
TEXT	Г ВОС	DKS:	
1	Jiawe	ei Han, Jian Pei, Hanghang Tong "Data Mining Con	cepts
	and	Гесhniques", Fourth Edition, Elsevier, 2023.	
REFE	EREN	CES:	
1	Alex	Berson and Stephen J. Smith "Data Warehousing,	Data
	Mini	ng & OLAP", Tata McGraw - Hill Edition, Tenth Re	print
	2007.		
2		Soman, Shyam Diwakar and V. Ajay "Insight into	
		ng Theory and Practice", Easter Economy Ed	ition,
	Pren	tice Hall of India, 2006.	

	G. K. Gupta "Introduction to Data Mining with Case															
3	G. K.	Gu	pta	"I	ntro	odu	ctic	n	to	Dat	ta N	/Iini	ng v	witl	n C	ase
	Studies	", I	East	er	Eco	nor	ny	Ed	itio	n, I	Pren	tice	Hal	l of	In	dia,
	2006.															
4	Pang-Ning Tan, Michael Steinbach and Vipin Kumar															
	"Introduction to Data Mining", Pearson Education, 2007.															
	POs PSOs PSOs															
`	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
	1 2 1 1 1								-	-	1	1	1	2	1	ı
	2	3	2	1	1	1	-	-	-	-	1	1	1	3	1	ı
	3	3	2	1	1	1	-	-	-	-	-	1	-	3	1	-
	4	3	2	1	1	1	-	-	-	-	-	1	-	3	1	-
	5	3	2	1	1	1	-	-	-	-	-	1	-	3	1	-
	6	2	1	-	-	1	-	-	1	1	1	1	1	2	1	1
O	verall	3	2	1	2	1	1	1-	1	1	1	1	1	3	1	1
Corı	orrelation R ())	1	1
Reco	Recommended by Board of Studies							08-	04-2	2024					7.0	

Approved

COLLEGE OF TECHNOLOGY

Date

25-05-2024

2nd ACM

23AD411	FUNDAMENTALS OF ARTIFICIAL	L	T	P	C
	INTELLIGENCE	3	0	2	4

- Will gain knowledge in the basic concepts of Artificial Intelligence.
- To acquire skills in problem solving and machine learning techniques.
- To learn the concepts of neural networks and NLP techniques for Artificial intelligence.
- To acquire knowledge in reasoning and ontology techniques.
- To understand the ethics for artificial intelligence

UNIT I INTRODUCTION

9

Introduction–Definition – Foundation and History of AI - Future of Artificial Intelligence – Intelligent Agents– Environments – Structure of Agents – Typical Intelligent Agents - Problem solving Methods – AI Problems - Search Strategies – Uninformed Search Techniques.

UNIT II INFORMED SEARCH TECHNIQUES

9

Informed – Heuristics – Local Search Algorithms and Optimization Problems – Best first Search – A* Algorithm - Searching with partial Observations – Constraint Satisfaction Problems – Constraint Propagation – Backtracking Search - Game playing – Minimax Algorithm-Optimal Decisions in Games – Alpha – Beta Pruning.

UNIT III KNOWLEDGE REPRESENTATION

9

First Order Predicate Logic - Prolog Programming - Unification - Forward Chaining- Backward Chaining - Resolution - Knowledge Representation - Ontological Engineering- Categories and Objects - Time and Event Calculus - Mental Events and Mental Objects - Reasoning Systems for Categories - Reasoning with Default Information - Uncertainty- Bayes' Rule - Naive Bayes Models - Probabilistic Reasoning - Bayesian Networks

UNIT IV LEARNING

9

Learning – Regression– Linear algebra - Supervised learning – Logical formulation of learning – Learning using inductive logic programming – Statistical learning- learning with complex data – Learning with hidden variables (EM Algorithm) – Learning Decision Trees – Reinforcement learning.

UNIT V | ADVANCES AND APPLICATIONS

9

Expert systems – Architecture of expert systems – CNN – RNN – NLP – Language Models – Grammar – Parsing – RNN for NLP - NLT (Natural language tasks) - Computer vision.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES:

- 1. Implementing Search Algorithms:
 - a. Write programs to implement various search algorithms like Depth-First Search (DFS), Breadth-First Search (BFS), Uniform Cost Search (UCS), and A* Search.
 - b. Test these algorithms on different problem spaces such as simple mazes or the 8-puzzle problem.
- 2. Machine Learning Basics:
 - Implement simple machine learning algorithms like linear regression or k-nearest neighbors from scratch.
 - Use libraries like scikit-learn or TensorFlow to implement more complex algorithms like decision trees or neural networks.
- 3. Prolog Programming:
 - Write a program to implement a basic implementation of sorting a list using Prolog concepts.
 - b. Demonstrate its effectiveness on a simple binary tree by
 - c. Insertion
 - d. Deletion

- 4. Natural Language Processing (NLP):
 - a. Develop a program to perform text classification using techniques like bag-of-words or TF-IDF.
 - b. Implement sentiment analysis on a dataset of movie reviews or tweets.

5. Reinforcement Learning:

- a. Implement basic reinforcement learning algorithms like Q-learning or SARSA.
- b. Apply them to simple environments like grid worlds or maze navigation problems.

6. Ontological Engineering:

- a. Build an inheritance concepts using ontology engineering concepts.
- b. Develop the concepts of ontology integrating of different modules within an enterprise software system to facilitate communication and interoperability.

7. Computer Vision:

- Use libraries like OpenCV to implement basic computer vision tasks like edge detection or object recognition.
- b. Develop a program to detect faces in images using Haar cascades.

8. Bayesian Networks:

- a. Implement algorithms for Bayesian networks such as variable elimination or belief propagation.
- b. Demonstrate their use for probabilistic reasoning in scenarios like medical diagnosis or sensor fusion.

9. Expert Systems:

- a. Create a basic expert system using a rule-based approach.
- b. Use it to provide recommendations or solutions in a specific domain like troubleshooting computer problems or diagnosing illnesses.

10. Game Playing:

- a. Develop programs to play classic board games like Tic-Tac-Toe, Connect Four, or Chess.
- b. Implement different strategies such as minimax with alpha-beta pruning for more efficient search.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the foundational concepts to approach AI problem-solving systematically
- CO2: Apply informed search techniques to optimize problemsolving in various AI scenarios
- CO3: Make use of knowledge representation techniques using logical reasoning, ontological frameworks, and probabilistic models
- CO4: Utilize supervised and statistical learning techniques for predictive modeling and data analysis.
- CO5: Utilize reinforcement learning and algorithms to solve dynamic decision-making problems
- CO6: Experiment with advanced AI techniques and their applications to address real-world problems

TEXT BOOKS:

Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Fourth Edition, Pearson Education, 2022.

REFERENCES:

- 1 Elaine Rich, Kevin Knight, Shivashankar B. Nair "Artificial Intelligence", Third Edition, McGraw-Hill Education, 2017
- 2 Dan W Patterson, "Introduction to Artificial Intelligence & Expert Systems", Pearson Education India, 2015.
- 3 Deepak Khemani," First Course in Artificial Intelligence", McGraw Hill Education, 2017.
- 4 Nils J. Nilsson," Artificial Intelligence: A New Synthesis", Morgan Kaufmann Publishers, 1998.

Cos						I	POs	1					PSOs			
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	-	-	1	-	1	1	1	2	1	1	
2	3	2	1	1	1	1	ı	1	1	1	1	1	3	1	1	
3	3	2	1	1	1	-	-	1	1	1	1	1	3	1	1	
4	3	2	1	1	2	-	-	1	1	1	1	1	3	1	1	
5	3	2	1	1	1	-	-	1	1	1	1	1	3	1	1	
6	3	2	1	1	1	3	-	1	-	1	1	1	3	1	1	
Overall Correlation	3	2	1	1	1	1	-	1	1	1	1	1	3	1	1	
Recommended	of S	Stud	ies	6 08-04-2024												
A		2nd ACM Date)	25-05-2024								

23MA411	MATHEMATICAL MODELING	L	T	P	C
	FOR DATA SCIENCE	3	0	2	4

- Gain knowledge in basics of R language for computation.
- Utilize the looping concepts in R language to manipulate the data.
- Create and manipulate data frames and work with files using R.
- Understand the problem that a machine learning algorithm is designed to solve.
- To develop designing skills for modeling nondeterministic problems.
- To educate students in predicting future results according to the parameters.

UNIT I INTRODUCTION TO R PROGRAMMING

9

Introduction-How to run R-Basic features of R- R Sessions and Functions- Basic Math- Variables- Data Types - Advanced Data Structures - Lists, Matrices, Arrays, Factors ,Data Frames, Functions , Vectors , Atomic Vectors, Character vectors - Operations on the logical vectors - Calculating with R.

UNIT II LOOPING AND CONTROL STRUCTURES

9

Programming Structures, Different types of loops such as: for(), while() loops, Control Statements, Looping Over Non Vector Sets,-If-Else, Arithmetic and Boolean Operators and values, Default Values for Argument, Return Values, Deciding Whether to explicitly call return-Returning Complex Objects, Functions are Objective, No Pointers in R, Recursion

UNIT III | WORKING WITH DATA FRAMES AND FILE OPERATIONS

9

Data Frames, making data frames - Working with data frames-Data Reshaping- Melting and Casting of data - Merging Data Frames - Editing and Reading Data from Files -Reading and Writing Files

DATA MODELS AND LINEAR REGRESSION 9 Data, Models, and Learning - Empirical Risk Minimization - Parameter Estimation - Maximum Likelihood Estimation - Bayesian Estimation Methods - Directed Graphical Models - Model Selections - Linear Regression - Problem Formulation UNIT V DIMENSIONALITY REDUCTION AND SUPPORT VECTOR MACHINES Dimensionality Reduction with Principal Component Analysis, Maximum Variance Perspective, Projection Perspective - PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data CO5: Apply linear models and regression for classification.		
Parameter Estimation - Maximum Likelihood Estimation - Bayesian Estimation Methods - Directed Graphical Models - Model Selections - Linear Regression - Problem Formulation UNIT V DIMENSIONALITY REDUCTION AND SUPPORT VECTOR MACHINES Dimensionality Reduction with Principal Component Analysis, Maximum Variance Perspective, Projection Perspective - PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS PRACTICAL EXERCISES: 30 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	UNIT IV DATA MODELS AND LINEAR REGRESSION	9
Bayesian Estimation Methods - Directed Graphical Models - Model Selections - Linear Regression - Problem Formulation UNIT V DIMENSIONALITY REDUCTION AND SUPPORT VECTOR MACHINES Dimensionality Reduction with Principal Component Analysis, Maximum Variance Perspective, Projection Perspective - PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS PRACTICAL EXERCISES: 30 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Data, Models, and Learning - Empirical Risk Minimization	ı -
Model Selections - Linear Regression - Problem Formulation UNIT V DIMENSIONALITY REDUCTION AND SUPPORT VECTOR MACHINES Dimensionality Reduction with Principal Component Analysis, Maximum Variance Perspective, Projection Perspective - PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Parameter Estimation - Maximum Likelihood Estimation	n -
UNIT V SUPPORT VECTOR MACHINES Dimensionality Reduction with Principal Component Analysis, Maximum Variance Perspective, Projection Perspective - PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Bayesian Estimation Methods - Directed Graphical Mode	ls -
Dimensionality Reduction with Principal Component Analysis, Maximum Variance Perspective, Projection Perspective - PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Model Selections - Linear Regression - Problem Formulation	
Dimensionality Reduction with Principal Component Analysis, Maximum Variance Perspective, Projection Perspective - PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	UNIT V DIMENSIONALITY REDUCTION AND	9
Maximum Variance Perspective, Projection Perspective - PCA in High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	SUPPORT VECTOR MACHINES	
High Dimensions, Key Steps of PCA in Practice, Latent Variable Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS PRACTICAL EXERCISES: 30 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Dimensionality Reduction with Principal Component Analy	sis,
Perspective - SVM - Separating Hyperplanes, Primal Support Vector Machine TOTAL: 45 PERIODS PRACTICAL EXERCISES: 30 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	1 , 1	
Vector Machine TOTAL: 45 PERIODS PRACTICAL EXERCISES: 30 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra – Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	High Dimensions, Key Steps of PCA in Practice, Latent Varia	ble
PRACTICAL EXERCISES: 30 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Perspective - SVM - Separating Hyperplanes, Primal Supp	ort
PRACTICAL EXERCISES: 30 PERIODS 1. Basic Operations In R 2. Data Structures In R 3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra – Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Vector Machine	
 Basic Operations In R Data Structures In R Working With Looping & Function In R Implementation of Vector Recycling, Apply Family & Recursion R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data Parameter Estimation Using R Linear Algebra - Solving Linear Equations Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data 	TOTAL: 45 PERIO	DDS
 Data Structures In R Working With Looping & Function In R Implementation of Vector Recycling, Apply Family & Recursion R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data Parameter Estimation Using R Linear Algebra – Solving Linear Equations Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data 	PRACTICAL EXERCISES: 30 PERIODS	
3. Working With Looping & Function In R 4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra – Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	1. Basic Operations In R	>
4. Implementation of Vector Recycling, Apply Family & Recursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra – Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	2. Data Structures In R	
Secursion 5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	3. Working With Looping & Function In R	
5. R Code for Data Frame Manipulation Including Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra - Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	4. Implementation of Vector Recycling, Apply Family	<i>y</i> &
Extraction, Transformation And Loading of Data 6. Parameter Estimation Using R 7. Linear Algebra – Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Recursion	-
6. Parameter Estimation Using R 7. Linear Algebra – Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	5. R Code for Data Frame Manipulation Includ	ing
7. Linear Algebra – Solving Linear Equations 8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	Extraction, Transformation And Loading of Data	
8. Dimensionality Reduction using R TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	6. Parameter Estimation Using R	
TOTAL: 45 +30 =75 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	7. Linear Algebra – Solving Linear Equations	
COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	8. Dimensionality Reduction using R	
After completion of the course, the students will be able to: CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data		DDS
 CO1: Demonstrate the basic computations using R CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data 	COURSE OUTCOMES:	
 CO2: Identify looping and recursion concepts in R to manipulate the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data 	After completion of the course, the students will be able t	o:
the data CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data	CO1: Demonstrate the basic computations using R	
CO3: Construct R code to manipulate the Data Frames CO4: Utilize probabilistic modeling and inferences to data		late
CO4: Utilize probabilistic modeling and inferences to data	the data	
-	CO3: Construct R code to manipulate the Data Frames	
CO5: Apply linear models and regression for classification.	CO4: Utilize probabilistic modeling and inferences to data	
	CO5: Apply linear models and regression for classification.	

CO6:	Choose	appropriate	Dimensionality	reduction	algorithm
	and SVN	M for machine	e learning.		

TEXT BOOKS:

- 1 Tilman M. Davies, "The Book of R A First Programming And Statistics" Library of Congress Cataloging-in-Publication Data, 2016.
- 2 Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong, Mathematics for Machine Learning, Cambridge University Press, 2020.

REFERENCES:

- Matthias Dehmer, Salissou Moutari, Frank Emmert-Streib, Mathematical Foundations of Data Science Using R, De Gruyter Oldenbourg, 2020.
- Norman Matloff, Probability and Statistics for Data Science: Math + R + Data, CRC Data Science Series, 2019.

COs		11	1				POs	- 4	Y				PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	4	1	1	1	1	1	1	1	1	1	2	1	-
2	3	2	1	1	1	1	-	1	1	ı	1	1	3	1	-
3 CINE	3	2	1	1	1)LI	E	эĖ	0	LE	1	N <u>O</u>	3	1	-
4	3	2	1	1	1	LIAT	ED T) AN	NA.U	MINE	1	AUT	3	1	
5	3	2	1	1	1	ı	-	ı	-	-	1	1	3	1	-
6	3	2	1	1	1	ı	-	1	1	1	1	1	3	1	1
Overall Correlation	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1

Recommended by Board of Studies 08-04-2024

Approved 2nd ACM Date 25-05-2024

23CS421	OPERATING SYSTEMS	L	T	P	C
	LABORATORY	0	0	4	2

- To install windows operating systems.
- To understand the basics of Unix command and shell programming.
- To implement various CPU scheduling algorithms.
- To implement Deadlock Avoidance Algorithms.
- To be familiar with File Organization and File Allocation Strategies.
- To understand the working of virtual machines.

LIST OF EXPERIMENTS:

- 1. Installation of windows operating system.
- 2. Illustrate UNIX commands and Shell Programming.
- 3. Process Management using System Calls: Fork, Exit, Getpid, Wait, Close.
- 4. Write a C program to implement various CPU Scheduling Algorithms.
- 5. Write a C program to simulate the concept of Dining-Philosophers problem.
- 6. Write a C program to implement inter process communication.
- 7. Implement a C program to avoid Deadlock using Banker's Algorithm.
- 8. Write a C program to implement the concept of threading.
- 9. Write a C program to implement single level and two-level directory structure.
- 10. Write C programs to implement the following Memory Allocation Methods a. First Fit b. Worst Fit c. Best Fit
- 11. Write C programs to implement the various Page Replacement Algorithms.
- 12. Implement various disk scheduling algorithms.
- 13. Install any guest operating system like Linux using VMware

TOTAL: 45 PERIODS

COU	RSE OU	TC	ON	1ES	:												
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to	:	
CO1:	Apply b	oasi	c U	NIX	co	mn	nano	ds a	nd	she	ll pr	ogra	mm	ing			
CO2:	Constru	ıct v	ari	ous	CP	U S	Sche	dul	ing	Alg	gorit	hms	5.				
CO3:	Constru	Construct the concept of interprocess communication.															
CO4:	Build va	Build various page replacement algorithms.															
CO5:	Interpre	Interpret operations on directories.															
CO6:	Build Li	inu	x O	S us	sing	, VN	Лw	are.									
	COs						I	POs PSO									
	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	2	1	1	3	2	1	1	2	2	-	1	3	3	1	
	2	3	2	1	1	3	2	1	1	2	2	-	1	3	3	1	
	3	3	2	1	1	3	2	1	1	2	2	1	1	3	3	1	
	4	3	2	1	1	3	2	1	1	2	2	1	1	3	3	1	
	5	2	1	10	g -	3	2	1	1/	2	2	7	1	2	3	1	
y.	6	3	2	1	1	3	2	1	1	2	2		1	3	3	1	
//	verall elation	3	2	1	1	3	2	1	1	2	2		1	3	3	1	
Reco	Recommended by Board of Studies							08-	04-2	024	TE	CH	NO	10	(G)	12.	
	Approved							2nd ACM Date 25-05-20)24			

23AD421	BIG DATA COMPUTING	L	T	P	C
	LABORATORY	0	0	4	2

- To install and configure Hadoop.
- To implement and use NoSQL big data management.
- To implement MapReduce analytics using Hadoop and related tools.
- To understand the usage of Hadoop related tools for Big Data Analytics
- To Integrate Big Data Concepts with Practical Applications

LIST OF EXPERIMENTS:

- Downloading and installing Hadoop, Hive and HBase; Understanding different Hadoop modes. Startup scripts, Configuration files.
- Hadoop Implementation of CRUD operations tasks for file management, such as Adding files and directories, retrieving files and Deleting files
- 3. Practice importing and exporting data from various data bases with Hive and HBase
- 4. Implement of Matrix Multiplication with Hadoop MapReduce
- 5. Implement Word count by processing the dataset into HDFS and produce output by Map-Reduce.
- 6. Implementation of Hive along with CRUD operations.
- 7. Implementation of HBase, Installing thrift along with CRUD operations

	CRUD operations
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Demonstrate to Install, configure, and run Hadoop and
	HDFS.
CO2:	Build applications using NoSQL big data management.
CO3:	Construct map-reduce analytics using Hadoop.

CO4:	Constru	ıct 1	nap	-re	duc	e pı	rogi	ram	wi	th c	latas	set.				
CO5:	Utilize l	Hac	looj	p-re	elate	ed to	ools	su	ch a	as E	IBas	e, Ca	assaı	ndr	a, P	ig,
	and Hiv	₇ e														
CO6:	Develop Big Data Applications															
	POs PSOs															s
`	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
	1	1 2 1 3 1 1 3 3 1 2 3 1														
	2	3	3 2 1 1 2 2 2 1 3 3 2												-	
	3	3	2	1	1	3	-	-	-	3	3	3	3	3	3	-
	4	3	2	1	1	2	-	-	-	3	1	2	2	3	2	-
	5	3	2	1	1	2	-	-	-	3	1	2	2	3	2	-
	6	3 2 1 1 2 2 1 3 1 3 2 -														-
	verall relation	3 2 1 1 3 - - 1 3 2 3 2 3 3 1														
Reco	Recommended by Board of Studies 08-04-2024															
	Approved									2 nd ACM Date 25-0)5-20	024

23ES4	91	AP			D LOGI	CAL	L	T	P	С
			REAS	ONIN	G -1		0	0	2	1
COUI		IECTIVI								
•	_		-	m solv	ing and	logical th	iinki	ng	abil	ity
	of the s	tudents.								
•	To acqu	ıaint stu	dent wi	ith free	quently a	isked que	estio	ns a	and	
		s in quai	ntitative	e aptit	ude and	logical re	easo	ning	3.	
UNIT										4
Numl	oers, LC	M, HCF	, Avera	ages, R	latio & P	roportio	n, M	lixtı	ures	3 &
Allega	ation.									
UNIT										4
Percei	ntages, 🛚	Time and	d work,	Pipes	and Cist	ern, codi	ng a	nd		
decod										
UNIT										4
Time	Speed D	istance,	Train, I	Boats a	and Strea	ms, Ana	logy	•		
UNIT							- 5			4
Data l	Interpret	tation (B	AR,PIE	E,LINE), Seating	g arrange	mer	ıt.	4	
UNIT		- 3								4
Simpl	e Interes	st and Co	ompour	nd Inte	erest, Pro	ofit loss a	nd I	Disc	our	ıt,
Partne	ership.	V						-		A.
A	10	121				TOTAL	20 1	PER	OI	DS
	THE A PARTY NAMED IN	TCOME		OLLI	GE OF	TECH	MO.	10	CV	pā.
					e, the stu					
					probler	ns, and	fost	er (criti	cal
		g and log								
1					atical pr			er	ıhaı	nce
					l numeri					
					ng a var					
1		_		se of	multiple	approa	ches	to	so	lve
		ns efficie								
CO4:	Analyse	and sol	ve diffe	erent c	lata anal	ysis prob	olem	s fo	r ti	me
					ata analy					
1					phs, and					
					uch as ra	tios, proj	orti	ons	s, ba	ısic
		and stat								
CO6:	Solve \overline{q}	uestions	in a f	fractio	n of a r	ninute u	ısing	sh	ort	cut
	method	s								

TEX	Г ВООК:
1	Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.
_	

2 Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand Publishing.

REFERENCES:

1 Agarwal, R.S. "A Modern Approach to Verbal & Non-Verbal Reasoning." 2nd ed., S. Chand Publishing

Cos						I	Os						I	PSO	s		
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	3	2	-	-	2	1	1	2	1	2	3	1	-	3		
2	2	3	3	-	-	2	-	1	3	2	2	3	2	1	3		
3	3	3	3	-	-	2	-	1	2	2	2	3	2	-	3		
4	2	3	2	3	-	2	1	2	3	3	2	3	1	2	3		
5	3	2	2	-	1	3	-	2	2	3	3	3	3	1	3		
6	3	3	3	3	2	3	1	3	3	2	3	3	3	1	3		
Overall	E:	RE	1			- 4		1				1		400			
Correlation	3	3	3	1	1	3	1	2	3	3	3	3	2	1	3		
Recommende	Recommended by Board of Studies								08-04-2024								
Approved								2nd ACM Date						25-05-2024			

COLLEGE OF TECHNOLOGY

SEMESTER -V

	ГР	C
	0 0	2
RIGHTS		
COURSE OBJECTIVES:		
To provide an overview on selection of research pro	ble	m
based on the Literature review		
To enhance knowledge on the Data collection and A	۱nal	ysis
To outline the importance of ethical principles to be	:	
followed in Research work and IPR		
UNIT I INTRODUCTION TO RESEARCH		6
FORMULATION		
Meaning of research problem, Sources of research pr	oble	em,
Criteria- good research problem, and selecting a research pr		
Scope and objectives of research problem. Definin		
formulating the research problem - Necessity of defini	ng	the
problem - Importance of literature review in defining a pro	bler	n
UNIT II LITERATURE REVIEW		-6
Literature review – Primary and secondary sources – re)G	Υ.
APPILIATED PURING UNITA PER AUTUR		
treatise, monographs-patents - web as a source - search		
web - Critical literature review - Identifying gap area	s ir	om
literature review - Development of working hypothesis UNIT III DATA ANALYSIS		
UNIT III DATA ANALYSIS		6
Execution of the research - Data Processing and Analysis str	ateg	gies
- Data Analysis with Statistical Packages - Generalization	on a	and
Interpretation		
UNIT IV REPORT, THESIS PAPER, AND RESEARCH		6
PROPASAL WRITING		
Structure and components of scientific reports - Types of r	epo	rt –
Technical reports and thesis – Significance – Different step	-	
preparation - Layout, structure and Language of typical re		

Illustrations and tables - Bibliography, types of referencing, citations- index and footnotes, how to write report- Paper Developing,- Plagiarism- Research Proposal- Format of research proposal- a presentation - assessment by a review committee

UNIT V INTELLECTUAL PROPERTY AND PATENT RIGHTS

6

Ethical principles- Plagiarism, Nature of Intellectual Property - Patents, Designs, Trade and Copyright- patent search, Process of Patenting and Development: technological research, innovation, patenting, and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of Patent Rights - Scope of Patent Rights, Geographical Indications

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the literature to identify the research gap in the given area of research.
- CO2: Identify and formulate the research Problem
- CO3: Analyze and synthesize the data using research methods and knowledge to provide scientific interpretation and conclusion.
- CO4: Prepare research reports and proposals by properly synthesizing, arranging the research documents to provide comprehensive technical and scientific report
- CO5: Conduct patent database search in various countries for the research problem identified.
- CO6: Apply ethical principles in research and reporting to promote healthy scientific practice

TEXT BOOKS:

- Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An Introduction to Research Methodology, RBSA Publishers.
 - 2 Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.

	C: 1 (2.0		1 D	1 •		Α .	[Z C	1000) D		1 1	/r (1	1	1	
3	Sinha,									2. K	esea	rcn I	vietr	ioa	3108	gy,
1	Ess Ess									1 ₋ N	/ a.1.		1.			
4	Trochi													e co	onci	ise
5	knowle	$\overline{}$						$\overline{}$						1. 1	/ a1	
3	Wadeh Copy r															
	Law Pi	_		_	15 a	na v	Get	gra	РШ	Cai	man	canc	л15. I	OIII	vers	sai
REFI	ERENCE		51111	ig_												
1	Anthon	v, N	Л., С	Graz	ziar	10, 1	A.N	I. aı	nd I	Rau	lin, l	M.L.	, 200	9.		
	Researc	-													con	
2	Carlos,									_	_	_				
	and developing countries: the TRIPS agreement and policy															
	options. Zed Books, New York.															
3	Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing",															
	Sage Publications.															
4	Day, R.A., 1992.How to Write and Publish a Scientific															
	Paper, Cambridge University Press.															
5	Fink, A., 2009. Conducting Research Literature Reviews:															
	From the Internet to Paper. Sage Publications															
6	Leedy, P.D. and Ormrod, J.E., 2004 Practical Research:															
-	Planning and Design, Prentice Hall. Satarkar, S.V., 2000. Intellectual property rights and copy															
7							lect	ual	pro	pei	rty r	ights	anc	1 co	ру	
	right. E))	ub.	nca	tior	ıs.	LIAT	POs) AN	NA U	MIVE	SITY	AUT	NO.	SO	00
(COs	1	_	_	4	_				_	10	11	10			
	_	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	2	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	3	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	4	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	5	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	6	2	2	1	1	1	-	-	1	1	2	-	1	3	2	1
O	verall	2		1	1	1			1	1	<u> </u>		1	· ·	2	1
Cor	relation	3	2	1	1	1	_	_	1	1	2	-	1	3	2	1
Reco	mmended	d by	Во	ard	of S	Stud	lies		11-2							
Approved						3rd ACM Date						30-11-2024				

23AD501	MACHINE LEARNING	L	T	P	C
		3	0	0	3

- Classify the types of machine learning models and infer the terminologies used.
- Apply the neural network modeling technique to data classification
- Utilize learning algorithms to build machine learning models on a supervised dataset
- Identify the appropriate ensemble method to boost the classifier accuracy
- Utilize learning algorithms to build machine learning models on a unsupervised dataset
- Apply knowledge mining to various machine learning application

UNIT I INTRODUCTION

9

Machine Learning - Types of Machine Learning - Supervised Learning - Unsupervised Learning - Machine Learning Process - Terminologies used in Machine learning - Testing Machine Learning Algorithms - Training, Testing, and Validation Sets - The Confusion Matrix - Accuracy Metrics - The Receiver Operator Characteristic (ROC) Curve - Unbalanced Datasets - Measurement Precision-- Turning Data into Probabilities

UNIT II NEURAL NETWORKS

9

Neurons, Neural Networks, and Linear Discriminants - The Brain and the Neuron - Neural Networks - The Perceptron - Linear Separability - Linear Regression - The Multi-Layer Perceptron Going Forwards Going Backwards: Back-Propagation of Error - The Multi-Layer Perceptron in Practice - Examples of Using the MLP - Deriving Back-Propagation

UNIT III | LEARNING MODELS - SUPERVISED

11

Evolutionary Learning : The Genetic Algorithm (GA) - Generating Offspring: Genetic Operators - Using Genetic Algorithms - Genetic Programming

Reinforcement Learning: Example: Getting Lost - Markov	V
Decision Processes- Values - Using Reinforcement Learning	
Ensemble Learning: Boosting - Bagging - Random Forests	_
Different Ways To Combine Classifiers	
	9
The K-Means Algorithm - Vector Quantisation- The Self	
Organising Feature - Map Markov Chain Monte Carlo (MCMC	
Methods - Sampling - Monte Carlo Or Bust - The Proposa	1
Distribution- Markov Chain Monte Carlo - Graphical Models	
UNIT V CASE STUDY	7
Customer Churn, Galaxy Classification, Multivariate Time Series	s
Forecasting, Financial Fraud at Scale With Decision Trees	
Business Understanding - Data Understanding - Data Preparation	
- Modeling - Evaluation - Deployment	
TOTAL: 45 PERIOD	S
COURSE OUTCOMES:	
After completion of the course, the students will be able to:	
CO1: Summarize the basic concepts of machine learning	5
techniques and terminologies	
CO2: Develop classification models using neural networks	
CO3: Apply different learning models to various supervised	1
datasets	
CO4: Illustrate the methods to enhance the efficiency of learning	7
models	
CO5: Apply different learning models to various unsupervised	1
datasets	
CO6: Identify the appropriate data modelling techniques for	r
various applications.	
TEXT BOOKS:	\neg
1 Stephen Marsland, "Machine Learning - An Algorithmic	C
Perspective", 2nd Edition, Chapman and Hall/CRO	
Machine Learning and Pattern Recognition Series, 2015.	

	T 1	4	3.4.	. 1	11	//3	<i>r</i> 1		т			// 1	\	,	т.	T·11	
2	Tom. N							nıne	e L	ear	nıng	, J	McC	rav	v F	1111	
	Internat	tion	al E	Edit	ion	101	17										
REFI	ERENCE	S:															
1	Ethem A	Alpa	ayd	in,-	–In	tro	duc	tior	ı to	Ma	chin	e Le	arni	ng	, Th	ird	
	Edition	, Pre	enti	ce I	Hal	l of	Ind	lia, i	201	5							
2	Christopher Bishop, -Pattern Recognition and Machine																
	Learning , Springer, 2006.																
3	Kevin P. Murphy, —Machine Learning: A Probabilistic																
	Perspective, MIT Press, 2012.																
								POs PSOs									
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	-	1	1	-	-	-	1	1	2	-	-	
	2	3	2	1	1	-	-	-	-	-	-	1	-	3	-	-	
	3	3	2	1	1	-	-	-5-	-	- 1	-	1	- 5	3	-	-	
	4 .oow	2	1	1/2	-	-	-3	4	-1		(1	A	2	20	1	
,	5	3	2	1	1	-	1	-	-/	4	-	1	-	3	-	ï-	
1	6	3	2	1	1	1	4		1	1	1	1		3	1	1	
O.	verall	2	2	1	1	1	1	1	1	1	1	1	1	2	1	1	
Cor	relation	3	2	5	1	1	1	1	1	1	1	1	1	3	1	1	
Reco	mmende	d by	Во	ard	of S	Stud	lies	13-11-2024									
	Approved						3rd ACM Date 30-11-2024										

23AD511	STATISTICS FOR AI AND ML	L	T	P	C
		3	0	2	4

COURSE OBJECTIVES:

- To use univariate analysis on various applications
- To perform bivariate analysis on any given dataset
- To apply Inferential statistics to various datasets
- To apply variance and draw inferences from the outcome
- To develop regression models to correlate the attributes
- To build time series analysis

UNIT I DESCRIBING DATA I

9

Frequency distributions – Outliers – relative frequency distributions – cumulative frequency distributions – frequency distributions for nominal data – interpreting distributions – graphs – averages – mode – median – mean – averages for qualitative and ranked data – describing variability – range – variance – standard deviation – degrees of freedom – interquartile range – variability for qualitative and ranked data

UNIT II REGRESSION ANALYSIS AND TIME SERIES

9

Relationship between attributes using Covariance and Correlation - Relationship between multiple variables: Regression (Linear, Multivariate) in prediction - Residual Analysis - Forecasting models - Trend analysis - Cyclical and Seasonal analysis - Smoothing; Moving averages; Box-Jenkins, Holt-winters, Autocorrelation; ARIMA

UNIT III DESCRIBING DATA II

9

Normal distributions – z scores – normal curve problems – finding proportions – finding scores – more about z scores – correlation – scatter plots – correlation coefficient for quantitative data – computational formula for correlation coefficient – regression – regression line – least squares regression line – standard error of estimate – interpretation of r2 – multiple regression equations – regression toward the mean

UNIT IV INFERENTIAL STATISTICS

9

Populations – samples – random sampling – Sampling distribution- standard error of the mean - Hypothesis testing – z-test – z-test procedure –decision rule – calculations – decisions – interpretations – one-tailed and two-tailed tests – Estimation – point estimate – confidence interval – level of confidence – effect of sample size

UNIT V ANALYSIS OF VARIANCE

9

t-test for one sample – sampling distribution of t – t-test procedure – t-test for two independent samples – p-value – statistical significance – t-test for two related samples. F-test – ANOVA – Two-factor experiments – three f-tests – two-factor ANOVA – Introduction to chi-square tests

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- Frequency distributions for Quantitative data and Qualitative data
- 2. Describing Data with Averages, Measures of variability
- 3. Normal Distributions, Correlation coefficient and scatter plots
- 4. Regression
- 5. Implementation of Z-Test One Sample Z-Test and Two Sample Z-Test
- 6. Implementation of Z-Test using Titanic case study
- 7. Implementation of T-Test one sample t-test
- 8. Implementation of T-Test Two sample t-test and Paired T-Test
- 9. Implementation of VARIANCE ANALYSIS (ANNOVA)
- 10. Demonstration of Linear Regression
- 11. Implementation of Time Series Analysis

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Outline	va	riou	ıs u	niv	aria	ate 1	tech	niq	ues	to a	maly	/se	the d	ata	
CO2:	Utilize	biva	aria	te a	ınal	lysis	s to	exp	olor	e th	e da	ıta				
CO3:	Apply s	stat	istic	al 1	net	hoc	ls to	o dr	aw	inf	eren	ces f	ron	n dat	a.	
CO4:	Apply A	AN	OV.	A n	netl	nod	to	dra	w iı	nfer	ence	e fro	m d	lata		
CO5:	Build n	nod	els i	for	pre	dict	tive	ana	alyt	ics						
CO6:	Construct time series analysis															
TEXT	Polosi C. Millo and John C. Millo "Challeties". Florenth															
1	Robert S. Witte and John S. Witte, "Statistics", Eleventh															
	Edition, Wiley Publications, 2017.															
2	Jake VanderPlas, "Python Data Science Handbook",															
	O'Reilly, 2016.															
REFE	ERENCES:															
1	Gupta,	S.C	C. a	ınd	Ka	apo	or,	V.I	<. (199	7) "	'Fur	ıdar	nenta	als	of
	Gupta, S.C. and Kapoor, V.K. (1997) "Fundamentals of Mathematical Statistics" Sultan Chand and Sons															
		PATRICIA	Sec.					- 40	W .	- 4			- 00			
2	Pratap	Da	nge	eti,	"St	tatis	stics	- 40	W .	- 4			- 00	ing",	Pac	kt
2		Da	nge	eti,	"St	tatis	stics	- 40	W .	- 4			- 00			Ĺ
	Pratap Publish	Da	nge	eti,	"St	tatis	stics)17	o fo	W .	- 4		e Le	earn		Pac SO:	Ĺ
	Pratap	Da	nge	eti,	"St	tatis	stics)17	s fo	W .	- 4		e Le	- 00			Ĺ
	Pratap Publish COs	Daing 1 2	nge Lto	eti, 1, 2 3	"St 1 Ju 4	tatis 1 20 5 1	stics 017 F 6	o fo	or N	Mac	10 -	11 1	12 1	P. 1 2	SO:	5
	Pratap Publish COs	Daing 1 2 3	Ltc 2 1 2	eti, 1, 2: 3 -	"St 1 Ju 4 -	tatis 1 20 5 1	stics 017 F	POs 7	or N	Mac	hine	11 1	earn	P 1 2 3	SO: 2 1	5
	Pratap Publish COs 1 2 3	Daing 1 2 3 3	2 1 2 2	3 - 1	"St 1 Ju 4 - 1	tatis 1 20 5 1 1 1	stics 017 F 6	POs 7	or N	Mac	10 -	11 1 1	12 1	P. 1 2 3 3	SO: 1 1 1	5
	Pratap Publish COs 1 2 3 4	Daing 1 2 3 3	2 1 2 2 2	3 - 1 1	"St 4 - 1 1 1	5 1 1 1 1	stics 017 F 6 1	POs 7	or N	Mac	10 -	11 1 1 1	12 1	P 1 2 3 3 3	SO: 2 1 1 1	3 -
	Pratap Publish COs 1 2 3 4 5	Daing 1 2 3 3 3 3	2 1 2 2 2 2	3 - 1 1 1	"St Ju 4 - 1 1 1 1 1	5 1 1 1 1 1	stics 017 F 6 1	POs 7	or N	Mac	10 -	11 1 1 1 1	12 1	P 1 2 3 3 3 3	SO: 1 1 1 1	3
	Pratap Publish COs 1 2 3 4 5 6	Daing 1 2 3 3	2 1 2 2 2	3 - 1 1	"St 4 - 1 1 1	5 1 1 1 1	stics 017 F 6 1 -	POs 7	or N	Mac	10 -	11 1 1 1	12 1	P 1 2 3 3 3	SO: 2 1 1 1	3
Or	Pratap Publish COs 1 2 3 4 5	Daing 1 2 3 3 3 3	2 1 2 2 2 2	3 - 1 1 1	"St Ju 4 - 1 1 1 1 1	5 1 1 1 1 1	F 6 1	POs 7	or N	Mac	10 -	11 1 1 1 1	12 1	P 1 2 3 3 3 3	SO: 1 1 1 1	3
Or	Pratap Publish COs 1 2 3 4 5 6 verall	Daing 1 2 3 3 3 3 3	2 1 2 2 2 2 2 2	3 - 1 1 1 1	"Si Ju 4 - 1 1 1 1 1	5 1 1 1 1 1 1	1 1	Os 7 1 1	8 1	9 - - - - 1	10 - - - - 1	11 1 1 1 1 1	12 1 - -	P 1 2 3 3 3 3 3	SO ₈ 2 1 1 1 1 1	3 1

23AD52	21	MACHINE LEARNING	L	T	P	C
		LABORATORY	0	0	4	2
COURS	SE OBJ	ECTIVES:	1			
• T	o unde	erstand the data sets and apply suitable	e alg	ori	hm	ıs
		ting the appropriate features for analy				
• 1	o learn	to implement supervised machine le	arnir	ıg		
a	lgorith	ms on standard datasets and evaluate	the			
p	erform	ance.				
		riment the unsupervised machine lear		,		
	0	ms on standard datasets and evaluate	the			
	erform					
		l the graph based learning models for	stan	dar	d	
	lata set					
		pare the performance of different M			ithr	ns
		ect the suitable one based on the appli	catio	n		
PRACT	2011	E D 6				
1.		ing with Python packages - Numpy	, Sci	ру,	Sci]	κit∙
2		Matplotlib				
2.		amount prediction using linear reize the interpretation	egres	SS101	n a	ma
3.		written character recognition using ne	ural	net	TA7O1	rke
4.		fication of Email spam and MNIS				
1.		ort Vector Machines.				_
5.		eting Diabetes using decision tree				
6.		cations of Random Forest and AdaB	oost	ens	sem	ble
	techni					
7.		ans clustering for Euclidean distance r	netri	С		
8.		rest Neighbor algorithm				
9.	Appli	cations of dimensionality reduction	tech	niqı	ıes	on
	any da			_		
10.	Mini I	Project				
		TOTAL	: 30	PER	OI	DS

	. Willia i Toject
	TOTAL: 30 PERIODS
COL	JRSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Infer the data sets and apply suitable algorithms for selecting
	the appropriate features for analysis.
CO2	Make use of supervised machine learning algorithms on

	standard datasets and evaluate the performance.															
CO3:	Experin	nen	t v	vith	n t	he	un	sup	erv	isec	d n	nach	ine	lea	rni	ng
	algorith	ıms	o	n	sta	nda	rd	da	itas	ets	an	d e	evalı	ıate	t	he
	performance.															
CO4:	Build the graph based learning models for standard data															
	sets.															
CO5:	Compare the performance of different ML algorithms and															
	select the suitable one based on the application.															
CO6:	Infer the data sets and apply suitable algorithms for selecting															
	the appropriate features for analysis.															
	COs						I	POs						I	PSC	s
'	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	1	1	-	-	-	1	1	2	-	-
	2	3	2	1	1	_	-	Į.	-	-	-	1	- 5	3	-	-
	3 POW	3	2	1	1	-	-2	7	-7	9	-	1	A	3	4	-
	4	3	2	1	1	-		-	-(1	Y-	-	1	-	3	-	ř-
Ĭ	5	2	1	1	4	1	(Ó	1	A	į,	1	1	2	-	-
Į.	6	2	1	<i>(</i> -	+	1	ı	7	1	1	1	1		2	1	1
	verall relation	3	2	1	1	<u>d</u> (1	10	1	d _F	1	CH	No	3	4)	1
Reco	mmende	d by	Во	ard	of S	Stud	ies	13-	11-2	2024	NIVER	SITY	AUT	DNO)	MOU	5
	A	ppr	ove	d				3rd	AC	CM		Date	9	30-1	1-20	024

23AD522	MINI PROJECT	L	T	P	C
		0	0	3	2

COURSE OBJECTIVES:

- Encourage students to apply foundational theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork and effective communication.
- Train students in basic research methodology, technical documentation, and presentation techniques to articulate project outcomes clearly.
- Enhance students' ability to systematically design, analyze, and evaluate simple prototypes or models.
- Prepare students for real-world engineering challenges and lay the foundation for multidisciplinary teamwork and problem-solving in advanced projects.

COURSE DESCRIPTION:

This course serves as an introductory platform for students to apply the foundational knowledge acquired from their core and interdisciplinary subjects in a practical setting. This course enables students to work on small-scale, department-relevant projects that focus on problem identification, basic design, and preliminary prototype development. With limited prior expertise, students will explore the process of translating theoretical concepts into tangible solutions, fostering creativity, teamwork, and critical thinking. The course emphasizes hands-on communication, and project documentation, laying a strong foundation for advanced projects and professional challenges in later semesters.

PROJECT OUTLINE:

Week 1	Course Orientation and Topic Selection
Week 2	Problem Definition and Objective Setting

Week 3	Literature Review and Research
Week 4	First Review and Feedback
Week 5	Problem Refinement and Research Gap Identification
Week 6	Conceptual Design and Initial Approach
Week 7	Methodology and Project Planning
Week 8	Second Review and Project Evaluation
Week 9	Design Refinement and Testing
Week 10	Resource Identification and Budget Estimation
Week 11	Report Writing and Presentation Preparation
Week 12	Third Review Presentation and Submission of Thesis
TXIATIAT	IONI

EVALUATION:

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The project should focus on topics from first three or four semester (whichever is applicable) subjects / industry demand topics, or futuristic technologies. It is recommended for Faculty of Aeronautical Engineering, Civil Engineering, and Mechanical Engineering students, the project should demonstrate an understanding of first principles of engineering.
- Similarly for students of Faculty of Computer Science Engineering, the project may involve programming using Python or C language. For Faculty of Electronics and Communication Engineering, the student project shall

- incorporate appropriate techniques and systems relevant to the field. For the students of Faculty of Fashion Technology, the project based on material innovations, or technology in fashion is recommended.
- The evaluation will focus on how well the project is structured, including clarity and logical flow in both oral presentations and written texts.
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability, innovation, and SDG-aligned goals.
- The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content.

COU	RSE OUTCOMES:
4	After completion of the course, the students will be able to:
CO1:	Apply basic engineering principles to solve simple problems.
CO2:	Choose relevant sources to understand the current
	knowledge and identify areas to improve.
CO3:	Utilise basic tools and techniques to test simple solutions.
CO4:	Interpret the impact of engineering solutions on society
	and the environment.
CO5:	Combine in teams to plan and complete projects within
	given constraints.
CO6:	Develop comprehensive technical reports and deliver
	structured presentations to effectively convey project
	outcomes.

COs						P	Os						P	SO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
2	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
3	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
4	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
5	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
6	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
Overall	3)	1	1	1	1	1	3	2	2	2	1	2	1	3
Correlation	3	2	1	1	1	1	1	3	2	4	4	1	3	1	3
Recommende	d by	by Board of Studies 13-11-2024													
A	ppı	ove	ed				3rc	AC	CM		Date	j	30-11-2024		

23ES	591	APTITUDE AND LOGICAL	L	T	P	C							
	REASONING -2 0												
COU	RSE OF	BJECTIVES:	ı										
•	To im	prove the problem solving and logi	cal	thin	king	7							
		of the students.				,							
•	To acq	uaint the student with frequently aske	d pa	tter	ns ir	ı							
	quanti	tative aptitude and logical reasor	ning	du	ring	5							
		s examinations and campus interviews	S										
UNI	ГΙ					4							
Prob	ability, I	Permutation & Combination, Algebra,	Prol	olem	s or	1							
ages		-											
UNI	ГІІ					4							
Mens	suration	, Logarithms, inequalities and modulu	s, Sy	llog	ism	:							
UNI	ΓIII					4							
Dire	ctions, 1	ogical sequence words, number ser	ies,	Ana	alyt	ical							
Reas	oning	DODREAL	- 4		4	3							
UNI	ΓΙΥ	II o				4							
Blood	d relatio	n <mark>, Clo</mark> ck and Calendar, Picture puzzles	s \										
UNI						4							
Data	sufficie	ncy, cube and cuboids, odd man out											
	ONE	TOTA	L: 20	PE	RIO	DS							
COU	RSE OU	JTCOMES: AFFILIATED TO ANNA UNIVERSITY	AU	TONO	MOU	5							
	After co	empletion of the course, the students w	rill b	e ab	le to) :							
CO1:		concepts of probability, permutation, a	ınd										
		ation to solve real-world problems.											
CO2:		lgebraic problems and age-related pro	blen	ns us	sing								
)	approaches and techniques.											
CO3:	-	e and solve problems in mensuration,	loga	rith	ms,								
		equalities.											
CO4:	-	et and solve problems related to direct	ions	, log	ical								
	_	ce, and number series.											
CO5:		y and solve problems in logical reason	_	such	as								
00.1		sm, blood relations, clock and calendar		-									
CO6:		y and solve problems in logical reason		such	as								
	syllogis	sm, blood relations, clock and calendar	:										

TEX	Г ВООК	:														
1	Smith,	Joh	n. ".	AP	ΓIPΕ	EDL	4." 2	2nd	ed	., W	iley	Pub	olish	ers,	202	20.
2	Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand															
	Publishing.															
REFI	ERENCES:															
1	Agarw													lon-	-	
	Verbal	Rea	asor	ning	g." 21	nd e	ed.,	S. C	Chai	nd I	Publ	ishii	ng.			
	COs						P	Os						I	PSC	s
`	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	3	2	2	2	1	3	1	2	3	2	2
	2	3	2	2	2	3	2	3	2	1	2	1	2	3	2	3
	3	3	3	2	2	2	2	2	2	1	3	1	2	3	3	2
	4	2	3	2	1	2	3	1	2	3	3	2	3	2	2	3
	5	2	3	3	2	2	2	2	3	2	2	2	3	3	3	3
	6	3	3	2	2	3	2	3	3	2	2	1	2	3	3	2
O	verall	2	PRE	2		2	2	2	2	2	2	٠,	2	2	2	2

3 3

Recommended by Board of Studies

Approved

Correlation

2

3 3

3

3 2

3rd ACM

COLLEGE OF TECHNOLOGY

3 2 3

13-11-2024

Date

3 3

30-11-2024

SEMESTER -VI

23CE611	ENVIRONMENTAL SCIENCE	L	T	P	C
	AND ENGINEERING	3	0	2	4

COURSE OBJECTIVES:

- To provide basic knowledge on environment impact assessment
- To create an awareness on the pollutants in the environment
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products

9

• To develop simple climate models and evaluate climate changes using models

UNIT I INTRODUCTION TO ENVIRONMENT IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework

UNIT II MOVEMENT OF POLLUTANTS IN 9 ENVIRONMENT 9

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

UNIT III	ECOL	OG	ICAL R	ESTORAT	ΓΙΟΝ	V			9
Wastewate	er t	reat	ment:	anaerob	ic,	aerob	ic p	roc	ess,
methanog	enesis,	tre	eatment	schemes	for	waste	water:	da	airy,
distillery,	tanner	v,	sugar,	antibiotic	inc	dustries;	solid	w	aste

treatment: sources and management (composting, vermiculture and methane production, landfill. hazardous waste treatment).

UNIT IV ECOLOGICALLY SAFE PRODUCTS AND PROCESSES

9

Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation

UNIT V | CLIMATE CHANGE MODELS

9

Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date

TOTAL: 60 PERIODS

LIST OF EXPERIMENTS

- 1. Determination of Bio fuel parameters such as flash point and fire point.
- 2. Determination of density of biofuels.
- 3. Determination of BOD/COD in water.
- 4. Simulating the RCM and GCM model for different geographic conditions.
- **5.** Measurement of Pollutant in environment by Gaussian Plume model.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the importance of the process of Environmental impact assessment and its types.
- CO2: Illustrate the chemical processes and pollutant chemistry
- CO3: Identify the methods to solve environmental problems
- **CO4:** Apply the knowledge to develop ecofriendly products.
- CO5: Construct the various simple climate models for simulation

CO6:	Apply t	Apply the climate model simulation to monitor climate														
	change															
TEX	Г ВООК	S:														
1	David .E Neelin "Climate Change and Modelling",															
	Cambridge University Press, California 2012.															
2	Evans,	G	.G.	8	τ	Fui	lon	g,	J.	2	010.	E	nvir	onn	nen	tal
	Biotech	nol	ogy	: Th	eor	y ar	nd A	٩pp	lica	tior	n (2n	d ed	litio	n). V	Vile	ey-
	Blackwe	ell I	^p ubl	lica	tion	ıs.										
3	Pani, B	. 20	007.	Te	xtb	ook	of	Er	vir	onn	nent	al C	Chen	nistr	y.	IK
	internat															
4	N.S. R	am	an	,	A.F	₹.	Gaj	bhi	ye	&	S.R	. K	Chan	des	hw	ar,
	Environ	ıme	nta	l Ir	npa	ct	Ass	ess	mer	nt,	2014	,IK	Inte	rna	tion	nal
	Pvt Ltd.															
REF	ERENCE	S:				_										
1	Carson	(190	07-1	964	l). E	nvi	ron	me	nt C	Cons	serva	ation	n-bo	ok	W	
2	Encyclo	рає	edia	of	En	viro	nn	ent	al I	ssu	es b	y C:	raig	W.	Al	lin
Į.	&F	rok	e.						. 1							
3	Encyclo	рає	edia	O	f 1	Env	iro	nme	enta	1 9	stud	ies	by	W	illia	ım
1	Ashwor	th.	4	4												
4	Climate	Ch	ang	ge a	nd (Clir	nat	e M	ode	eling	g- Ki	indle	e Ed	itio	n.	
5	Environ	me	nta	lly-	Frie	end	ly I	roc	luct	de	velo	pme	ent -	Ebe:	rha	nd
	Abile ,R	lein	er A	۱nd	erl,	200	5									
	COs]	POs						ŀ	PSC	s
`	205	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	1	-	-	-	-	-	2	-	-
	2	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
						3	2	-	-	-	-	1	3	-	-	
	6	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	verall	3	2	1	1	_	3	2	_	_	_	_	1	3	_	_
	relation															
Reco	Recommended by Board of Studies					ies					30-11-2024					
	Approved						3rd	AC	\mathbf{M}		Date	•	30-	11-2	2024	

23AD611	FUNDAMENTALS OF DEEP	L	T	P	C
	LEARNING	3	0	2	4

COURSE OBJECTIVES:

- To understand the basic ideas and principles of neural networks.
- To understand the basic concepts of deep learning.
- To appreciate the use of deep learning applications.
- To know the applications of Deep learning techniques to NLP
- To build solutions for real world problems.

UNIT I	FUNDAMENTALS OF DEEP	9
	NETWORKS	

Introduction-Linear Algebra-Probability and Information Theory-Numerical Computation Machine Learning Basics.

UNIT II DEEP NETWORKS: MODERN 9 PRACTICES

Deep Feedforward Networks: Simple Deep Neural Network-Generic Deep Neural Network Computations in Deep Neural Network-Gradient-Based Learning. -Regularization for deep learning: L2 regularization-L1 Regularization-Entropy Regularization-Dropout-Data augmentation. Optimization for Training deep models: Learning Differs from Pure Optimization Challenges in Neural Network Optimization-Stochastic Gradient Descent.

UNIT III CONVOLUTIONAL AND RECURRENT 9 NEURAL NETWORKS

Introduction-Convolutional Operation-Pooling-Data Types-Convolution Algorithms

Convolutional Networks with Deep Learning. Sequence Modeling: Recurrent and Recursive Nets: Introduction-Auto-Completion-Unfolding Computational Graphs-Recurrent Neural Networks. Types of RNNs-Bidirectional RNNs-Sequence-to-Sequence Architectures-Deep Recurrent Networks-Long-Term Dependencies; Gated Architecture: LSTM

UNI	Γ IV DEEP LEARNING RESEARCH	9
Linea	ar Factor Models-Auto encoders: Undercomp	lete
Auto	encoders-Regularized Autoencoders Stochastic Encoders	ders
and	O O	vith
	pencoders; Deep Generative Models; Variation	nal
	encoders-Generative adversarial networks.	
UNI		9
	NLP	
	duction to NLP and Vector Space Model of Semantics - W	
Vecto	<u> </u>	
	inuous Bag-of-Words model (CBOW) - Glove - Evaluati	ons
and A	Applications in word similarity	200
	TOTAL: 30 PERIO	DDS
	CTICAL EXERCISES:	
1.	Solving XOR problem using DNN.	
2.	OWENDA	>
3.		_
4.		
5.	Language modeling using RNN.	
6.		
7.	architecture.	1
8.	Machine Translation using Encoder-Decoder model.	
9.	Image augmentation using GANs.	
10	. Mini-project on real world applications.	
	TOTAL:30 PERIO	ODS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Illustrate the role of deep learning in machine learning	g
	applications.	
CO2:	Design and implement deep learning applications.	
CO3:	Analyze different deep learning models in image related	l
	projects.	
CO4:	Design and implement convolutional neural networks.	
CO5:	Summarize the applications of deep learning in NLP a	and
	image processing	

image processing

CO6:	Design							ГМ	cor	ncej	ots t	o bu	ild s	solı	ıtio	ns
		or real world problems.														
TEXT	г воок															
1		ın Goodfellow, Yoshua Bengio, Aaron Courville, "Deep														
			", MITPress,2018. Chollet, "Deep Learning with Python", Manning													
2						eep) Le	earr	ing	wi	ith F	yth	on",	Ma	ann	ing
	Publica		ns,	201	8											
REFE	ERENCE															
1	Amit k															
	Amlan 2022.	Ch	akr	aba	rti	"De	eep	Lea	arni	ing	", Pe	arsc	on E	duc	atio	on,
2	Li Den	g, I	Oon	g, "	Yu	, De	eep	Lea	arni	ng:	Me	thoc	ds ar	nd		
	Applica															
3	Charu	C. 1	Agg	arv	val,	"N	leu	ral l	Net	wo	rks a	and	Dee	р		
	Learnir	ng:	ΑĨ	ext	boo	ok",	, Sp	rin	ger	Int	erna	tion	ıal	-		
	Publish	ning	z, 20	018.				4								
4	Nikhil	Jikhil Buduma and Nicholas Locascio, Fundamentals of														
8		Deep Learning: Designing Next Generation Artificial														
	Intellig	gence Algorithms, O'Reilly Media, 2017.														
5	Stone,]															1
1	Introdu															100
	Sebtel 1															
6	Navin									arn	ing	with	LAUTO			5
	Applica	atic	ns	Usi	ng	Pyt										
(COs			1	1		ı	POs					1		PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	1	1	1	-	-	1	1	2	1	1
	2	3	2	1	1	1	-	-	1	-	-	1	-	3	1	1
	3	3	3	2	2	1	-	-	1	-	-	1	-	3	1	1
	4 3 2 1 1 1 -				-	-	1	-	-	1	-	3	1	1		
	5 2 1 1 -						-	-	1	-	-	1	-	2	1	1
	6 3 2 1 1 1 - 1 1 1 1 - 3 1 1									1						
	Overall 3 2 1 1 1 1					1	1	1	1	1	1	1	3	1	1	
	elation											_				
Keco	Recommended by Board of Studies 13-11-2024 Approved 3rd ACM Date 30-11-2024															
	A	ppr	ove	d				3rd	AC	M		Date	:	30-1	1-2(124

23AD612	AI IN IOT APPLICATIONS	L	T	P	C
		3	0	2	4
COURSE	OBJECTIVES:		J		
• To s	study the fundamentals of IoT				
• To s	study various communication principles for	or I	Тс		
• To s	study the fundamentals of AI in IoT.				
• To s	study different AI algorithms used for IoT				
• To s	study the applications of AI in IoT.				
UNIT I	INTRODUCTION TO IoT				9
Introducti	on to Internet of Things (IoT),	.]	Func	tion	nal
Character	istics, Recent Trends in the Adoption of	Io	T, Ro	ole	of
cloud in I	oT, Societal Benefits of IoT:- Health Care	e, N	/lachi	ne	to
Machine	(M2M), Smart Transportation, Smart I	_ivi	ng, S	Sma	art
Cities, Sm	art Grid				
UNIT II	COMMUNICATION PRINCIPLES AN	D		4	9
G	TRANSDUCERS				
RFID, Zig	BEE, Bluetooth, Internet Communication-	IP	Addı	ess	es
- MAC Ac	ldresses, IEEE 802 Family of Protocols, I	/0	inte	rfac	es
Software	Components - Definition of Sensor, Sen	nso	r fea	ture	es,
Resolution	n, Classes, Different types of sensors, Actua	atoı	, Diff	ere	nt
types of A	ctuators, purpose of Sensors and Actuator	rs ir	ı IoT		
UNIT III	PRINCIPLES AND FOUNDATIONS C)F I	OT		9
	AND AI				
loT referen	nce model, loT platforms, loT verticals, Big	g da	ta ar	d l	ot,
Infusion of	of Al- data science in IoT, Cross-indus	stry	star	nda	rd
process for	r data mining Al platforms and loT platfor	ms	and [Гоо	ls,
	w, Keras, Datasets, The combined cycle				
dataset W	ine quality dataset, Air quality data.				
UNIT IV	ALGORITHMS FOR IoT				9
Classificat	ion using support vector machines, Maxi	imu	m m	arg	in

hyperplane, Kernel trick - Naive Bayes - Decision trees - Deterministic and analytic methods - Gradient descent method

Newton-Raphson method - Natural optimization methods Simulated annealing - Genetic algorithm for CNN architecture-Genetic algorithm for LSTM optimization- Deep reinforcement learning-Q learning-Q Networks.

UNIT V | APPLICATIONS

9

Continuous glucose monitoring- Hypoglycemia prediction using CGM data- Heart monitor- Digital assistants- Human activity recognition-HAR using wearable sensors- Smart Predictive maintenance using Alautomation-Predictive using Long Short-Term Memory- Predictive maintenance advantages and disadvantages-Electrical load maintenance forecasting in industry-STLF using LSTM- Components of a smart city-Smart traffic management-Smart parking- Smart waste management-Smart policing-Smart lighting-Smart governance-Cities with open data-Adapting lot for smart cities and the necessary steps.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Explore and analyze various IoT platforms, including data handling techniques, using example datasets like air quality and power plant datasets.
- 2. Use the wine quality dataset to classify wine quality using logistic regression and evaluate performance.
- 3. Implement an SVM classifier for the wine dataset, using the kernel trick to improve classification.
- 4. Implement ensemble techniques on IoT-related data (e.g., air quality) and evaluate model performance improvements.
- 5. Implement a genetic algorithm to optimize hyperparameters in a CNN model for IoT data.
- 6. Implement Q-learning to control a simple IoT system, such as temperature control in a smart home.
- 7. Implement a vanilla GAN in TensorFlow to generate synthetic images based on IoT image data (e.g., human activity from wearable sensors).

- 8. Use LSTM to predict maintenance needs based on equipment data from IoT sensors.
- 9. Create a model that uses IoT sensor data to predict and manage traffic in a smart city.
- 10. Project: Develop a comprehensive IoT-based solution for monitoring and managing environmental conditions in smart cities, focusing on air quality, traffic congestion, and waste management.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Illustrate the basic architecture of Internet of Things based Devices
- CO2: Illustrate wireless communication systems.
- CO3: Summarize IoT reference models, data science integration, and AI platforms relevant to IoT
- **CO4:** Develop models based on classification algorithms
- CO5: Develop algorithms for IoT tasks, optimizing complex processes like CNN and LSTM models.
- CO6: Apply AI-based solutions for various real time IoT applications

TEXT BOOKS:

- Adrian Mcewen, Hakin Cassimally, "Designing The Internet of Things", First Edition, Wiley, 2014.
- 2 Keysight Technologies, "The Internet of Things: Enabling Technologies and Solutions for Design and Test", Application Note, 2016.

REFERENCES:

- 1 Vijay Madisetti, Arshdeep Bahga," Internet of Things A Hands-On- Approach",2014,
- 2 Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill.2nd edition June 2022 2. Pethuru Raj, Anupama C. Raman," The Internet of Things Enabling Technologies, Platforms, and Use Cases", Taylor and Francis

	group.	group. February 2017														
3	Peter V	Peter Waher, "Mastering Internet of Things: Design and														
	create y	oui	ow	n Io	оΤа	app	lica	tior	ıs u	sing	g Ra	spbe	erry	Pi 3"	, Fi	rst
	Edition	, Pa	ckt	Pul	blis	hin	g, 2	018								
4	Vijay N	Лad	liset	ti,	Ars	shd	eep	Ва	hga	a,"	Inte	rnet	of	Thir	ıgs	A
	Hands-	On-	- Ap	pro	oac	h",2	2014	1,								
(COs	POs PSOs														
`	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	-	-	1	-	2	-	1	2	1	2	-	2
	2	2	1	1	-	-	1	-	2	-	1	2	1	2	-	2
	3	2	1	1	-	1	2	-	3	-	1	3	-	2	1	3
	4	3	2	1	1	1	2	-	3	-	1	3	-	3	1	3
	5	3	2	1	1	-	3	3	3	3	3	2	1	3	ı	3
	6	3	2	1	1	d	1		2	-	1	2	1	3	1/	2
	verall relation	3	2	1	1	1	2	1	3	1	2	3	1	3	1	3
Reco	Recommended by Board of Studies 13-11-2024															
	Approved							3rd ACM Date 30-11-2					-202	4		

23AD621	PROJECT WORK PHASE-1	L	T	P	C
		0	0	4	2

COURSE DESCRIPTION:

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

COURSE OBJECTIVES:

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

PROJECT OUTLINE:

Week 1	Orientation and course overview. Formation of project
	teams and approval of topics by HoD.
Week 2	Initial meeting with supervisors. Define problem
	statement and objectives
Week 3	Literature review: Research methodologies and topic-
	specific studies.
Week 4	Zeroth Review.

Week 5	Refinement of literature review and identification of
	research gaps.
Week 6	Identification of Base Paper.
Week 7	First Review.
Week 8	Conceptual design discussions and brainstorming
	solutions.
Week 9	Narrowing done on the exact work.
Week 10	Completion of first stage of the Project.
Week 11	Development of detailed conceptual design and
	methodology.
Week 12	Incorporation of feedback and refinement of design
	and methodology.
Week 13	Second Review.
Week 14	Compilation of Phase 1 results, report writing, and
45	presentation preparation.
Week 15	Final Viva Voce Presentations.
Individual	meetings will be set up on a need's basis in conjunction

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is required to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDG-aligned goals.

Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written communication, ensuring effective delivery of technical content. COURSE OUTCOMES:

After com	pletion of the co	urse, the students	will be able to:

- **CO1:** Develop feasible solutions by analyzing complex engineering problems using foundational knowledge, mathematics, and science.
- **CO2:** Survey literatures to identify gaps, define research questions, and propose designs and methods for solving engineering problems.
- CO3: Make use of modern tools to check the feasibility of the solutions effectively.
- **CO4:** Evaluate societal and environmental impacts of solutions while incorporating sustainability and ethical practices.
- CO5: Combine in teams to plan, manage, and lead projects within professional and economic constraints.
- CO6: Formulate technical reports, deliver presentations, and engage in lifelong learning to adapt to new technologies.

			7/10			_			-						
COs	RR	EALL			01	F	Os	O E	U		T.	11214	PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	2	2	3	3	3	3	3	3	1	3
2	3	3	2	2	1	2	2	3	3	3	3	3	3	1	3
3	3	2	1	1	1	2	2	3	3	3	3	3	3	1	3
4	3	3	3	3	1	1	2	3	3	3	3	3	3	1	3
5	3	3	3	3	1	2	2	3	3	3	3	3	3	1	3
6	3	3	3	3	1	2	2	3	3	3	3	3	3	1	3
Overall Correlation	3	3	3	3	1	2	2	3	3	3	3	3	3	1	3
Recommended	Recommended by Board of Studie								13-11-2024					•	
Approved							3rd ACM Date					:	30-11-2024		

23AD622	TECHNICAL TRAINING	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

COURSE OBJECTIVES:

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

COURSE OUTCOMES:

A	fter completion of the course, the students will be able to:
CO1:	Identify specific domain from the enrolled branch and to
	get training preferable in computer-oriented platform.
CO2:	Survey and apprehend the learning modules in the
	training program and to become expert in the specific
	domain.

CO3:	Apply theoretical learning in the practical environment
	and enhance the skillset of learner.
CO4:	Estimate the learning using available data.
CO5:	Defend a presentation about the learning done in the
	specified skillset.
CO6:	Construct a technical report about the training.

GUIDELINES:

- More than one training program may be given depending on availability and interest of the students. One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

EVALUATION PATTERN:

Training Coordinator:

50 marks (Training Manual - 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall

approve the entries in the Training Manual during the weekly meeting with the student), Attendance – 10,).

Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

	Training duration - 30 Hou										urs				
COs	COs												PSOs		
COS	1 2 3 4 5 6 7 8 9 10 11 12									12	1	2	3		
1	3	2	1	1	1	2	1	-	1	•	§ •	3	3	-	1
2	3	3	2	1	-	2	1	-)	1	-	-	3	3	-	-
3	3	3	3	3	3	-	1	1	1	2		3	3	3	1
4	3	3	3	2	2	-	-	1	,	3	-	3	3	2	- 1
5 6/4/5	3	3	3	2	(1(2	Æ	2	Θ	-2	:EI-	2	3	(1)	2
6	3	3	3	3	2	2	15	2	3	3	R54TY	3	130	2	2
Overall 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									3	2	2	2			
Correlation	3	3	3	3	2	2	1	2	-	3	1	3	3	2	2
Recommended	by	Boa	rd o	of St	udi	es	13-	11-2	2024	Į.				•	·
Approved							3rd ACM Date 30-11-							11-20	024

23AD623	TECHNICAL SEMINAR - 1	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned

Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Identify	aca	ade	mic	do	cun	nen	ts f	ts from the literature which are							
	related	related to her/his areas of interest.														
CO2:	Survey	and	lap	pre	her	nd a	n a	cad	em	ic d	ocui	nen	t fro	m th	ie	
	literatur	iterature which is related to her/ his areas of interest.														
CO3:	Compile	Compile a presentation about an academic document.														
CO4:	Estimate	e th	e C	ont	ent	s us	sing	av	aila	ble	liter	atuı	e.			
CO5:	Defend a presentation abo							t an	aca	ade	mic	docı	ume	ent.		
CO6:	Construct a technical report.															
	COs							Os						PSOs		
COs 1 2 3						5 6 7 8 9 10					10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6 3 3 2 1 1 1						1	1	2	2	2	2	2	3	1	2
Overall 3 3 2 1 1 1							1	1	2	3	3	2	2	3	2	2
Reco	Recommended by Board of Studies						lies	13-11-2024								+3
	Approved							3rd ACM Date 30-11-202							024	

ACERTATED TO ANNA UNIVERSITY | ALTONOMOUS

SEMESTER - VII

23AI)701	TECHNICAL COMPREHENSION	L	T	P	C
			2	0	0	2
PUR	POSE:					
То	provide	a complete review of the topics co	vere	ed i	n t	he
pr	evious	semesters, to ensure that a co	mpr	ehe	nsi	ve
ur	nderstand	ing of the subjects is achieved. The str	ıder	nt w	ill '	be
		per the guidelines given by na				
		ns like GATE, TANCET etc. It will also l	-	stu	der	ıts
		nterviews and competitive examination	ns.			
COU	RSE OU	TCOMES:				
	After cor	mpletion of the course, the students wil	ll be	abl	e to):
CO1:	Analyse	the phenomena involved in the concer	ned	pro	ble	m
	and solv		4			
	45	rinciples to new and unique circumsta		27.7	~	
CO3:	Estimate	concepts and principles of concerned	brar	ıch (of	
	engin <mark>e</mark> er	r <mark>ing.</mark>	1			
CO4:	Distingu	ish between facts and opinion in the en	ngin	eeri	ng	
	field.	COLLEGE OF TECH	VO.	10	GV	
CO5:	Deduct of	cause-and-effect relationships of any re	latic	nsh	iip.	5
CO6:	Interpre	t data from charts and graphs and judg	e th	e		
	relevano	e of information.				
GUII	DELINES	:				
•	The D	Department shall form an Internal	As	sess	sme	nt
	Comm	ittee for the Comprehension with	h A	Acac	lem	ic
	coordi	nator for that class as the Comprehensi	on I	nstr	uct	or
	and Cl	ass coordinator as member.				
•	Instruc	tor shall provide required input to the	neir	stu	der	ıts
	regard	ing the overview of all topics covered in	the	pre	vio	us
1						

Periodic tests can be conducted to assess students.

semesters.

COs	COs												PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	1	-	2	1	-	-	•	-	1	3	-	-
2	3	2	1	1	-	1	1	-	-	1	-	1	3	-	-
3	3	3	3	3	3	-	-	3	-	3	-	3	3	3	3
4	3	2	1	1	2	-	-	1	-	3	-	3	3	2	1
5	5 3 3 3 2 1 2 - 2 - 2							3	1	2					
6	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2
Overall	3	3	3	3	3	2	1	2		3		3	3	3	2
Correlation	3	3	3	•	3		1	4		3	1	3	•	3	
Recommen	Recommended by Board of							11-	202	4					
9	Studies														
Approved							3rd ACM Date 30-11						1-2	024	

23AD711	GENERATIVE AI	L	T	P	C
		3	0	2	4

COURSE OBJECTIVES:

- Understand the historical evolution and significance of generative models in AI and distinguish them from discriminative models.
- Explain the architecture and functioning of various generative models, including GANs, VAEs, autoregressive models, and diffusion models.
- Analyze generative models applied to text, explore language model structures, attention mechanisms, and advanced techniques like Retrieval-Augmented Generation.
- Explore LSTM in action for retrieval.
- Examine advanced generative methods for creating paintings, music, and gameplay, including style transfer and reinforcement learning.
- Apply knowledge of open-source tools, programming frameworks, and deployment practices for training, fine-tuning, and deploying generative AI models.

UNIT I INTRODUCTION TO GENERATIVE AI AND FOUNDATIONS

Generative Versus Discriminative Modeling Advances in Machine Learning - The Rise of Generative Modeling - The Generative Modeling Framework - Probabilistic Generative Models - The Challenges of Generative Modeling - Structured and Unstructured Data - Deep Neural Networks - Keras and TensorFlow- Deep Neural Network - Loading the Data - Building the Model - Compiling the Model - Training the Model - Evaluating the Model - Improving the Model - Convolutional Layers - Batch Normalization - Dropout Layers

UNIT II	VARIATIONAL AUTOENCODERS (VAES)	9
Autoenco	lers - The Encoder - The Decoder - Joining the Enco	oder

to the Decoder - Analysis of the Autoencoder - The Variational Art Exhibition - Building a Variational Autoencoder - The Encoder - The Loss Function - Analysis of the Variational Autoencoder - Using VAEs to Generate Faces - Training the VAE - Analysis of the VAE - Generating New Faces - Latent Space Arithmetic - Morphing Between Faces

UNIT III GENERATIVE ADVERSARIAL NETWORKS (GANS 9

Ganimals - Introduction to GANs - The Discriminator - The Generator - Training the GAN

GAN Challenges - Oscillating Loss - Mode Collapse - Uninformative Loss - Hyperparameters - Tackling the GAN Challenges - Wasserstein GAN - Wasserstein Loss

The Lipschitz Constraint - Weight Clipping - Training the WGAN - Analysis of the WGAN - WGAN-GP - The Gradient Penalty Loss - Analysis of WGAN-GP

UNIT IV ADVANCED GENERATIVE MODELS

9

Apples and Organges - CycleGAN - The Generators (U-Net) - The Discriminators -Compiling the CycleGAN - Training the CycleGAN - Analysis of the CycleGAN - Creating a CycleGAN to Paint Like Monet -The Generators (ResNet) - Analysis of the CycleGAN - Neural Style Transfer -Content Loss -Style Loss -Total Variance Loss -Running the Neural Style Transfer -Analysis of the Neural Style Transfer Model - Long Short-Term Memory Networks - Tokenization -Building the Dataset - The LSTM Architecture - The Embedding Layer - The LSTM Layer - The LSTM Cell - Generating New Text -RNN Extensions -Stacked Recurrent Networks -Gated Recurrent Units -Bidirectional Cells - Encoder-Decoder Models

UNIT V FUTURE OF GENERATIVE AI

9

Five Years of Progress - The Transformer - Positional Encoding - Multihead Attention

- The Decoder - Analysis of the Transformer - BERT - GPT-2 - MuseNet - Advances Image Generation - ProGAN -Self-Attention GAN (SAGAN) - BigGAN - StyleGAN

Applications of Generative Modeling - AI Art - AI Music

TOTAL: 45 PERIODS

PRACTICALS:

- 1. Exploring Generative and Discriminative Models
- 2. Probabilistic Modeling and Generative Processes
- 3. Building a Basic Transformer for Text Generation
- 4. Experimenting with Prompt Engineering and GPT Models
- 5. Implementing a Basic GAN for Image Generation
- 6. Using a Variational Autoencoder (VAE) for Image Reconstruction
- 7. Style Transfer Using Neural Networks
- 8. Generating Music Using Recurrent Neural Networks (RNN)
- 9. Fine-Tuning a Pretrained Generative Model and Deploying on Hugging Face
- 10. Project: Develop a multimodal Generative AI application that generates text, images, and music based on user inputs.

PERIODS OUTCOMES:

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Compare between generative and discriminative models
- CO2: Illustrate VAE loss functions and the mathematical formulation
- **CO3:** Identify and address common training challenges in GANs
- **CO4:** Apply the models of GAN to various application
- CO5: Build models using Long Short-Term Memory Networks
- CO6: Apply generative AI to a real-world problem

TEXT BOOKS:

1 David Foster, "Generative Deep Learning", O'Reily Books, 2024

REF	REFERENCES:															
1	Denis Rothman, "Transformers for Natural Language															
	Processing and Computer Vision", Third Edition, Packt															
	Books, 2024															
2	Altaf Rehmani, "Generative AI for Everyone", BlueRose															
	One, 2024.															
COs		POs												PSOs		
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		2	1	-	-	-	-	-	-	2	1	3	3	2	-	-
2		2	1	-	-	-	-	-	-	2	1	3	3	2	-	-
3		3	2	1	1	-	-	-	-	-	-	1	-	3	-	-
4		3	2	1	1	-	-	-	-	-	-	1	-	3	-	-
5		3	2	1	1	-	-	1	-	-	-	1	-	3	-	-
6		3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
Overall Correlation		3	2	1	1	1	1	1	1	1	1	2	2	3	1	1
Recommended by Board of Studies 13-11-2024																
Approved								3rd ACM			Date			30-11-2024		

COLLEGE OF TECHNOLOGY

23AD721	PROJECT WORK PHASE-2	L	T	P	C
		0	0	6	3

COURSE DESCRIPTION:

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through fabrication, simulation, or experimental validation. Students will refine their designs, validate test problems, and commission setups for final testing. This phase emphasizes hands-on application, calibration, and demonstration of results, culminating in a final presentation and report submission.

COURSE OBJECTIVES:

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

PROJECT OUTLINE:

Week 1	Review of Phase 1 outcomes and refinement of proposed methodology.
Week 2	Material procurement/ software setup for simulation, and initiation of fabrication/simulation work.
Week 3	Intermediate fabrication/simulation work and initial testing or calibration, troubleshooting challenges.

Week 4	Second Review.
Week 5	Validation of test problem or refinement of prototype/simulation
Week 6	Optimisation of the test setup or solution trials, Data curation / uncertainty analysis
Week 7	Final testing of setup or simulation outcomes, Validation of Data.
Week 8	Third Review
Week 9	Demonstration of the solution with high level of data accuracy and precision.
Week 10	Compilation of Phase 2 results, report writing, and presentation preparation.
Week 11	Preparing or publishing of research article/ Filing or Grant of Patent
Week 12	Final Viva Voce Presentations.
Individua	mostings will be set up on a need's basis in conjunction

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.

Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project. **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply appropriate methodologies to implement solutions for complex engineering problems identified in phase -1 using hardware / software or both systems. CO2: Develop existing functional prototypes or simulations models by integrating theoretical and practical knowledge. **CO3:** Evaluate solutions ensuring compliance with design specifications. **CO4:** Appraise the performance of solutions by refining designs or improving algorithms for enhanced outcomes. CO5: Collaborate effectively with team members to plan, manage, and execute engineering projects adhering to ethical principles and professional standards. CO6: Prepare technical reports, impactful presentations that communicate solutions effectively. **POs PSOs** COs Overall Correlation

3rd ACM

Date

30-11-2024

Recommended by Board of Studies 13-11-2024

Approved

23AD722	TECHNICAL SEMINAR - 2	L	T	P	C
		0	0	4	2

PREAMBLE:

The course 'Technical Seminar 2' is intended to be continuation of Technical Seminar 1. It enables a B.E./B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10).

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

COURSE C	UTC	ON	1ES	:											
After					ne c	our	se,	the	stu	dent	s wi	11 be	abl	le to):
CO1: Identi	I: Identify academic documents from the literature which are related to her/his areas of interest.														
CO2: Surve	Survey and apprehend an academic document from the literature which is related to her/ his areas of interest.														
+	Compile a presentation about an academic document.														
CO4: Estim	Estimate the Contents using available literature.														
CO5: Defen	Defend a presentation about an academic document.														
CO6: Const	CO6: Construct a technical report.														
COs	POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
Overall Correlation	a 3	3	2	1	1	1)LI	1	2	3	3	2	2	3	2	2
Recommend	led by	Во	ard	of S	Stud	lies	13-	11-2	2024	NIVER	SITY	AUT	ONO)	MOU	5
	3rd ACM Date 30-11-20)24									

SEMESTER-VIII

23AD821	CAPSTONE PROJECT	L	T	P	С
		0	0	20	10

COURSE DESCRIPTION:

Prerequisites:

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

COURSE OBJECTIVES:

The Capstone Project should demonstrate the depth and extent of knowledge of students

During this course, students will

- Investigate and evaluate prominent literature connected to vour CP.
- Present a clearly articulated investigative framework, while situating projects within established academic

- practices and/ or ideas.
- Develop and create practical resources (either computational or experimental) for the concerned area of interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

PROJI	ECT	OU	TLIN	IE:

- ,	
Week 1	Identification problem.
Week 2	Literature review.
Week 3	Preliminary work.
Week 4	First review.
Week 5	Completion of first stage of the Project methodology.
Week 6	Development.
Week 7	Testing & Validation.
Week 8	Second review.
Week 9	Repeatability.
Week 10	Report correction and Documentation
Week 11	Third review-Submission of paper for conference/journal
Week 12	Thesis Correction and Submission
T 1 1 1	1/ 1

Individual meetings will be set up on a need's basis in conjunction with developing work

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Take part in challenging practical problems and find solutions by formulating proper methodology.																	
CO2:	Plan research methodology to tackle a specific problem.																	
CO3:	Construct extensive study on particular research projects.																	
CO4:	Develop experimental and computational studies on innovative research projects.																	
CO5:	Estimate incremental study on existing research projects.																	
CO6:	Take part in real life engineering challenges and propose appropriate solutions.																	
	COs											PSOs						
	200	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
	2	3	2	3	3	2	3	2	3	2	3	2	3	3	2	3		
V V	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3		
	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		
1	5	2	3	3	3	3	3	3	3	3	3	3	3	2	3	_3		
	6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		
Corr	erall elation	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
Reco	mmende	d by	Во	ard	of S	Stud	ies	13-	11-2	2024								
	A	ppı	ove	d				3rd	AC	CM		Date	?	30-1	1-20)24		

VERTICAL 1: GENERIC COMPUTER ENGINEERING

23AD031 DIGITAL IMAGE PROCESSING L T P											
	C										
3 0 0	3										
COURSE OBJECTIVES:											
 Understand digital image processing basics and appl 	y										
transformations, operations, and enhancements.											
Apply image enhancement techniques in spatial and											
frequency domains to improve image quality.											
 Apply image restoration and multi-resolution analysis, 											
including noise modeling and wavelet transforms.											
 Explore image segmentation and feature extraction usin 	g										
edge detection, region-based segmentation, and method	ls										
like SIFT and SURF.											
 Understand machine learning in image processing 	3,										
focusing on classification and clustering techniques lik	æ										
SVM and unsupervised learning.											
UNIT I FUNDAMENTALS OF IMAGE PROCESSING	9										
Introduction to Image Processing - Applications - Digital Imagi	na										
System – Sampling and Quantization – Pixel Connectivity – Colo											
Models - Image Operations.											
UNIT II IMAGE ENHANCEMENT	9										
ONIT II INIAGE ENTIANCEMENT	9										
Image Transforms - Fourier Transform - Cosine Transform -											
Image Enhancement in Spatial and Frequency Domains - Grey											
Image Ennancement in Spatial and Frequency Domains - Grey											
Level Transformations – Histogram Processing – Spatial Filtering	<u>.</u>										
	g. 9										
Level Transformations – Histogram Processing – Spatial Filtering											
Level Transformations – Histogram Processing – Spatial Filtering UNIT III IMAGE RESTORATION AND MULTI-	9										
Level Transformations – Histogram Processing – Spatial Filtering UNIT III IMAGE RESTORATION AND MULTI- RESOLUTION ANALYSIS	9 ge										

		1
UNI		9
	EXTRACTION	
Imag	ge Segmentation – Edge Detection – Thresholding – Reg	gion-
_	d Segmentation - Feature Extraction - SIFT, SURF - Fea	_
Redu	action - Blob Detection - Segmentation Evaluation Metrics	s.
UNI	T V IMAGE PROCESSING APPLICATIONS	9
Imag	e Classifiers - Support Vector Machines - Image Clusterir	ng –
Hiera	archical Clustering - EM Algorithm - Face Recognitio	n –
Medi	cal Image Processing.	
	TOTAL: 45 PERIO	ODS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Outline the basics of image processing, including how im	ages
	are created, processed, and analyzed.	
CO2:	Make use of techniques to enhance image quality in	both
Î	spatial and frequency domains.	
CO3:	Apply image restoration techniques using multi-resolu	ıtion
	analysis.	
CO4:	Utilize different image segmentation techniques, such	h as
	edge detection and region-based segmentation.	US
CO5:	Apply feature extraction methods (e.g., SIFT, SURF)	
	understand the importance of feature reduction in in	nage
	processing tasks.	
CO6:	Interpret image classification and clustering algorithms	
	various image processing applications, such as o	bject
	recognition and image analysis.	
TEXT	Г BOOKS:	
1	Rafael C. Gonzalez, Richard E. Woods, 'Digital In	nage
	Processing', Pearson, Third Edition, 2010.	
2	Anil K. Jain, 'Fundamentals of Digital Image Process	ing',
	Pearson, 2002.	

DEE	ERENCE	c.														
				.1			· .	• • •	-				. ,	<u> </u>		
1	Kennetl	n K	. Ca	astle	ema	ın, '	D۱٤	gital	Im	age	e Pro	ocess	sing	, Pe	ears	on,
	2006.															
2	Rafael	C.	Go	nza	lez	, R	icha	ard	E.	W	oods	s, S	teve	n I	Edd	ins,
	'Digital	I	mag	ge	Pre	oces	ssin	g	usi	ng	M	ATL.	ΑΒ′,	Р	ear	son
	Education, Inc., 2011.															
3	D,E. D	ud	geo	n a	and	R	M.	M	erse	erea	u,	'Mu	ltidi	mei	nsio	nal
		Digital Signal Processing', Prentice Hall Professional														
	Technical Reference, 1990.															
4	William K. Pratt, 'Digital Image Processing', John Wiley, New															
_	York, 2002 5. Milan Sonka et al 'Image processing, analysis															
										•			`		-	
	and ma					DIO	OKE	:5/ (LOIE	:, VI	ikas	rub	115111	ng I	1100	ise,
	2nd edi	tioi	1, 15	199.				20							200	
	COs							POs	-				- 3		PSC	_
	WOO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	2	-	-	1	-	-/	-	1	2	1	2	-	ř-
1	2	3	2	1	1	1	2	1	-\	1	1	3	(-)	3	1	-
	3	3	2	1	1	1	2	7	1	1	1	3	-	3	1	_
	4	3	2	1	1	1	2	-	-	-	1	3	-	3	1	-
	5 CAVE	3	2	1	1	1	2	.E(ıΕ	Q)-	1	3	NO	3	1	_
	6	2	1	-	-	AFF	1	ED TO	1	NA.U	NIZE	2	1	2	MOU	1
O	verall	•		4	4	1			1	1	1	_	1	_	1	4
Cor	relation	3	2	1	1	1	2	-	1	1	1	3	1	3	1	1

23AD032 UNIFIED MODELING LANGAUGE	L	T	P	C
	2	0	2	3
COURSE OBJECTIVES:		1		
To learn the fundamentals of object orien	ted	so	ftw	are
development process.				
• To know the concepts of object oriented meth	odo	olog	y a	and
workflow.		O 1410	امناها	
To explain class design, interface types and polTo describe patterns and GUI programming	ym	огр.	IIISI	111.
 To study the various framework, multi-threading 	າດຈ	nd.	des	ion
pattern.	ig u	IIG.	acs	181
UNIT I UNIFIED PROCESS AND USE CASE				6
DIAGRAMS				
Introduction to OOAD with OO Basics — Unified Pro-	cess	-	UN	1L
diagrams – Use Case -Case study – the Next Gen	POS	sy	stei	m,
Inception -Use case Modelling — Relating Use cases	-	inc	luc	le,
extend and generalization — When to use Use-cases				ř
UNIT II STATIC UML DIAGRAMS				6
Class Diagram Elaboration - Domain Model	7	Fir	ndii	ng
conceptual classes and description classes - Ass	ocia	tion	ıs	_
Attributes - Domain model refinement - Finding	co	nce	ptu	ıal
class Hierarchies - Aggregation and Comp	osi	tior	lou:	_
Relationship between sequence diagrams and use case	ses	_ V	۷h	en
to use Class Diagrams				
UNIT III DYNAMIC AND IMPLEMENTATION	UM	L		
				6
DIAGRAMS				6
		Sy	rste	
DIAGRAMS		-		m
DIAGRAMS Dynamic Diagrams – UML interaction diagrams	/hei	n to	u	m se
DIAGRAMS Dynamic Diagrams – UML interaction diagrams sequence diagram – Collaboration diagram – W	/hei	n to am	u ar	m se
DIAGRAMS Dynamic Diagrams – UML interaction diagrams sequence diagram – Collaboration diagram – W Communication Diagrams – State machine diagrams	/hei agra dia	n to am igra	u ar m	m se nd
DIAGRAMS Dynamic Diagrams – UML interaction diagrams sequence diagram – Collaboration diagram – W Communication Diagrams – State machine di Modelling –When to use State Diagrams – Activity	/hei agra dia	n to am igra	u ar m	m se nd
DIAGRAMS Dynamic Diagrams — UML interaction diagrams sequence diagram — Collaboration diagram — W Communication Diagrams — State machine di Modelling –When to use State Diagrams — Activity When to use activity diagrams Implementation Diagrams	/hei agra dia	n to am igra	u ar m	m se nd

Information expert - Low Coupling - High Cohesion -

Controller Design Patterns — creational — factory method — structural — Bridge — Adapter — behavioural — Strategy — observer –Applying GoF design patterns — Mapping design to code

UNIT V TESTING

9

Object Oriented Methodologies — Software Quality Assurance — Impact of object orientation on Testing — Develop Test Cases and Test Plans

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Create standard UML diagrams using a UML modeling tool for a given case study, and how can the design be mapped to code and implemented in a three-layered architecture? Additionally, how can the developed code be tested to ensure it satisfies the Software Requirements Specification (SRS)
- 2. Identify a software system that needs to be developed.
- 3. Document the Software Requirements Specification (SRS) for the identified system.
- 4. Identify use cases and develop the Use Case model.
- 5. Ientify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.
- 6. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams
- 7. Draw relevant State Chart and Activity Diagrams for the same system.
- 8. Implement the system as per the detailed design
- 9. Test the software system for all the scenarios identified as per the use-case diagram.
- 10. Improve the reusability and maintainability of the software system by applying appropriate design patterns.
- 11. Implement the modified system and test it for various scenarios.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Summa	rize	e the	e ba	sic	con	cep	ts c	of U	ML	mo	delli	ing			
CO2:	Explain	the	e va	rioı	ıs o	bje	ct-o	rier	ited	de	sign	pro	cess			
CO3:	Illustrat	te d	yna	mi	: UI	ML	dia	gra	ms	use	d fo	r sof	twa	re d	esię	gn
CO4:	Identify	va va	rioı	1S S	cen	aric	s ba	asec	d or	ı so	ftwa	re re	equi	rem	ent	s
CO5:	Constru	ıct	UM	IL b	oase	ed s	oftv	war	e d	esię	gn ir	nto j	patte	ern-	bas	ed
	design	usir	ng d	lesi	gn p	att	ern	S								
CO6:	Explain	the	e va	riot	as te	esti	ng 1	net	hod	lolo	gies	for	00 9	soft	waı	æ
TEX	ГВООК	S:														
1	Grady I	Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified														
	Modelii	Modeling Language User guide", Pearson Education 2nd														
	edition	edition (2009).														
2	Cay H	edition (2009). Cay Horstmann,"Object-Oriented Design and Patterns",														
	Wiley I	ndia	a ed	litic	n 2	004	, Ne	ew]	Del	hi, I	ndia	ì.				
REFI	ERENCE	PETER														
1	Meilir	-	-	4			- 400		- 40			-				ed
N.	Design			-			27 1		_					_		
2	Craig 1									*		2	700			
4	Analysi												_			
	Patterns	s",	3rd	edi	tion	,Pe	arso	on i	Edu	ıcat	ion,2	2005	, Ne	w	Del	hi,
	India.	RR	ALL	No.					3 E	OF	NIVE		NO	LU		
3	John W			_								_				
	,"Objec					-					_	wit	h th	neU:	nifi	ed
	Process	", (eng	gage	e lea	arni				ndia	a.					
	COs	_			_			Os			40				PSO	
	4	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	1	-	2	-	1	2	1	2	-	2
	3	2	1	-	-	1	2	-	3	_	1	3	-	3	1	3
	4	2	2	1	1	1	2	-	3	-	1	3	-	3	1	3
	5	3	2	1	1	1	2	-	3	-	1	3	-	3	1	3
	6	2	1	1	1 -		1	- -	2	- -	1	2	1	2	1	2
0	verall		1	_	_	_	1	_			1		1		_	
	elation	3	2	1	1	1	2	-	3	1	1	3	1	3	1	3

23AD033	WEB ESSENTIALS	L	Т	P	C
23AD033	WED ESSENTIALS	2	0	2	3
COURSE	OBJECTIVES:	_	U		
	earn the fundamentals of internet technolo	oies	an	<u></u>	
	elop interactive websites using HTML, CSS	0			2 0
	know the concepts of client-side scripting.	ari	a * 1	CD.	0.
	emphasis server-side scripting.				
	develop web applications using PHP and X	мт			
	study the various web application framewo			**00	on t
tool	11	пка	ma	rec	em
UNIT I	S WEB TECHNOLOGY FUNDAMENTAL	C			0
UNIII	WEB TECHNOLOGY FUNDAMENTAL	79			9
Introducti	on - The internet- World Wide Web- C	lien	t -S	Serv	er
Communi	cation- HTTP Protocol: Request and Respo	nse I	Mes	sag	ge-
Web Serve	ers-Web Clients.				
Frontend	frameworks HTML5 - Tags - Tables	s -	Li	sts	_
	g- Colors - Links - Image - Favicons - HT				
	- HTML Iframes- HTML Symbols and Em				
	ibedded and External Style Sheets - Rule	,			P
	e – Backgrounds – Border Images – Colors				
	ansformations – Transitions – Animatior				/
Framewor		AUTO	NO	40U	r
UNIT II	CLIENT-SIDE SCRIPTING				9
	on to JavaScript – JavaScript DOM Mode			-	
Handling	- Validation Built-in Objects - Event Handl	ing-	DH	ITN	1L
with JavaS	Script- JSON Introduction – Syntax – Functi	ion I	File	S	
UNIT III	SERVER- SIDE JAVA SCRIPTING				9
Servlets: Ja	ava Servlet Architecture- Servlet Life Cycle	e- Fo	orm	ı Gl	EΤ
and POST	actions- Session Handling- Understand	ing	Co	okie	es-
	SE CONNECTIVITY: JDBC	J			
UNIT IV	WEB DEVELOPMENT TOOL				9
PHP: Intr	l oduction - Declaring Variables, Data Ty	pes.	. A	rrav	VS.
,	z z z z z z z z z z z z z z z z z z z	r 25,			,

Strings, Operations, Expressions, Control Structures, Functions,

Reading Data from Web Form Controls like Text Boxes, Radio Buttons, Lists , Handling File Uploads, Connecting to database (My SQL as reference), Executing Simple Queries, Handling Results, Handling Sessions and Cookies – File Handling

XML: Introduction to XML, Defining XML Tags, Attributes and Values, Document Type Definition, XML Schemas, Document Object model, XHTML - Parsing XML Data - DOM and SAX parsers in Java

UNIT V WEB APPLICATION FRAMEWORK AND PRECENT TOOLS 9

Angularjs- MVC Architecture- Basic Declaration – Tables- Forms – Events - Directives – Modules-JS: React – VUE – Meteor – Firebase.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Create a webpage with HTML describing your department. Use paragraph and list tags, apply colors, use header fonts and styling, insert images, create links.
- 2. Create a table to show your class time-table. Use and tags to provide a layout to the above page instead of a table layout. Use frames such that page is divided into 3 frames 20% on left to show contents of pages, 60% in center to show body of page, remaining on right to show remarks. Embed audio and video into the page
- 3. Create a simple interactive form by applying in-line CSS using the elements of CSS.
- 4. Write a Client Side Scripts for Validating Web Form Controls using DHTML.
- 5. Installation of Apache Tomcat web server.
- 6. Write programs in Java using Servlets:
 - a. To invoke servlets from HTML forms.
 - b. Session Tracking
- 7. Build a dynamic webpage using PHP that involves displaying and updating user information.
- 8. Write programs in Java to create three-tier applications using JSP and Databases.

- a. For conducting on-line examination.
- b. For displaying student mark list. Assume that student information is available in a database which has been stored in a database serverDevelop a simple GUI based database application and incorporate all the above-mentioned features.
- 9. Develop a currency converter application that allows users to input an amount in one currency and convert it to another. For the sake of this challenge, you can use a hardcoded exchange rate. Take advantage of React state and event handlers to manage the input and conversion calculations.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the basics of world wide web, protocols and identify the roles of webservers and web clients.
- CO2: Demonstrate the concepts of JavaScript and develop form using JavaScript.
- CO3: Develop form handling using servlets.
- CO4: Apply fundamental PHP syntax to declare variables, data types, control structures and connecting to database in the development of web-based applications.
- CO5: Construct and manipulate the data in XML format
- CO6: Develop interactive web applications using recent frameworks and tools.

TEXT BOOKS:

- Deitel and Deitel and Nieto, "Internet and World Wide WebHow to Program", 5th Edition, Prentice Hall, 2011.
- **2** Jeffrey C and Jackson, "Web Technologies A Computer Science Perspective", Pearson Education, 2011.

REFERENCES:

1 Doguhan Uluca ,"Angular 6 for Enterprise-Ready Web Applications", 1st edition, Packt Publishing.

2	Stephen Wynkoop and John Burke "Running a Perfect															
	Website	e", (QUI	E , 2 :	nd I	Edit	tion	,199	99.							
3	Chris Bates, "Web Programming - Building Intranet															
	Applications", 3rd Edition, Wiley Publications, 2009.															
4	Gopala	n N	J.P.	an	d A	Akil	lanc	lesv	vari	i J.,	"W	/eb	Tech	nnol	logy	<i>,</i> ",
	Prentice	e Ha	all c	of Ir	ndia	, 2 0)11.									
5	UttamK	.Rc	y, "	′We	eb T	ech	nol	ogi	es",	Ox	ford	Uni	ivers	ity	Pre	ss,
	2011.															
6	Shyam	Ses	sha	dri	"A	ngı	ılar	: L	Jp .	and	Rı	ınni	ng:	Lea	rni	ng
	Angula	Shyam Seshadri "Angular: Up and Running: Learning Angular, Step by Step", 1st edition, O'Reilly.														
	Angular, Step by Step", 1st edition, O'Reilly. POs PSOs															
	U	1, 3	ер	Бу .	Jiej	٠, ٠				, 0	Kem	.y.		F	PSO	s
•	COs	1	2	3	4	5				9	10	11	12	I 1	PSC 2)s 3
•	U					·	I	Os		1			12 1			
(COs	1	2			5	I	Os		9	10	11		1	2	
	COs	1 2	2			5 2	I	Os	8	9	10 3	11 3	1	2	2	3
	COs 1 2	1 2 2	2 1	3 -	4 -	5 2 2	6 -	Os	8 -	9 1 2	10 3 2	11 3 1	1 3	1 2 2	2 2 2	3 - 1
	COs 1 2 3	1 2 2	2 1 1 2	3 1	4 - - 1	5 2 2 2	6 - -	Os	8 - 1 2	9 1 2	10 3 2 2	11 3 1	1 3 1	1 2 2 3	2 2 2 2	3 - 1 2
	COs 1 2 3 4	1 2 2 3 3	2 1 1 2 2	3 - - 1	4 - - 1	5 2 2 2 2	6 - - 1	POs 7	8 - 1 2	9 1 2 1 3	10 3 2 2 1	11 3 1 1 2	1 3 1 2	1 2 2 3 3	2 2 2 2 2	3 - 1 2 2

23AD034	SOFTWARE ENGINEERING	L	T	P	C
	PRINCIPLES	3	0	0	3
COURSE	OBJECTIVES:				
•	The aim of the course is to provide				
•	To Understand the basics of software	e er	ngin	eer	ing
	process				
•	To understand the requirements of the sof	twa	re		
•	To understand the design engineering				
•	To understand the testing strategies				
•	To understand the metric for process				

UNIT I INTRODUCTION TO SOFTWARE ENGINEERING

To understand the metric for product

9

The evolving role of software, changing nature of software, software myths. A Generic view of process: Software engineering-a layered technology, a process framework, the capability maturity model integration (CMMI), process patterns, process assessment, personal and team process models. Process models: The waterfall model, incremental process models, evolutionary process models, the unified process.

UNIT II | SOFTWARE REQUIREMENTS

9

Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document. Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management. System models: Context models, behavioral models, data models, object models, structured methods.

UNIT III DESIGN ENGINEERING

9

Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT IV TESTING STRATEGIES

9

A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. Product metrics: Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.

UNIT V METRICS FOR PROCESS AND PRODUCTS

9

Software measurement, metrics for software quality. Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM, RMMM plan. Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Illustrate the software engineering process and framework.
- CO2: Identify the end-user requirements into system and software requirements.
- CO3: Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- **CO4:** Outline the awareness of testing problems and will be able to develop a simple testing report
- **CO5:** Demonstrate the metrics for process
- **CO6:** Demonstrate the metrics for products

TEX	T BOOK	S:														
1	Softwar	e E	ngi	nee	ring	5, "1	A p	ract	itio	ner	's A _l	ppro	ach-	- Ro	ger	S.
	Pressma	an",	, 6	th	ed	itio	n,	Mc	C	rav	v F	Iill	Inte	rna	tior	nal
	Edition,	200) 4.													
2	Ian Sor	nm	erv	ille	, '	"So	ftw	are	En	gin	eerii	ng",	7th	e	litic	n,
	Pearson	Ed	luca	tio	n,20	004.										
REF	ERENCE	S:														
1	James 1	Ran	nba	ugh	ı, I	var	Jac	obs	on	"T	he 1	unifi	ed :	mod	deli	ng
	languag	ge ι	ıser	gu	ıide	G	rady	у В	ooc	h"	, Pe	arsc	n E	duc	atio	n.
	1999															
2	James 1	F. I	Pete	rs,	Wi	tolc	l Po	edr	ycz,	Jo	hn	Wile	ey, "	'Sof	twa	are
	Enginee	rin	g, a	an	Eng	gine	erir	ng	арр	roa	ch"	Joh	n W	/ile	y a	nd
	Sons, 19					-								•		
3	Waman	SJ	awa	adel	kar	, "S	oftv	var	e Eı	ngir	neeri	ng p	orino	iple	es a	nd
	practice	", T	The	Мс	Gra	aw-	Hill	1, 20	04			-	1			
4	Meiler p	oag	e-Jo	nes	, "F	un	dan	nen	tals	of o	objec	ct-or	iente	ed c	lesi	gn
	using U	ML	, ",P	ear	son	Ed ⁻	uca	tior	, 19	99	. 55					
	CO		1	y/	7,		I	POs		1				I	PSC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 0/1	2	1		-	CC	1	1	1	U)	LE	4	110	3	9)	1
	2	3	2	1	1	MFE	LIA	ED. II),AN	IA U	MINER	1	AUTO	3	WOR	-
	3	3	2	1	1	1	-	-	-	1	1	1	1	3	1	-
	4	2	1	-	-	1	1	1	-	-	-	1	1	2	1	-
	5	2	1	-	-	1	1	1	-	-	-	1	1	2	1	-
	6	2	1	-	-	1	1	1	-	-	-	1	1	2	1	-
О	verall	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
Cor	relation	3	_	1	1	1	1	1	1	1	1	1	1	3	1	1

23AD035	DISTRIBUTED SYSTEMS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the legacy systems of distributed systems
- To introduce the computation and communication models of distributed systems
- To illustrate the issues of synchronization and collection of information in distributed systems
- To describe distributed mutual exclusion and distributed deadlock detection techniques
- To elucidate agreement protocols and fault tolerance mechanisms in distributed systems
- To explain the cloud computing models and the underlying concepts

UNIT I INTRODUCTION

9

Introduction: Computer Definition-Relation to System Components - Motivation - Message - Passing Systems versus Shared Memory Systems -Primitives for Distributed Communication - Synchronous versus Asynchronous Executions - Design Issues and Challenges; A Model of Distributed Computations: A Distributed Program - A Model of Distributed Executions - Models of Communication Networks - Global State of a Distributed System

UNIT II LOGICAL TIME AND GLOBAL STATE

١

Time Vector Time; Message Ordering Group and Communication: Message Ordering Paradigms - Asynchronous Execution with Synchronous Communication - Synchronous Program Order on Asynchronous System Communication - Causal Order - Total Order; Global State and Snapshot Recording Algorithms: Introduction - System Model and Definitions - Snapshot Algorithms for FIFO Channels.

UNIT III DISTRIBUTED MUTEX AND DEADLOCK

9

Distributed Mutual exclusion Algorithms: Introduction

Preliminaries – Lamport's algorithm – Ricart- Agrawala's Algorithm – Token-Based Algorithms – Suzuki-Kasami's Broadcast Algorithm; Deadlock Detection in Distributed Systems: Introduction – System Model – Preliminaries – Models of Deadlocks – Chandy-Misra-Haas Algorithm for the AND model and OR Model.

UNIT IV RECOVERY AND CONSENSUS

9

Checkpointing and Rollback Recovery: Introduction – Background and Definitions – Issues in Failure Recovery – Checkpoint-based Recovery – Coordinated Checkpointing Algorithm- Algorithm for Asynchronous Checkpointing and Recovery – Consensus and Agreement Algorithms: Problem Definition – Overview of Results

UNIT V | CLOUD COMPUTING

9

The Evolution of Cloud Computing - Comparison between Cluster, Grid and Cloud Computing - Benefits and Challenges - Cloud Computing Model- Cloud Computing Services - Elements of Cloud Security Model - Cloud Security Reference Model-Virtualizing Physical Computing Resources - Machine or Server Level Virtualization- Advantages of Virtualization

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the foundations of distributed systems.
- CO2: Interpret various models of computations
- CO3: Solve synchronization and state consistency problems.
- CO4: Apply resource sharing techniques in distributed systems.
- CO5: Apply working model of consensus and reliability of distributed systems.
- CO6: Explain the fundamentals of cloud computing.

TEXT BOOKS:

1 Kshemkalyani Ajay D, Mukesh Singhal, "Distributed Computing: Principles, Algorithms and Systems",

	Cambri	dge	Pre	ess,	201	1.																
2	Sandee	o Bl	how	mi	k, "	'Clo	oud	Co	mp	utir	ng" (Cam	brid	lge	Pre	ss,						
	2017																					
REF	ERENCE	S:																				
1	George	C	oul	our	is,	Jea	an	Do	ollir	nor	e,	Tim	e I	Kind	dbe	rg,						
	"Distrib	ute	d S	yste	ems	Co	nce	epts	an	dΣ	esig	'n",	Fiftl	ı Ec	litic	n,						
	Pearson	Ed	uca	tio	n, 20	012.		_														
2	Pradeep	L	Sinl	na, '	'Di	stril	oute	ed C	Ope	rati	ng S	yste	ms:	Coı	ncep	ots						
	and Des	sign	", F	rer	tice	e Ha	all c	f Ir	ıdia	, 20	07.	-			•							
3	Nancy	A	L	ync	h,	"D	istr	ibu	ted	A	lgor	ithn	ns",	M	org	an						
	Kaufma		-								Ü				Ü							
4	Arshde	ep :	Bag	ga,	Vij	ay	Ma	dise	etti,	" (Clou	ıd C	omp	outi	ng:	A						
		-	_	_	,	-			Arshdeep Bagga, Vijay Madisetti, " Cloud Computing: A Hands-On Approach", Universities Press, 2014.Bernard													
			-	-					TOIL	100	110	,,,,		1.00	.1114	Iu						
1	Nominar	ı, D	avi	d R	. Н	ill,																
	-		line.				"In	tro	duc	tory	/ Lir	near	Edı									
	New De		line.				"In , 20	tro	duc Alg	tory	/ Lir	near	Edı	ıcat		s",						
	-		line.				"In , 20	trod 09.	duc Alg	tory	/ Lir	near earso	Edu on.	ıcat	ions	s",						
	New De	elhi,	, Fir	st F	Rep:	rint	"In , 20 I	trod 09. PO s	duc Alg	tory ebr	≀ Lir a, Pe	near earso	Edu on.	ıcat	ion:	s",)s						
	New De	elhi,	Fir 2	st F	Rep:	rint	"In , 20 I	trod 09. PO s	duc Alg	tory ebr	7 Lir a, Pe 10	near earso	Edu on. 12	ıcat I 1	ion:	s",)s						
	New De	1 2	, Fir 2	st F	Rep:	rint	"In , 20 I	trod 09. PO s	duc Alg	ebr	Lir a, Pe 10	near earso 11	Edu on. 12	Icat	ion:	s",)s						
	New De	1 2 2	2 1 1	3 -	4 -	rint	"In , 20 I	trod 09. PO s	duc Alg 8	ebr 9 2	10 1	near earso 11 3 3	Edu on. 12 3	I 1 2 2	PSO 2 -	s", 0s 3 -						
	New De COs 1 2 3	1 2 2 3	2 1 1 2	3 1	4 - -	5 - -	"In, 20 I 6	09. 7	Alg 8 - 1	ebr 9 2 2	10 1 1 2	11 3 3	Edu on. 12 3 3	1 1 2 2 3	PSO 2	s", s 1						
	New Dec COs 1 2 3 4	1 2 2 3 3	2 1 1 2 2	3 1 1	4 - 1 1	5 - -	"In, 20 I 6	7 - - -	8 - 1 1	9 2 2 2 3	10 1 1 2 2	11 3 3 2	Edu on. 12 3 3 2	1 1 2 2 3	PSO 2	s", 0s 1						
	New Dec COs 1 2 3 4 5	1 2 2 3 3	Fir 2 1 2 2 2 2	3 1 1	4 - 1 1	5 1	"In , 20	7 - - -	8 1 1 1	9 2 2 2 3	10 1 1 2 2 3	11 3 3 2 1 2	Edu on. 12 3 3 2 1 1	1 1 2 2 3 3	2	s", 3 - 1 1						

23AD036	CRYPTOGRAPHY AND NETWORK	L	T	P	C
	SECURITY	2	0	2	3

COURSE OBJECTIVES:

- Understand the basic categories of threats to computers and networks
- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various symmetric key cryptographic algorithms.
- Describe public-key cryptosystem
- Describe various message authentication models
- Understand Intrusions and intrusion detection

UNIT I INTRODUCTION

6

Overview of Cryptography and Its Applications - Secure Communications - Cryptographic Applications - Classical Cryptosystems - Shift Ciphers - Affine Ciphers - The Vigenère Cipher - Substitution Ciphers - Sherlock Holmes - The Playfair and ADFGX Ciphers - Enigma - Basic Number Theory - The Extended Euclidean Algorithm - The Chinese Remainder Theorem - Modular Exponentiation - Fermat's Theorem and Euler's Theorem - Primitive Roots

UNIT II SYMMETRIC KEY CRYPTOGRAPHY

6

Block Cipher And Data Encryption Standards: Block Cipher Principles, Data Encryption Standards, The Strength Of Des. Advanced Encryption Standards: Evaluation Criteria For Aes, The Aes Cipher.

UNIT III PUBLIC KEY CRYPTOGRAPHY

6

Asymmetric Key Ciphers: Rsa Cryptosystem – Key Distribution – Key Management – Diffie Hellman Key Exchange -Elgamal Cryptosystem – Elliptic Curve Arithmetic-Elliptic Curve Cryptography.

UNIT	ΓIV	MESSAGE AUTHENTICATION AND	6
		INTEGRITY	
Δ11th	ontica	 ation requirement – Authentication function – MA	C -
		tion - Security of hash function and MAC - SH.	
		•	
_	_	gnature and authentication protocols - DSS- En	-
		ation: Biometrics, Passwords, Challenge Respo	nse
		Authentication applications – Kerberos, X.509	
UNIT	ľV	SECURITY PRACTICE AND SYSTEM	6
		SECURITY	
Elect	ronic	Mail Security - Pgp, S/Mime - Ip Security - V	Veb
Secur			
	•	ecurity: Intruders - Malicious Software - Viruse	es –
Firew			
	-	TOTAL: 30 PERIO	DDS
PRAC	CTIC	AL EXERCISES:	_
V	7.6	1. Implementation of Caesar Cipher technique	
	W ₂	2. Implement the Play fair Cipher	
A		3. Implement the Pure Transposition Cipher	_
	(V) C	4. Implement DES Encryption and Decryption	Y
	5	5. Implement the AES Encryption and decryption	
	6	6. Implement RSA Encryption Algorithm	
		7. Implementation of Hash Functions	
		TOTAL:30 PERIO	ODS
COU		OUTCOMES:	
		completion of the course, the students will be able	to:
		basic security attacks and services	
CO2:	Illust	trate confidentiality, integrity, authentication	and
	avail	ability concepts	
CO3:	Make	e use of symmetric key algorithms for cryptography	7
CO4:	Make	e use of asymmetric key algorithms for cryptograp	phy
	and a	apply the knowledge of Key Management technique	es
CO5:	Utiliz	ze the Authentication functions the manner in wh	nich
	Mess	sage Authentication Codes and Hash Functions wor	ks

CO6:	Examin	e th	ne is	ssue	es a	nd	stru	ıctu	re o	of A	uth	entic	catio	n S	ervi	ice
	and Ele	ctro	nic	Ma	ail S	ecu	rity	-								
TEXT	Г ВООК	S:														
1	Wade T	rap	реа	and	Lav	wre	nce	C.	Was	shir	igtoi	n"Ir	ntroc	luct	ion	to
	Cryptog	graj	ohy	wi	th (Cod	ling	Th	eor	y",	3rd	edit	tion,	Pea	arsc	n,
	2020															
2	William	ı St	alli	ngs	, (Cry	pto	graj	ohy	ar	d N	letw	ork	Sec	uri	ty:
	Princip	les	and	1 P	rac	tice	, 8t	h e	edit	ion	Pe	arso	n E	duc	atic	n,
	India, 2	020														
REFE	ERENCE	S:														
1	Behrou	z .	A.	Fo	rou	zan	۱, '	'Cry	pto	ogra	phy	aı	nd	Ne	two	rk
	Security	/", I	McC	Grav	νH	ill,	is tl	ne 3	rd e	edit	ion	(SIE)	, 20	15		
2	Charlie		Ka	ufn	nan	,	N	etw	ork		Sec	curit	y:	Р	riva	ate
	Commu	ınic	atio	n i	in a	Pı	ıbli	c V	Vorl	ld,	2nd	edi	tion,	Pr	enti	ice
	Hall of	Ind	ia, l	Nev	v D	elhi	i, 20	02.					1			
3	Atul Ka	aha	te,	"Cı	ryp	togi	rapl	ny a	and	Νe	two	rk S	ecur	ity'	, 2ı	nd
1	edition,	Ta	ta N	1c C	Grav	whi	11, I:	ndi	a, 20	008	9 58					
4	Robert	Br	agg	, N	/lar	k I	Rho	des	, "	Ne	twor	k S	Secu	rity	Т	he
- 1	comple		710											-		
	GINER	B R	AU	1		CC	ΣĻ	POs	oE.	OF	TE	CH	NO	LG	PSO	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	2	1	3	3	2	-	-
	2	2	1	-	-	-	-	-	-	2	1	3	3	2	-	-
	3	3	2	1	1	-	-	-	-	-	-	1	-	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	1	-	3	-	-
	5	3	3	1	1	-	-	1	-	-	-	1	-	3	-	-
	6	3	3	2	2	1	1	1	1	1	1	1	1	3	1	1
O	verall	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
Corr	elation		_	1	1	1	1	1	1	1	T	T	1		1	1

23AD037 DATA COMMUNICATIONS L	T	P	\overline{C}
AND NETWORKING 3	0	0	3
COURSE OBJECTIVES:	U	U	
 To understand the concept of layering in networks To know the functions of protocols of each layer of) / T	P
protocol suite.	ıcı	/ 11	L
To visualize the end-to-end flow of information.			
• To learn the functions of network layer and the	var	iou	s
routing protocols			
 To familiarize the functions and protocols of the Tr 	ans	por	t
layer		ı	
UNIT I INTRODUCTION AND APPLICATION LA			9
Data Communication - Networks - Network Types -			
Layering - TCP/IP Protocol Suite - OSI Model - Introdu	acti	on	to
Sockets; Application Layer Protocols: HTTP - FTP	- I	Ema	ail
Protocols (SMTP - POP3 - IMAP - MIME) - DNS - SNMP		A.	
UNIT II TRANSPORT LAYER			9
Introduction - Transport Layer Protocols: UDP - TCP: Co	nne	ectio	on
Management - Flow Control - Congestion Control - Co	nge	estic	on
Avoidance (DECbit - RED) - SCTP - Quality of Service			
UNIT III NETWORK LAYER	-0	GY	9
Switching: Packet Switching - Internet Protocol - IF	v4	iou:	ΙP
Addressing - Subnetting - IPv6 - ARP - RARP - ICMP - DI	HCI	P	
UNIT IV ROUTING			9
Routing Protocols: Unicast Routing - Distance Vector Rout	ing	- R	ΙP
- Link State Routing - OSPF - Path Vector Routing – BGP; N	Mul	tica	ıst
Routing: DVMRP - PIM			
UNIT V DATA LINK AND PHYSICAL LAYERS			9
Data Link Layer - Framing - Flow Control - Error Control	ol -	Da	ta
Link Layer Protocols - HDLC - PPP - Media Access (Con	trol	_
Ethernet Basics - CSMA/CD - Virtual LAN - Wirele	ess	LA	N
(802.11); Physical Layer: Data and Signals - Perform	mar	nce	-
Transmission Media - Switching - Circuit Switching			
			os

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain application-layer protocols and their practical functions in facilitating communication between networked systems.
- CO2: Apply transport-layer protocols to manage data flow, congestion, and connection reliability in networking scenarios.
- CO3: Develop network-layer protocols for addressing and packetswitching operations
- **CO4:** Make use of routing protocols for various applications.
- CO5: Identify key concepts of data link layer to improve signal performance.
- CO6: Identify key concepts of physical layer to improve reliability in network design

TEXT BOOKS:

- James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, Eighth Edition, Pearson Education, 2021.
- 2 Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol Suite, Sixth Edition TMH, 2022

REFERENCES:

- 1 Larry L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, Fifth Edition, Morgan Kaufmann Publishers Inc., 2012
- William Stallings, Data and Computer Communications, Tenth Edition, Pearson Education, 2013.

COs		POs													PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
1	2	1	-	-	1	-	-	1	-	1	1	1	2	1	1			
2	3	2	1	1	3	-	-	2	1	2	2	3	3	3	2			
3	3	2	1	1	3	-	-	2	1	2	2	3	3	3	2			
4	3	2	1	1	3	-	-	2	1	2	2	3	3	3	2			
5	3	2	1	1	3	-	-	2	1	2	2	3	3	3	2			
6	3	2	1	1	3	-	-	2	1	2	2	3	3	3	2			
Overall	3	2	1	1	3		-	2	1	2	2	3	3	3	2			
Correlation		_	1	1				_	*	_	_				_			

23AD038	AUTOMATA THEORY AND	L	T	P	C							
	COMPILER DESIGN 3 0 0											
COURSE OBJECTIVES:												
To establish a strong foundation in the principles of												
automata theory.												
• To und	To undertand the formulation and application of regular											
*	expressions and regular languages.											
	lyze the structure and functionality o			kt-f1	ee							
O	ars (CFG) and pushdown automata (P	,										
-	olore the standard normal forms of	co	nte	xt-f1	ee							
~	ars and their applications.				c							
	strate the architecture and operationa	I pr	ıase	s o	t a							
compile		212 214	مين		1							
	epret methods for intermediate code go cation strategies to enhance c											
efficien	<u> </u>	Omp	Jula	lloi	ıaı							
	JTOMATA AND REGULAR EXPRES	SIC	NS		9							
	0				r.							
Introduction	to Automata Theory: Need for auto	mat	a t	heo	ry,							
formal proof	basics. Finite Automata (FA): Detern	ninis	stic	Fin	ite							
Automata (D	FA), Non-deterministic Finite Auto	mat	a (NF	A).							
Finite Auton	nata with Epsilon Transitions: Eps	silor	n	nov	es,							
conversion of	NFA to DFA											
UNIT II RE	GULAR EXPRESSIONS AND REGU	LAI	R		10							
LA	NGUAGES											
Regular Expressions: Definition, constructing regular expressions,												
applications. Regular Languages: Properties and examples,												
equivalence of finite automata and regular expressions.												
UNIT III CC	NTEXT-FREE GRAMMAR AND				9							
PU	SHDOWN AUTOMATA											
Comment	and Chand III 1 Cl				- C							
Grammar Types and Chomsky Hierarchy: Classification of												
grammars, Chomsky's hierarchy. Context-Free Grammar (CFG):												

Pushdown Automata (PDA): Definition, language acceptance, conversion between CFG and PDA

Definition, derivations, parse trees, ambiguity.

UNI	T IV NORMAL FORMS AND TURING MACHINES 9										
Norr	nal Forms for CFG: Simplification, Chomsky Normal Form										
(CNF), Greibach Normal Form (GNF). Turing Machines (TM):											
Definition, language acceptance, TM as integer function computer											
UNI	UNIT V COMPILATION AND CODE OPTIMIZATION 9										
Comb	au Analysia Talan anaitinatian magulan augusaiana ta DEA										
	Syntax Analysis: Token specification, regular expressions to DFA,										
_	ng (LL(1), SLR, CLR, LALR parsers). Semantic Analysis and										
	mediate Code Generation: Syntax-directed translation, three-										
	ess code, code generation issues. Code Optimization: Loop										
and I	pasic block optimization, DAG representation of basic blocks										
COL	TOTAL: 45 PERIODS										
COL	URSE OUTCOMES:										
	After completion of the course, the students will be able to:										
CO1:	Demonstrate knowledge of automata theory and its role in										
	language recognition, including working with finite										
1	automata (DFA/NFA) for construction, conversion, and										
Á	minimization.										
CO2:	Apply regular expressions and language properties to										
	pattern recognition, and use the pumping lemma to identify										
	non-regular languages. Filiated to ANNA UNIVERSITY AUTONOMOUS										
CO3:	Construct and interpret context-free grammars (CFG) and										
	pushdown automata (PDA), demonstrating their										
	equivalence in language processing.										
CO4:	Analyze and simplify CFGs using normal forms and explain										
	the computational role of Turing machines in language										
	acceptance and computation.										
CO ₅ :	Design and implement lexical analyzers and parsers,										
	understanding their components and using parsing										
	techniques like top-down and bottom-up methods.										
CO6:	Develop strategies for intermediate code generation and										
	apply optimization techniques, such as loop and data flow										
	analysis, to enhance compiler performance.										

TEXT BOOKS: Hopcroft J.E., Motwani R. and Ullman J.D., "Introduction to Automata Theory, Languages and Computations", 3rd Edition, Pearson Education, 2008.. John C Martin, "Introduction to Languages and the Theory of Computation", 4th Edition, Tata McGraw Hill, 2011. **REFERENCES:** A. V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, Compilers: Principles, techniques, and tools, Second Edition, Pearson Education, 2007. Harry R Lewis and Christos H Papadimitriou, "Elements of the Theory of Computation", 2nd Edition, Prentice Hall of India, 2015. Peter Linz, "An Introduction to Formal Language and Automata", 6th Edition, Jones and Bartlett, 2016. K.L.P.Mishra and N.Chandrasekaran, "Theory of Computer Science: Automata Languages and Computation", 3rd Edition, Prentice Hall of India, 2006... Andrew A.Appel, Modern Compiler Implementation in Java, Cambridge University Press; 2nd edition, 2002. Allen Holub, Compiler Design in C, Prentice Hall, 1990 **POs PSOs COs** _ Overall

3 | 1

3 2

Correlation

1 | 1 | 1 | 1

VERTICAL 2: ANALYTICAL SCIENCES

23AD039	RESPONSIBLE AI	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand AI basics, misconceptions, responsible AI principles, and challenges in implementation.
- To understand and analyse biases in AI, fairness metrics, and mitigation techniques.
- To understand explainability, challenges, methods, and evaluation for interpretable machine learning models.
- To understand AI safety, security, privacy, and resilience, including model and data protection.
- To explore ethical issues and implications of AI in various real-world applications.

UNIT I INTRODUCTION TO RESPONSIBLE AI 10

Overview of AI - Common misconception of AI - Introduction to Responsible AI - Characteristics of Responsible AI - Key principles of responsible AI - Challenges in implementing responsible AI - ELSI Framework and AI - Safety and Alignment -Fairness and Privacy.

UNIT II FAIRNESS AND BIAS

Human Bias - Types of biases - Effects of biases on different demographics - Bias vs Fairness - Sources of Biases - Exploratory data analysis - Bias Mitigation Techniques - Pre-processing techniques - In-processing techniques - Post-processing techniques - Bias detection tools - Overview of fairness in AI - Demographic parity - Equalized odds - Simpson's paradox and the risks of multiple testing - Group fairness and Individual fairness -Counterfactual fairness - Fairness metrics - Bias and disparity mitigation with Fairlearn.

EXPLAINABILITY & 9 UNIT III INTERPRETABILITY

Importance of Explainability and Interpretability - Challenges -

Interpretability through simplification and visualization - Intrinsic interpretable methods - Post Hoc interpretability - Interpretability Evaluation methods - Explainability through causality - Model agnostic Interpretation - LIME (Local Interpretable Modelagnostic Explanations) - SHAP (SHapley Additive exPlanations).

UNIT IV SAFETY, SECURITY, AND PRIVACY

9

Overview of safety – security – privacy - resilience - Taxonomy of AI safety and Security - Adversarial attacks and mitigation - Model and data security - The ML life cycle - Adopting an ML life cycle MLOps and ModelOps - Model drift - Data drift - Concept drift - Privacy-preserving AI techniques- Differential privacy - Federated learning.

UNIT V | CASE STUDIES

9

COMPAS Algorithm - Google Photos Tagging Controversy - ProPublica's Analysis of Recidivism Predictions - Amazon's AI Recruiting Tool - Facial Recognition Technology Misidentification - AI in Healthcare: Predictive Analytics in Patient Care - Tesla Autopilot and Ethical Implications of Autonomous Vehicles.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Demonstrate the key concepts of Responsible AI and evaluate its challenges in implementation.
- CO2: Identify types of biases in AI systems and apply bias mitigation techniques to ensure fairness.
- CO3: Explain the importance of explainability and interpretability in AI models and apply interpretability methods.
- **CO4:** Identify safety, security, and privacy issues in AI systems and implement techniques to mitigate risks.
- CO5: Apply privacy-preserving techniques
- CO6: Develop real-world case studies to assess the ethical implications and impact of AI technologies.

TEXT BOOKS:																
1	Virginia Dignum, "Responsible Artificial Intelligence: How															
	to Develop and Use AI in a Responsible Way", 2019.															
2	Adnan Masood, Heather Dawe, "Responsible AI in the															
	Enterprise", 2023.															
REFI	REFERENCES:															
1	Beena Ammanath, "Trustworthy AI", O' Reilly, 2022.															
2	Christoph Molnar "Interpretable Machine Learning", 1st													1st		
	Edition,	20	19.													
3	I Almei	da,	"Re	spo	nsi	ble	ΑI	in tl	ne A	Age	of G	lene	rativ	e M	Iode	els:
	Govern	anc	e, E	thic	cs aı	nd I	Risk	Ma	ana	gen	nenť	", N	ow l	Vex	t La	ter
	AI, 2024	Į.														
4	Silja Vo	ene	eky,	, Pł	nilip	op :	Kel	lme	yer	et.	al,	"Th	ne C	am	brid	lge
	Handbo	ok	(of	Re	espo	ons	ible		Art	ificia	al	Inte	llig	enc	e",
	Cambri	dge	Ur	iive	rsit	y P	ress	, 20)22.			9	1		-	
-	COs		7	1	1		/ I	POs	- (1				1	PSC	s
	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	14	<i>)</i> +	_	1	_	2	1	1	2	1	2	1200	2
9	2	3	2	1	1	1	2	-	3	-	1	3	-	3	1	3
	3 SINE	2	1	diam'r.	-	CC	1	-E(2	Q1	1	2	1	2	G,	2
	4 3 2 1 1 1 2 - 3 - 1 3 - 3 1 3															

3 3 3 3 3

3 3 3

-

1 2 1 3

2

3

1

2 3

2

3

1

3

3

3

1 3

3

3

5

6

Overall

Correlation

3 2 1 1

3 2 1 1

3 3

1

1

23AD040	NATURAL LANGUAGE	L	T	P	C
	PROCESSING	2	0	2	3

- Explain fundamental tasks in NLP, including syntax, semantics, and pragmatics, along with associated challenges.
- Explore word-level syntax through N-grams, smoothing techniques.
- Explain context-free grammars and parsing techniques.
- Demonstrate linguistic meaning using first-order predicate calculus, syntax-driven semantic analysis, word sense disambiguation.
- Examine language generation frameworks and machine translation approaches.
- Analyze discourse structures, reference resolution, and the architecture of conversational agents for effective natural language communication.

UNIT I OVERVIEW AND MORPHOLOGY 6

Introduction - Models -and Algorithms - -Regular Expressions Basic Regular Expression Patterns - Finite State Automata Understand the wireless sensor network principles. Morphology -Inflectional Morphology - Derivational Morphology. Finite-State Morphological Parsing -- Porter Stemmer.

UNIT II WORD LEVEL AND SYNTACTIC 6 ANALYSIS

N-grams Models of Syntax - Counting Words - Unsmoothed N-grams. Smoothing- Back-off Deleted Interpolation - Entropy - English Word Classes - Tag sets for English Part of Speech Tagging-Rule Based Part of Speech Tagging - Stochastic Part of Speech Tagging - Transformation-Based Tagging.

UNIT III	CONTEXT FREE GRAMMARS	6
Context F	ree Grammars for English Syntax- Context-Free R	ules

and Trees -Understand the network simulation tools. Sentence-Level Constructions-Agreement - Sub Categorization, Parsing -Top-down - Early Parsing -feature Structures - Probabilistic Context-Free Grammars.

UNIT IV SEMANTIC ANALYSIS

6

Representing Meaning-Meaning Structure of Language-First Order Predicate Calculus Representing Linguistically Relevant Concepts -Syntax-Driven Semantic Analysis - Semantic Attachments -Syntax-Driven Analyzer. Robust Analysis - Lexemes and Their Senses - Internal Structure - Word Sense Disambiguation -Information Retrieval.

UNIT V LANGUAGE GENERATION AND DISCOURSE ANALYSIS

6

Discourse -Reference Resolution - Text Coherence -Discourse Structure - Coherence. Dialog and Conversational Agents - Dialog Acts - Interpretation -Conversational Agents. Language Generation-Architecture-Surface Realizations - Discourse Planning. Machine Translation -Transfer Metaphor- Interlingua - Statistical Approaches

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Implement basic text preprocessing steps such as tokenization, lowercasing, removing punctuation and stop word removal.
- 2. Build an N-gram language model using a text corpus, calculate probabilities, and generate text.
- 3. Use regular expressions to find patterns in text, such as identifying dates, phone numbers, or specific words.
- 4. Implement part-of-speech tagging on a text corpus using NLTK's pre-trained POS tagger.
- 5. Perform word sense disambiguation using WordNet to identify the correct meaning of ambiguous words.

- 6. Implement syntactic parsing using a context-free grammar and visualize the resulting parse tree.
- 7. Use a pre-trained NER model to identify and classify named entities like names, locations, and dates in text.
- 8. Implement a basic morphological parser to analyze word structures and identify morphemes, including prefixes, suffixes, and roots.
- 9. Build a simple sentiment analysis model to classify text as positive, negative, or neutral using a predefined dataset and basic machine learning techniques.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Outline the internal structure of a word of the natural language.
- CO2: Apply N-grams rules to identify word patterns.
- CO3: Explain the context free grammar.
- CO4: Compare and contrast the meaning of the word.
- CO5: Utilize syntax driven semantic analysis.
- **CO6:** Demonstrate automatic machine translation procedure.

TEXT BOOKS:

- C. Manning and H. Schutze, Statistical Natural, "Foundations of Language Processing. C", 1st Edition, MIT Press Cambridge, MA:1999
- Daniel Jurafsky and James H Martin," Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Prentice Hall, 2nd Edition, 2008

REFERENCES:

- Bharati A., Sangal R., Chaitanya, "Natural language processing: a Paninian perspective", 1st Edition, PHI, 2000.
- 2 Siddiqui T., Tiwary U. S. "Natural language processing and Information retrieval", 1st Edition, OUP, 2008.

COs						I	POs	,					I	PSOs						
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3					
1	2	1	-	-	-	1	-	2	-	1	-	1	2	-	2					
2	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3					
3	2	1	-	-	1	2	-	3	-	1	-	-	2	1	3					
4	2	1	-	-	1	2	-	3	-	1	-	-	2	1	3					
5	3	2	1	1	-	3	3	3	3	3	3	-	3	-	3					
6	2	1	-	-	-	3	3	3	3	2	3	-	2	-	3					
Overall Correlation	3	2	1	1	1	3	1	3	1	2	1	1	3	1	3					

23AD041	EXPLORATORY DATA ANALYSIS	L	T	P	C
		2	0	2	3

- Apply data preprocessing techniques to ensure data accuracy, consistency, and completeness.
- Develop the ability to use descriptive statistics for summarizing and interpreting data characteristics.
- Utilize data visualization tools to represent data distributions, trends, and relationships effectively.
- Implement statistical measures to assess the correlation, central tendency, and variability in datasets.
- Apply data transformation and feature engineering techniques to refine data for analysis.
- Create EDA reports that systematically convey insights and facilitate data-driven decision-making

UNIT I FOUNDATIONS OF EXPLORATORY DATA ANALYSIS 6

Introduction to EDA and its Importance - Basic data structures - numeric, categorical, ordinal, and time-series data - data sources - data quality and accuracy - data cleaning: missing values, duplicate data, handling erroneous entries.

Case Study: Load and inspect a dataset, identify data quality issues, and document observations.

UNIT II	DESCRIPTIVE STATISTICS AND DATA	6
	SUMMARIZATION	

Univariate Descriptive Statistics: Measures of central tendency - Measures of spread - Data Distribution Analysis: Distribution shapes - Understanding and calculating skewness and kurtosis - Categorical Data Summarization - Frequency tables and cross-tabulation - Summary statistics for categorical data - Sampling and Data Partitioning - sampling, random sampling, and stratified sampling - Train-test splitting and its importance in model building. Case Study: Calculate and interpret descriptive statistics on a real-world dataset.

UNIT III DATA VISUALIZATION TECHNIQUES FOR EXPLORATORY ANALYSIS

Univariate Visualizations: Visualizing single variables with histograms, bar charts, and box plots - Bivariate Visualizations: Scatter plots, line plots, and bar plots - Understanding relationships with grouped bar plots and clustered scatter plots - Multivariate Visualizations: Heatmaps, pair plots, and correlation matrices - Visualization techniques for high-dimensional data (facet grids and 3D plots) - Advanced Visualizations and Storytelling: Choosing the right chart for the data type and analysis goal Design principles for clear, impactful visualizations Case Study: Explore relationships and patterns in a dataset with appropriate visualizations.

UNIT IV DATA TRANSFORMATION AND 6 FEATURE ENGINEERING

Data Transformation Techniques: Standardization and normalization of numeric data - Applying log, square root, and other transformations to handle skewed data -Encoding Categorical Variables: - Methods of encoding: One-hot encoding, label encoding, and binary encoding - Handling ordinal data and rare categories - Feature Engineering: Creating new features from existing data - Extracting useful features from dates, times, and textual data - Dimensionality Reduction: - Introduction to Principal Component Analysis (PCA) and its applications - Exploratory analysis of reduced data

Case Study: Perform feature engineering and transformation on a dataset to prepare it for analysis or modeling.

UNIT V ADVANCED TECHNIQUES AND 6 REPORTING IN EDA

Handling Outliers and Anomalies: Outlier detection using z-scores, IQR method - EDA for Different Data Types: Time series analysis: Trend, seasonality, and noise - Text data basics: Word frequencies, word clouds, and term frequency-inverse document frequency (TF-IDF) - Developing an EDA Report: Structuring an

EDA report: Introduction, method, findings, and insights - Communicating findings with charts, graphs, and narrative summaries

Case Study: Conduct a complete EDA on a new dataset, identifying insights and presenting findings in a detailed report.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Data loading and Initial Inspection Load datasets from various sources (CSV,Excel and SQL) and inspect data structures.
- Data Cleaning and Missing Value Treatment Apply data cleaning techniques to handle missing values, duplicates, and outliers.
- 3. Descriptive Statistics and Data Summarization Calculate and interpret key descriptive statistics (mean, median, mode, variance, standard deviation).
- 4. Univariate and Bivariate Visualization Visualize univariate and bivariate distributions to understand data patterns.
- 5. Multivariate Visualization and Correlation Analysis Create multivariate visualizations and perform correlation analysis.
- 6. Data Transformation and Feature Scaling Practice data transformation techniques like standardization, normalization, and log transformation.
- 7. Encoding Categorical Variables and Feature Engineering
- 8. Outlier Detection and Analysis Detect and handle outliers in the dataset using statistical and visualization techniques.
- 9. Comprehensive EDA and Reporting Conduct a full exploratory analysis and compile findings into a structured report.
- 10. Capstone Project: Conduct a complete EDA on a new dataset, identifying insights and presenting findings in a detailed report.

TOTAL: 30 PERIODS

COL	RSE OUTCOMES:
-	
601	After completion of the course, the students will be able to:
COI:	Apply data cleaning and transformation techniques to
	improve data quality and prepare datasets for analysis.
CO2:	Discover the statistical summaries and visualize
	relationships to enhance understanding of data structures.
CO3:	Construct visualizations that accurately depict univariate,
	bivariate, and multivariate data distribution
CO4:	Discover the results of data transformations to refine dataset
	structure.
CO5:	Apply feature engineering and dimensionality reduction
	techniques to optimize dataset quality.
CO6:	Examine findings from EDA and compile structured reports
	that highlight critical insights and recommendations.
TEXT	F BOOKS: Dec.
1	Wes McKinney, "Python for Data Analysis", 2nd Edition,
	O'Rei <mark>lly, 202</mark> 2
2	Peter Bruce, Andrew Bruce, "Practical Statistics for Data
	Scientists, 2e: 50+ Essential Concepts Using R and
	Python",2nd Edition, O'Reilly, 2017
REFE	ERENCES:
1	Foster Provost and Tom Fawcett, "Data Science for Business:
	What You Need to Know about Data Mining and Data-
	Analytic Thinking", 1st Edition, O'Reilly Media, 2013
2	Kieran Healy, ""Data Visualization: A Practical
	Introduction", 1st Edition, Princeton University Press, 2018
3	Max Kuhn and Kjell Johnson "Feature Engineering and
	Selection: A Practical Approach for Predictive Models", 1st
	Edition, Chapman & Hall/CRC Press, 2019
4	Roger D. Peng and Elizabeth Matsui," Exploratory Data
	Analysis with R", 1st Edition, Chapman & Hall/CRC Press,
	2018
ш	

COs						I	POs	,					I	PSOs						
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3					
1	3	2	1	1	1	-	-	-	-	1	1	-	3	1	-					
2	3	3	2	2	1	-	-	-	-	-	1	-	3	1	-					
3	3	2	1	1	1	-	-	-	-	-	1	-	3	1	-					
4	3	3	2	2	1	-	-	-	-	-	1	-	3	1	-					
5	3	2	1	1	1	-	-	-	-	-	1	-	3	1	-					
6	3	3	2	2	1	1	1	1	1	1	1	1	3	1	1					
Overall Correlation	3	3	2	2	1	1	1	1	1	1	1	1	3	1	1					

23AD042	DATA ANALYTICS	L	T	P	C
		3	0	0	3

- Provide basic knowledge of business intelligence and decision support systems.
- Explain about how to model decision support systems and analyze decisions under certainty, uncertainty, and risk.
- Explore healthcare data analytics and machine learning basics for healthcare.
- Discuss the use of IoT and smart sensors in healthcare.
- Explain data security methods for protecting patient information in healthcare analytics.
- Investigate deep learning techniques.

UNIT I AN OVERVIEW OF BUSINESS 9 INTELLIGENCE, ANALYTICS, AND DECISION SUPPORT

Information Systems Support for Decision Making, An Early Framework for Computerized Decision Support, The Concept of Decision Support Systems, A Framework for Business Intelligence, Business Analytics Overview, Brief Introduction to Big Data Analytics.

UNIT II MODEL-BASED DECISION MAKING

Decision Support Systems modeling, Structure of mathematical models for decision support, Certainty, Uncertainty, and Risk, Decision modeling with spreadsheets, Mathematical programming optimization, Decision Analysis with Decision Tables and Decision Trees, Multi-Criteria Decision Making With Pairwise Comparisons.

UNIT III INTRODUCTION TO HEALTHCARE 9 ANALYSIS

Overview - History of Healthcare Analysis Parameters on medical care systems- Health care policy- Standardized code sets - Data Formats - Machine Learning Foundations: Tree Like reasoning, Probabilistic reasoning and Bayes Theorem, Weighted sum approach.

UNIT IV | HEALTH CARE MANAGEMENT IOT- Smart Sensors - Migration of Healthcare Relational database to NoSQL Cloud Database - Decision Support System - Matrix block Cipher System - Semantic Framework Analysis - Histogram bin Shifting and Rc6 Encryption - Clinical Prediction Models -Visual Analytics for Healthcare. UNIT V HEALTHCARE AND DEEP LEARNING Introduction on Deep Learning - DFF network CNN- RNN for Sequences - Biomedical Image and Signal Analysis - Natural Language Processing and Data Mining for Clinical Data - Mobile Imaging and Analytics - Clinical Decision Support System. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Demonstrate business intelligence and decision support systems and their applications. CO2: Develop model decision support systems and analyze decisions in scenarios of certainty, uncertainty, and risk. CO3: Apply knowledge of healthcare data analytics and machine learning to address healthcare challenges. CO4: Identify the role of IoT and smart sensors in improving healthcare management and operations. CO5: Build and Implement data security methods to ensure the protection of patient information in healthcare analytics. **CO6:** Utilize deep learning techniques for healthcare applications such as clinical decision support and biomedical imaging. **TEXT BOOKS:** Sharda. Dursun Delen, 1 Ramesh EfraimTurban, J.E.Aronson, Ting-Peng Liang, David King, "Business Intelligence and Analytics: System for Decision Support", 10th Edition, Pearson Global Edition, 2013. 2 Efraim Turban, Ramesh Sharda, Dursun Delen, and David King "Decision Support and Business Intelligence Systems", 9th Edition, Pearson, 2011 Trevor L. Strome "Healthcare Analytics for Quality and 3 Performance Improvement", 1st Edition, Wiley, 2013

4	Chanda	I	/ T	204	4	220	1 (han	(٠ ٨	~~~	MT 4 T O 1	"LI	[00]	thac	140											
4	Data Aı				-						\sim																
DEE	ERENCE		tics	, 1	Sti	Jun	.1011	, C	пар	ınıa	11 &	I Ian	/ Cr	ic,	201	,											
					1			-			D (• 1	TA7 1			1											
1	Bharath																										
	Vijay Pa																										
	Deep Learning to Genomics, Microscopy, Drug Discovery, and More", 1st Edition, O'Reilly Media, 2019																										
	and More", 1st Edition, O'Reilly Media, 2019 Paul Goodwin and George Wright "Decision Analysis for																										
2	Management Judgment", 5th Edition, Wiley, 2014																										
	Management Judgment", 5th Edition, Wiley, 2014 Cliff Ragsdale "Spreadsheet Modeling and Decision																										
3	Cliff Ragsdale "Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Business Analytics".																										
	Analysis: A Practical Introduction to Business Analytics",																										
	9th Edition, Cengage Learning, 2021																										
4	Nathan Marz and James Warren "Big Data: Principles and Best Practices of Scalable Real-Time Data Systems", 1st																										
											e Da	ita S	syste	ems	", [lst											
	- 11	Edition, Manning Publications, 2015 Farrokh Alemi "Big Data in Healthcare: Statistical Analysis																									
5					_			- 4	97				- 40	and Predictive Modeling", 1st Edition, Auerbach													
5	and F	rec	licti	ve	_			- 4	97				- 40		-												
	and F Publica	rec tior	licti 1s,20	ve 019	M	Iod	elin	g",	1	st	Ed	ition	1,	Aue	erba	ch											
6	and F Publica Deepak	rection K.	licti ns,20 G	ve 019 upta	M a a	lod nd	elin Nil	.g", lanj	1 an	st	Ed:	ition Pract	ical	Aue Ma	erba achi	ch ne											
	and F Publica	rection K.	licti ns,20 G	ve 019 upta	M a a	lod nd	elin Nil ', 1s	g", lanj st E	1 an diti	st	Ed:	ition Pract	ical	Aue Ma	erba achi , 20	ne 22											
6	and F Publica Deepak	rec tior K. g fo	licti ns,20 Gor H	ve 019 upta Ieal	N a a thca	lodend nd are	elin Nil ', 1s	g", lanj st Ec	1 an diti	st Dey on,	Ed: y "F Aca	ract dem	ical ic Pi	Aue Ma ress	erba achi , 20 PSO	ne 22 S											
6	and F Publica Deepak Learnin	rection K. g fo	lictins,20 Gr H	ve 019 upta	M a a	lod nd	elin Nil ', 1s	g", lanj st E	1 an diti	Deyon,	Ed:	ition Pract	ical ic Pi	Aue Ma	erba achi , 20	ne 22											
6	and F Publica Deepak Learnin	rec tior K. g fo	licti ns,20 Gor H	ve 019 upta Ieal	N a a thca	lodend nd are	elin Nil ', 1s	g", lanj st Ec	1 an diti	st Dey on,	Ed: y "F Aca	ract dem	ical ic Pi	Maress I	erba achi , 20 PSO	ne 22 S											
6	and F Publica Deepak Learnin COs	Predition K. g fo	Gor H	ve 019 upta Ieal 3	Na a a thea	nd are'	Nil ', 1s I 6	g", lanj st Ec POs 7	an ditio	Deyon,	Ed: y "F Acad 10 2	Pract dem	ical ic Pr	Maress I 1	erba achi , 20 PSO 2	ne 22 0s 3											
6	and F Publica Deepak Learnin	rection K. g fo	lictins,20 Gr H	ve 019 upta Ieal	N a a thca	nd are'	Nil ', 1s I 6	g", lanj st Ec Os 7	an ditio	Deyon,	Ed y "F Acad	ract dem	ical ic Pr	Maress I	erba achi , 20 PSO 2	ne 22 9s											
6	and F Publica Deepak Learnin COs 1	Predition K. g fo	Gor H	ve 019 upta Ieal 3	Na a a thea	nd are'	Nil ', 1s I 6	g", lanj st Ec POs 7	an ditio	Deyon,	Ed: y "F Acad 10 2	Pract dem	ical ic Pr	Maress I 1	erba achi , 20 PSO 2	ne 22 0s 3											
6	and F Publica Deepak Learnin COs	Prediction K. ag for 1 2 3	Graph Grap	ye 019 upta leal - 1	Maa a a a a a tthca 4 - 1 1	nd are' 5 1 1	Nil / / / 1s / / / 1s / / / 1 / / 1	g", lanj st Ec POs 7 1	an ditio	Deyon, 9 2 1 2	Ed: y "F Acad	Practidem 11 1 2	ical ic Pr	Macress I 1 2 3	rba achi , 20 PSO 2 1	ch ne 222 0s 3 1 1											
6	and F Publica Deepak Learnin COs 1	rection K. g for 1 2	Gr H	ve 019 upta Ieal 3 -	Na a a thea	nd are'	Nil ', 1s I 6 1	g", lanj st Ec POs 7 1	an dition 8	Deyon, 9 2	Ed: y "F Acad	Practidem 11 1	ical ic Pr 12 2	Maress I 1 2	erba achi , 20 2 2 1	ne 22 0s 1 1											
6	and F Publica Deepak Learnin COs 1 2	Prediction K. ag for 1 2 3	Graph Grap	ye 019 upta leal - 1	Maa a a a a a tthca 4 - 1 1	nd are' 5 1 1	Nil / / / 1s / / / 1s / / / 1 / / 1	g", lanj st Ec POs 7 1	an ditio	Deyon, 9 2 1 2	Ed: y "F Acad	Practidem 11 1 2	ical ic Pr	Macress I 1 2 3	rba achi , 20 PSO 2 1	ch ne 222 0s 3 1 1											
6	and F Publica Deepak Learnin COs 1 2 3	rection K. g for 1 2 3 3	2 1 2 2	ve 019 upta 1 1 1 1	4 - 1 1 1	1 1 1 1	Nil 7, 1s 6 1 1 1	g", lanj st E POs 7 1 1 1	1 an dition 8 1 1 1 1 1	Deyon, 9 2 1 2 1	Ed: y "F Acade 10 2 2 1 3	ract lem 11 2 1	12 2 2 2	Marcess I I 3 3	20 2 1 1	ch ne 222 0s 3 1 1 1											
6 O	and F Publica Deepak Learnin COs 1 2 3 4 5	tior K. g for 3	2 2 2 2	ve 019 upta 3 - 1 1 1	4 - 1 1 1 1	1 1 1 1	Nil ', 1s I 6 1 1 1 2	g", lanj st Ec POs 7 1 1 2	1 an dittice	St Deyon, 9 2 1 2 1 3	Ed: Yy "FAAcaa" 10 2 2 1 3 3 3	raction 11 1 2 1 3	12 2 2 2 3	Marcess I I I 3 3 3	20 2 1 1 1 1 1 1 1	ne 222											

23AD043	INTELLIGENT ROBOTS L	T	P	С
	3	0	0	3
COURSE OB	JECTIVES:	!		
To int	troduce the fundamental concepts and comp	pon	ent	ts
	elligent robotic systems			
• To ex	plore various algorithms for perception, pla	nni	ing	,
and c	ontrol in robots			
• To un	nderstand the integration of AI techniques in	n ro	bot	ics
for de	eveloping intelligent behaviors			
• To an	alyze the design and development of auton	om	ous	3
robot	s for real-world applications			
• To ev	aluate the ethical and societal implications of	of		
intelli	igent robots			
UNIT I IN	TRODUCTION TO INTELLIGENT			9
A AV	DBOTS			
	Robotics and Intelligent Robots- History			
	Robotics - Components of Robotic Systems:			
	d Controllers - Kinematics and Dynamics of			
	o Robotic Operating Systems (ROS).	NOW	100	
UNIT II PE	RCEPTION IN ROBOTICS			9
Sensing and	Perception: Camera, Lidar, and Sonar S	ens	ors	3 -
Computer Vi	sion for Robotics: Object Detection, Reco	ogn	itio	n,
and Tracking	- SLAM (Simultaneous Localization and M	Лар	pin	g)
- Sensor Fusio	on Techniques - Machine Learning for Perce	epti	on	in
Robots				
UNIT III PL	ANNING AND NAVIGATION			9
Motion Plan	ning: Kinematic and Dynamic Const	raiı	nts	
Navigation	•	Obs		ele

Avoidance and Reactive Planning - Multi-Robot Coordination

and Swarm Robotics.

UNIT IV CONTROL AND LEARNING IN **ROBOTS** Classical Control: PID Controllers, State-Space Models -Reinforcement Learning for Robotics Adaptive Control and .om Demonstration - Human-Robot Interaction and Shared Control UNIT V APPLICATIONS AND ETHICAL 9 CONSIDERATIONS Case Studies of Intelligent Robots: Industrial, Healthcare, and Service Robots - Ethical and Societal Implications of Intelligent Robots - Safety and Reliability in Autonomous Robots -Standards and Regulations for Intelligent Robots - Future Trends in Robotics: AI-driven Robotics, Human-Robot Collaboration **TOTAL: 45 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the architecture, components, and basic functioning of Intelligent robotic systems. CO2: Utilize perception algorithms sensor technologies for object detection and environmental mapping in robots. CO3: Apply path planning and navigation algorithms for autonomous robot movement in various environments. CO4: Develop control strategies and integrate advanced techniques such as reinforcement learning for robotic behavior and decision-making. CO5: Analyze case studies and understand the applications of intelligent robots across different domains, including industrial, healthcare, and service sectors. CO6: Outline the ethical, societal, and safety considerations related to the deployment and operation of intelligent robots.

TEY	Т ВООК	<u>c.</u>														
1	John J.		aiσ	"It	ntro	du	ctio	n f	o R	obo	ntics	· M	echa	nic	S 21	nd
_	Control		0													
2	Sebastia									/ \						
_	"Probal								_	,						
			Stic	KO	JOU	ics	111	e iv.	111	116	:55, 1	ISt L	ann	J11 ((200)))
3	(Unit II) Patrick Lin, Ryan Jenkins, and Keith Abney, "Robot Ethics															
3	· · · · · · · · · · · · · · · · · · ·															
	2.0: From Autonomous Cars to Artificial Intelligence" Oxford University Press 2nd Edition (2017) (Unit V)															
	Oxford University Press 2nd Edition (2017) (Unit V)															
	ERENCE															
1	Aaron						-	•						_	•	
	for Rob	otic	s Pı	rogi	ram	ımi	ng"	, 2n	id E	diti	ion,	Pack	kt Pu	ıblis	shir	ıg,
	2015.															
2	Roland		_					- 400							avi	de
	Scaram	uzz	a,	"Iı	ntro	odu	ctio	n	to	A	utoı	nom	ous	N	1ob	ile
,	Robots'	', 2 ₁	nd I	Edit	ion	, M	IT I	Pres	ss, 2	2011	l.			10		ri .
3	B. K.	Gh	osh	, "	Rol	boti	cs:	Fu	ınd	ame	enta	l C	once	epts	aı	nd
	Analysi	is",	Ox	forc	1 U	niv	ersi	ty I	res	s, 2	006.		-		The same	
	COs	X	25	42			I	POs						Ι	PSC	s
,	COSCINE	.1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	1	AFE	1	10.11	2	NA.U	1	517	1	2	40U	2
	2	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3
	3	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3
	4	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3
	5	3	3	2	2	-	3	3	3	3	3	3	-	3	-	3
	6	2	1	-	-	-	3	3	3	3	2	3	-	2	-	3
О	verall	3	3	1	1	1	3	1	3	1	2	1	1	3	1	3
Cor	relation	3	3	1	1	1	3	1	3	1	-	1	1	3	1	3

23AD044	REINFORCEMENT LEARNING	L	T	P	C
		3	0	0	3

- To introduce a range of topics related to Reinforcement Learning and probability concepts.
- To gain knowledge on the Markov Decision Process.
- To understand the Q-Learning and SARSA methods.
- To know about Deep Learning in Reinforcement Learning.

• To gain knowledge on Policy Gradient Methods.

UNIT I BASICS OF 9 REINFORCEMENTLEARNING

Introduction to Reinforcement Learning-Elements of Reinforcement Learning- Scope - History of Reinforcement Learning- The Agent-Environment Interface - Examples of Reinforcement Learning - Why Study Reinforcement Learning - Challenges in Reinforcement Learning - Multi-arm Bandit Problem.

UNIT II MARKOV DECISION PROCESSES AND 9 DYNAMIC PROGRAMMING

Overview of Markov Chain - Overview of Markov Decision Process - Model Reinforcement Learning Problem using MDP - Markov Process - Markov Chain - Markov Decision Process - Alternative Bellman Equations for value functions -Optimal policy and optimal value functions - Using Dynamic programming to solve RL problems- Policy Evaluation - Policy Improvement - Policy Iteration - Value Iteration.

UNIT III MONTE CARLO AND TEMPORAL 9 DIFFERENCING

Monte Carlo Introduction - Policy Evaluation - Incremental Update - Exploration Vs Exploitation - Policy Improvement - Temporal Differencing Learning - TD Policy Evaluation -Epilon-Greedy policy - On-policy Vs Off-policy - Q- Learning - SARSA Learning - Double Q-Learning - Applications of Q-Learning - Grid Problems - N-Step Bootstrapping.

UNIT IV VALUE FUNCTION APPROXIMATION

9

Linear value function approximation - Challenge of Large-scale MDP - Value Function approximations - Stochastic Gradient Descent - Linear value and non-linear value approximation - Deep neural nets - Naïve Deep-Q Learning - Experience Replay - DQN for Games - DQN with Double-Q learning - Prioritized experience Replay - Advantage Function and Duelling Network Architecture.

UNIT V ADVANCED DEEP REINFORCEMENT LEARNING

Policy Gradient Methods - Policy-Based methods - Policy Gradient - REINFORCE - Baseline - Actor-Critic Methods - Problems with Continuous Action space - Problems with Standard Methods - Policy Performance Bounds - Proximal Policy Optimization - Latest Trends - Distributed Reinforcement Learning - Curiosity Driven Exploration - Random network Distillation - Planning with AlphaZero.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Interret different terminologies of RL and Concepts of Probability.
- CO2: Illustrate the Markov Decision Process and Bellman Equation for learning.
- CO3: Apply dynamic programming techniques to the Markov decision process and Monte Carlo methods
- CO4: Build and Implement Time difference learning for real-world problems
- CO5: Apply Approximation methods of learning and Q-learning technique.

CO6:	Apply	advanced	policy	gradient	methods	in
	reinforce	ement learnir	ng			

TEXT BOOKS:

- 1 Richard S.Sutton and Andrew G.Barto "Reinforcement learning: An introduction", Second Edition, MIT Press, 2019.
- 2 Michael Hu, "The Art of Reinforcement Learning Fundamentals, Mathematics and Implementations with Python", 1st Edition APress, 2024.

REFERENCES:

- 1 Sudharsan Ravichandiran, Deep Reinforcement Learning with Python, SecondEdition, Packet Publishing, Birmingham, 2020.
- 2 Csaba Szepesvari, Algorithms for Reinforcement Learning (Synthesis Lectures on Artificial Intelligence & Machine Learning)", 1st Edition, Morgan & Claypool Publishers, 2010.
- 3 Laura Graesser and Wah Loon Keng,"Foundations of Deep Reinforcement learning: theory and Practice in Python", 1st Edition, Pearson India, New Delhi, 2022.

COs					AFFI	F	Os	ANI	IA.U	NIVER	SHY	AUTO	F	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	1	-	2	-	1	-	1	2	-	2
2	2	1	-	-	1	2	-	3	-	1	-	-	2	1	3
3	3	2	1	1	1	2	-	3	1	1	-	-	3	1	3
4	3	2	1	1	1	2	-	3	1	1	-	-	3	1	3
5	3	2	1	1	-	3	3	3	3	3	3	-	3	-	3
6	3	2	1	1	-	3	3	3	3	2	3	-	3	-	3
Overall Correlation	3	2	1	1	1	3	1	3	1	2	1	1	3	1	3
Correlation															

23AD0)45	DATA	.]	EXPL	ORATION	1	AND	L	T	P	C
		VISU	ALI	ZAT	ION			2	0	2	3
COUR	SE OB	ECTIV	ES:								
•	Under	stand	the	core	principles	of	Explo	orato	ory	Da	ıta
	Analy	sis (ED <i>A</i>	A)								

- Utilize various EDA tools and techniques to perform descriptive statistics, data transformation, and time series analysis.
- Analyze univariate, bivariate, and multivariate data using appropriate statistical and visualization methods to understand relationships and patterns.
- Implement 2D and 3D data visualization techniques
- Design interactive visualizations for text and document data VER DAS

UNIT I	THE FUNDAMENTALS OF EXPLORATORY	6
	DATA ANALYSIS	

Overview of EDA - Identifying Data quality - Missing values - Irregular Cardinality - Outliers - handling data Quality - Describing Data, Preparing Data Tables, Understanding Relationships Identifying and Understanding Groups, Building Models from Data.

EDA TOOLS AND DESCRIPTIVE STATISTICS UNITII 6

Significance of EDA - Comparing EDA with classical and Bayesian analysis - Software tools for EDA - Visual Aids for EDA - EDA with Personal Email - Data Transformation -Descriptive Statistics - Grouping Datasets Correlation - Time Series Analysis.

UNIT III UNIVARIATE, BIVARIATE, MULTIVARIATE 6 DATA ANALYSIS

Univariate Data Analysis - Bivariate Association Regression Analysis - Cluster Analysis - Visualization Design Principles - Tables - Univariate Data Visualization - Bivariate Data Visualization - Multivariate Data Visualization - Visualizing Groups - Dynamic Techniques.

UNIT IV DATA VISUALIZATION (2D/3D)

6

Simple Line Plots - Simple Scatter Plots - Visualizing Errors - Density and Contour Plots - Histograms, Binnings, and Density - Customizing Plot Legends - Customizing Colorbars - Multiple Subplots - Text and Annotation - Customizing Ticks - Customizing Stylesheets - Three-Dimensional Plots - Geographic Data with Basemap - Visualization with Seaborn.

UNIT V INTERACTIVE DATA VISUALIZATION

6

Text and Document Visualization - Levels of Text Representations -Single Document Visualizations - Document Collection Visualizations- Interaction Concepts and Techniques - Designing Effective Visualizations - Comparing and Evaluating Visualization Techniques - Visualization Systems - Systems based on Data Type - Systems based on Analysis Type - Text Analysis and Visualization - Modern Integrated Visualization Systems.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- Generate the data quality report in terms of identifying missing values, irregular cardinality and outliers for an insurance company.
- 2. Descriptive feature identification for predicting a target feature by visualizing relationships.
- 3. Data preparation for Exploration using normalization, binning and sampling methods.
- 4. Design and create data visualizations.

- 5. Conduct exploratory data analysis using visualization.
- 6. Craft visual presentations of data for effective communication.
- 7. Use knowledge of perception and cognition to evaluate visualization design alternatives.
- 8. Design and evaluate color palettes for visualization based on principles of perception.
- 9. Apply data transformations such as aggregation and filtering for visualization.
- 10. Develop data exploration and visualization for an application Mini Project

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Illustrate fundamentals of exploratory data analysis and its commonly used techniques.
- CO2: Apply statistical concepts to analyze data and explore the tools used for EDA.
- CO3: Develop multivariate data visualization and analysis.
- CO4: Interpret results of exploratory data analysis using stylesheets
- CO5: Build and Implement visualization techniques in web for applications
- **CO6:** Apply exploratory data analysis methods using Python.

TEXT BOOKS:

- 1 Suresh Kumar Mukhiya, Usman Ahmed, "Hands-On Exploratory Data Analysis with Python",1st Edition, Packt Publishing, 2020.
- **2** Jake VanderPlas, "Python Data Science Handbook", O'Reilly Media, 1st Edition, December 2016.

REFERENCES:

- Thomas Cleff, "Exploratory Data Analysis in Business and Economics", Springer International, 2013.
- 2 | Matthew O. Ward, Georges Grinstein, Daniel Keim,

	"Interactive Data Visualization: Foundations, Techniques, and Applications", 2nd Edition, CRC press, 2015.															
	and Ap	plic	atio	ons'	', 21	nd I	Edit	ion	, CF	RC_1	oress	s, 20	15.			
3	Glenn J	. M	yat	t, W	/ayı	ne I	P. Jo	hn	son	," N	/laki	ng S	Sense	e Oi	f Da	ata
	I", John															
4	Claus C). V	Vilk	e, "	Fui	nda	mei	ntal	s of	Da	ita V	⁷ isua	aliza	tior	ı", î	1st
	Edition															
5	Andy 1															
	Driven	Dε	esig	n",	Sec	cond	d E	dit	ion,	Sa	ige :	Publ	licati	ions	s L	td,
		2020. Mike Kahn "Data Exploration and Preparation with														
6		Mike Kahn, "Data Exploration and Preparation with														
		BigQuery: A practical guide to cleaning, transforming, and														
	-	analyzing data for business insights", 1st Edition, Kindle														
		Edition, Packt Publishing, 2023.														
7		Dursun Delen, "Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners". 1st Edition														
	Learning and Data Science for Practitioners", 1st Edition, Pearson Business Analytics Series, 2021.															
	Pearsor	ı Bu	ısın	ess	Ana	alyt			_	202	1.		-	T	200	
(COs	2187	PE.		_		- 4	POs	- 4	Wa.		7	47		PSC	
	N/W	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	7	1	1	2	1	1	1	₂₂	1	3	2	1	1
	2	3	2	1	1	1	2	1	1	1	_	1	3	3	1	1
	3	3	2	1	1	1	2	1	1	1	-	1	3	3	1	1
	4 GINE	2	1	-	-	1	2	1	1	1	LE	1	3	2	1	1
	5	3	2	1	1	1	2	1	1	1	NIVER	1	3	3	1	1
	6	3	2	1	1	1	2	1	1	1	1	1	3	3	1	1
O	verall	3	2	1	1	1	2	1	1	1	1	1	3	3	1	1
Cor	relation	3	_	1	1	1	_	1	1	1	1	1	3	3	1	T

23AD046	KNOWLEDGE ENGINEERING	L	T	P	C
		3	0	0	3

- Understanding Fundamental Concepts Knowledge Engineering.
- Develop Logical Reasoning Skills
- Explore Semantic Networks and Ontologies
- Apply Advanced Reasoning Techniques
- Integrate Knowledge Representation with AI Systems

UNIT I INTRODUCTION

9

Introduction: Definition and Importance, Types of Knowledge: Declarative Knowledge, Procedural Knowledge, Meta-Knowledge, Historical Background: Evolution of Knowledge Representation in AI, Key Concepts: Ontology, Epistemology, and the Role of Logic in Knowledge Representation, Applications: Real-world Examples and Applications in AI Systems.

UNIT II LOGIC-BASED REPRESENTATION

9

Propositional Logic: Syntax, Semantics, and Inference, First-Order Logic (FOL): Syntax and Semantics, Quantifiers, and Inference Mechanisms, Resolution and Unification: Techniques and Algorithms, Knowledge Bases: Structure, Creation, and Querying, Automated Reasoning: Tools and Techniques for Logical Inference.

UNIT III | SEMANTIC NETWORKS AND FRAMES

9

Semantic Networks: Concepts, Nodes, Arcs, and Types of Relationships, Frame-Based Systems: Definition, Structure, and Examples, Inheritance: Types, Mechanisms, and Issues, Conceptual Graphs: Basics and Usage in Representing Knowledge, Applications: Use Cases in Natural Language Processing and Expert Systems

UNIT IV ONTOLOGIES AND DESCRIPTION 9 LOGICS

Ontologies: Definition, Components, and Development Processes, Concepts and Instances – Generalization Hierarchies – Object Features – Defining Features – Representation, Description Logics: Basics, Syntax, Semantics, and Reasoning, Ontology Engineering: Tools, Methodologies, and Best Practices, Case Studies: Real-world Applications and Success Stories.

UNIT V ADVANCE TOPICS IN KNOWLEDGE 9 REPRESENTATION 9

Probabilistic Reasoning: Bayesian Networks and Markov Models, Temporal and Spatial Representation: Methods and Applications, Non-Monotonic Reasoning: Default Logic, Circumscription, and Belief Revision, learning from Knowledge: Integrating Machine Learning with Knowledge Representation, Ethical and Practical Considerations: Challenges, Limitations, and Future Trends in Knowledge Representation in AI

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain Knowledge Representation Techniques.
- **CO2:** Solve complex AI problems through logical inference.
- CO3: Identify uncertainty in AI systems effectively.
- CO4: Develop Ontologies and represent domain-specific knowledge in AI applications.
- CO5: Construct Knowledge Representation in AI Systems.
- CO6: Apply Ethical and Practical Considerations to develop AI systems.

TEXT BOOKS:

1 Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach, 4th Edition, Pearson, 2021.

- 2 John F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/Cole, Thomson Learning, 2000
- Ronald J. Brachman, Hector J. Levesque: Knowledge Representation and Reasoning, Morgan Kaufmann, 2004.
- 4 Michael Genesereth, Nils J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1987.

REFERENCES:

- 1 Dean Allemang, James Hendler. Semantic Web for the Working Ontologist, 2nd Edition, Morgan Kaufmann, 2011.
- 2 Judea Pearl. Probabilistic Reasoning in Intelligent Systems, 2nd Edition, Morgan Kaufmann, 1988.

COs						I	POs					- 5	I	PSC	s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
10//	2	1	2	\ -	-	420	-	1	Y-	-	-	1	2	-	1
2	3	2	1	1	- 8	-	3	1	7		-	1	3	-	1
3	3	2	1	1	-	-	1	1	1	1	1	1	3	100	1
4	3	2	1	1	1	2	3	1	2	1	1	2	3	-	1
5 CINE	3	2	1	1	0	1	Ŀί	2	U)	LE	UH.	2	3	9	2
6	3	2	1	1	MFE	1	2	3	NA.U	NIVER	SHIY	2	3	40n	3
Overall Correlation	3	2	1	1	-	1	1	2	1	1	1	2	3		2

VERTICAL 3: FULL STACK DEVELOPMENT

23CS031	JAVA FULL STACK	L	T	P	C
	DEVELOPMENT	2	0	2	3

COURSE OBJECTIVES:

- To understand and familiarize with JavaScript and NodeJS environments.
- To learn about NoSQL database and basics of MongoDB.
- To acquire knowledge of the ReactJS frontend.
- To acquire knowledge of the ExpressJS backend.
- To acquire knowledge of how to develop and create real time web applications.

UNIT I INTRODUCTION TO JAVA SCRIPT 6

Introduction to JavaScript- Brief history of NodeJS and its alternatives- Installing and setting up NodeJS environment - Introduction to NPM package manager and registry - Introduction to callbacks and events -File system access and handling streams-Introduction to common utility modules (OS, Path).

UNIT II INTRODUCTION TO NOSQL DATABASE 6 WITH MONGODB

Introduction to NoSQL -Benefits and disadvantages of NoSQL databases -Introduction to MongoDB - Installing and setting up MongoDB environment -Data model design (Embedded and Normalized) -Database manipulation (Create, Drop, Create and Drop Collections) -Document manipulation (Insert, Delete, Update, Query (Limit, Sort, Aggregation)) -Projection Introduction and setting up Mongoose ORM -Handling models and queries with Mongoose.

UNIT III FRONTEND DEVELOPMENT WITH REACT JS 6

Introduction to ReactJS -Installation and creating a basic React application -Introduction to JSX- Components and props- State and lifecycle -Events and effects -Conditional rendering - Introduction to HTTP requests and fetch -Making HTTP GET and POST requests- Handling data from API.

UNIT IV BACKEND DEVELOPMENT WITH EXPRESS 6 JS

Introduction to ExpressJS- Separating the tasks of frontend and backend -Installing and setting up ExpressJS environment-Introduction to APIs -Routing and URL building -Error handling-Project directory structuring - Handling form data and request data -Handling and serving files -Authentication using session keys- Handling request of multiple methods and their placement (GET, POST, DELETE, PATCH) -Documenting an API.

UNIT V CREATING A FULL STACK WEB APPLICATION 6

React page with input fields -Extracting and validating data from input field(s)- Making a HTTP request with data from input field(s) Using Mongoose with an ExpressJS application -Inserting document with data from HTTP request -Writing, handling URL query parameters and using its values to write queries with Mongoose -Displaying data returned from backend- Handling errors in API requests.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Develop a Life Line A Health Assistance Web Application
- 2. Develop Employee Timesheet Management System
- 3. Build Paytm clone Page
- 4. Build Portfolio page
- 5. Creating a simple College website using HTML, CSS, and JS.
- 6. Develop a Hospital Management System
- 7. Develop an Online Banking Application

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Explain concepts of JavaScript and its environment.

000	A 1 7	N T (201	1	. 1			1	1	1	1		• .	٠,		
CO2:	Apply NoSQL databases and develop deeper into it using MongoDB and performing basic database operations in it. Apply the concepts of JSX and ReactJS to display and															
COL																
CO3:																
	manipu request							oag	e aı	na	to n	nake	e bas	SIC	ПΙ	11
COA	Compa							on d	22	d h	2010	nd	and	to	TATO	rl
CO4.	with Ex				25 0	1 11	OH	ena	an	uı	ackt	:IIU,	ariu	10	WU	IK.
CO5					- A1	РΙа	nd ·	inte	rac	t 117	ith it	fro	m th	e R	eac	tIS
CO0.	Develop complete API and interact with it from the ReactJS frontend.															
CO6:			nd c	rea	te r	eal t	time	e w	eb a	ממו	licati	ions				
	Develop and create real time web applications. BOOKS:															
1	Herbert	Herbert Schildt, "Java: The Complete Reference", 11 th														
	Edition, McGraw Hill Education, New Delhi, 2019															
2		Bradshaw, Shannon., Brazil, Eoin., Chodorow, MongoDB:														
	The Def	The Definitive Guide: United States: O'Reilly Media, 2019.														
3		Herbert Schildt, "Introducing JavaFX 8 Programming", 1 st														
	Edition	Edition, McGraw Hill Education, New Delhi, 2015.														
4		Chris Northwood, 'The Full Stack Developer: Your Essential														
	Guide to the Everyday Skills" APress; 1st ed. Edition (20															
	November 2018).															
REF		RENCES:														
1	'Expect	4 - 10 - 1	3 -3-40		ode	rn I	Full	Sta	ıck	We	b De	evelo	per	, A	pre	ss;
	1st edit										NIVER					
2	Cay S. I								un	dan	nenta	als",	Vol	um	e 1,	11
	th Editi										1	т	-		T A 7	. 1
3	Nichola									S101	nai	jav	a f	or	VV	eb
	Applica	itiOl	15 ,	, vv	LUX	тте		2014 2Os						T	PSO)c
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1		_	3	_	_	1	-	10		1	2	3	1
	2	3	2	1	1	1	_	_	1	_	-	_	2	3	1	1
	3	3	2	1	1	2	_	_	1	_	_	_	2	3	2	1
	4	3	2	1	1	2	-		1	-			1	2	2	1
	5															
	6 3 2 1 1 2 1 1 3 2 1															
O	verall	_	_	_	_										_	_
Corı	relation	3	3	1	1	2	-	-	1	-	-	-	2	3	2	1

23CS032	MOBILE APP DEVELOPMENT	L	T	P	C
		2	0	2	3

- To understand the need and characteristics of mobile applications
- To design the right user interface for mobile applications.
- To understand the design issues in the development of mobile applications
- To understand the development procedure for mobile applications forms
- To develop mobile applications using various tools and platform

UNIT I INTRODUCTION TO ANDROID OS

6

Android: An Open Platform for Mobile Development-Introducing the Open Handset Alliance- Introducing the Development Framework- Developing for Android-Developing for Mobile and Embedded Devices- Android Development Tools-Introducing the Application Manifest File -The Android Application Lifecycle.

UNIT II BUILDING USER INTERFACE AND INTENT 6 CREATIONS

Fundamental Android UI Design- Android User Interface Fundamentals- Introducing Layouts- The Android Widget Toolbox- Introducing Intents- Creating Intent Filters and Broadcast Receivers- Using Internet Services-Connecting to Google App Engine.

UNIT III DATABASES AND CONTENT PROVIDERS

6

Introduction on SQLite-Working with SQLite Databases- Creating Content Providers Native Android Content Providers-Introducing Services -Using Background Threads- Using Alarms-Creating and Using Menus and Action Bar Action Items.

UNIT IV LOCATION-BASED SERVICES AND WIRELESS SERVICES 6

Using Location-Based Services-Using the Emulator with Location-Based Services-Selecting a Location Provider- Finding Your Current Location- Using Bluetooth-Managing Network and Internet Connectivity- Managing Wi-Fi.

UNIT V TELEPHONY AND SMS, PUBLISHING 6 APPLICATIONS

Using Telephony - Introducing SMS and MMS - Distributing Applications-Introducing the Google Play - Getting Started with Google Play-Publishing Applications.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Develop an application that uses GUI components, Font and Colours
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Write an application that draws basic graphical primitives on the screen.
- 4. Develop an application that makes use of databases
- 5. Develop an application that makes use of Notification Manager
- 6. Implement an application that uses Multi-threading
- 7. Develop a native application that uses GPS location information
- 8. Implement an application that writes data to the SD card
- 9. Implement an application that creates an alert upon receiving a message
- 10. Write a mobile application that makes use of RSS feed

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Develop an application using Android development environment

CO2·	Develo	n m	obi	1e a	nn	lica	tion	de	vel	onn	nent	frai	าคพ	ork	s at	nd
CO2.	tools	Y 11	1001	10 0	'PP	iicu	CIOI.	· ac	VCI	opi	iiciii	IIui	.110 **	OII		iia
CO3:		a	mo	bile	a	nnl	icat	ion	t1	nat	ma	ınag	es	Dat	taba	ise
	operation		1110	<i>-</i> 110		PP.	ıcu.	1011	•	1010	1110		Co	Du.	acc	
CO4:	Develo		cati	on i	base	ed s	serv	ices	s an	d w	zirele	ess e	nvir	onr	nen	ıts
	Develo															
	MMS	Γ	1010	71101		171	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		110 1			ouc	8	0111	<i>-</i> u	ici
CO6:	Develor	n ar	ppli	cati	ons	bas	sed	on	And	droi	id O	S				
	Develop applications based on Android OS BOOKS:															
1	Lauren Darcey and Shane Conder, "Android Wireless															
	Application Development", Pearson Education, 2nd ed.															
	(2011)															
REFI	ERENCE	S:														
1	Reto Meier, "Professional Android 4 Application															
	Development", Wiley, First Edition, 2012															
2	Zigurd Mednieks, Laird Dornin, G. Blake Mike, Masumi															
1	Nakam	ura	, "P	rog	ran	nmi	ng .	And	droi	id",	O'R	eilly	, 2n	dEc	litic	on,
1	2012.							1		-			-		Total Control	
3	Alasdai	r A	Alla	n,	"iP	hor	ie I	Pro	gra	mm	ing"	, C	'Rei	11y,	Fi	rst
	Edition	, 20	10.	die		(()LL	.E(aE.	Ol-	1E	CH	NO	LO	(9)	
	COs					AFE	I	Os	JAN	NIA U	MIVEH	5117	AUI	I	PSO	s
`		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	1	-	-		1	3	2	1
	2	3	2	1	1	2	1	-	1	1	-	1	1	3	2	1
	3	3	2	1	1	2	1	-	1	1	1	1	1	3	2	1
	4	3	2	1	1	2	1	-	1	-	1	1	1	3	2	1
	5	3	2	1	1	2		-	1	-	-	-	1	3	2	1
	6	3	2	1	1	2	1	-	1	1	-	1	1	3	2	1
O	verall	3	3	1	1	2	1	_	1	1	_	1	1	3	2	1
	relation	9	9													

23CS033	UI AND UX DESIGN	L	T	P	C
		2	0	2	3

- To provide a sound knowledge in UI & UX.
- To understand the need for UI and UX.
- To understand the various Research Methods used in Design.
- To explore the various Tools used in UI & UX.
- To create a wireframe and prototype.

UNIT I FOUNDATIONS OF DESIGN

UI vs. UX Design - Core Stages of Design Thinking - Divergent and Convergent Thinking - Brainstorming and Game storming - Observational Empathy.

6

UNIT II FOUNDATIONS OF UI DESIGN 6

Visual and UI Principles - UI Elements and Patterns - Interaction Behaviors and Principles - Branding - Style Guides.

UNIT III FOUNDATIONS OF UX DESIGN 6

Introduction to User Experience - Why You Should Care about User Experience - Understanding User Experience - Defining the UX Design Process and its Methodology - Research in User Experience Design - Tools and Method used for Research - User Needs and its Goals - Know about Business Goals.

UNIT IV WIREFRAMING, PROTOTYPING AND TESTING 6

Sketching Principles - Sketching Red Routes - Responsive Design - Wireframing - Creating Wireflows - Building a Prototype - Building High-Fidelity Mockups - Designing Efficiently with Tools- Interaction Patterns - Conducting Usability Tests - Other Evaluative User Research Methods - Synthesizing Test Findings - Prototype Iteration.

UNIT V RESEARCH, DESIGNING, IDEATING, & 6 INFORMATION ARCHITECTURE

Identifying and Writing Problem Statements - Identifying Appropriate Research Methods - Creating Personas - Solution Ideation - Creating User Stories - Creating Scenarios - Flow Diagrams - Flow Mapping - Information Architecture.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Designing a Responsive layout for an societal application
- 2. Exploring various UI Interaction Patterns
- 3. Developing an interface with proper UI Style Guides
- 4. Developing Wireflow diagram for application using open source software
- 5. Exploring various open source collaborative interface Platform
- 6. Hands on Design Thinking Process for a new product
- 7. Brainstorming feature for proposed product
- 8. Defining the Look and Feel of the new Project
- 9. Create a Sample Pattern Library for that product (Mood board, Fonts, Colors based on UI principles)
- 10. Identify a customer problem to solve.
- 11. Conduct end-to-end user research User research, creating personas, Ideation Process (User stories, Scenarios), Flow diagrams, Flow Mapping.
- 12. Sketch, design with popular tool and build a prototype and perform usability testing and Identify improvements.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build UI for user Applications.
- CO2: Apply UX design in any product or application.
- CO3: Apply UX Skills in product development.

CO4:	Apply Sketching principles.																
CO5:	Develop Wireframe and Wireflows.																
CO6:	Develop Prototype Testing for High-Fidelity Mockups.																
TEXT	TEXT BOOKS:																
1	Joel Marsh, "UX for Beginners", O'Reilly, 2022 Edition																
2	Jon Yablonski, "Laws of UX using Psychology to Design																
	Better Product & Services" O'Reilly,2020.																
REFERENCES:																	
1	Jenifer Tidwell, Charles Brewer, Aynne Valencia,																
	"Designing Interface" 3 rd Edition, O'Reilly 2020.																
2	Steve Schoger, Adam Wathan "Refactoring UI", 2018.																
3	Steve Krug, "Don't Make Me Think, Revisited: A																
	Commonsense Approach to Web & Mobile", Third Edition,																
	2015 WER DREAL																
4	Jenifer Tidwell, Charles Brewer, and Aynne Valencia,																
	"Designing Interfaces: Patterns for Effective Interaction																
1	Design" O'Reilly Media ,2020.																
5	https://www.nngroup.com/articles/										7						
6	https:/	'/w	ww	int	tera	ctio	n-d	lesi	gn.c	org				ONO	MOU	5	
															PSOs		
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1		3	2	1	1	1	-	-	1	3	3	2	1	3	1	1	
2		3	2	1	1	2	-	-	1	1	2	2	2	3	2	1	
3		3	2	1	1	2	-	-	-	2	3	1	2	3	2	1	
4		3	2	1	1	1	-	-	1	3	2	1	3	3	1	1	
5		3	2	1	1	1	-	-	1	2	1	1	1	3	1	1	
6		3	2	1	1	1	-	-	1	2	1	1	1	3	1	1	
Overall Correlation		3	2	1	1	2	_	_	1	3	2	2	2	3	2	1	
Corr																	

23CS034	MERN STACK WEB	L	T	P	C
	DEVELOPMENT	2	0	2	3

- To understand MERN stack architecture
- To enrich the knowledge of different JavaScript libraries and frameworks
- To understand how Javascript libraries can be used in front end and backend process
- To understand NoSQL databases
- To build web applications using MERN Stack

UNIT I INTRODUCTION TO MERN STACK 6

MERN Stack Overview, Modular Architecture, MERN support for modular architecture- Component-Based Frontend Development-Modular Server-Side Development - Separation of Concerns-Dependency Management- Testing and Deployment, Benefits/Features of Using Modular Architecture in MERN App.

UNIT II JAVA SCRIPT AND ECMA SCRIPT 6

JavaScript Fundamentals, Grammar and types, Control flow and error handling, Loops, Function, Objects, Arrays, Promises,ES6 Let and const, Template literals, Arrow Function, Default parameter, Async Await.

UNIT III BACKEND DEVELOPMENT USING Node.js AND Express.js with MONGO DB

Node.js overview, Node.js - basics and setup, Node.js console, Node.js command utilities, Node.js modules, concepts, Node.js events, database access , Node.js with Express.js, Express.js Request/Response, Express.js Get, Express.js Post, Express.js Routing, Express.js Cookies, Express.js File Upload, Middleware, Express.js Scaffolding, Template, Migration of data into MongoDB, MongoDB with Node.js, Services offered by MongoDB.

UNIT IV FRONTEND DEVELOPMENT with ReactJS

6

Introduction to React: Components, Props, and State, JSX Syntax, Functional Components vs. Class Components; Advanced React Concepts: React Hooks: useState, useEffect, useContext. Component Lifecycle and State Management, Forms and Controlled Components, React Router and Single Page Applications (SPA): Setting up React Router for Navigation, Building a Single Page Application with Multiple Routes.

UNIT V | CREATING A WEB APPLICATION USING | MERN STACK

6

Integrating Frontend and Backend, State Management with Redux, Deployment of Apps, Authentication and Security, WebSocket and Real-Time Applications, Performance Optimization.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Create a simple calculator application using React.js
- 2. Create a simple login form using React.js
- 3. Write a node.js program to replace strings using Regular expression.
- 4. Create http server interacting with client using Node.js
- 5. Perform CRUD operations using MongoDB
- 6. Build migration of data using MongoDB
- 7. Create a REST backend API Using Express
- 8. Build an web application using React, Node, Express and MongoDB.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Apply the basic components of MERN stack architecture.

CO2: Apply the basic fundamentals of javascript and ECMA Script.

- CO3: Build robust server-side applications with Node.js and Express.js.
- CO4: Build and interacting with MongoDB databases.
- CO5: Construct dynamic and responsive user interfaces using React.js.
- **CO6:** Develop a full stack application using MERN stack.

TEXT BOOKS:

- Nabendu Biswas ,"Ultimate Full-Stack Web Development with MERN: Design, Build, Test and Deploy Production-Grade Web Applications with MongoDB, Express, React and NodeJS ", Orange Education ,2023
- 2 Herbert Schildt, "The Complete Reference-Java", Tata Mcgraw- Hill Edition, Eighth Edition, 2014.

REFERENCES:

- Adam Freeman," Mastering Node.js Web Development: Go on a comprehensive journey from the fundamentals to advanced web development with Node.js", Packt Publishing, 2024.
- Greg Lim ," Beginning MERN Stack: Build and Deploy a Full Stack MongoDB, Express, React, Node.js App", Kindle Edition, 2021.
- 3 Shama Hogue," Full-Stack React Projects: Learn MERN stack development by building modern web apps using MongoDB, Express, React, and Node.js", second edition, Packt Publishing 2020.

COs						I	POs						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	-	1	-	-	1	2	3	-	1
2	3	2	1	1	-	ı	-	1	-	1	1	2	3	ı	1
3	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1
4	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1
5	3	2	1	1	3	ı	-	1	-	1	1	2	3	3	1
6	3	2	1	1	3	ı	-	1	-	1	1	2	3	3	1
Overall Correlation	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1

23CS035	DEVOPS	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To introduce DevOps terminology, definition & concepts
- To understand the different Version control tools like Git, Mercurial
- To understand the concepts of Continuous Integration/ Continuous Testing/ Continuous Deployment)
- To understand Configuration management using Ansible
- To illustrate the benefits and drive the adoption of cloudbased Devops tools to solve real world problems

UNIT I	INTRODUCTION TO DEVOPS	6
_	ssentials - Introduction to AWS, GCP, Azure - Ver stems: Git and Github.	sion
UNIT II	COMPILE AND BUILD USING MAVEN & GRADLE	6

Introduction, Installation of Maven, POM files, Maven Build lifecycle, Build phases(compile build, test, package) Maven Profiles, Maven repositories(local, central, global), Maven plugins, Maven create and build Artificats, Dependency management, Installation of Gradle, Understand build using Gradle

UNIT III | CONTINUOUS INTEGRATION USING | 6 | JENKINS | 6

Install & Configure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job, Configuring a Jenkins job, Introduction to Plugins, Adding Plugins to Jenkins, Commonly used plugins (Git Plugin, Parameter Plugin, HTML Publisher, Copy Artifact and Extended choice parameters). Configuring Jenkins to work with java, Git and Maven, Creating a Jenkins Build and Jenkins workspace.

UNIT IV CONFIGURATION MANAGEMENT USING 6 **ANSIBLE** Ansible Introduction, Installation, Ansible master/slave configuration, YAML basics, Ansible modules, Ansible Inventory files, Ansible playbooks, Ansible Roles, adhoc commands in ansible UNIT V **BUILDING DEVOPS PIPELINES USING** 6 **AZURE** Create Github Account, Create Repository, Create Organization, Create a new pipeline, Builda sample code, Modify azure-pipelines.vaml file. **TOTAL: 30 PERIODS** PRACTICAL EXERCISES: LIST OF EXPERIMENTS Create Maven Build pipeline in Azure. 1. 2. Run regression tests using Maven Build pipeline in Azure. 3. Install Jenkins in Cloud. Create CI pipeline using Jenkins. 4. Create a CD pipeline in Jenkins and deploy in Cloud. 5. Create an Ansible playbook for a simple web application infrastructure. Build a simple application using Gradle.

8. Build Devops Pipelines using Azure.

TOTAL: 30 PERIODS

	TOTAL: 30 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain different actions performed through Version control
	tools like Git.
CO2:	Apply Continuous Integration and Continuous Testing and
	Continuous Deployment using Jenkins by building and
	automating test cases using Maven & Gradle
CO3:	Deployment using Jenkins by building and automating test
	cases using Maven & Gradle.
	Continuous Deployment using Jenkins by building and automating test cases using Maven & Gradle Deployment using Jenkins by building and automating test

CO4:	Develop Pipeline in Jenkins and deploy in cloud.															
CO5:	Apply A	Apply Automated Continuous Deployment.														
CO6:	Constru	Construct configuration management using Ansible.														
TEX	г воок	S:														
1	Roberto	Vo	rm	ittaş	g, ".	A P	ract	ical	Gu	ide	to C	Git ar	nd G	itH	ub 1	for
	Window	vs l	Use	rs:]	Fro	m B	Begi	nne	r to	Ex	pert	in 1	Easy	Ste	ep-E	By-
	Step Ex	erci	ses	", S	ecoı	nd I	Edit	ion	, Ki	ndl	e Ed	itior	ı, 201	16.		
2	Jason C	anr	ion,	"L	inu	x fo	r Be	egir	nnei	's: <i>F</i>	\n Ir	ntro	ducti	ion	to t	he
	Linux	Ope	erat	ing	Sy	ste	m	anc	l C	om	man	d I	Line"	', I	<inc< th=""><th>lle</th></inc<>	lle
	Edition	, 20	14													
REF	ERENCE	S:														
1	Mitesh	S	Son	i	,"F	Ian	ds-C	Эn	P	∖zu	re	De	vops	s:	Ci	cd
	Implem	ent	atic	n F	or l	Mol	oile,	Ну	bri	d, A	and '	Web	Ap	plic	atio	ns
	Using	Az	ure)ev	ops	Α	nd	N	licr	osof	t A	zur	e:	CIC	CD
	Implem	ent	atic	n f	or	De	vOr	os a	and	M	icros	oft	Azu	ıre"	, B	PB
1	Publica		- 0	No.			4			Y				10		ľ.
2	Jeff Gee		_						_				100000	_		
	manage			for	h	ıma	ans'	, 1	Mid	we	sterr	ı M	lac,	LL	CFi	rst
	Edition,		_0	12												
3	David J															
	to Kno										_	ps",	Cr	eate	espa	ice
	Indeper															
4	https://	/wı	ww.	jen]	kins	s.io,				lbo	ok.p	df		1		
	COs		I _	I _				Os							PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	2	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
	3	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
	4	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
	5 6	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
0	verall	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	elation	3	2	1	1	3	-	-	2	-	-	-	-	3	3	2
	CIMUIOII															

23CS038	PYTHON FULL STACK	L	T	P	C
	DEVELOPMENT WITH MACHINE	2	0	2	3
	LEARNING				

COURSE OBJECTIVES:

- To learn foundational backend development concepts using Python's Flask for API development
- To integrate advanced backend features to ensure secure, efficient, and scalable APIs.
- To build and train machine learning models using Scikit-Learn, focusing on data preprocessing, model evaluation, and tuning
- To integrate machine learning models within backend APIs to enable real-time predictions
- To deploy machine learning applications on Render with CI/CD pipelines and monitoring for production stability

UNIT I PYTHON FOR BACKEND DEVELOPMENT 6

Backend Fundamentals and REST API Concepts – RESTful architecture, HTTP methods (GET, POST, PUT, DELETE), resource-based endpoint design, best practices for REST API design; **Flask Essentials** – Setting up Flask, routing and request handling, working with JSON, custom error handling; **Building CRUD APIs:** Implementing create, read, update, and delete operations using Flask-Introduction to database interactions using SQLite or in-memory data handling for testing.

UNIT II	ADVANCED BACKEND TECHNIQUES	6

API Security and Authentication – JWT authentication, Flask-JWT-Extended, role based access control;

Data Processing and Serialization - Handling large datasets in FLASK, using JSON and XML data serialization formats;

Implementing Caching and Redis- Introduction to Redis, Flask-

Redis integration, managing cache expiry and invalidation.

UNIT III | MACHINE LEARNING FUNDAMENTALS

6

Types of Machine Learning – Supervised, unsupervised, and reinforcement learning, Supervised Learning Models; Data Preprocessing and Feature Engineering– Data cleaning techniques, Scaling and Normalization, Feature Selection and Engineering; Building Machine Learning Models – Linear regression and decision trees, Random Forest and SVM; Model Evaluation and Optimization – Metrics for evaluation, cross-validation techniques, hyperparameter tuning.

UNIT IV MACHINE LEARNING MODEL INTEGRATION

6

Exposing ML Models through APIs - Creating prediction endpoints in Flask, Formatting input data for predictions and handling JSON requests; **Data Processing for Model Inference** - Data Formatting and Validation , Batch Processing for Efficiency: **Optimizing and Scaling Model Serving-** Techniques for faster inference, asynchronous processing for handling large volumes of requests; **Monitoring and Logging Predictions** - Logging incoming prediction requests and analyzing data distribution, Health Checks and Error Tracking.

UNIT V DEPLOYMENT AND PRODUCTION READINESS

6

Render Deployment Essentials – Setting up a Render account and deploying Flask applications, Environment Configuration; Preparing ML Models for Deployment – Packaging models and dependencies for production, Creating Docker containers for scalable deployments; CI/CD with GitHub Actions – Setting up GitHub Actions for automated builds and deployments,

Monitoring and Logging for Production APIs- Real-time Logging, Error Handling and Alerting.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Basic CRUD API Creation: Develop a CRUD API for managing a library of books with operations for adding, viewing, editing, and deleting records.
- 2. Implementing JWT Authentication: Set up JWT authentication to secure the library API.
- 3. Using Redis Caching: Add Redis caching to cache frequently accessed endpoints, such as the "View All Books" endpoint
- 4. Data Cleaning and Feature Engineering: Clean a housing dataset and create engineered features to improve predictive performance.
- Model Building and Evaluation: Train a classification model using a dataset, evaluating it with accuracy and F1 score metrics.
- 6. Model Prediction API: Develop a Flask API to serve predictions from a trained ML model.
- 7. Prediction Logging: Set up basic logging to track incoming requests and analyze prediction patterns.
- Deploying Flask API on Render: Deploy a Flask-based API on Render, including environment configuration and monitoring setup.
- CI/CD Setup with GitHub Actions: Automate deployment of the API with CI/CD, ensuring consistent updates on each code commit

Mini Projects

1. Book Recommendation API: Build an API using Flask that

- provides book recommendations based on genre and author. Integrate data validation to ensure API requests have the required fields.
- User Profile API with JWT and Redis: Create a Flask API where users can view and update their profiles. Implement JWT-based authentication and use Redis to cache user data for improved performance.
- Movie Rating Predictor: Develop a regression model to predict user ratings for movies based on genre, director, and other features. Tune the model using cross-validation to optimize accuracy.
- 4. Spam Detection API: Develop an API using a pre-trained spam detection model to classify messages. Implement logging to track prediction accuracy over time.
- Sentiment Analysis API with CI/CD on Render: Develop and deploy a sentiment analysis API, set up CI/CD on Render to automate redeployment, and implement monitoring.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Design and implement RESTful APIs using Python and Flask framework.
- CO2: Apply authentication, authorization, and caching mechanisms to secure and optimize backend applications.
- CO3: Preprocess data and build machine learning models using Scikit-Learn for regression and classification tasks.
- CO4: Integrate trained machine learning models into Flask APIs for real-time prediction and analysis.
- CO5: Monitor and log backend systems to ensure robustness and performance in API services.

CO6:	Deploy	_r f	ull-	stac	k r	nac	hin	e 1	earı	nin	g ap	oplic	atio	ns	usi	ng
	Render	Render and GitHub Actions with CI/CD practices														
TEX	T BOOKS:															
1	Miguel	G	rinl	erg	, Fl	lask	W	/eb	De	vel	opm	ent,	2nd	l E	ditic	n,
	O'Reill	y N	1ed	ia, 2	018											
2	Aurélie	en (Gér	on,	Haı	nds-	-On	ı M	achi	ine	Lea	rning	g wi	ith	Scik	it-
	Learn,	Ke	ras,	and	l Te	nso	rFlo	ow,	2nd	l Ec	ditio	n, O'	Reil	ly, 2	2019).
3	Sebasti	an	Ras	schk	a, F	yth	on	Ma	chiı	ne I	Lear	ning	, 3rc	d E	ditic	on,
	Packt I	ub	lish	ing,	201	19.										
REFI	ERENCE	ES:														
1	Mark E	Bate	es, P	rog	ram	mir	ng F	Flas	k, P	rag	mati	іс Во	oksl	nelf	, 202	22.
2	Jason	Mark Bates, Programming Flask, Pragmatic Bookshelf, 2022. Jason Brownlee, Machine Learning Mastery With Scikit-														
	Learn,	202	21.													
3	GitHul	o D	ocs:	htt	ps:/	/do	ocs.	gitl	nub	.CO1	m/		- 5			
4	Flask I	oc)	s: h	ttps	://f	lask	c.pa	allet	spr	oje	cts.co	om/	1		W	
5	Render	Do	ocs:	http	os:/	/re	nde	er.co	om/	′do	cs				- 11	
	COs	Α		W		ľ	I	POs	1	Ø				I	PSO	s
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	2	1		//-	Ξ.		- - -	-	-	-	-11	-	2	į,	-
	2	3	2	1	1	1	Į.	ű,	1		1	5	1	3	1	1
	3	3	2	1	1	1	LIM		1	199.1	1		1	3	1	1
	4	3	2	1	1	-	ı	ı	ı	1	1	ı	ı	3	-	-
	5	3	2	1	1	-	ı	ı	ı	-	ı	ı	1	3	-	-
	6	3 2 1 1 1 - 1 - 1 3 1 1														
O	verall	3	2	1	1	1			1		1		1	3	1	1
	elation															

23AD047	SOFTWARE DESIGN	L	T	P	C
	THINKING	3	0	0	3

COURSE OBJECTIVES:

- Understand the phases, importance, and methods of design thinking
- Learn to identify, clarify, and analyze problems, and use empathetic design to understand user needs.
- Explore techniques for brainstorming, ideation, and prototyping and learn to create value propositions.
- Understand agile principles, compare them with design thinking, and learn how to use both in software development and business.
- Learn how to plan and conduct user tests, use feedback for improvement

UNIT I INTRODUCTION TO DESIGN 9 THINKING 9

Importance of Design Thinking – Design thinking and business- Design thinking and product-Phases in design thinking process - Empathize –Define – Ideate – Prototype – Steps in immersion activity- Explanation on Moccasin walk-Flow charts and handouts- Software Development Methodology – Waterfall model – V –model -Customer Example.

UNIT II UNDERSTAND, OBSERVE AND DEFINE 9 THE PROBLEM

Search field determination - Problem clarification - Understanding of the problem -Problem analysis - Reformulation of the problem - Observation Phase - Empathetic desig- Tips for observing - Methods for Empathetic Design

- Point-of-View Phase Characterization of the target group
- Description of customer needs.

UNIT III | IDEATION AND PROTOTYPING

9

Ideate Phase -Need, Uses, methods of ideation - Creativity techniques - Brainstorming - Mind maps - Ideation - Prototype Phase -Types and Guidelines of prototyping- Story telling-Importance of prototyping in design thinking - Value proposition - Guidelines to write value proposition -Lean Startup Method for Prototype Development - Visualization and presentation techniques.

UNIT IV AGILITY AND DESIGN THINKING

9

Agile principles- Agile Methodology Overview-Design thinking and coding – Agile Methodology – Differences between agile and design thinking - Complementing agile with design thinking Extreme Programming – Software Development using Scrum Framework – Sprints – Design Thinking related to science and art-Design Thinking in Business-Linking Design Thinking Solution to Business Challenges

UNIT V TESTING AND IMPLEMENTATION

9

Test Phase - Need to test -User feedback - Conducting a user test - Guidelines for planning a test - How to test - Desirable, feasible and viable solutions - Iterate phase- Tips for interviews - Tips for surveys - Kano Model - Desirability Testing - Conduct of workshops - Requirements for the space - Material requirements.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply design thinking concepts to give solution for the problems identified
- CO2: Choose appropriate Agile software methodology for faster development of quality software
- CO3: Describe how to improve collaboration between development

CO4:	D '11		1	т	1			A 1			1 т		11			1
CO4:	Build			ımp	olen	nen	t .	Aut	om	atec	1 1	nsta	llatio	ons	aı	nd
	Deploy			1.00	•							<u> </u>		1 .		
CO5:	Make ι												-			
		service through brainstorming and incremental approach,														
	etc.															_
CO6:	Constru		us	er	test	ing	p	roce	esse	s t	:o g	gath	er a	ctic	nal	ole
	feedbac															
TEX	г воок															
1	Robert							-		-		esign	1 Th	inki	ing	in
	Softwar				,											
2	Michae							_								
	Produc	ts,	Ser	vice	es,	Bus	sine	esse	s, i	and	Ec	osys	stem	s"	Wil	ey
	Apress,	202	20.													
REFI	ERENCE					_										
1	Christia							007)esi	O
	Thinkir	-	71								-		_			
2	Jeanne	Lie	dtka	a an	ıd T	im	Og	ilvi	e " <i>F</i>	A de	esigr	ı thi	nkin	g to	ool I	kit
1	for mar	age	ers"	, Co	olur	nbi	a ui	nive	ersit	ур	ress,	201	1.		The same	
3	Tim B	row	'n,	Ha	arpe	er	Col	lins	s "	Ho	w I	Desi	gn	Thi	nki	ng
	Transfo	rm	s (Org	ani						-		Inn	ova	tion	ı",
	publish	er,	200	9.												5
	COs						I	POs	;					F	SO	s
`	205	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	1	1	1	-	-	-	1	3	-	1
	3	2	1	-	-	-	2	1	2	1	1	-	2	2	-	2
	4	3	2	1	1	-	2	2	2	1	1	1	2	3	-	2
							2									
	6	3	2	1	1	-	1	1	-	-	-	-	1	3	-	-
	verall	3	2	1	1	1	2	1	2	1	1	1	2	3		2
Corr	relation	,	_	1	1	_	_	1	_	1	1	1	_	5	_	_

23CS044	EXPLAINABLE AI	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the fundamentals of Explainable AI (XAI)
- To learn to interpret various machine learning models.
- To explore model-agnostic XAI techniques for generating explanations across different models
- To apply XAI methods to deep learning models.
- To evaluate XAI methods and address ethical considerations.

UNIT I INTRODUCTION TO XAI

9

Introduction to Explainable AI: Motivation, Importance - Challenges and limitations of black box models - Types of Explainability - taxonomy of explanations - Interpretability - Importance of Interpretability - Taxonomy of Interpretability Methods - Scope of Interpretability - Evaluation of Interpretability - Properties of Explanations - Human-friendly Explanations

UNIT II INTERPRETABLE MACHINE LEARNING MODELS

Overview of Interpretable Machine Learning – Decision Trees, Random Forests – principles, interpretation techniques, Rule based Models – Rule induction, Decision list, rule-based classifiers, Linear models – Interpreting Coefficients, regularization techniques, feature selection.

UNIT III | MODEL AGNOSTIC XAI TECHNIQUES

9

Overview of model Agnostic systems – LIME – local feature importance explanations – SHAP – individual predictions and feature importance – Partial Dependence Plot – Individual Conditional Expectation Plot - Counterfactual explanations.

UNIT IV XAI FOR DEEP LEARNING

9

XAI for deep learning models - Gradient-based methods: Grad-CAM, Integrated gradients, Saliency Maps - Layer wise relevance

	agation (LRP)- feature visualization- Deep Dream	_
Activ	ration Maximization	
UNI	TV EVALUATION AND ETHICAL	9
	CONSIDERATIONS	
Eval		ino
	nation - Human-in-the-loop evaluation - User studies a	0
_	pack - Ethical Considerations in XAI - Bias, fairness, a	
	parency - Privacy and security concerns - Social and le	
	ets of XAI – Applications	O
	TOTAL: 45 PERIO	DS
COL	RSE OUTCOMES:	
	After completion of the course, the students will be able t	o:
CO1:	Explain the Taxonomy of explanations.	
CO2:	Explain interpretable machine learning principles	of
	decision tree, rule based and linear models.	
CO3:	Apply Model Agnostic XAI techniques, interpret a	ind
	explain predictions of machine learning models.	
	Apply XAI techniques for deep learning models	
CO5:	Identify XAI methods and Propose innovative solutions	to
	address ethical considerations.	J5
CO6:	Apply XAI techniques in practical scenarios, for real-wo	orld
	datasets and problems.	
TEX	T BOOKS:	
1	Christoph Molnar, "Interpretable Machine Learning:	A
	Guide for Making Black Box Models Explainable", Spring	ger,
	2022.	
REF	ERENCES:	
1	Uday Kamath, John Liu, "Explainable Artificial Intelliger	
	An Introduction to Interpretable Machine Learning", 202	
2	Leonida Gianfagna, Antonio Di Cecco, Explainable AI w	rith
	Python, Springer, 2021.	

3 Denis Rothman, "Hands-On Explainable AI (XAI) with Python: Interpret, Visualize, Explain, and Integrate Reliable AI for Fair, Secure, and Trustworthy AI Apps", Packt Publishing Ltd, 2020.

COs						I	POs	1					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-		-	-	-	-	-	-	2	-	-	
2	2	1	1	1	-	-	-	1	-	1	-	1	3	-	1	
3	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
4	3	1	-	-	-	-	-	-	-	-	-	-	3	-	-	
5	3	2	1	1	-	-	-	1	-	1	-	-	3	-	1	
6	3	2	1	1	-	-	-	1	-	1	-	1	3	-	1	
Overall Correlation	3	2	1	1	-	-	-	1	-	1	,	1	3	-	1	

VERTICAL - 4: COMPUTATIONAL INTELLIGENCE

23AD048	INTELLIGENT AGENTS	L	T	P	C
		3	0	0	3
COURSE O	BJECTIVES:		· ·		
Unde	rstand Agent development				
• Gain	Knowledge in Multi agent and Intelligent a	agen	ıts		
• Unde	rstanding Agents and security				
	Knowledge in Agent Applications				
	y the principles and methods of intelligent	t age	ents	to	a
	-scale practical problem.			1	
UNIT I	FOUNDATIONS OF INTELLIGENT AC	SEN	TS		9
· ·	ition, Agent Programming Paradigms, Age			-	
Aglet, Mob	ile Agents, Agent Frameworks, Agent	Re	easo	nin	g.
Processes, T	Threads, Daemons, Components, Java Bea	ns,	Act	ive	Χ,
Sockets, RP	Cs, Distributed Computing, Aglets Progra	amn	ning	, Ji	ni
Architecture	e, Actors and Agents, Typed and Proactive	Mes	sag	es.	
UNIT II	APPLICATIONS CLASSES				9
Theoretical	approaches and NASA applications - A	Age	nt b	ase	ed
control for n	nulti-UAV information collection- Agent ba	ased	dec	isic	n
support sys	tem for Glider pilots, Multi agent system	in E	- H	eal	th
Territorial E	mergencies				
UNIT III	MULTI AGENT SYSTEMS CLASSES				9
Software A	gents for computer network security-	Mu	lti-A	.ge	nt
	Ontologies and Negotiation for Dyna			_	
Composition	n in Multi- Organizational Environmental N	Mana	ager	ner	nt.
UNIT IV	INTELLIGENT SOFTWARE AGENTS O	CLAS	SSE	S	9
Interface A	gents - Agent Communication Languas	ges	- A	ge	nt
Knowledge	Representation - Agent Adaptability -	Belie	ef D	esi	re
Intension - I	Mobile Agent Applications				
UNIT V	AGENTS AND SECURITY CLASSES				9
Agent Secur	ity Issues - Mobile Agents Security - Prote	ctin	g Aş	gen	ts

against Malicious Hosts –Untrusted Agent – Black Box Security – Authentication for Agents – Security Issues for Aglets

TO	TA	T • 15	PER	IOL	2
\mathbf{I}	'IA	L: 40	FEN	JUL	כי

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Outline the development of software agents
- CO2: Apply agents in real-world applications, such as UAV control and decision support systems.
- CO3: Develop multi-agent systems for tasks like network security and service composition.
- CO4: Demonstrate how intelligent agents communicate, represent knowledge, and adapt to different situations.
- CO5: Identify security issues in mobile agents and implement protective measures.
- CO6: Explain agent security techniques, including authentication and protection against malicious hosts.

TEXT BOOKS:

- 1 Jeffrey M. Bradshaw, "Software Agents", AAAI Press, 1997
 - 2 Richard Murch, Tony Johnson, "Intelligent Software Agents", Prentice Hall, 1999

REFERENCES:

- 1 Gerhard Weiss, Multi Agent Systems, "A Modern Approach to Distributed Artificial Intelligence", MIT Press, 2016
 - 2 Mohammad Essaaidi, Maria Ganzha, and Marcin Paprzycki, "Software Agents, Agent Systems and Their Applications", IOS Press, 2012

COs		POs													S
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	1	1	-	1	1	1	2	-	1
2	3	2	1	1	-	-	1	2	1	2	2	3	3	-	2
3	3	2	1	1	-	-	1	2	1	2	2	3	3	-	2
4	2	1	-	-	-	-	1	2	1	2	2	2	2	-	2
5	3	2	1	1	-	-	1	2	1	2	2	3	3	-	2
6	2	1	1	ı	1	3	1	2	1	2	1	2	2	-	2
Overall Correlation	3	2	1	1	-	1	ı	2	1	2	2	3	3	-	2

23AD049	IMMERSIVE TECHNOLOGIES L T 1	PC
	2 0 2	2 3
COURSE	OBJECTIVES:	
• Una	derstand the fundamentals of immersive technolog	gies,
	uding VR, AR, MR, and XR.	, ,
 Exp 	lore hardware and software tools for crea	ting
	nersive experiences.	
	velop design principles for immersive application	ons
*****	oss industries.	
	mine emerging trends and the ethical implication	s of
	nersive technologies. n hands-on experience in developing simple immers	ciro
	itions.	51 V C
UNIT I	INTRODUCTION TO IMMERSIVE	6
UNIII	TECHNOLOGIES	U
	TECHNOLOGIES	
Overview	of immersive Technologies: Augmented Reality, Vir	tual
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	xed Reality- Evolution of AR/VR Systems	
Componer	nts: Hardware and Software - Application in var	ious
domains -	Case Studies: Iconic immersive applications and t	heir
impact.	COLLEGE OF TECHNOLOG	V
UNIT II	FOUNDATIONS OF VIRTUAL REALITY AND	6
	AUGMENTED REALITY	
Virtual Re	lality: Immersion, Interaction, and Presence -Augmer	nted
	verlays, Tracking and Spatial Mapping - Basics of	
-	Rendering, Shading and Transformations - Technol	
_	ors, Displays, Tracking Systems, and Input Devic	
	Frameworks - Current Limitations and Challenges.	
UNIT III	DESIGNING FOR IMMERSIVE EXPERIENCE	6
	for Immersion Equipments Normative Technic	<u> </u>
Principles	for immersive environments - Narrative Technic	lues
•	for Immersive Environments - Narrative Technic activity - Ergonomics and Accessibility(UI & UI	-
and Intera	activity - Ergonomics and Accessibility(UI & UZ ag and Testing Immersive application	•

Overview of VR/AR development platforms: Unity, Unreal

Engine, WebXR - Working with Basic Workflows and Scripting - Introduction to ARKit, ARCore, and Microsoft Mixed Reality Toolkit - Exploring WebXR for Browser-Based Immersive Experiences.

UNIT V PIONEERING FRONTIERS AND EMERGING 6 HORIZONS

Immersive AI - Case Study: AI-Driven Personalization in Virtual and Augmented Reality, Natural Language Processing for Conversational Agents in Immersive Environments, Generative AI for Content Creation in Immersive Technologies - Social VR - Ethical Considerations and Accessibility in Immersive Technologies - Emerging Horions: Haptics, Brain-Computer Interfaces and Holography.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Install AR/VR Framework: Unity
- 2. Creating a Basic AR Scene
- 3. Use the primitive objects and apply various projection types by handling camera.
- 4. Download objects from asset store and apply various lighting and shading effects.
- 5. Model three dimensional objects using various modelling techniques and apply textures over them
- 6. Develop Augmented Reality with Marker-Based Tracking. dd audio and text special effects to the developed application
- 7. Creating a Browser-Based AR Experience
- 8. Building a 3D Environment with Unity

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the concepts of immersive technologies.
- CO2: Summarize the technical building blocks of VR and AR.
- CO3: Apply design principles to create user-friendly immersive applications.

I	CO4 :	Build	basic	VR/	AR.	apr	olications	using	software	tools.
ı				. ,				0		

- CO5: Infer advanced technologies shaping the future of immersive tech.
- **CO6:** Illustrate ethical implications and societal impact.

TEXT BOOKS:

- Tony Parisi, "Learning Virtual Reality: Developing Immersive Experiences and Applications for Desktop, Web, and Mobile", O'Reilly Media, December 2015.
- Dieter Schmalstieg and Tobias Hollerer,"Augmented Reality: Principles and Practice", Addison-Wesley Professional, 2016.

REFERENCES:

- Steven M. LaValle, "Virtual Reality", Cambridge University Press, 2017.
- **2** Gerard Jounghyun Kim, "Designing Virtual Reality Systems: The Structured Approach", Springer, 2005.
- 3 Steve Mann, "Mixed Reality: A New Era of Interaction", Springer, 2018.
- 4 Jason Jerald, "The VR Book: Human-Centered Design for Virtual Reality", ACM Books, 2016.

COs					MPF	I	POs	J AN	NIA. U	MIVER	511 Y	AUT	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	ı	ı	1	ı	1	1	2	1	2	3	2	1	-	
2	2	1	ı	ı	1	ı	1	1	2	1	2	3	2	1	1	
3	3	2	1	1	3	ı	1	1	3	3	3	3	3	3	1	
4	3	2	1	1	3	ı	-	1	3	3	3	3	3	3	1	
5	2	1	-	-	3	-	-	1	3	3	3	3	2	3	1	
6	2	1	ı	ı	1	ı	1	1	2	1	2	3	2	1	-	
Overall Correlation	3	2	1	1	2	-	-	1	3	2	3	3	3	2	1	

23AD050	ETHICS OF AI	L	Т	P	С
		2	0	2	3
COURSE	OBJECTIVES:				
• To t	understand the need for ensuring ethics in	ΑI			
• To t	understand ethical issues with the				
dev	elopment of AI agents				
• To a	apply the ethical considerations in				
diff	erent AI applications				
• To 6	evaluate the relation of ethics with				
natı	are				
• To o	overcome the risk for Human rights and ot	her			
fun	damental values.				
UNIT I	INTRODUCTION				6
Definition	of morality and ethics in AI-Impact on so	ciet	v-Ir	nna	act
2007	psychology-Impact on the legal system-In		-	-	
	ent and the planet-Impact on trust				
UNIT II	ETHICAL INITIATIVES IN AI				6
Intomotion	 nal ethical initiatives-Ethical harms and co			Ca	
10	COLLEGE OF I ECTI				
weaponiza	althcare robots, Autonomous Vehicles,	vvai	lait	: ai	liu
UNIT III	AI STANDARDS AND REGULATION				6
OINII III	AI STAINDANDS AND REGULATION				<u> </u>
	ocess for Addressing Ethical Concerns Du				
_	Transparency of Autonomous Systems-I				-
	Igorithmic Bias Considerations - Ontological		Star	nda	rd
	ly Driven Robotics and Automation System			-	
UNIT IV	ROBOETHICS: SOCIAL AND ETHICA	L			6
	IMPLICATION OF ROBOTICS				
Robot-Rob	oethics- Ethics and Morality- Moral Theo	ries-	Eth	ics	in
	nd Technology - Ethical Issues in an				
Harmoniz	ation of Principles- Ethics and	Pro	fess	sior	nal
	ility Roboethics Taxonomy.				

UNIT V AI AND ETHICS- CHALLENGES AND 6 **OPPORTUNITIES** Challenges - Opportunities- ethical issues in artificial intelligence-Societal Issues Concerning the Application of Artificial Intelligence in Medicine- decision-making role in industries-National and International Strategies on AI. **TOTAL: 30 PERIODS** PRACTICAL EXERCISES: Case study on ethical initiatives in healthcare, autonomous vehicles and defense 2. Exploratory data analysis on a 2-variable linear regression 3. Experiment the regression model without a bias and with 4. Classification of a dataset from UCI repository using a perceptron with and without bias Case study on ontology where ethics is at stake. 6. Identification on optimization in AI affecting ethics TOTAL:30 PERIODS **COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize about morality and ethics in AI CO2: Apply the knowledge of real time application ethics, issues

TOTAL:30 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Summarize about morality and ethics in AI CO2: Apply the knowledge of real time application ethics, issues and its challenges. CO3: Explain the ethical harms and ethical initiatives in AI CO4: Demonstrate about AI standards and Regulations like AI Agent, Safe Design of Autonomous and Semi-Autonomous Systems CO5: Explain the concepts of Roboethics and Morality with professional responsibilities. CO6: Classify the societal issues in AI with National and International Strategies on AI.

TEXT BOOKS:

- 1 Virginia Dignum, "Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way", Springer, 2019.
- 2 Mark Coeckelbergh, "AI Ethics", The MIT Press, 2020.

REFERENCES:

- Paula Boddington, "Towards a Code of Ethics for Artificial Intelligence (Artificial Intelligence: Foundations, Theory, and Algorithms)" November 2017
- 2 Mark Coeckelbergh," AI Ethics", The MIT Press Essential Knowledge series, April 2020

COs						I	POs						PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	2	1	-	-	1	-	5_	1	- 1	1	1	1	2	1	1		
2 DOW	3	2	1	1	3	-2		2	1	2	2	3	3	3	2		
3	2	1	G	-	1		1	2	1	2	1	2	2	1	2		
4	2	1	Α	1	2	4	À	2	1	2	2	2	2	2	2		
5	2	1	4	<i>/</i> -	1	-	1	2	1	2	1	2	2	1	2		
6	2	1	5	/-	1	3	-	2	-	2	1	2	2	1	2		
Overall Correlation	3	2	1	1	1	1	EO TO	2	1	2	2	2	3	G)	2		

23AD051	FUNDAMENTAL OF SPEECH	L	Т	P	С
	PROCESSING	2	0	2	3
COURSE	OBJECTIVES:				
 To produce to the produce t		and ncy ods of a	l pr do for uto	ma noi	ess in se
9	INTRODUCTION TO SPEECH PROCE of speech processing, Applications of synthesis, and speaker identification, Baseduction and perception	in	S	pee	
UNIT II	SPEECH SIGNAL REPRESENTATION ANALYSIS			GY	6
crossing r	ain methods (waveform, short-time enate), Frequency-domain methods (Fourienm), Cepstral analysis, Mel-frequency (MFCC) SPEECH ENHANCEMENT AND NOIS REDUCTION	r Tr cy	ans		m,
-	s for noise reduction, Spectral subtraction Spectra				
Fundamer	tals of automatic speech recognition (A	SR),	, Fε	eatu	re

extraction, Acoustic modeling, Language modeling, Hidden

Mark	ov Models (HMM), Gaussian Mixture Models (GMM), De	ep
learn	ing approaches in ASR	
UNIT	SPEAKER RECOGNITION AND SYNTHESIS	6
Speal	ker identification and verification, Feature extraction	for
speal	ker recognition, Text-to-speech (TTS) synthesis, Forma	ant
synth	nesis, Concatenative synthesis, Statistical paramet	ric
synth	nesis, Neural network-based synthesis (e.g., WaveNet)	
	TOTAL: 30 PERIO	DS
PRA	CTICAL EXERCISES:	
1.	Speech Signal Analysis	
2.	Spectrogram Analysis	
3.	Feature Extraction Using MFCC	
4.	Speech Enhancement Using Spectral Subtraction	
5.	Voice Activity Detection (VAD)	
6.	Basic Automatic Speech Recognition (ASR)	
7.	Speaker Recognition	r.
8.	Text-to-Speech (TTS) Synthesis	
4	TOTAL:30 PERIO	DS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able to	
CO1:	Outline the basic concepts and components of spee	
	processing systems, including human speech producti	on
CO2	and perception	
CO2:	Analyze speech signals using time-domain and frequence	
CO2	domain methods, including cepstral analysis and MFCCs	
CO3:	Apply speech enhancement techniques such as spect subtraction and adaptive filtering to improve speech qual	
CO4:	Develop automatic speech recognition systems using feature	
	extraction, acoustic modeling, and language modeli	
	techniques	0
CO5:	Make use of speaker recognition systems for identificati	on
	and verification purposes using relevant feature extracti	
	methods	

CO6: Model text-to-speech systems using various synthesis techniques, including formant, concatenative, and neural

network-based synthesis

г	TEDVE DOOMS															
TEX	TEXT BOOKS: 1 Shaila D. Apte, Speech and Audio Processing, Wiley India															
1	Shaila I). <i>A</i>	\pte	e, S _]	pee	ch a	and	Αυ	ıdio) Pr	oces	sing	, Wi	ley	Inc	lia
	(P) Ltd,	Ne	wΙ	Dell	i, 2	012										
2	Philipos	s C	. I	Loiz	zou,	. S	pee	ch	Enl	han	cem	ent	The	eory	aı	nd
	Practice	, Se	con	d E	diti	on,	CR	C P	ress	s, In	ıc., U	Inite	d St	ates	, 20	13
3	Lawren	ce l	Rab	ine	r ar	nd I	Biin	g-F	Iwa	ng	Juar	ıg, F	und	lam	enta	als
	of Spe	ech	1]	Rec	ogn	itio	n,	1s	t]	Edi	tion,	P	renti	ice	Н	all
	International, 1993.															
4	Dong Yu and Li Deng, Automatic Speech Recognition: A															
	Deep Learning Approach, 1st Edition, Springer, 2015.															
REFI	ERENCES:															
1	Christian Müller "Speaker Classification I: Fundamentals,															
	Features, and Methods", 1st Edition, Springer, 2007.															
2	Paul Taylor, "Text-to-Speech Synthesis", 1st Edition,															
	Cambri	dge	Ur	iive	rsit	y P	ress	, 20	09.			•			4	
3	A.M. K	onc	loz,	" L	Digi	tal	Spe	eci	h: C	Cod	ing	for I	Low	Bit	Rá	ite
1	Commu	ınic	atio	n S	yste	ems	5", 2	nd i	Edi	tion	ı, Wi	ley,	2004	1.		
	COs		. 0		-		1	POs		1		3/	1	I	PSO	s
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 CNE	2	1	diam'r.	-	Ċ	1	Ė	2	<u>U</u> 1	1	2	1	2	5	2
	2	3	3	2	2	1	2	ED. II	3	NA.U	1	3	AUT	3	1	3
	3	3	2	1	1	1	2	-	3	-	1	3	-	3	1	3
	4	3	2	1	1	1	2	-	3	-	1	3	-	3	1	3
	5	3	2	1	1	-	3	3	3	3	3	2	-	3	-	3
	6	3	2	1	1	-	3	3	3	3	2	3	-	3	_	3
O.	verall	3	2	1	1	1	3	1	3	1	2	3	1	3	1	3
Cor	relation	3	_	1	1	1	3	1	3	1		3	T	3	I	3

23AD052	EVOLUTIONARY	L	T	P	C							
	COMPUTATION	3	0	0	3							
COURSE	DBJECTIVES:											
• To u	nderstand Evolutionary Computation Prin	ncip	les									
To develop a deep understanding of Genetic Algorithms												
To explore various advanced evolutionary algorithms												
 To solve multi-criteria decision-making problems. 												
To analyze the integration of evolutionary algorithms w												
other techniques												
	UNIT I INTRODUCTION TO EVOLUTIONARY											
	COMPUTATION											
Definition	and overview of evolutionary compa	ıtati	on-	K	ev							
Definition and overview of evolutionary computation. Key												
concepts: population, fitness, selection, mutation, crossover - Historical background and inspiration from natural evolution -												
	volutionary algorithms: Genetic Algorith											
	ng, and Evolutionary Strategies. App											
- / Name of 1/	y computation.	ліса	uoi	15	OI							
1,77	GENETIC ALGORITHMS				9							
UNITH	GENETIC ALGORITHMS	-			9							
Structure a	nd working of Genetic Algorithms- Select	ion	me	tho	ds							
such as r	oulette wheel, tournament, rank-based	se	lect	ion	-							
Crossover t	echniques like one-point, two-point, unifo	rm (cros	sov	er							
	operators: bit-flip, swap, scramble -Fitness											
	presentation- Case studies and application											
-	ADVANCED EVOLUTIONARY ALGOR				9							
	ry Programming and Evolutionary Strateg	-										
		Di										
Evolution:	principles and working - Particle Swarm (Эpti	miz	zati	on							
(PSO): sw	arm behavior, velocity, and position	uj	oda	tes	-							
Comparativ	ve analysis of various evolutionary algorit	hms	;									
UNIT IV	MULTI-OBJECTIVE EVOLUTIONARY				9							
	ALGORITHMS											

Introduction to multi-objective optimization problems - Pareto

optimality and dominance concepts - NSGA-II (Non-dominated Sorting Genetic Algorithm) - SPEA2 (Strength Pareto Evolutionary Algorithm) - Applications of MOEAs in engineering and optimization

UNIT V HYBRID EVOLUTIONARY ALGORITHMS 9 AND APPLICATIONS

Hybridization with local search methods (memetic algorithms) - Fuzzy logic and evolutionary algorithms - Applications in machine learning and data mining - Real-world problem-solving using hybrid algorithms - Recent trends and future directions in evolutionary computation

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the core principles of evolutionary computation
- CO2: Apply genetic algorithms for optimization problems
- CO3: Build and Implement advanced algorithms such as Genetic Programming
- CO4: Apply the concept of multi-objective evolutionary algorithms
- CO5: Solve the problems using Hybrid techniques
- CO6: Apply ethical and Practical Considerations in evolutionary computation.

TEXT BOOKS:

- **1** Eiben, A.E., & Smith, J.E. "Introduction to Evolutionary Computing", 2nd Edition, Springer, 2015.
- **2** Goldberg, D.E. "Genetic Algorithms in Search, Optimization, and Machine Learning", 1st Edition, Addison-Wesley, 1989.
- 3 De Jong, K.A. "Evolutionary Computation: A Unified Approach", 1st Edition, MIT Press, 2006.
- 4 Deb, K." Multi-Objective Optimization Using Evolutionary Algorithms", 1st Edition, Wiley, 2001.

REF	ERENCE	S:														
1	Price, K.V., Storn, R.M., & Lampinen, J.A. "Differential															
	Evolution: A Practical Approach to Global Optimization",															
	1st Edition, Springer, 2005.															
2	Bonabea	au,	Ε.,	, I	Ori	go,	M	[.,	&	The	erau	laz,	G.	"S	waı	m
	Intelligence: From Natural to Artificial Systems", 1st Edition,															
	Oxford University Press, 1999.															
3	Blum, C., Ochoa, G., & Alba, E. "Hybrid Metaheuristics:															
											-					
4	Research and Applications", 1st Edition, Springer, 2011. Langdon, W.B., & Cantú-Paz, E. "Fuzzy Evolutionary															
_																
	Computation: Recent Advances and Applications", 1st															
	Lattion,	Edition, Springer, 2002.														
COs								ノ()c						I	PSO)C
· '	COs	1	2	2	1	5		POs		a	10	11	12		PSO	
		1	2	3	4	5	6	7	8	9	10	11	12	1	PSO 2	3
	1 pow	2	1	-	-	5	6		8	9	10	11	1	1 2		3
	1 200W	2 3	1 2	1	- 1	-	6 - 1		8 1 1			11 -	1 3	1 2 3	2	3 1 1
	1 pow	2	1	-	-	5 - - 1	6 - 1 1		8 1 1			11 -	1	1 2		3
	1 200W	2 3	1 2	1	- 1	-	6 - 1		8 1 1			11 -	1 3	1 2 3	2	3 1 1
	2 3	2 3 3	1 2 2	1	- 1 1	- - 1	6 - 1 1		8 1 1			11 - - 1	1 3 2	1 2 3 3	2	3 1 1 1
	1 2 3 4	2 3 3 3	1 2 2 2	1 1 1	- 1 1	- - 1	6 - 1 1 1	7	8 1 1 1 1		1 - -	-	1 3 2 2	1 2 3 3 3	2 - 1 -	3 1 1 1 1
	1 2 3 4 5	2 3 3 3 3	1 2 2 2 2	- 1 1 1	- 1 1 1	- - 1	6 - 1 1 1 1	7	8 1 1 1 1 2		1 - -	-	1 3 2 2 3	1 2 3 3 3 3	2 - 1 -	3 1 1 1 1 2

23AD053	COMPUTER VISION	L	T	P	C								
		2	0	2	3								
COURSE	OBJECTIVES:												
•	To understand the fundamental concepts r	elat	ed t	О									
	Image formation and processing.												
	To learn feature detection, matching and d				_								
	To become familiar with feature-based aligmotion estimation	gnm	ent	anc	i								
•	To develop skills on 3D reconstruction												
•	 To examine practical applications of computer vision 												
across diverse fields													
UNIT I INTRODUCTION TO IMAGE FORMATION													
AND PROCESSING													
Image Processing, Computer Vision, What is Computer Vision -													
	Low-level, Mid-level, High-level; Fundamentals of Image												
1000	, Transformation: Orthogonal, Euclid				_								
/ / / / / / / / / / / / / / / / / / / /	Fourier Transform, Convolution and Filt												
1 100	ent, Restoration, Histogram Processing.		0'	d									
1 30	FEATURE DETECTION, MATCHING	NI)		6								
THE STATE OF THE S	SEGMENTATION			G)									
	AFFILIATED TO ANNA UNIVERSITY	AUTO	NON	art (
	xtraction -Edges - Canny, LOG, DOG; L												
`	Transform), Corners - Harris and Hes												
	n Histogram - Points and patches - Seg	_											
	atours - Split and merge - Mean shift and m	ode	fine	din	g -								
	ed cuts - Graph cuts												
UNIT III		TIC	ON		6								
	ESTIMATION												
2D and 3D	feature-based alignment - Pose estimation	1 - C	Geor	net	ric								
intrinsic c	alibration - Triangulation - Two-frame st	ruct	ure	fro	m								
motion - F	actorization - Bundle adjustment - Constrai	ned	stru	ıctu	ıre								
and motio	n - Translational alignment - Parametric mo	otior	1 - S	plir	ıe-								
based mot	ion - Optical flow - Layered motion.												

UNIT IV **3D RECONSTRUCTION** 6 Shape from X - Active rangefinding - Surface representations -Point-based representations - Volumetric representations - Modelbased reconstruction - Recovering texture maps and albedosos. **APPLICATIONS** UNIT V Overview of Diverse Computer Vision Applications: Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, Content-Based Image Retrieval, Video Data Processing, Virtual Reality and Augmented Reality. **TOTAL: 30 PERIODS** PRACTICAL EXERCISES: Basic Image Processing - loading images, Cropping, Resizing, Thresholding, Contour analysis, Blob detection Image Annotation - Drawing lines, text circle, rectangle, ellipse on images Image Enhancement - Understanding Color spaces, color space conversion, Histogram equialization, Convolution, Image smoothing, Gradients, Edge Detection 4. Image Features and Image Alignment - Image transforms -Fourier, Hough, Extract ORB Image features, Feature cloning, Feature matching based matching, image alignment 5. Image segmentation using Graphcut / Grabcut 6. 3D Reconstruction - Creating Depth map from stereo images 7. Object Detection and Tracking using Kalman Filter, Camshift TOTAL:30 PERIODS **COURSE OUTCOMES:**

COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the fundamental concepts of image formation, transformation, and processing techniques CO2: Apply feature detection and segmentation techniques CO3: Develop algorithms for feature-based alignment, pose

	estimati	on,	ar	nd :	mo	tion	es	tim	atio	on	in b	oth	2D	ar	id 3	3D
	environ															
CO4:	Apply 3	BD 1	eco	nst	ruc	tion	tec	hni	que	es.						
CO5:	Explain	cor	npı	ıter	vis	ion	app	olica	atio	ns 1	ike c	bjec	t rec	cogi	nitio	on,
	medical	im	age	ana	alys	sis, a	and	COI	nter	nt-b	ased	ima	age r	etri	eva	1.
CO6:	Apply	CC	mp	ute	r	vis	ion	t	ech	niq	ues	in	to	pra	actio	cal
	applications, including video processing, virtual reality, and															
	augmented reality, considering industry trends and future															
	developments.															
TEX	г воок	S:														
1	D. A. I	D. A. Forsyth, J. Ponce, "Computer Vision: A Modern														
	Approach", , Pearson Education, Second Edition, 2015.															
2	Richard Szeliski, "Computer Vision: Algorithms and															
	Applications", Springer- Texts in Computer Science, Second															
	Edition,	202	22.									•	1			
REFI	ERENCE	S:	1	0	1		A		- 1	7				-		1
1	Richard	Н	artl	ey a	and	Aı	ndr	ew	Zis	seri	man,	, "N	Iulti	ple	Vie	ew
1	Geomet	ry i	n C	om	put	er V	/isi	on"	, Se	con	d Ec	litio	n, C	aml	orid	ge
9	Univers	ity	Pre	ss, l	Maı	rch	200	4.								-
2	Christo	phe	r N	I. B	isho	op;	"Pa	ttei	n F	Reco	gnit	ion	and	Ma	achi	ne
	Learnin															
3	E. R. I							ano	1 N	/lacl	nine	Vis	sion'	', F	oui	rth
	Edition,					-										
	CO -						I	POs	,					I	PSC)s
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	2	1	2	2	2	1	3	2	1	2
	2	3	2	1	1	1	2	2	3	2	2	2	3	3	1	3
	2	2	_	1	1	1	_	_	2	2	2	_	_	2	1	_

	1		3	4	5	b	_	8	א	10	11	12	1	4	3
1	2	1	-	1	1	2	1	2	2	2	1	3	2	1	2
2	3	2	1	1	1	2	2	3	2	2	2	3	3	1	3
3	3	2	1	1	1	2	2	3	3	3	2	2	3	1	2
4	3	2	1	1	1	1	1	2	2	2	3	3	3	1	2
5	2	1	-	-	1	2	2	3	2	3	2	3	2	1	3
6	3	2	1	1	1	2	3	3	3	3	3	3	3	1	3
Overall Correlation	3	2	1	1	1	2	2	3	3	3	3	3	3	1	3

23CB058	CRYPTO CURRENCY	L	T	P	C							
		2	0	2	3							
COURSE OBJECTIVES:												
	nderstand the fundamental co		-		of							
	urrency, blockchain, and decentralized											
	plore the technologies behind cryp											
including cryptography, consensus algorithms, and												
blockchain architectures.												
	alyze the risks and challenges assourrencies and blockchain technologies.		ea	W1	.tn							
, , , , , , , , , , , , , , , , , , ,	estigate the economic and legal im		atio	ne	of							
	urrencies, including their impact on glo											
systems	0 1 0	obui		AI IC.	iui							
,	 To develop practical skills in implementing and using 											
	urrency technologies, including wallet	0			\circ							
and sm	and smart contracts.											
UNIT I IN	TRODUCTION				6							
Overview of	Cryptocurrency - Blockchain Technolo	gy:	Coı	nce	ρt,							
Structure, and	d Functionality - Evolution of Crypto	ocur	ren	cies	3 -							
Types of Cr	yptocurrencies: Bitcoin, Ethereum, I	itec	oin,	, aı	nd							
Altcoins - Adv	vantages and Challenges of Cryptocurr	enci	es	G)								
UNIT II CR	YPTOGRAPHIC FOUNDATIONS O	FUTO)NO)	40U	6							
CR	YPTOCURRENCY											
Basics of Cryp	otography: Symmetric and Asymmetric	Enc	ryp	tio	n -							
	ons and Public Key Infrastructure (P.		-									
	d Certificates - Elliptic Curve Cryptogr											
O .	yptocurrencies	1 .			,							
	ONSENSUS ALGORITHMS AND			T	6							
BL	OCKCHAIN PROTOCOLS											
Drack of Min. 1	(DoIA) we Duro of of Chalco (DoC) Dalace	oka -	l D.	261	۰٬							
	(PoW) vs Proof of Stake (PoS) - Deleg											
, ,	- Practical Byzantine Fault Tolerar		•									
Consensus ir	n Ethereum and Smart Contracts	- Bl	.ock	cha	ım							

Protocols and Governance.

UNIT IV CRYPTOCURRENCY ECONOMICS AND 6 MARKETS

The Role of Cryptocurrencies in Modern Financial Systems - Cryptocurrency Markets: Exchanges, Trading, and Volatility - Cryptocurrency Mining and Proof of Work - Initial Coin Offerings (ICO) and Tokenomics - Economic Impacts and Challenges of Cryptocurrencies

UNIT V LEGAL, REGULATORY, AND SECURITY 6 ISSUES

Legal Frameworks for Cryptocurrencies Globally - Anti-Money Laundering (AML) and Know Your Customer (KYC) - Security Issues in Cryptocurrency Transactions and Wallets - Regulatory Challenges: Taxation and Compliance - The Future of Cryptocurrencies in Legal and Economic Systems

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Setting up a Cryptocurrency Wallet (Bitcoin, Ethereum)
- 2. Sending and Receiving Cryptocurrencies
- 3. Understanding and Using Blockchain Explorers
- 4. Cryptocurrency Mining: Setting Up a Mining Rig (Bitcoin, Ethereum)
- 5. Exploring Cryptocurrency Exchanges (Buying, Selling, and Trading)
- 6. Using and Interacting with Ethereum Smart Contracts
- 7. Analyzing the Bitcoin Blockchain Using Tools (e.g., Blockchair, Blockchain.info)
- 8. Setting up a Private Blockchain using Ethereum or Hyperledger
- 9. Simulating an ICO: Token Creation and Launch

10	. Security Testing of Cryptocurrency Transactions and
	Smart Contracts
	TOTAL: 30 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the core concepts of cryptocurrency, blockchain, and
	decentralized networks.
CO2:	Analyze the underlying technologies and protocols that
	enable cryptocurrencies, including cryptographic
	algorithms and consensus mechanisms
CO3:	Examine the risks, vulnerabilities, and challenges of using
	cryptocurrencies in real-world scenarios.
CO4:	Apply the economic, legal, and regulatory implications of
	cryptocurrencies and blockchain technologies.
CO5:	Make use of cryptocurrency tools such as wallets, exchanges,
	and smart contracts.
CO6:	Analyze the future of cryptocurrency and blockchain in
	emerging markets, financial systems, and industries.
	T BOOKS:
1	Nakamoto, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash
	System. Bitcoin.org, 2008.
2	Mougayar, William. The Business Blockchain: Promise,
DEEL	Practice, and the 4th Industrial Revolution. Wiley, 2016. ERENCES:
	Buterin, Vitalik. Ethereum," A Next-Generation Smart
1	Contract and Decentralized Application Platform"
	Ethereum Foundation, 2013.
2	Crosby, Michael, et al.," Blockchain Technology: Beyond
_	Bitcoin" Applied Innovation Review, 2016.
3	Narayanan, Arvind, et al." Bitcoin and Cryptocurrency
	Technologies" Princeton University Press, 2016.
4	Zohar, Aviv," Bitcoin and Cryptocurrencies" MIT Press,
	2018.

5	Gans, Jo	osh	ua S	5.,"	The	e Blo	ock	cha	in a	nd	the 1	New	Arc	hit	ectu	ıre	
	of Trust."MIT Press, 2019.																
6	Tapscott, Don, and Alex Tapscott. Blockchain Revolution:																
	How	the]	Гесŀ	nno	logy	y	Beł	inc	[]	Bitco	oin	and	f	Oth	ıer	
	Cryptocurrencies is Changing the World. Penguin, 2016.																
7	Antonopoulos, Andreas M. Mastering Bitcoin: Unlocking																
	Digital Cryptocurrencies. O'Reilly Media, 2017.																
	CO-		POs PSOs														
,	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	2	2	1	2	2	2	1	3	2	2	2	
	2	3	3	2	2	3	2	2	3	2	2	2	3	3	3	3	
	3	3	3	2	2	3	2	2	3	3	3	2	2	3	3	3	
	4	3	2	1	1	2	1	1	2	2	2	3	3	3	2	2	
	5	3	2	1	1	3	2	2	3	2	3	2	3	3	3	3	
	6 00W	3	3	2	2	3	2	3	3	3	3	3	3	3	3	3	
Overall Correlation		3	3	2	2	3	2	2	3	3	3	3	3	3	3	3	

COLLEGE OF TECHNOLOGY

23CS041	GAME DEVELOPMENT			P	C
		2	0	2	3
COURSEC	DBJECTIVES:				
• To	know the basics of 2D and 3D graphic	cs f	or	gar	ne
dev	elopment.				
 To l 	know the stages of game development.				
 Το ι 	understand the basics of a game engine.				
• To s	survey the gaming development environm	ent	and	d to	ol
kits					
 To 1 	earn and develop simple games using Uni	ty			
UNIT I	3D GRAPHICS FOR GAME DESIGN				6
Introductio	n Genres of games, Basics of 2D and 3D	gra	phi	cs f	or
game avata	r, Game components - 2D and 3D Transf	orn	nati	ons	s –
Projections	- Color models - Illumination and Shad	ler i	mo	dels	s –
Animation	- Controller based animation.	I.			ľ
UNIT II	GAME DESIGN PRINCIPLES		-		6
Character	development, Storyboard development f	or c	ram	inc	
The Paris of the P	sign - Script narration, Game balar				
-	, Principles of level design – Proposals –		_		
	tion, Production and Post-production.	* * 1	. 1 (11	18 1	.01
* *	GAME ENGINE DESIGN				6
UNII III	GAME ENGINE DESIGN				U
Rendering	concept - Software rendering - Hardwar	re re	end	eri	ng
- Spatial s	orting algorithms - Algorithms for gar	ne (eng	ine	· –
Collision d	etection - Game logic - Game AI - Path	find	ling	7	
UNIT IV	OVERVIEW OF GAMING PLATFORMS	A	ND		6
]	FRAMEWORKS				

279

Pygame game development - Unity - Unity scripts - Mobile gaming, Game studio, Unity single player and multi-player games

UNIT V	GAME DEVELOPMENT USING UNITY	6
	ENGINE	

Exporting assets from 3D software – Different types of camera in Unity – Character navigation – Third person camera movement – Creating enemy characters runtime – Animation control in Unity – Graphic user interface in Unity – Assigning properties and methods for player

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Installation of a game engine, e.g., Unity, Unreal Engine.
- 2. Character design, sprites, movement, and character control.
- 3. Level design: design of the world in the form of tiles along with interactive and collectible objects.
- 4. Design of interaction between the player and the world, optionally using the physics engine.
- 5. Developing a 2D interactive using Unity.
- 6. Design of menus and user interaction in mobile platforms.
- 7. Developing a 3D game using Unreal.
- 8. Developing a multiplayer game using Unity.

	Developing a manipuly of game doing office.
	TOTAL: 30 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Apply the basic concepts of 2D graphics.
CO2:	Apply the fundamentals of 3D graphics.
CO3:	Design games based on the principles.
CO4:	Make use game engines effectively.
CO5:	Analyse gaming environments and frameworks.
CO6:	Develop a simple game in Unity.

TEXT BOOKS: Patrick Felicia, "Unity from Zero to Proficiency (Proficient): A step-by-step guide to creating your first 3D Role-Playing Game", LPF Publishing, 1st Edition, New Delhi, 2019. (Unit 1) Ernest Adams, "Fundamentals of Game Design", Pearson Education India, 3rd Edition, India, 2015. (Unit 2 & 3) REFERENCES: Franz Lanzinger, "3D Game Development with Unity", CRC Press, 1st edition, New Delhi, 2022. Franz Lanzinger, "2D Game Development with Unity", CRC Press, 1st Edition, New Delhi, 2020. Adam Kramarzewski, Ennio De Nucci, "Practical Game Design: A modern and comprehensive guide to video game design", Packt Publishing Limited, 2nd Edition, New Delhi, 2023. Rachel Cordone, "Unreal Engine 4 Game Development Quick Start Guide", Packt Publishing Limited, 1st Edition, New Delhi, 2019. POs **PSOs** COs Overall

Correlation

VERTICAL 5: CYBER SECURITY AND CLOUD COMPUTING

23AD054	WEB SECURITY	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To understand the fundamentals of web application security
- To focus on wide aspects of secure development and deployment of web applications
- To learn how to build secure APIs
- To learn the basics of vulnerability assessment and penetration testing

• To get an insight about Hacking techniques and Tools

UNIT I FUNDAMENTALS OF WEB APPLICATION 6 SECURITY

The history of Software Security-Recognizing Web Application Security Threats, Web Application Security, Authentication and Authorization, Secure Socket layer, Transport layer Security, Session Management-Input Validation

SECURE DEVELOPMENT AND	9
DEPLOYMENT	T Te
	COLLEGE OF TECHNOLOG

Web Applications Security - Security Testing, Security Incident Response Planning, The Microsoft Security Development Lifecycle (SDL), OWASP Comprehensive Lightweight Application Security Process (CLASP), The Software Assurance Maturity Model (SAMM)

UNIT III SECURE API DEVELOPMENT 9

API Security- Session Cookies, Token Based Authentication, Securing Natter APIs: Addressing threats with Security Controls, Rate Limiting for Availability, Encryption, Audit logging, securing service-to-service APIs: API Keys , OAuth2, Securing Microservice APIs: Service Mesh, Locking Down Network Connections, Securing Incoming Requests.

UNIT IV API SECURITY ESSENTIALS

9

API Security- Session Cookies, Token Based Authentication, Securing Natter APIs: Addressing threats with Security Controls, Rate Limiting for Availability, Encryption, Audit logging, securing service-to-service APIs: API Keys , OAuth2, Securing Microservice APIs: Service Mesh, Locking Down Network Connections, Securing Incoming Requests.

UNIT V HACKING TECHNIQUES AND TOOLS

9

Social Engineering, Injection, Cross-Site Scripting(XSS), Broken Authentication and Session Management, Cross-Site Request Forgery, Security Misconfiguration, Insecure Cryptographic Storage, Failure to Restrict URL Access, Tools: Comodo, OpenVAS, Nexpose, Nikto, Burp Suite, etc.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Installing and configuring Metasploit
- 2. Perform a reconnaissance on a test application
- 3. Enumerate open ports and web services using Metasploit's auxiliary modules (e.g., http_version, http_title)
- 4. Vulnerability Scanning
 - a. Perform an Nmap scan using Metasploit
 - b. Use vulnerability scanning modules such as auxiliary/scanner/http/http_login
 - c. Identify and analyze vulnerabilities found in the
- 5. Demonstrate a Remote Code Execution (RCE) exploit on a vulnerable application
- 6. Use privilege escalation techniques to elevate user privileges
- 7. Exploiting Web Application Vulnerabilities
 - a. Exploit an XSS vulnerability using Metasploit
 - b. Perform session hijacking and cookie manipulation
- 8. Reporting and Remediation
 - a. Prepare a sample report documenting

vulnerabilities, exploits, and mitigation strategies. Review security best practices and recommend fixes b. based on findings **TOTAL:30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Outline the basic concepts of web application security and the need for it CO2: Develop proficiency in the methods and best practices for securely building and deploying web applications, ensuring protection against security risks and vulnerabilities. CO3: Apply the skill to design and develop Secure Web Applications that use Secure APIs CO4: Understand the significance of conducting vulnerability assessments and penetration testing to identify and mitigate security risks, ensuring system robustness and protection against potential threats. CO5: Apply the skill to think like a hacker and to use hackers tool sets CO6: Develop security frameworks, tools, and methodologies to ensure continuous security FDTD ANNA UNIVERSITY AUTONOMOUS **TEXT BOOKS:** Andrew Hoffman, "Web Application Security: Exploitation 1 Modern Web Applications", and Countermeasures for First Edition, O'Reilly Media, Inc., 2020 Bryan Sullivan, Vincent Liu, "Web Application Security: A 2 Beginners Guide", The McGraw-Hill Companies, 2012 **REFERENCES:** Michael Cross, "Developer's Guide to Web Application 1 Security", Syngress Publishing, Inc., 2007. Ravi Das and Greg Johnson, "Testing and Securing Web 2 Applications", Taylor and Francis Group, LLC., 2021. Prabath Siriwardena, "Advanced API Security", Apress 3

Media LLC, USA, 2020.

4	Malcom McDonald, "Web Security for Developers", No
	Starch Press, Inc,2020.

5	Allen Harper, Shon Harris, Jonathan Ness, Chris Eagle,
	Gideon Lenkey, and Terron Williams, "Grey Hat Hacking:
	The Ethical Hacker's Handbook", Third Edition, The
	McGraw-Hill Companies, 2011.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	-	-	1	-	-	-	2	2	-	1	
2	3	2	1	1	2	1	-	1	-	-	-	3	2	2	1	
3	3	2	1	1	3	-	-	1	-	-	-	3	2	3	1	
4	3	2	1	1	2	1	-	1	-	-	•	3	2	2	1	
5	3	2	1	1	1	2	-	2	-	-	1	3	2	1	2	
6	3	2	1	1	3	-	-	1	-1	3	2	3	2	3	1	
Overall Correlation	3	2	1	1	2	1	1	1	1	3	2	3	3	2	2	

23AD055	AI FOR CYBER SECURITY	L	T	P	C
		2	0	2	3

- To understand the Role of AI in Cyber Security
- To learn Key AI Algorithms and Techniques for Security
- To develop Skills in AI-driven Threat Detection and Mitigation
- To explore Ethical and Legal Implications of AI in Cyber Security
- To gain Insight into Future Trends and Emerging Technologies.

UNIT I INTRODUCTION TO AI IN CYBER SECURITY 9

Overview of AI and Cyber Security-Definition and significance of AI in cyber security - Current cyber security challenges and how AI addresses them - AI Techniques in Cyber Security - Machine Learning (ML), Deep Learning (DL), and Natural Language Processing (NLP) basics - Applications of AI in Cyber Security- AI for threat detection, fraud prevention, and anomaly detection.

UNIT II MACHINE LEARNING FOR CYBER THREAT 6 DETECTION

Supervised and Unsupervised Learning for Security- Overview of ML techniques -Decision Trees, SVM, Neural Networks, Use of ML for anomaly detection and signature-based threat detection - Real-time Intrusion Detection Systems (IDS), AI-based intrusion detection and prevention. Behavior-based vs signature-based approaches. Malware Detection Using ML.

UNIT III	DEEP LEARNING AND NLP FOR CYBER	6
	SECURITY	

Deep Learning Techniques in Cyber Security- Neural networks, Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) for threat intelligence. Autoencoders for Anomaly Detection - Detecting network anomalies using autoencoders. Natural Language Processing (NLP) Applications-NLP for log analysis, phishing detection, and processing threat intelligence feeds. Chatbots for Security Operations.

UNIT IV AI FOR VULNERABILITY AND RISK 6 MANAGEMENT 6

API Security- Session Cookies, Token Based Authentication, Securing Natter APIs: Addressing threats with Security Controls, Rate Limiting for Availability, Encryption, Audit logging, securing service-to-service APIs: API Keys, OAuth2, Securing Microservice APIs: Service Mesh, Locking Down Network Connections, Securing Incoming Requests.

UNIT V ETHICAL IMPLICATIONS AND FUTURE 6 TRENDS 6

Adversarial AI and Attacks - AI's role in adversarial attacks - evasion, poisoning attacks. Ethics and Bias in AI Cyber Security Models - Legal and Regulatory Framework - Compliance, privacy laws, and regulations affecting AI in cyber security. Future Trends and case studies.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Research and evaluate at least two AI-based cyber security tools (e.g., Darktrace, Cylance).
- 2. Prepare a report comparing their threat detection techniques and use of AI algorithms.
- 3. Analyze how AI helped detect and respond to the threat, focusing on the techniques employed.
- 4. Use a machine learning algorithm (e.g., Decision Tree or Random Forest) to detect network intrusions using the KDD Cup '99 dataset. Evaluate the performance using accuracy, precision, and recall metrics.
- 5. Implement a classification model using supervised learning (e.g., SVM or Naive Bayes) to detect and classify malware types based on their characteristics. Use an open-source malware dataset for training and testing.

- 6. Build a deep learning autoencoder model to detect network anomalies in a dataset (e.g., UNSW-NB15).
- 7. Implement a Natural Language Processing (NLP) model to detect phishing emails.
- 8. Develop a vulnerability scanning tool that uses machine learning to predict potential weaknesses in a system based on system logs and configuration data.
- 9. Write a report discussing how bias can impact cyber security decisions.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain AI Techniques for Cyber Security
- **CO2:** Build and Implement AI Models for Threat Detection
- CO3: Apply AI for Vulnerability and Risk Management
- CO4: Build and Implement Natural Language Processing (NLP) for Cyber Intelligence
- CO5: Utilize Ethical and Legal Challenges in AI-driven Security
- CO6: Apply Future Trends and Innovations in AI-based Cyber Defense

TEXT BOOKS:

- 1 Baeza-Yates R and Ribeiro-Neto B, "Modern Information Retrieval: The Concepts and Technology Behind Search", 2nd ed., ACM Press Books, 2011.
- 2 Chio C., and Freeman D, "Deep Learning for Cybersecurity", O'Reilly Media, 2019

REFERENCES:

- Mongeau S and Seplow A., "Cybersecurity Data Science: Machine Learning and Data Analytics for Cyber Risk Management", Apress, 2021.
- 2 Joseph A. D and Nelson B., "Adversarial Machine Learning", Cambridge University Press, 2018
- 3 Müller A. C., and Guido S, "Introduction to Machine Learning with Python: A Guide for Data Scientists", O'Reilly Media, 2016

COs		POs											PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	-	-	1	-	-	-	1	2	-	1	
2	3	2	1	1	1	-	-	1	-	-	1	2	3	1	1	
3	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1	
4	3	2	1	1	2	-	-	1	-	-	2	2	3	2	1	
5	3	2	1	1	2	-	1	3	-	-	1	1	3	2	3	
6	3	2	1	1	1	2	1	2	2	1	1	2	3	1	2	
Overall Correlation	3	2	1	1	2	1	1	2	1	1	1	2	3	2	2	

23AD056	CYBER THREAT INTELLIGENCE	L	T	P	C
		3	0	0	3

- To provide an understanding of the fundamental concepts of cyber threat intelligence and its role in cybersecurity.
- To equip students with the knowledge to collect, analyze, and disseminate cyber threat information.
- To teach students how to identify and classify cyber threats and assess the risks they pose.
- To explore various tools, techniques, and frameworks for threat detection and mitigation.
- To develop practical skills in generating actionable threat intelligence for real-world security environments.

UNIT I INTRODUCTION TO CYBER THREAT 9 INTELLIGENCE

Overview of Cyber Threat Intelligence (CTI) – Strategic, Tactical, Operational, and Technical Intelligence; Cyber Threat Intelligence Lifecycle – Collection, Analysis, Dissemination, Feedback; Cyber Threat Actors – Nation-states, Cybercriminals, Hacktivists, Insider Threats; Attack Vectors – Phishing, Malware, Denial of Service, Exploits; Intelligence Sources – Open-source, Commercial, and Internal Intelligence Feeds.

UNIT II	THREAT DATA COLLECTION AND	9
	ANALYSIS	

Sources of Threat Data – OSINT (Open-Source Intelligence), Dark Web Monitoring, Vendor Feeds, ISACs (Information Sharing and Analysis Centers); Data Collection Methods – Automated Tools, Manual Collection, Web Scraping; Threat Intelligence Platforms (TIPs) – Integration, Enrichment, Correlation of Threat Data; Threat Data Analysis – Indicators of Compromise (IOCs), Threat Patterns, Trends; Data Enrichment – WHOIS Lookups, Geolocation, Domain Reputation.

UNIT III THREAT DETECTION AND ATTRIBUTION

9

Threat Detection Techniques – Signature-Based, Anomaly-Based, Behavior-Based Detection; Threat Hunting – Proactive Threat Identification; Malware Analysis – Types of Malware, Basic Static and Dynamic Analysis; Attack Attribution – Attribution Challenges, Attribution Techniques (Forensic Artifacts, Malware Attribution, Intelligence Gathering).

UNIT IV FRAMEWORKS AND TOOLS FOR CYBER THREAT INTELLIGENCE

9

MITRE ATT and CK Framework - Adversarial Tactics, Techniques, Procedures (TTPs); Cyber Kill Chain - Stages of Cyber Attack and Defense Strategies; Threat Modeling - Risk Assessment and Defense through Threat Models; Threat Analysis Tools - Wireshark, Splunk, Snort; YARA Rules - Writing Custom Malware Detection Rules

UNIT V THREAT INTELLIGENCE INTEGRATION AND RESPONSE

9

Role of CTI in Incident Response – Enhancing Detection, Investigation, and Response; Intelligence-Driven Security Operations – Integration of CTI in SOCs (Security Operations Centers); Threat Intelligence Sharing – Methods and Platforms (MISP, STIX/TAXII); Threat Reporting – Writing Actionable Threat Reports; Case Studies – Real-World Examples of CTI in Cyber Incidents.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Outline the key concepts, types, and lifecycle of cyber threat intelligence
- CO2: Compare different types of cyber threats, attack vectors, and vulnerabilities.
- CO3: Analyze threat data from various sources to generate actionable intelligence.

- CO4: Apply frameworks like mitre attack and Cyber Kill Chain to assess and respond to cyber threats
- CO5: Utilize open-source and commercial tools for threat detection, monitoring, and analysis
- CO6: Apply cyber threat intelligence into incident response and defense strategies to enhance security posture

TEXT BOOKS:

- 1 Henry Dalziel, "How to Define and Build an Effective Cyber Threat Intelligence Capability", 1st Edition, Syngress, 2014...
- Thomas J. Holt, Adam M. Bossler, and Kathryn C. Seigfried-Spellar, "Cybercrime and Digital Forensics: An Introduction", 2nd Edition, Routledge, 2017.

REFERENCES:

- John Robertson, Ahmad Diab, and Rick Howard, "Intelligence-Driven Incident Response: Outwitting the Adversary", 1st Edition, O'Reilly Media, 2018.
- William Stallings, "Effective Cybersecurity: A Guide to Using Best Practices and Standards", 1st Edition, Addison-Wesley Professional, 2018.
- 3 Scott J. Roberts and Rebekah Brown,"Intelligence-Driven Incident Response: Outwitting the Adversary", 1st Edition, O'Reilly Media, 2017.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	1	-	2	-	1	2	1	2	-	2	
2	2	1	-	-	1	2	-	3	-	1	3	-	2	1	3	
3	3	3	2	2	1	2	-	3	-	1	3	-	3	1	3	
4	3	2	1	1	1	2	-	3	-	1	3	-	3	1	3	
5	3	2	1	1	-	3	3	3	3	3	2	-	3	-	3	
6	3	2	1	1	-	3	3	3	3	2	3	-	3	-	3	
Overall Correlation	3	2	1	1	1	3	1	3	1	2	3	1	3	1	3	

23AD057	INFORMATION SECURITY	L	T	P	C
	ANALYSIS AND AUDIT	3	0	0	3

- Understand the fundamentals of information security concepts.
- Explore the architectural design of security concepts.
- Describe different ISO standards and security framework.
- Comprehend the various techniques of access controls in information security.
- Explain various cloud security models and its challenges.
- Understand the concept of virtualization security.
- Use tools for penetration testing, vulnerability scanning, and security auditing.

UNIT I FUNDAMENTALS OF INFORMATION 9 SECURITY

Information Security: Threats, Frauds, Thefts, Malicious Hackers, Malicious Code, Denial of Services Attacks, Social Engineering - Vulnerability – Risk: Risk definition, Types Risk – an introduction Business Requirements Information Security - Definitions Security Policies: Tier1 (Origination Level), Tier2 (Function Level), Tier3 (Application/Device Level), Procedures, Standards, Guidelines

UNIT II SECURITY ARCHITECTURE AND DESIGN 9

Service - Oriented Architecture and Web Service Security - Analysis of Covert Channel - ISO Standards - Security Framework - BS 7799 and ISO 27000 Family - Federal Information Systems Management Act - Management Frameworks - Zachman Framework - Calder-Moir IT Governance Framework - Balanced Scorecard.

UNIT III ACCESS CONTROL TECHNIQUES 9

Authentication Tokens - Roles of Tokens - Access Control Administration - Accountability - Need for Accountability -Requirements of accountability - Accountability Implementation - Methods of Attack: Rootkits , types, installation - Rootkits and Security issues - Rootkit Prevention - other malicious software: Trickbot, FinFisher, Turla, DoublePulsar.

UNIT IV | CLOUD AND VIRTUALIZATION SECURITY |

Cloud Security Models: Iaas, Paas, Saas – Security Challenges in Cloud – Virtualization Security – Container Security: Docker, Kubernetes - Data Protection strategies: Data retention, deletion and archiving procedures for tenant data, Encryption, Data Redaction, Tokenization, Obfuscation, PKI and Key

UNIT V | SECURITY AUDIT AND EMERGING TRENDS | 9

Security Auditing Techniques - Internal vs. External Audits - Compliance Checks: HIPAA, SOX - Auditing Tools: Wireshark, Snort

Emerging Trends and Future of Information Security: AI and Machine Learning in Cybersecurity - Blockchain Security Applications - Quantum Computing Threats.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the fundamental concepts of information security.
- CO2: Build and Implement security policies and frameworks.
- CO3: Identify and analyze security risks and vulnerabilities in information systems.
- **CO4:** Illustrate the application of cloud and virtualization security.
- CO5: Make use of tools for penetration testing, vulnerability scanning, and security auditing
- CO6: Make use of AI and ML and other recent technologies in information security.

TEXT BOOKS:

1 Harold F Tipton, Micki Krause, "Information Security Management handbook", 6th Edition, Auerbach Publications, 5 April 2012.

Peter Kim, "The Hacker Playbook: Practical Guide to Penetration Testing", 13 March 2014

REFERENCES:

- 1 Shon Harris and Fernando Maymi, "CISSP All-in-One Exam Guide", 7th Edition, McGrawHill Education, 1 June 2016.
- Ronald L. Krutz, Russel Dean Vines, "The CISSP Prep Guide: Gold Edition", Gold Edition, Wiley Publication, 31 Oct 2002
- 3 Ed Tittel, Mike Chapple, James Michael Stewart, "Certified Information Systems Security Professional, Study Guide", 6th Edition, Sybex Publication, 06 July 2012 5. ISO/ IEC 27002: 2005.
- 4 RajkumarBuyya, Christian Vechhiola, S. ThamaraiSelvi, "Mastering Cloud Computing Foundations and Applications Programming", Morgan Kaufmann publisher, 2013

COs	A		A	V	9	1	POs	. 1		2 23	_		PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	(5)	/-	-	-	-	-	1	1	-	-	2	-	-	
2 GINE	3	2	1	1	1	ZLI	.EC	ıt.	1	1	1	10	3	1	-	
3	3	2	1	1	2	1	1	2	3	3	2	1	3	2	2	
4	2	1	-	-	2	1	-	2	3	3	2	1	2	2	2	
5	3	2	1	1	3	1	1	2	3	3	2	1	3	3	2	
6	3	2	1	1	1	1	1	2	2	3	2	1	3	1	2	
Overall Correlation	3	2	1	1	2	1	1	2	3	3	2	1	3	2	2	

23AD058	STEGANOGRAPHY AND DIGITAL	L	T	P	C
	WATERMARKING	2	0	2	3

- To develop an understanding of digital watermarking and steganography basics, various approaches, characteristics and application domains.
- To apply digital watermarking as an authentication tool for distribution of content over the Internet and Steganography techniques for covert communication.
- To understand the basics of the counter measures like steganalysis for assessing the data hiding methods.
- To enable to evaluate and choose appropriate data hiding technique based on a multitude of security factors.
- To explore the protocols designed for secure and anonymous digital watermarking in practical scenarios.

UNIT I STEGANOGRAPHY 8

Introduction - Text Steganography _ Image Steganography: Data Hiding in Raw (BMP) Images - LSB (Least Significant Bit) Embedding - Data Hiding by Mimicking Device Noise (Stochastic Modulation). Data Hiding in Palette (GIF) Images - Palette Formats (GIF) - Hiding by Decreasing Colour Depth, Gifshuffle, - Optimal Palette Parity Assignment. Data Hiding in JPEG Images - JPEG Format - J-Steg Data Hiding Algorithm _ Hiding in Spatial Domain _ Hiding in Transform Domain _ Image Quality Metrics.

UNIT II | AUDIO STEGANOGRAPHY | 8

Temporal Domain Techniques - Low-Bit Encoding - Echo Hiding

- Hiding in Silence Intervals. Transform Domain Hiding Techniques - Magnitude Spectrum - Tone Insertion - Phase Coding
- Amplitude Coding Cepstral Domain _ Codecs Domain: Codebook Modification _ Bit stream Hiding _ Audio Quality Metrics

UNIT III VIDEO STEGANOGRAPHY

6

Introduction _ Video Streams - Substitution-Based Techniques - Transform Domain Techniques - Adaptive Techniques - Format-Based Techniques - Cover Generation Techniques _ Video Quality Metrics - Perceptual Transparency Analysis - Robustness against Compression - Robustness against Manipulation.

UNIT IV DATA HIDING

5

Relationship between Watermarking and Steganography. Digital Watermarking Basics: Models of Watermarking, Basic Message Coding, Error Coding. Digital Watermarking Theoretic Aspects: Mutual Information and Channel Capacity, Designing a Good Digital Mark, Theoretical Analysis of Digital Watermarking _ Types of Watermarking _ Fragile, Semi-Fragile.

UNIT V SPREAD SPECTRUM WATERMARKING

9

Transform Domain Watermarking, Quantization Watermarking. Protocols: Buyer Seller Watermarking Protocols, Efficient and Anonymous Buyer-Seller Watermarking Protocol.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Perform steganography in text, image and audio.
- 2. Data hiding in different image types png, GIF, jpeg, bmp etc
- 3. Implement any steganography algorithm
- Reversible data hiding in images
- 5. Steganography in encrypted images Two-layer security
- 6. Steganography in transform domain DCT, DWT, Curvelet etc.,
- 7. Case study on cover generation and cover detection technique.
- 8. Implement digital watermarking with difference between steganography and watermarking
- 9. Case study on attacks on watermarks
- 10. Case study on LSB embedding and LSB steganalysis.

TOTAL: 30 PERIODS

COL	RSE OUTCOMES:
-	After completion of the course, the students will be able to:
CO1.	•
COI:	Summarize watermarking and steganography fundamental
	concepts and principles
CO2:	Identify and assess different types of data hiding techniques
	in various image formats and various data hiding methods
CO3:	Explain the block code and its usage for covert
	communication
CO4:	Demonstrate the use of watermarking for copyright
	protection and steganography for secret communication in
	various digital media
	Construct and implement efficient data hiding methods
CO6:	Infer the strength of any data hiding algorithm against
	steganalysis techniques.
TEXT	T BOOKS: Date of the second se
1	J. Fridrich, "Steganography in Digital Media: Principles,
ì	Algorithms, and Applications", Cambridge: Cambridge
	University Press, 2009.
2	I. J. Cox, M. L. Miller, J. A. Bloom, T. Kalker, and J. Fridrich,
	"Digital Watermarking and Steganography", 2nd Ed.
	Amsterdam: Morgan Kaufmann Publishers In, 2007.
REFE	ERENCES:
1	R. C. Gonzalez, R. E. Woods, D. J. Czitrom, and S. Armitage,
	"Digital Image Processing", 3rd Ed. United States: Prentice
	Hall, 2007.
2	P. Wayner, "Disappearing Cryptography: Information
	hiding: Steganography and Watermarking", 3rd ed.
	Amsterdam: Morgan Kaufmann Publishers In, 2008.
3	M. Arnold, M. Schmucker, and S. D. Wolthusen,
	"Techniques and applications of digital Watermarking and
	content protection", 2nd Ed. Boston, MA: Artech House
	Publishers, 2003.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	-	-	1	-	-	-	2	2	1	1	
2	2	1	-	-	2	1	-	1	-	-	-	2	2	2	1	
3	2	1	-	-	1	-	-	-	-	-	-	3	2	1	-	
4	2	1	-	-	1	1	1	-	-	-	-	2	2	1	-	
5	3	2	1	1	3	2	1	2	-	-	-	2	3	3	2	
6	2	1	-	-	3	-	-	1	-	3	2	2	2	3	1	
Overall Correlation	3	2	1	1	2	1	1	1	1	1	1	3	3	2	1	

		_	_	_							
23AD059	UTILITY COMPUTING	L	T	P	C						
		2	0	2	3						
COURSE OBJECTIVES:											
To understand the principles of cloud architecture models											

- To understand the principles of cloud architecture, models and infrastructure.
- To understand the concepts of virtualization and virtual machines.
- To gain knowledge about virtualization Infrastructure.
- To explore and experiment with various Cloud deployment environments.
- To learn about the security issues in the cloud environment.

UNIT I CLOUD ARCHITECTURE MODELS AND 6 INFRASTRUCTURE

Cloud Architecture: System Models for Distributed and Cloud Computing - NIST Cloud Computing Reference Architecture -Cloud deployment models - Cloud service models; Cloud Infrastructure: Architectural Design of Compute and Storage Clouds - Design Challenges

UNIT II VIRTUALIZATION BASICS 6

Virtual Machine Basics – Taxonomy of Virtual Machines – Hypervisor – Key Concepts – Virtualization structure – Implementation levels of virtualization – Virtualization Types: Full Virtualization – Para Virtualization – Hardware Virtualization – Virtualization of CPU, Memory and I/O devices.

UNIT III VIRTUALIZATION INFRASTRUCTURE AND DOCKER

Desktop Virtualization - Network Virtualization - Storage Virtualization - System-level of Operating Virtualization - Application Virtualization - Virtual clusters and Resource Management - Containers vs. Virtual Machines - Introduction to Docker - Docker Components - Docker Container - Docker

Imag	es and	d Repositories.	
UNIT	IV	CLOUD DEPLOYMENT ENVIRONMENT	6
Goog	le Ap	pp Engine - Amazon AWS - Microsoft Azure; Clo	oud
Softw	are E	nvironments – Eucalyptus – OpenStack.	
UNIT	Γ \mathbf{V}	CLOUD SECURITY	5
Virtu	alizat	ion System-Specific Attacks: Guest hopping - \	VM
migra	ation	attack - hyperjacking. Data Security and Stora	ıge;
Ident	ity an	d Access Management (IAM) - IAM Challenges - IA	AM
Arch	itectu	re and Practice.	
		TOTAL: 30 PERIO	DDS
PRAG	CTIC	AL EXERCISES:	
1.	Insta	all VirtualBox/VMware/ Equivalent open-source clo	oud
	Wor	kstation with different flavors of Linux or Windows	OS
	on to	op of windows 8 and above.	Þ
2.		all a C compiler in the virtual machine created usir	ıg a
1		aal box and execute Simple Programs	
3.		all Google App Engine. Create a hello world app a	and
, 1		r simple web applications using python/java.	-
4.		the GAE launcher to launch the web applications.	Υ
5.		ılate a cloud scenario using CloudSim and ru duling algorithm that is not present in CloudSim.	n a
6.		l a procedure to transfer the files from one virthine to another virtual machine.	tual
7.		all Hadoop single node cluster and run sim	nle
		ications like wordcount.	·p·c
8.		ating and Executing Your First Container Using Docl	ker.
9.		a Container from Docker Hub	
		TOTAL:30 PERIO	DDS
COU	RSE (OUTCOMES:	
	After	completion of the course, the students will be able t	o:
CO1:		the design challenges in the cloud.	
CO2:	Appl	y the concept of virtualization and its types.	
CO3:	Expe	riment with virtualization of hardware resources a	and
	Dock		

- CO4: Develop services on the cloud and set up a cloud environment

 CO5: Build and deploy services on the cloud and set up a cloud environment

 CO6: Explain security challenges in the cloud environment

 TEXT BOOKS:

 1 Kai Hwang, Geoffrey C Fox and Jack G Dongarra,
 - 1 Kai Hwang, Geoffrey C Fox and Jack G Dongarra, "Distributed and Cloud Computing", Morgan Kaufmann, 2011.
 - 2 James Turnbull, "The Docker Book", O'Reilly Publishers, 2014.

REFERENCES:

- James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- Tim Mather, Subra Kumaraswamy, and Shahed Latif, "Cloud Security and Privacy: an enterprise perspective on risks and compliance", O'Reilly Media, Inc., 2009.
- 3 Thomas Erl, Ricardo Puttini, Zaigham Mahmood," Cloud Computing: Concepts, Technology and Architecture", Prentice Hall, 2013.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	-	-	1	-	-	-	2	2	1	1	
2	3	2	1	1	2	1	-	1	-	-	-	2	3	2	1	
3	3	2	1	1	1	-	-	-	-	-	-	3	2	1	-	
4	3	2	1	1	1	1	1	-	-	-	-	2	2	1	-	
5	3	2	1	1	3	2	1	2	-	-	-	2	3	3	2	
6	2	1	-	-	3	-	-	1	-	3	2	2	2	3	1	
Overall Correlation	3	2	1	1	2	1	1	1	1	1	1	3	3	2	1	

23AD060	CLOUD DATABASES	L	T	P	C
		2	0	2	3

- Understand the fundamentals of cloud computing and its impact on database systems.
- Explore various cloud database models and services.
- Learn how to design, implement, and manage databases in the cloud.
- Familiarize with industry-leading cloud platforms like AWS, Google Cloud, and Azure.
- Gain hands-on experience with cloud database tools and applications

UNIT I DISTRIBUTED AND CLOUD DATABASE 9

Basics of Cloud Computing: IaaS, PaaS, SaaS- Evolution of Cloud Databases from traditional databases - challenges of cloud-based databases - Cloud database architectures - Public, Private, and Hybrid clouds- Overview of popular cloud platforms - AWS, Azure, Google Cloud.

UNIT II CLOUD DATABASE SERVICE MODELS 9

Database as a Service (DBaaS) overview - Relational databases in the cloud: Amazon RDS, Google Cloud SQL, Azure SQL. NoSQL databases in the cloud: Amazon DynamoDB, Google Bigtable, Azure Cosmos DB. Introduction to NewSQL databases and their role in cloud architecture - Database scalability, availability, and consistency (CAP theorem)

UNIT III CLOUD DATA STORAGE AND 9 MANAGEMENT 9

Cloud storage fundamentals: Blob storage, File storage, Block storage - Distributed data storage - Data replication and backup strategies in cloud databases - Data security in cloud environments - Monitoring and optimizing performance in cloud databases

UNIT IV CLOUD DATABASE DESIGN AND 9 INTEGRATION 9

Databases for cloud-native applications - multi-tenancy and resource isolation in cloud databases - Integration with cloud services - data lakes, big data platforms, machine learning - APIs for cloud databases - RESTful APIs, GraphQL- Serverless databases and event-driven architectures -AWS Aurora Serverless, Firebase

UNIT V CLOUD DATABASE APPLICATIONS AND 9 CASE STUDIES 9

Real-world applications of cloud databases (e-commerce, IoT, social media) - Migrating on-premise databases to the cloud: processes and challenges - Case studies on cloud database use by large enterprises - Best practices for cloud database management and optimization - Emerging trends in cloud databases - AI integration, edge computing

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Setting Up a Relational Cloud Database
- 2. Deploying and Querying a NoSQL Database
- 3. Implementing Data Backup and Recovery
- 4. Securing a Cloud Database with Encryption
- 5. Integrating a Cloud Database with Serverless Architecture
- 6. Migrating an On-Premise Database to the Cloud
- 7. Exploring Data Partitioning and Sharding.
- 8. Monitoring and Optimizing Cloud Database Performance

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Compare cloud and on-premise database systems.
- CO2: Explain how cloud databases handle scalability and availability.
- CO3: Demonstrate between various cloud database services.

CO4:	Apply	da	ata	m	ana	iger	ner	ıt	bes	t	prac	tice	s i	n	clo	ud
	environ					0-					Ι .					
CO5:	Build se				nıd	dat	aba	se s	svst	em	s an	d In	teor	ate	clo	ud
200.	databas								-				_			aa
CO6	Analyz															nt
	ГВООК		<u> </u>	• • • •	- C	CCII	uiic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CIC	, aa	auti	1000	c ac _j	910)	, 1110	.110
1			0	"(7101	1d	Г	ata	has	ρ	Des	zelo:	pme	nt	21	nd
_	Manage		-										PIIIC	111	aı	iiu
2	Liang Z												2020	om	ont	11
_	_							, (2100	ıu	Date	1 171	ariag	em	em	,
DEEL	Springer, 1st Edition, 2014 ERENCES:															
1	Lee Chao, CRC Press, 1st Edition (2013) Cloud Data															
1	Management", Liang Zhao, David Taniar, Springer, 1st															
	Edition, 2014															
_	Valliappa Lakshmanan, Jordan Tigani, "Google BigQuery:															
2																
_	The Definitive Guide", O'Reilly Media, 1st Edition, 2019.															
3	Arshdeep Bahga, Vijay Madisetti, "Cloud Computing: A Hands-On Approach", 1st Edition, 2013.															
	Hands-	On	Ap	pro	ach	", I				201	3.			_	200	
(COs			62	//	-		POs	-		4.0	СЫ	NO	-	SO	
	VEI	$_{R}1_{N}$	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	_	1	2	1	-	1	E	2	2	_	1
	2	2	1	-	-	-	1	2	2	-	1	-	2	2	-	2
	3	2	1	-	-	-	1	2	2	-	1	-	2	2	-	2
	4	3	2	1	1	2	2	2	2	1	1	1	2	3	2	2
	5	3	2	1	1	2	2	2	2	1	2	2	2	3	2	2
	6	3	3	2	2	2	3	2	2	2	3	2	3	3	2	2
O	verall	3	2	1	1	1	2	2	2	1	2	1	3	3	1	2
Correlation $\begin{vmatrix} 3 & 2 & 1 & 1 & 1 & 2 & 2 & 2 & 1 \end{vmatrix}$																

23CB043	SECURITY IN CLOUD	L	T	P	C
	COMPUTING	2	0	2	3

- To understand cloud computing architecture and the shared responsibility model in security.
- To explore various security challenges specific to cloud environments.
- To learn techniques for securing data, applications, and networks in cloud platforms.
- To examine compliance, identity management, and access control for cloud security.
- To analyse incident response, risk management, and disaster recovery strategies in cloud computing.

UNIT I	INTRODUCTION TO CLOUD SECURITY	6
	FUNDAMENTALS	

Overview of Cloud Computing: Cloud models (public, private, hybrid), and service models (IaaS, PaaS, SaaS). Security Challenges in Cloud: Multi-tenancy, data privacy, data location, data breaches, and insider threats. Shared Responsibility Model: Division of security responsibilities between cloud providers and customers. Cloud Security Architectures: Security architecture for AWS, Azure, and Google Cloud.

UNIT II DATA SECURITY IN CLOUD 6

Data Security and Privacy: Data lifecycle, data classification, data protection mechanisms. **Encryption Techniques**: Symmetric and asymmetric encryption, key management. **Data Loss Prevention (DLP)**: Strategies to prevent data leakage. **Secure Data Storage**: Techniques and tools for secure storage in cloud environments.

UNIT III	APPLICATION AND NETWORK SECURITY IN	6
	CLOUD	İ

Application Security: Secure software development for cloud applications, secure APIs. **Network Security in Cloud**: Firewalls, Intrusion Detection Systems (IDS), and Virtual Private Clouds

(VPCs). **Web Application Security**: Cloud-based web security, protecting against threats such as SQL injection and XSS. **Cloud Security Tools**: Introduction to cloud-native security tools and third-party solutions

UNIT IV COMPLIANCE, IDENTITY, AND ACCESS 6 MANAGEMENT 6

Compliance in Cloud: Standards like GDPR, HIPAA, and ISO/IEC 27017. Identity and Access Management (IAM): Role-based access control (RBAC), Single Sign-On (SSO), and Multi-Factor Authentication (MFA). Access Control Models: Role-based and attribute-based access control for cloud resources. Identity Federation: Integrating cloud identity with enterprise identity solutions.

UNIT V INCIDENT RESPONSE, RISK MANAGEMENT, 6 AND DISASTER RECOVERY

Incident Response in Cloud: Planning, monitoring, and responding to security incidents. Risk Management: Identifying, assessing, and mitigating risks in cloud environments. Disaster Recovery: Backup strategies, recovery models, and testing disaster recovery plans. Cloud Security Standards: Overview of standards and frameworks like CSA, NIST, and ENISA

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Case study on shared responsibility models across major cloud providers.
- 2. Hands-on activity to review cloud infrastructure and identify potential security gaps.
- 3. Implementing encryption for data stored in the cloud.
- 4. Configuring and testing Data Loss Prevention (DLP) policies on a cloud platform.
- 5. Configuring firewalls and VPCs in a cloud environment.
- 6. Conducting a vulnerability assessment on a cloud-hosted web application.

- 7. Setting up IAM policies and roles for cloud resources.
- 8. Configuring SSO and MFA in a cloud environment.
- 9. Developing an incident response plan for a cloud infrastructure.
- 10. Configuring backup and disaster recovery settings in a cloud service.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Identify and describe the security challenges unique to cloud computing and evaluate the shared responsibility model.
- CO2: Apply techniques for data security, including encryption and secure data storage, in cloud environments.
- CO3: Examine various methods for ensuring application and network security in cloud services.
- CO4: Make use of the tools for compliance requirements, access control, and identity management systems for cloud security.
- CO5: Develop strategies for incident response and risk management specific to cloud infrastructures.
- **CO6:** Evaluate cloud security standards and implement disaster recovery strategies for cloud environments.

TEXT BOOKS:

- Mather, Tim, Subra Kumaraswamy, and Shahed Latif.
 "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance." 1st Edition, O'Reilly Media, 2009.
- Winkler, Vic (J.R.). "Securing the Cloud: Cloud Computer Security Techniques and Tactics." 1st Edition, Syngress, 2011

REFERENCES:

1 Samani, Raj, Jim Reavis, and Brian Honan. "CSA Guide to Cloud Computing: Implementing Cloud Privacy and Security." 1st Edition, Syngress, 2015.

2	Kumar,	nar, Saurabh. "Cloud Computing: Insights into New-Era																	
	Infrastr	frastructure." 1st Edition, Wiley India, 2011.																	
3	Winkle	er, J.R. (Vic). "Securing the Cloud: Cloud Computing																	
	Security	urity Techniques and Tactics." 1st Edition, Syngress,																	
	2011.	2011.																	
4	Krutz,	Ron	ald	L.,	and	d R	usse	ell I	Dear	n V	ines	. "C1	oud	Sec	uri	ty:			
	A Com	pre	hen	sive	e G	uid	e to	Se	cure	e Cl	loud	Co	mpu	ting	3." :	1st			
	Edition	Edition, Wiley, 2010																	
	COs						I	POs						PSOs					
COs							_	. 00						_		3			
	CO3	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	1	1 2	2	3	4	5 2	_			9	10	11 -	12						
				3 - 1	4 - 1		6					11 -	12 -	1	2				
	1	2	1	-	-	2	6					11 - -	12 - -	1 3	2 2				
	1 2	2	1 2	- 1	- 1	2	6 1 -					11 - - -	12 - - -	1 3 3	2 2 3				
	1 2 3	2 3 3	1 2 3	- 1 2	- 1 2	2 3 3	6 1 - 1	7	8			11 - - - 1	12 - - -	1 3 3 3	2 2 3 3	3 - -			
	1 2 3 4	2 3 3 3	1 2 3 2	- 1 2 1	- 1 2 1	2 3 3 3	6 1 - 1 2	7 - - - 1	8 - - - 1				12 - - - -	1 3 3 3 2	2 2 3 3 2	3 - - - 1			

3 3 2 2 3 2

Correlation

COLLEGE OF TECHNOLOGY

1

3

2 1

1 1