

REGULATIONS - 2023

CURRICULUM AND SYLLABI

(2023-2024)

B.E. MECHANICAL ENGINEERING

KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

VISION OF THE INSTITUTION

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

MISSION OF THE INSTITUTION

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

VISION OF THE DEPARTMENT

The department aspires to become a globally recognized centre of excellence by producing competent professionals in Mechanical Engineering to serve as a valuable resource for industry and society.

MISSION OF THE DEPARTMENT

- Impart intellectually rigorous and holistic education to the students in the field of Mechanical Engineering.
- Establish state of-the-art facilities for research and consultancy work.
- Enhance the knowledge and skills of the faculty with the latest advancements in the mechanical engineering domain.
- Mentor the students to develop research and entrepreneurial capabilities.
- Inculcate a high degree of professionalism and contribute to the needs of industry and society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

After 5 years of completion of B.E (Mechanical Engineering), the Graduates will be able to

PEO 1	Excel as competent professional or entrepreneur or researcher in related fields of Mechanical Engineering.
PEO 2	Analyze, design/develop innovative solutions for real world engineering problems using appropriate modern tools.
PEO 3	Exhibit professionalism, ethical attitude and adapt to the changes in the industry and society supporting sustainable development.
PEO 4	Lead and manage teams for effective execution of projects.

PROGRAM OUTCOMES (POs)

The Graduates of B.E (Mechanical Engineering) will be able to

PO 01	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering						
	specialization to the solution of complex						
	engineering problems.						

PO 02	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 03	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 04	Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 05	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 07	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.					
PO 08	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.					
PO 09	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.					
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.					
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.					

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 01	Model, analyze, design and realize physical systems, components or process by applying principles of three core streams of Mechanical Engineering, i.e., Design, Manufacturing, Thermal and Fluid Engineering.
PSO 02	Ideate innovative concepts, develop prototypes and implement sustainable systems to meet societal needs both individually and as a team
PSO 03	Engage in lifelong learning and follow ethics, codes and standards of professional practices.

INDEX

S1.No	Description	Page No.
1	Curriculum	1
2	I Semester Syllabus	16
3	II Semester Syllabus	44
4	III Semester Syllabus	75
5	IV Semester Syllabus	100
6	V Semester Syllabus	121
7	VI Semester Syllabus	138
8	VII Semester Syllabus	157
9	VIII Semester Syllabus	172
10	Vertical 1 : Manufacturing Engineering	175
11	Vertical 2 : Computational Engineering	199
12	Vertical 3 : Thermal Sciences	223
13	Vertical 4 : Modern Mobility Systems	247
14	Vertical 5 : Robotics And Automation	271

KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

REGULATIONS 2023

BE - MECHANICAL ENGINEERING CHOICE BASED CREDIT SYSTEM CURRICULA FOR SEMESTERS I TO VIII

SEMESTER-I

S1. No.	Code	Course Course Title		Periods Per Week				Credits
110.	Coue			L	T	P	Periods	
	23IP101	Induction Programme		1	-	ı	ı	-
		TH	IEORY					
1	23HS101	Essential Communication	HSMC	3	0	0	3	3
2	23MA101	Matrices and Calculus	BSC	3	0	0	3	3
3	23AD101	Programming in Python	ESC	3	0	0	3	3
4	23HS102	Heritage of Tamils	HSMC	1	0	0	1	1
	1100	THEORY AN	D PRAC	TIC	AI	LS	INOLO	GY
5	23PH111	Engineering Physics	BSC	3	0	2	r I AUSONOI	1004
6	23CY111	Engineering Chemistry	BSC	3	0	2	5	4
		PRAG	CTICALS					
7	23AD121	Python Programming Laboratory	ESC	0	0	4	4	2
8	23HS121	Communication Skills Laboratory	HSMC	0	0	2	2	1
9	23HS122	General Clubs / Technical Clubs / NCC / NSS / Extension Activities	HSMC	0	0	2	2	1*
		TOTAL		16	0	12	28	21

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER -II

S1. No.	Course code Course Title		Category	Periods Per Week				Credits
				L	T	P	Periods	
		THE	ORY					
1	23HS201/ 23HS202	Professional English/ Foreign language	HSMC	3	0	0	3	3
2	23MA203	Statistics and Numerical Methods	BSC	3	1	0	4	4
3	23PH206	Materials Science	BSC	3	0	0	3	3
4	23ME201	Applied Mechanics	PCC	3	0	0	3	3
5	23HS203	Tamils and Technology	HSMC	1	0	0	1	1
	N. W.	THEORY AND	PRACTI	CA	LS			
6	23EE281	Basic Electrical and Electronics Engineering	ESC	2	0	2	4	3
7	23ME211	Engineering Graphics	ESC	3	0	2	NOLO AUTSNOA	GY 1004
		PRACT	TICALS					
8	23ME221	Engineering Practices Laboratory	PCC	0	0	4	4	2
9	23ME222	Applied Mechanics Laboratory	PCC	0	0	4	4	2
10	23HS221	Soft Skills	EEC	0	0	2	2	1*
		TOTAL		18	1	14	34	25

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-III

Sl. No.	Course code	Course Title	Category]	rio Per /ee		Total Contact Periods	Credits
		THE	ORY					
1	23MA302	Transforms and Partial Differential Equations	BSC	3	1	0	4	4
2	23ME301	Engineering Thermodynamics	PCC	3	0	0	3	3
3	23ME302	Engineering Materials and Metallurgy	PCC	3	0	0	3	3
4	23HS301	Universal Human Values and Ethics	HSMC	3	0	0	3	3
		THEORY AND	PRACTIC	AL	S			,
5	23ME311	Manufacturing Processes	PCC	3	0	2	5	4
6	23ME312	Fluid Mechanics and Hydraulic Machinery	PCC	3	0	2	5	4
		PRACT	ICALS					
7	23ME321	Computer Aided Machine Drawing Laboratory	PCC	0	0	4	OLOG	2
8	23ES391	Presentation Skills	EEC	0	0	2	2	1*
* 1991		TOTAL		18	1	10	29	23

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-IV

S1.	Course	G. Fild		Periods Per Week			Total	
No.	code	Course Title	Category	Per L	We T	ek P	Contact Periods	Credits
		TH	EORY			_	1 0110 015	
1	23MA401	Optimization Techniques	BSC	3	1	0	4	4
2	23ME401	Thermal Engineering	PCC	3	0	0	3	3
3	23ME402	Theory of Machines	PCC	3	1	0	4	4
4		Department Elective 1	DEC	3	0	0	3	3
5		Department Elective 2	DEC	3	0	0	3	3
	POWE	THEORY AN	D PRACT	ICA	LS			
6	23CE412	Strength of Materials	PCC	3	0	2	5	4
		PRAC	CTICALS			-		
7	23ME421	Thermal Engineering Laboratory	PCC	0	0	4	OL4G\	2
8	23ME422	Kinematics and Dynamics Laboratory	PCC	0	0	4	4	2
9	23ES491	Aptitude and Logical Reasoning – 1	EEC	0	0	2	2	1*
10		Mini Project -1/ In-Plant Training - 1	EEC	0	0	2	2	1
		TOTAL		18	1	14	33	26

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-V

S1.	Course Code	Course Title	Category]	rio Per /ee:		Total Contact	Credits		
1.00	0000			L	T	P	Periods	2 3 3 3 3		
	THEORY									
1	23RE501	Research Methodology and Intellectual Property Rights	ESC	2	0	0	2	2		
2	23ME501	Design of Machine Elements	PCC	3	0	0	3	3		
3	23ME502	Heat and Mass Transfer	PCC	3	0	0	3	3		
4	OWE	Department Elective 3	DEC	3	0	0	3	3		
5		Open Elective - 1 (Emerging Technology)	OEC	3	0	0	3	3		
1	18	THEORY AND	PRACTI	CAl	LS					
6	23ME511	Engineering Metrology and Measurements	PCC	3	0	2	NOLO AU 5 NO	GY 1004		
		PRACT	ΓICALS							
7	23ME521	Heat Transfer Laboratory	PCC	0	0	4	4	2		
8		Mini Project - 2/ In-Plant Training - 2	EEC	0	0	4	4	2		
9	23ES591	Aptitude and Logical Reasoning - 2	EEC	0	0	2	2	1*		
	TOTAL					12	29	22		

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VI

S1.	Course			P	erio	ds	Total	3 3 3 4 4 4 2	
No.	Code	Course Title	Category	Pe	r We	ek	Contact	credits	
140.	Couc			L	T	P	Periods		
		T	HEORY						
1		Department Elective – 4	DEC	3	0	0	3	3	
2		Department Elective – 5	DEC	3	0	0	3	3	
3		Open Elective - 2 (Management / Safety Courses)	OEC	3	0	0	3	3	
	THEORY AND PRACTICALS								
4	23CE611	Environmental Science and Engineering	ESC	3	0	2	5	4	
5	23ME611	CAD/CAM	PCC	3	0	2	5	4	
6	23ME612	Finite Element Analysis	PCC	3	0	2	5	4	
- 3	12	PRA	CTICAL	5		20			
7	23ME621	Project Work - Phase 1	EEC	0	0	4	INQLO	2	
8	23ME624	Technical Training	EEC	0	0	2	2	1	
9		Technical Seminar - 1	ESC	0	0	2	2	1	
		TOTAL		18	0	14	32	25	

SEMESTER -VII

S1.	Course Code	Course Title	Cate Gory	_	periods Per Week		Total Contact	Credits		
NO.	Coue		Gory	L	T	P	Periods			
	THEORY									
1		Department Elective – 6	OEC	3	0	0	3	3		
2		Open Elective - 3 (Management Courses)	DEC	3	0	0	3	3		
3	23ME701	Fluid Power Automation	PCC	3	0	0	3	3		
4	23ME702	Comprehension	EEC	2	0	0	2	2		
		THEORY AND	PRACT	ICA	LS					
5	23ME711	Mechatronics and IOT	PCC	3	0	2	5	4		
)	10	PRACT	ΓICALS							
6	23ME721	Project Work – Phase 2	EEC	0	0	6	6	3		
7	23ME722	Technical Seminar – 2	ESC	0	0	4	INOLO	2		
	TOTAL 14 0 12 26 20									

SEMESTER -VIII

Sl. No.	Course code	Course Title	Category]	Periods Per Week L T P		Total Contact Periods	
		PRACTI	CALS					
1	23ME821/ 23ME822	Capstone Project / Internship cum project	EEC	0	0	20	20	10
	TOTAL					20	20	10

TOTALCREDITS: 172

DEPARTMENT ELECTIVE COURSES: VERTICALS

VERTICAL 1: MANUFACTURING ENGINEERING

S1. No.	Course Code	Course Title	Category	V	rio Per Veel	k	Total Contact periods	Credits
				L	T	P	Perious	
1	23ME031	Additive Manufacturing	DEC	3	0	0	3	3
2	23ME032	Digital Manufacturing and IoT	DEC	3	0	0	3	3
3	23ME033	Surface Engineering	DEC	3	0	0	3	3
4	23ME034	Non-Traditional Machining Processes	DEC	3	0	0	3	3
5	23ME03 <mark>5</mark>	Process Planning and Cost Estimation	DEC	3	0	0	3	3
6	23ME036	Non-Destructive Testing and Evaluation	DEC	3	0	0	3	3
7	23ME037	Design for Manufacturing and Assembly	DEC	3	0	0	AU3DNO	1003
8	23ME038	Quality Control and Reliability Engineering	DEC	3	0	0	3	3

VERTICAL 2: COMPUTATIONAL ENGINEERING

S1. No.	Course Code	Course Title	Category		Periods Per Week		Total Contact periods	Credits
				L	T	P	perious	
1	23ME039	Design Concepts in Engineering	DEC	3	0	0	3	3
2	23ME040	Design of Transmission Systems	DEC	3	0	0	3	3
3	23ME041	Product Design and Development	DEC	3	0	0	3	3
4	23ME042	Computational Fluid Dynamics and Heat Transfer	DEC	3	0	0	3	3
5	23ME043	Mechanical System Design	DEC	3	0	0	3	3
6	23ME0 <mark>44</mark>	Computational Bio-Mechanics	DEC	3	0	0	3	3
7	23ME045	Ergonomics in Design	DEC	3	0	0	3	3
8	23MT055	Machine Learning for Intelligent Systems	DEC	3	0	0	INOLO	3

VERTICAL 3: THERMAL SCIENCES

S1. No.	Course Code	Course Title	Category	Periods Per Week			Total Contact periods	Credits
				L	T	P	perious	
1	23ME046	Power Plant Engineering	DEC	3	0	0	3	3
2	23ME047	Refrigeration and Air-Conditioning	DEC	3	0	0	3	3
3	23ME048	Non-conventional Energy sources	DEC	3	0	0	3	3
4	23ME049	Bioenergy Conversion Technologies	DEC	3	0	0	3	3
5	23ME050	Thermal Management of Batteries and Fuel Cells	DEC	3	0	0	3	3
6	23ME0 <mark>5</mark> 1	Energy Storage Devices	DEC	3	0	0	3	3
7	23ME052	Energy Conservation in Industries	DEC	3	0	0	4N 3 LO	3
8	23MT047	Automobile Engineering	DEC	3	0	0	3	3

VERTICAL 4: MODERN MOBILITY SYSTEMS

S1. No.	Course Code	Course Title	Category	Periods Per Week L T P		(Total Contact periods	Credits
1	23AU064	Automotive Control Systems	DEC	3	0	0	3	3
2	23AU701	Intelligent Vehicle Technology	DEC	3	0	0	3	3
3	23ME053	Hybrid and Electric Vehicle Technology	DEC	3	0	0	3	3
4	23ME054	Energy Storage and Management System for Electric Vehicles	DEC	3	0	0	3	3
5	23ME055	Electric Vehicle Design	DEC	3	0	0	3	3
6	23ME056	Vehicle Health Monitoring, Maintenance and Safety	DEC	3	0	0	3 INOLO	3 GY
7	23ME057	Conventional and Futuristic Vehicle Technology	DEC ANN	3	0	0	3	3
8	23ME058	Automotive Materials, Components, Design and Testing	DEC	3	0	0	3	3

VERTICAL 5: ROBOTICS AND AUTOMATION

S1. No.	Course Code	Course Title	Category		Periods Per Week		Total Contact periods	Credits
				L	T	P	perious	3 3 3 3
1	23AE069	Drone Technologies	DEC	3	0	0	3	3
2	23ME059	Electrical Drives and Automotive Actuators	DEC	3	0	0	3	3
3	23ME060	Introduction to Robotics	DEC	3	0	0	3	3
4	23ME061	Digital Twin and Industry 5.0	DEC	3	0	0	3	3
5	23MT031	Robots and Systems in Smart Manufacturing	DEC	3	0	0	3	3
6	23MT0 <mark>3</mark> 3	Agricultural Robotics and Automation	DEC	3	0	0	3	3
7	23MT065	Total Integrated Automation	DEC	3	0	0	3	3
8	23MT401	Sensors and Instrumentation	DEC	3	0	0	AU3 _{DNO}	3

OPEN ELECTIVE - EMERGING TECHNOLOGIES

Sl. No.	Course Code	Course Title	Category		rioc Per Veel	ζ.	Total Contact periods	Credits
				L	T	P	perious	
1	23OAD971	Artificial Intelligence and Machine Learning Fundamentals	OEC	3	0	0	3	3
2	23OAD972	Foundation of Big Data Analytics	OEC	3	0	0	3	3
3	23OCS971	Augmented Reality and Virtual Reality	OEC	3	0	0	3	3
4	23OCS972	Data Science and Fundamentals	OEC	3	0	0	AUTONO)	3
5	23OEC971	IoT Concepts and Applications	OEC	3	0	0	3	3
6	23OIT971	Blockchain Technology	OEC	3	0	0	3	3
7	23OPH971	Quantum Technology	OEC	3	0	0	3	3

OPEN ELECTIVE - MANAGEMENT COURSES

Sl. No.	Course Code	Course Title	Category]	Periods Per Week		Per Total		Credits
				L	T	P	remous		
1	23OMG971	Total Quality Management	OEC	3	0	0	3	3	
2	23OMG972	Engineering Economics and Financial Accounting	OEC	3	0	0	3	3	
3		Engineering Management and Law	OEC	3	0	0	3	3	
4	23OMG974	Knowledge <mark>M</mark> anagement	OEC	3	0	0	3	3	
5	23OMG975	Industrial Management	OEC	3	0	0	3	3	
6	23OMG976	Entrepreneurship and Business Opportunities	OEC	3	0	0	о <u>го</u> зомо	3	
7	23OMG977	Modern Business Administration and Financing	OEC	3	0	0	3	3	
8	23OMG978	Essentials of Management	OEC	3	0	0	3	3	

OPEN ELECTIVE - SAFETY RELATED COURSES

Sl. No.	Course Code	Course Title	Category		rio Per Vee	r	Total Contact Periods	Credits
1	230AU981	Automotive Safety	OEC	3	0	0	3	3
2	23OCE981	Disaster Management	OEC	3	0	0	3	3
3	23OME981	Industrial Safety	OEC	3	0	0	3	3

SEMESTER-WISE CREDIT DISTRIBUTION

SEMESTER	HSMC	BSC	ESC	PCC	DEC	OEC	EEC	Total
Semester I	5	11	5	-17	- *	4		21
Semester II	4	7	9	5	- 1	-		25
Semester III	3	4	- `	16		-	-	23
Semester IV		4	OLLE	_15	6	HN(oLbG	26
Semester V	Res	- //	FILIZ ED	12	UNI 3 RSI	3	ток2мо	22
Semester VI	-	-	5	8	6	3	3	25
Semester VII	-	-	2	7	3	3	5	20
Semester VIII			-	-	-	-	10	10
Total	12	26	23	63	18	9	21	172

SEMESTER -I

23IP101	INDUCTION PROGRAMME	L	T	P	C
		-	1	ı	0

COURSE OBJECTIVES:

- This is a mandatory 2 weeks Programme to be conducted as soon as the students enter the institution.
 Normal classes start only after the induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character
- Hence, the purpose of this Programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and

students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature

• Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

• Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

Value Based Communication

This module will focus on improving the communication skills of students

Lectures by Alumni

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

Familiarization to Dept/Branch and Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops and other facilities

Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests / assessments during this Programme.

REFERENCES:

Guide to Induction program from AICTE

23HS101	ESSENTIAL COMMUNICATION	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

UNIT I FORMATION OF SENTENCES

9

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing- framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development-Parts of Speech, Wh- Questions, yes or no questions, direct and indirect questions. Vocabulary development- prefixes- suffixes-articles – countable and uncountable nouns

UNIT II NARRATION AND DESCRIPTION

9

Reading – Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development – Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing – Write short narrative paragraphs, biographies of friends/relatives - writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested

voca	bulary and structures.	
UNI	T III COMPARING AND CONTRASTING	9
Read	ling- short texts and long texts -understanding different ty	pes
	ext structures, -coherence-jumbled sentences. Langu	
	lopment- degrees of comparison, concord- Vocabu	_
	lopment – single word substitutes- discourse markers- us	-
	ence words Writing - comparative and contrast paragra	
	ng- topic sentence- main idea, free writing, compare	-
		anu
	rast using some suggested vocabulary and structures.	
UNI	T IV SOCIAL MEDIA COMMUNICATION	9
Read	ling- Reading blogs, social media reviews, posts, comme	ents,
proc	ess description, Language development - relative cla	use,
Voca	bulary development- social media terms-wo	rds,
	eviations and acronyms Writinge-mail writing-convent	
	ersonal email, descriptions for simple processes, critical on	
9	ews, blog, website posts, commenting to posts.	
	T V ESSAY WRITING	V 9
	ASSILIATED TO ANNA UNIVERSITY AUTONOMO	1
	ling- Close reading non-technical longer texts Langu	_
	lopment - modal verbs, phrasal verbs- Vocabu	•
	lopment - collocation. Writing- Writing short essa	
	nstorming - developing an outline- identifying main	and
subo	rdinate ideas.	200
COL	TOTAL: 45 PERIO	JDS
	RSE OUTCOMES:	
	completion of the course, the students will be able to	<u> </u>
CO1	Summarize simple, level-appropriate texts of around 300)
CO2	words recognizing main ideas and specific details.	
CO2	Demonstrate the understanding of more complex	
	grammatical structures and diction while reading and	

writing.

CO3	Use app	_			_							_		ınd		
	contrast	•														
CO4		Establish the ability to communicate effectively through														
	emails.															
CO5	Determine the language use appropriate for different social															
	media platforms.															
CO6	Use appropriate expressions for narrative descriptions and															
	process descriptions.															
TEX	XT BOOKS:															
1		Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange														
	Level 2. Cambridge University Press and Assessment															
2	Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange															
	Level 3. Cambridge University Press and Assessment															
REFI	ERENCES:															
1	Dutt P.			POL		,			Gee	eta.	Basi	c Co	mm	uni	cati	on
	Skills, Foundation Books: 2013															
2	Means,l								0				100			J.
4	Commu	ınic	atio	n fo	or C	Colle	_			age	Lea	rnin	g,L			
(COs	7	3	8	//			POs	-					-	SC	
	SINE	$_{R}1_{R}$	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	-	-	-	-	-	1	1	2,74,180	2	3		2	1000	100	-
	2	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
	3	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
	4	-	-	-	-	-	-	-	-	-	3	-	2	-	-	-
	5	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	6	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	verall relation	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
Reco	mmende	d by	Во	ard	of S	tud	ies		07-2				•			•
	A	ppr	ove	d				1 st	AC	M		Date	?	09-0	9-2	023

23MA101	MATRICES AND CALCULUS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

UNIT IV INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques of

Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V MULTIPLE INTEGRALS

9

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1 Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2 Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3 Find the derivative of functions of several variables
- **CO4** Examine the application of partial derivatives
- CO5 Compute integrals by different techniques of Integration.
- CO6 Apply the concept of integration to compute multiple integrals.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

REFERENCES:

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2 Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016

- Bali. N., Goyal. M. and Watkins. C., —Advanced Engineering Mathematics, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- Narayanan. S. and Manicavachagom Pillai.T. K., —Calculus" 4 Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.

	l	POs											PSOs		
\mathbf{COs}		_, , , , , , , , , , , , , , , , , , ,													
205	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	-	-	-	-	-	1	3	ı	-
2	3	2	1	1	-	-	-	-	-	-	-	1	3	ı	-
3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
4	3	2	1	1	-	-	-	-	-	-	-	1	3	ı	-
5	3	2	1	1	-	-	-	-	-	-	-	1	3	ı	-
6	3	2	1	1	1	-	1	1	1		1	1	3	1	-
Overall Correlation	3	2	1	1	-	V		-/		-		1	3	7	-
Recommende	d by	Recommended by Board of Studies 02-08-2023													

1st ACM Date 09-09-2023 Approved

23AD101 PROGRAMMING IN PYTHON			T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To know the basics of Programming.
- To convert an algorithm into a Python program.
- To construct Python programs with control structures.
- To structure a Python Program as a set of functions.
- To use Python data structures-lists, tuples, dictionaries and files.

UNIT I COMPUTATIONAL THINKING

q

Introduction to Computing and Problem Solving: Fundamentals of Computing –Computing Devices – Identification of Computational Problems – Pseudo Code and Flowcharts – Instructions – Algorithms – Building Blocks of Algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion).

UNIT II INTRODUCTION TO PYTHON

9

Introduction to Python Programming: Python Interpreter and Interactive Mode- Variables and Identifiers - Arithmetic Operators - Values and Types - Statements, Reading Input, Print Output, Type Conversions, type () Function and Is Operator, Dynamic and Strongly Typed Language. Control Flow Statements: if, if...else, if...elif...else Decision Control Statements, Nested if Statement, while Loop, for Loop, continue and break Statements.

UNIT III FUNCTIONS AND STRINGS

9

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the Function, The return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments. Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

UNIT IV LISTS, TUPLES, DICTIONARIES AND FILES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list Parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension. Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages.

UNIT V OBJECT-ORIENTED AND FUNCTIONAL PROGRAMMING

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, Polymorphism. Functional Programming: Lambda. Iterators, Generators, List Comprehensions.

TOTAL: 45 PERIODS

9

COURSE OUTCOMES: After completion of the course, the students will be able to **CO1** Develop algorithmic solutions to simple computational problems. CO2 Develop and execute simple Python programs using **Control Statements** CO3 Develop simple Python programs for solving problems using Functions and Strings Build a Python program using lists, tuples, dictionaries and CO4 files. CO₅ Construct a code related to Object-Oriented Programming Concept **CO6** | Construct a code related to Functional Programming. **TEXT BOOKS:**

26

(http://greenteapress.com/wp/think-python/).

Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3,

Shroff/O'Reilly Publishers, 2016

2	Karl	В	eecl	ner,		"(Con	าอน	tati	ona	1	Th	inkiı	ng:		Α
	Beginne												Solvi		aı	nd
	Progran														lam	ıp;
	Develo												Ü			•
REFI	ERENCE	S:														
1	Learnin	g T	o F	rog	ran	n w	ith	Py	tho	n. I	Richa	ırd I	л. H	alte	rma	ın.
	Copyrig	ght	© 2	011				-								
2	Python	for	Eve	eryl	ood	y, E	Exp	lori	ng l	Dat	a Us	sing	Pyth	ion	3. I	Or.
	Charles R. Severance. 2016. Paul Deitel and Harvey Deitel "Python for Programmers"															
3	Paul Deitel and Harvey Deitel, "Python for Programmers",															
	Pearson Education, 1st Edition, 2021. G Venkatesh and Madhavan Mukund, "Computational															
4	G Venkatesh and Madhavan Mukund, "Computational															
	Thinking: A Primer for Programmers and Data Scientists",															
	1st Edition, Notion Press, 2021. John V Guttag, andquot;Introduction to Computation and															
5			•	,												
	Programming Using Python: With Applications to															
	Computational Modeling and Understanding Data", Third Edition, MIT Press, 2021															
6	Eric Ma		- 3.3					h C	0111	100	ΔΙ	land	c c	n F	roje	oct
U	Based															
4	Starch I					to	110	gre			δ′	211 0	Lui	tioi	1, 1	NO
7	https:/			-		n.oı	rg/	15-2	~ ;			21.1		110	~ 1	p:
8	Martin					_	-	_	e C	on'	nnlet	e Re	efere	nce	<i>"</i> 4	th
	Edition								JAN		P	15171	7071	3170	MOU	1
								POs	5					I	PSO	s
· ·	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	-	ı	ı	1	1	3	1	ı
	2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	5	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	6	3	2	1	1	1	-	-	1	1	1	1	1	3	1	1
	verall	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
	relation												_			
Keco	mmended				or S	tud	ıes		07-2 AC			Data		00 0	9-20	122
	A	ppr	ove	u				131	AC	IVI		Date	:	ひツー()	ツームし	123

23HS102	HERITAGE OF TAMILS	L	T	P	C
		1	0	0	1

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil Nadu.

UNIT I LANGUAGE AND LITERATURE 3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism and Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

UNIT II	HERITAGE - ROCK ART PAINTINGS TO	3
	MODERN ART - SCULPTURE	

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

UNIT	III	FOLK AND MARTIAL ARTS	3
Theru	ıkoot	l hu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillat	tam,
		ppetry, Silambattam, Valari, Tiger dance - Sports	
Game	es of	Tamils.	
UNIT	IV	THINAI CONCEPT OF TAMILS	3
Flora	and	Fauna of Tamils and Aham and Puram Concept f	rom
Tholk	каррі	yam and Sangam Literature - Aram Concept of Tam	ils -
Educa	ation	and Literacy during Sangam Age - Ancient Cities	and
Ports	of S	angam Age - Export and Import during Sangam A	ge -
Overs	seas (Conquest of Cholas	
UNIT	$\Gamma \mathbf{V}$	CONTRIBUTION OF TAMILS TO INDIAN	3
		NATIONAL MOVEMENT AND INDIAN	
		CULTURE	
Contr	cibuti	l on of Tamils to Indian Freedom Struggle - The Cult	11201
		of Tamils over the other parts of India – Self-Res	
		t - Role of Siddha Medicine in Indigenous System	•
		- Inscriptions and Manuscripts - Print History of Ta	
Books			
DOOK	3.	WEED DEPT.	ODS
COU	RSE	OUTCOMES:	020
		pletion of the course, the students will be able to	
		ain the evolution of Tamil language and literature,	
	_	sing on its cultural, ethical, and secular themes.	
CO2		ine the making of musical instruments related to Tam	il
	herit	_	
CO3		uss the sports and games of Tamils	
		ain the education and literacy during Sangam age.	
		ress the importance and contribution of Tamils to Indi	an
	_	dom Struggle	
CO6		ine the print history of books in Tamil Nadu	
200	Juli	include printing of books in running rudu	

TEXT I	BOOK	S:														
1	தமிழ்														-	
5	தமிழக	ഖ	ரலா	று-ம	க்களு	ம் ப	ळा	பாடு	ம்-ே	க.ே	கபிள்	ளை (G	ിഖണ്	յու	† :	
2	ക ഞ്ഞിര	ரித்	தமி	<u>і</u> р – (ழன	ഞ	υij	മ്പ	ა. წ ე	ந்து	ரம் (6	<u></u> பிகட	ன் ப	பிரச	ஈ ரம்)	
REFER					_					_						
	. அஆ்			சை	Б. ПБ (கிச்	ж	டை	าเเก	ຄ່າ	சந்	ж ж	πаз	ГБA	<u></u>	
	ுச் நாகரி														<i>.</i> ,,	
) DUL(II														பெ	ல்
	ப துறை											` -	_			
					<u>, </u>		I	POs]	PSO	s
CC	JS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		-	-	-	-	-	2	2	-	-	-	-	-	-	-	-
2		-	-	-	-	-	2	2	-	-	-	-	-	-	-	-
3	THE STATE OF THE S	17:	Dio.	1	-	-	2	2	r-3	4		-		-		-
4	0	-	-	6	-	-	2	2	4	-	-	-/	Y-	-	-	-
5	14	-	-	1	\-	-/	2	2	4	F		-	1	-]-	-
6	A	-		y.)-	_	2	2	M.,	7	_	-	1	-	-	-
Over	W. Colombia	7	REAL		-	co	2	2	E	OF	TE	CHI	101	.0	GY	-
Recomi	mende	d b	у Во	oard	of S	tudi	es	28-0)7-2()23	NIVER	MILITARY.	4010	N.O.A.	003	
	A	App	rove	ed				1st	ACI	M]	Date		09	-09-2	023

23PH111	ENGINEERING PHYSICS	L	T	P	C
		3	0	2	4

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses-factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia – theorems of M.I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule – torque –rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

UNIT II ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

UNIT III	OPTICS AND LASERS	9
Reflection	and refraction of light waves - total internal reflecti	on -

types of optical fiber, Numerical Aperture and acceptance angle - interference -Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating
- 6. Air wedge- Determination of thickness of a thin sheet /wire

- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
 - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.

13. Melde's string experiment 14. Experiment with lattice dynamics kit. **TOTAL: 30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to **CO1** Determine the mechanical properties of materials. CO2 Apply the principles of electromagnetic waves to real world system. CO3 Determine the thickness of thin wire and the characteristic parameter of an optical fiber. **CO4** Apply the principles of lasers to real world application. CO5 Organize the quantum mechanical properties of particles and waves. CO6 Utilize the quantum mechanical principles towards the formation of energy bands. **TEXT BOOKS:** R.Kolenkow, "An Introduction 1 D.Kleppner and Mechanics", McGraw Hill Education (Indian Edition), 2017. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, 2 "Concepts of Modern Physics", McGraw-Hill (Indian Edition), 2017.

REFI	REFERENCES:															
1	R.Wolfs	son	," E	sse	ntia	1 U	niv	ersi	ty F	hys	sics"	, Vo	lum	e 1	and	2.
	Pearson	Ed	uca	tio	n (Iı	ndia	ın E	dit	ion)	, 20	009.					
2	Paul A. Tipler, "Physic - Volume 1 and 2", CBS, (Indian															
	Edition), 2004.															
3	K.Thyagarajan and A.Ghatak,"Lasers: Fundamentals and															
	Applications," Laxmi Publications, (Indian Edition), 2019.															
4	D.Hallio	day	, R.	Res	nicl	c ar	d J.	Wa	lke	r, "]	Prin	ciple	es of	Ph	ysic	s",
	Wiley (l	ndi	an I	Edi	tior	1), 2	015									
5	N.Garc	ia, <i>i</i>	A.D	am	ask	ano	1 S.S	Sch	war	Z, "	Phy	sics	for (Con	npu	ter
	Science	Stu	den	ıts"	,Spı	ring	er V	Verl	ag,	201	6.					
	Science Students", Springer Verlag, 2016. POs PSOs															
	CO_{α}						I	POs						l	PSO	s
(COs	1	2	3	4	5	6	POs 7	8	9	10	11	12	1 1	PSO 2)s 3
(COs	1 3	2	3	4	5				9	10	11	12			
		7.4			_	5				9 -	10 - -	11 - -		1		
	1 JPOW	3	2	1	1	5		7		9 -	10 - -		1	1 3		3
	1	3	2	1 1 1 1	1	5		7		9	10		1	1 3 3		3
	1 2 3	3 3 3 3	2 2 2	1 1 1	1 1 1	5		7		9	10 - - -		1 1 1 1	3 3 3 3 3		3
	1 2 3 4 5 6	3 3 3 3	2 2 2 2	1 1 1 1	1 1 1 1	5		7		9	10 - - - -		1 1 1 1	1 3 3 3 3		3
0	1 2 3 4 5 6 verall	3 3 3 3	2 2 2 2 2	1 1 1 1	1 1 1 1 1	5 - - - -		7		9	10		1 1 1 1	3 3 3 3 3		3
O	1 2 3 4 5 6 verall	3 3 3 3 3 3	2 2 2 2 2 2 2	1 1 1 1 1 1	1 1 1 1 1 1	- - - - - -	6	7	8 - - - - - -	OF VAC	- - TE		1 1 1 1 1	3 3 3 3 3 3		3
O	1 2 3 4 5 6 verall relation	3 3 3 3 3 3	2 2 2 2 2 2 2	1 1 1 1 1 1 ard	1 1 1 1 1 1	- - - - - -	6	7 28-			TENIVER		1 1 1 1 1	1 3 3 3 3 3 3 3		3

23CY111	ENGINEERING CHEMISTRY	L	T	P	C
		3	0	2	4

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming andfoaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical

vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO₂ system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition and Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO₂ emission and carbon sequestration, Green Hydrogen.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid battery and lithium-ion battery; Electric vehicles – working

principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1 Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2 Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3 Estimate the knowledge of phase rule and composites for material selection requirements
- CO4 Choose a suitable fuel for engineering processes and applications
- CO5 Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6 Explain the different types of batteries, fuel cells and working principles of Electric vehicles

TEXT BOOKS:																
TEX																
1	P. C. Ja															
	Edition,			pat	Ra	i P	ubl	ishi	ng	Co	mpa	ny	(P)	Ltd,	No.	ew
	Delhi, 2															
2	Sivasar												Mc(Gra	w-F	Hill
	Publish	_			_											
3	S.S. Dar							_		_			-			
	Publishing, 12th Edition, 2018.Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi,															
	Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.															
DEE	·															
_	FERENCES: B. S. Murty, P. Shankar, Balday, Rai, B. B. Rath, and James															
1	B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James															
	Murday, "Text book of nanoscience and nanotechnology",															
	Universities Press-IIM Series in Metallurgy and Materials Science, 2018.															
2				11	Fne	rine	ori	nσ	Ch	om	ietro	," 1	McG	ran	, I	1;11
_	Educati															1111
3	400		,						_						enti	ific
	Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014New Delhi, 2018.															
4	Shikha/															
1	Applica															
	Edition,			8		ce	111			-			NO		G)	1
5	O.V. Ro	uss	sak	and	lН	.D.	Ges	sser	, A	ppl	ied (Che	mist	ry-A	A To	ext
	Book fo												inge	r S	cier	nce
	Busines	s M	ledi	a, N	Jew	Yo				litic	n, 2	013				
(COs						I	POs			ı	ı	•	I	PSC)s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	3	2	1	ı	ı	-	-	2	-	ı	-	-	1	2	-	-
	4	3	2	1	1	-	-	3	-	-	-	-	2	3	-	1
	5	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	6	2	1	-	-	-	-	2	-	-	-	-	1	2	-	1
O	verall	2	2	1	1			2					2	2		
	rrelation 3 2 1 1 3 2 3															
Reco					of S	Stud	lies									
	Recommended by Board of Studies 28-07-2023 Approved 1st ACM Date 09-09-2023													09-	09-2	

23AD121	PYTHON PROGRAMMING	L	T	P	C
	LABORATORY	0	0	4	2

The main objective of this laboratory is to put into practice computational thinking. The students will be expected to write, compile, run and debug Python programs to demonstrate the usage of:

- Operators and Conditional Statements
- Control Structures and Functions (both recursive and iterative) and Recursion.
- String functions
- Lists, Sets, Dictionaries, Tuples and Files.
- Object-Oriented Programming

Exercise 1 Programs to demonstrate the usage of operators and conditional statements.

- 1. Write a program that takes two integers as command line arguments and prints the sum of two integers.
- 2. Program to display the information:
 Your name, Full Address, Mobile Number,
 College Name, Course Subjects
- 3. Program that reads the URL of a website as input and displays contents of a webpage.

Exercise 2 Programs to demonstrate usage of control structures.

- 4. Program to find the sum of all prime numbers between 1 and 1000.
- 5. Program to find the product of two matrices.
- 6. Program to find the roots of a quadratic equation.

Exercise 3 Programs to demonstrate the usage of Functions and Recursion

- 7. Write both recursive and non-recursive functions for the following:
 - a. To find GCD of two integers
 - b. To find the factorial of positive integer
 - c. To print Fibonacci Sequence up to given number n
 - d. To convert decimal number to Binary equivalent

- 8. Program with a function that accepts two arguments: a list and a number n. It should display all the numbers in the list that are greater than the given number n.
- 9. Program with a function to find how many numbers are divisible by 2, 3,4,5,6 and 7 between 1 to 1000.

Exercise 4 Programs to demonstrate the usage of String functions.

- 10. Program that accepts two strings S1, S2, and finds whether they are equal are not.
- 11. Program to count the number of occurrences of characters in each string.
- 12. Program to find whether a given string is palindrome or not.

Exercise 5 Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

- 13. Simple sorting, Histogram, Students marks statement, Retail bill preparation
- 14. Write a program that combines lists L1 and L2 into a dictionary.
- 15. Program to display a list of all unique words in a text file and word count, copy file, Voter's age validation, Marks range validation (0-100).

Exercise 6 Programs to demonstrate the usage of Object-Oriented Programming

- 16. Program to implement the inheritance.
- 17. Program to implement polymorphism

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1 Develop algorithmic solutions to simple computational problems.
- **CO2** Develop and execute simple Python programs.
- CO3 Construct programs in Python using conditionals and loops for solving problems.

CO4 Utilize f	14 Utilize functions to decompose a Python program.														
CO5 Analyse													ıres.		
CO6 Interpre	6 Interpret data from/to files in Python Programs														
COs POs PSOs															s
COs	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
1	1 3 2 1 1 1 1 1 1 3 1 -														
2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	_
5	3	3	2	2	1	-	-	-	-	-	-	1	3	1	_
6	2	1	-	-	1	-	-	1	1	1	1	1	3	1	1
Overall Correlation															1
Recommende	d by	Во	ard	of S	Stud	lies						ī			
A	ppi	ove	d				1st ACM Date 09-09-2023								23

COLLEGE OF TECHNOLOGY

23HS121	COMMUNICATION SKILLS	L	T	P	С
	LABORATORY	0	0	2	1
COURSE O	BJECTIVES:				
• To en	able the students to comprehend the mai	n id	ea a	and	
specif	ic information of the listening passage				
• To he	lp students express themselves clearly, a	nd			
comm	nunicate effectively with others.				
 To int 	roduce authentic language use and conte	ext-s	spec	cific	
vocab	ulary that might not be encountered in to	extb	ook	S.	
Exercise:1	Listening to conversations set in everyda	ay s	ocia	1	
	context and complete gap-filling exercise	e			
Exercise: 2	Listening to a monologue in everyday so	ocia	l co	nte	ĸt.
	Diagram labelling and MCQ				
Exercise: 3	Listening to a group conversation in aca	den	nic s	setti	ing
(80)	and answer MCQ			4	
Exercise: 4	Listening to a lecture and answer MCQ	or g	ap i	filli	ng
Exercise: 5	Listening to Ted Talks, podcasts, docum	ent	arie	s -	
1 8	discussion	-			
Exercise: 6	Listening to a lecture and reading a text	on	the	san	ne
G/A	subject- compare and contrast				
Exercise: 7	Speaking Introducing oneself				
Exercise: 8	Answering questions based on the intro	duc	tior	ı	
Exercise: 9	Speaking on a given prompt for 2 mins.				
Exercise :10	Answering questions based on the topic	spo	okei	ı	
Exercise :11	Role play- Engaging in conversation				
Exercise :12	Engaging in Podcast Discussion				
l	TOTA	L: 25	5 PE	RI	ODS
COURSE O	UTCOMES:				
After comple	etion of the course, the students will be al	ole t	Ю		
CO1 Demo	nstrate fluency in speaking in variety of s	situa	tio	ns.	

42

CO2 Express their knowledge by talking continuously for more

than two minutes on a topic.

CO3	Develop	o ac	tive	e list	teni	ng :	for:	moi	re n	near	ning	ful i	nter	acti	ons	and
	convers	atic	ns.													
CO4	Use a fu	ıll r	ang	ge of	f str	uct	ure	s na	tur	ally	anc	lapp	orop	riat	tely.	
CO5	Identify	the	e sp	ecif	ic iı	nfor	ma	tior	in	cor	ivers	atio	ns, i	nte	rvie	ws,
	talks an	d le	ectu	res.												
CO6	Develop	o th	e al	oilit	y to	CO1	mpa	are a	and	an	alyse	e dif	fere	nt f	orm	s of
	information, identifying key similarities and differences.															
	POs PSOs															
	LOS	1 2 3 4 5 6 7 8 9 10 11 12											12	1	2	3
	1	ı	ı	ı	-	-	1	1	-	2	3	-	2	-	-	-
	2	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
	3	1	1	1	-	-	1	1	-	2	3	-	2	-	-	-
	4	1	1	1	-	-	-	-	-	-	3	-	2	-	-	-
	5	-	-	-	-	_	1	1	7	3	3	-	2	_	-	-
	6 GOW	E <u>R</u> L	õ	1	-	-	1	1	-7	2	3	1	4	1	4	-
	verall relation	1	11.	3	1	-	1	1	-(3	3	-	2	_1	-	-
Reco	Recommended by Board of Studies 28-07-2023															
Y	Approved 1st ACM Date 09-09-2023															

SEMESTER - II

23HS201	PROFESSIONAL ENGLISH	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays.
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

UNIT I WORKPLACE COMMUNICATION

9

Reading - Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing - Writing emails -emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development- Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary - One-word substitutes; Abbreviations and Acronyms as used in technical contexts and social media.

UNIT II EXPRESSING CAUSE AND EFFECT

9

Reading - Reading longer technical texts- Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development- Active, Passive and Impersonal Passive Voice transformations, Infinitive and Gerunds Vocabulary - Synonyms- contextual meaning of

words, Same word acting as different parts of speech, causal expressions.

UNIT III PROVIDING SOLUTIONS TO PROBLEMS

9

Reading - Case Studies, editorials, news reports etc. Writing - Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional sentences Vocabulary - Compound Words, discourse markers.

UNIT IV | INTERPRETATION OF GRAPHICS

9

Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. Language development-Possessive and Relative pronouns, numerical adjectives Vocabulary Homonyms and Homophones, sequence words.

UNIT V REPORT WRITING AND RESUME WRITING

9

Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1 Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details.
- CO2 Demonstrate the understanding of more complex grammatical structures and diction while reading and writing.
- CO3 Use appropriate expressions to describe process and product, compare and contrast data, analyze problems, provide solutions and prove an argument in writing.

ability to communicate CO4 Establish the effectively in professional environment through emails and reports. CO5 Determine the language use appropriate for different social media platforms used for digital marketing. CO6 | Convert skills to assets and position themselves in job market through their own professional narratives. TEXT BOOKS: V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 1 Priyadharshini, Veena Selvam, English for Science and Technology I, Cambridge University Press and Assessment V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha 2 Priyadharshini, Veena Selvam, English for Science and Technology II, Cambridge University Press and Assessment **REFERENCES:** Business Correspondence and Report Writing by Prof. R.C. 1 Sharma and Krishna Mohan, Tata McGraw Hill and Co. Ltd., 2001, New Delhi. Developing Communication Skills by Krishna Mohan, 2 Meera Bannerji- Macmillan India Ltd. 1990, Delhi. **POs PSOs** COs 2 5 6 9 12 2 1 3 7 8 10 11 1 2 2 3 1 1 1 2 2 3 2 3 1 2 3 2 4 2 3 2 2 3 2 5 1 6 2 3 3 **Overall** 2 3 3 1 1 Correlation Recommended by Board of Studies 28-07-2023

1st ACM

Date

09-09-2023

Approved

23MA203	STATISTICS AND NUMERICAL	L	T	P	C
	METHODS	3	1	0	4

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS 9+3

Sampling distributions – Standard error-Large sample test for single mean, proportion, difference of means -Small sample Tests-T Test for single mean and difference of means-F test for equality of variance – Chi square test for single variance- Independence of attribute-Goodness of fit (Binomial Distribution, Poisson Distribution).

UNIT II DESIGN OF EXPERIMENTS

One way and two way classifications - Completely randomized design - Randomized block design - Latin square design.

9+3

UNIT III | SOLUTION OF EQUATIONS AND | 9+3 | EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method - Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss

Seide	el - Eigenvalues of a square matrix by Power method	
UNI	Γ IV INTERPOLATION, NUMERICAL	9+3
	DIFFERENTIATION AND NUMERICAL	
	INTEGRATION	
Inter	polation - Newton's forward and backward differ	rence
inter	polation -Lagrange's and Newton's divided differ	rence
inter	polations Approximation of derivative using interpol	ation
poly	nomials - Numerical single integration and double t	using
Trap	ezoidal and Simpson's 1/3 rules.	
UNI	T V NUMERICAL SOLUTION OF ORDINARY	9+3
	DIFFERENTIAL EQUATIONS	
Singl	le step methods: Taylor's series method - Euler's metl	nod -
Mod	ified Euler's method - Fourth order Runge- Kutta metho	d for
solvi	ng first order differential equations - Multi step metl	hods:
Miln	e's and Adam's Bashforth method.	
	TOTAL: 60 PER	IODS
COU	RSE OUTCOMES:	
After	completion of the course, the students will be able to	
CO1	Examine the given data for large and small san	
	problems.	GY
CO2	Examine the problems involving design of experiments	5.05
CO3	Find the numerical solutions for nonlinear (algebra	ic or
	transcendental) equations, large system of linear equa	tions
	and Eigen value problem of a matrix, when analy	ytical
	methods fail to give solution.	
CO4	Determine the intermediate values of the experimental	data,
	using Newton's forward, backward, divided difference	e and
	Lagrange's methods.	
CO5	Find the solutions for the problems involving nume	erical
	differentiation and integration.	
CO6	Solve numerically, ordinary differential equations who	ich is
	used to solve different kinds of problems occurring	ng in
	engineering and technology.	
TEX	Γ BOOKS:	

- 1 Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science", 10th Edition, Khanna Publishers, New Delhi, 2015.
- **2** Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.

REFERENCES:

- P. Sivarama Krishna Das "A Text Book of Statistics and Numerical Methods" Viji's Academy.
- **2** Burden, R.L. and Faires, J.D. "Numerical Analysis" 9th Edition, Cengage Learning, 2016.
- 3 Devore.J.L " Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014
- 4 Gerald.C.F. and Wheatley.P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7th Edition, 2007

COs		. 1	XI.	J		I	POs	A	-		234	-	9	PSC)s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1 ONE	3	2	1	1	U	J.L.	1	at:	C		:U	1	3) <u>[</u> 1	Υ-
2	3	2	1	1	AP.	ILIA	EU	OA	INIA	UNIVE	H2II)	1	3	DMU	12
3	3	2	1	1	-	1	-	-	-	-	-	1	3	1	-
4	3	2	1	1	-	1	-	-	-	-	-	1	3	1	-
5	3	2	1	1	-	1	-	-	-	-	-	1	3	1	-
6	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
Overall Correlation	3	2	1	1	-	1	-	-	-	-	-	1	3	1	-
Recommended	d by	Во	ard	of S	Stuc	lies	28-	07-	2023	3					
Approve	Approved by Academic										Date		09	-09-2	2023

23PH206	MATERIALS SCIENCE	L	T	P	C
		3	0	0	3

- To make the students to understand the basics of crystallography and its importance in studying materials properties.
- To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials.
- To instil knowledge on physics of semiconductors, determination of charge carriers and device applications.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications.

UNIT I CRYSTALLOGRAPHY

9

Crystal structures: BCC, FCC and HCP – directions and planes – linear and planar densities – crystal imperfections- edge and screw dislocations – grain and twin boundaries – Burgers vector and elastic strain energy- Slip systems, plastic deformation of materials – Polymorphism.

UNIT II ELECTRICAL AND MAGNETIC PROPERTIES 9 OF MATERIALS

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Quantum free electron theory: Tunneling - degenerate states - Fermi- Dirac statistics - Density of energy states. Magnetic materials: Dia, para and ferromagnetic effects -Domain theory and hysteresis of ferromagnets - exchange interaction and ferromagnetism - quantum interference devices - GMR devices.

UNIT III SEMICONDUCTORS AND TRANSPORT PHYSICS

9

Intrinsic Semiconductors - Energy band diagram - direct and

indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type and P-type semiconductors – Variation of carrier concentration with temperature – Carrier transport in Semiconductors: Drift, mobility and diffusion (qualitative) – Hall effect and devices – Ohmic contacts – Schottky diode – introduction to solid state drive (SSD).

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption loss and gain. Optical processes in quantum wells – Optoelectronic devices: light detectors and solar cells – light emitting diode – laser diode – optical processes in organic semiconductor devices –excitonic state.

UNIT V NANOELECTRONIC DEVICES

9

Quantum confinement – Quantum structures – quantum wells, wires and dots – Zener-Bloch oscillations – Resonant tunnelling – quantum interference effects - mesoscopic structures - Single electron phenomena – Single electron Transistor. Active and passive optoelectronic devices – photo processes – spintronics – carbon nanotubes: Properties and applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- **CO1** Apply the basics of crystallography and its importance in studying materials properties.
- CO2 Compute charge carrier density of metals and fermi energy level.
- CO3 Apply the knowledge of magnetic properties of materials in data storage.
- CO4 Compute carrier concentration in intrinsic and extrinsic semiconductor.
- CO5 Build a sound grasp of knowledge in different optical properties of materials, optical displays and applications.

CO6	O6 Develop an idea of significance of nano structures, quantum															
	confine	-				_								-	лис	4111
TEX	Г ВООК		iii a	iia	CHO	uiii	16 1	uiic	de	VICC	- ир	piice	11101	10.		
1	V.Ragh		n	Ma	teri	als	Sci	ence	- aı	nd	Eno	inee	rino	r· A	Fi	rst
_	Course															
2	Jasprit															
	Techno		0											·		
3	G.W.H											ctro	nics.	. Pe	ears	on
	Educat	ion	(In	diar	ı Ed	litic	n),	200	9.							
REFI	ERENCE															
1	R.Balasubramaniam, Callister's Materials Science and															
	Engineering. Wiley (Indian Edition), 2014.															
2	Wendelin Wright and Donald Askeland, Essentials of															
	Materials Science and Engineering, CL Engineering, 2013.															
3	Robert	Robert F.Pierret, Semiconductor Device Fundamentals,														
	Pearson, 2006															
4	Pallab Bhattacharya, Semiconductor Optoelectronic Devices,															
	Pearson, 2017.															
5	1.75			X Par S		e E				nd		mita	100	enn		_ ′
	Nanote	echr	olo	gy:	Un	der	star	ndin	ıg S	mal	ll Sy	sten	ıs, C	RC	Pre	ss,
1	2017.		11		1											
(COs		1		4	CC		Os	35	OF	TE	CH	NO	J	PSC	
	0/3	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	. Post <u>r</u> ansa	-	1	3	_	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	verall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_
	elation mmende	d br	7 R 2	ard	of s	2611.4	lioc	26	07 2	023						
Keco					01 3	nuu	nes		A(Date	<u>, </u>	09_	.00_2	2023
	Approved											vail	-	יכ	J J-2	.020

23ME201	APPLIED MECHANICS	L	T	P	C
		3	0	0	3

- Inculcate the ability to analyze any problem in a simple and logical manner.
- Learn the use of scalar and vector analytical techniques for analyzing forces in statically determinate structures.
- Introduce the equilibrium of rigid bodies, vector methods and free body diagram.
- Learn the principles of friction, forces and to determine and apply the concepts offrictional forces at the contact surfaces of various engineering systems.
- To develop basic dynamics concepts such as force, momentum, work and energy.
- To apply the well understood basic principles for the real time.

UNIT I BASICS AND STATICS OF PARTICLES 9

Introduction – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces - vector representation of forces – Vector operations of forces - additions, subtraction, dot product, cross product - Coplanar Forces - rectangular components - Equilibrium of a particle – Forces in space – Equilibrium of a particle in space - Equivalent systems of forces, Free body diagram.

UNIT II | EQUILIBRIUM OF RIGID BODIES 9

Principle of transmissibility - Varignon's theorem - Types of supports - Action and reaction forces - stable equilibrium - Moment of a force about a point and about an axis - Single equivalent force - Equilibrium of rigid bodies in two dimensions - Equilibrium of rigid bodies in three dimensions, Analysis of Trusses - Method of Joints and Method of sections.

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Centroids and centre of mass - Centroids of lines and areas - Rectangular, circular, triangular areas by integration - T section, I section, Angle section, Hollow section by using standard formula - Theorems of Pappus - Area moments of inertia of plane areas - rectangular, circular, triangular areas by integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and Perpendicular axis theorem - Principal moments of inertia of plane areas - Principal axes of inertia-Mass moment of inertia - mass moment of inertia for prismatic, cylindrical and spherical solids from first principle - Relation to area moments of inertia.

UNIT IV FRICTION

9

9

Friction force - Ladder Friction, Wedge friction, Screw friction - Rolling resistance, Square threaded Screws, Journal Bearings, Thrust Bearings, Disc friction, Wheel friction, Rolling resistance.

UNIT V DYNAMICS OF PARTICLES

9

Newton's laws of motion - Principle of Work and Energy, Applications of the Principle of Work and Energy, Power and Efficiency, Conservation of Energy, Principle of Impulse and Momentum, Impacts of bodies - Work Energy Equation - Impulse and Momentum equation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- **CO1** Apply law of forces on particles.
- **CO2** Calculate forces on rigid bodies.
- **CO3** Determine reaction forces at the support.
- CO4 Calculate area moment of inertia of planar body and mass moment of inertia of rigid bodies.
- CO5 Determine friction and its effects at the surfaces of contact for ladder, wedge, belt and bearings.

CO6	O6 Calculate dynamic forces on rigid bodies.															
TEX	Г ВООК	S:														
1	Beer, F	F.P	anc	d Jo	hn	stor	ı Jr	. E.	.R.,	_/	/ecto	or N	/lech	ani	cs :	for
	Engine	ers	(In	SI U	Jni	ts):	Stat	tics	and	d D	ynar	nics	I, 8tl	h E	ditio	on,
	Tata M	cGr	aw.	-Hil	l Pı	ıbli	shir	ng c	om	pan	y, N	[ew]	Dell	i (2	.004).
2	Bhavik	atti,	, S.	S a	nd	Ra	jasł	ıeka	ırap	pa,	K.0	G., ·	–En	gin	eeri	ng
	Mechai	nics	∥, N	lew	Ag	ge Ir	nter	nati	iona	al (I	P) Li	mite	ed P	ubl	ishe	rs,
	1998.															
REFI	ERENCE	ES:														
1	Hibbell	ler,	R.C	an	d A	sho	ok C	Sup	ta, -	–Er	ngin	eerir	ng M	Iecł	nani	cs:
	Statics and Dynamics, 11th Edition, Pearson Education 2010. Irving H. Shames and Krishna Mohana Rao. G.,															
2	0															
	-Engineering Mechanics - Statics and Dynamics, 4th															
		Edition, Pearson Education 2006.														
3	Meriam J.L. and Kraige L.G., — Engineering Mechanics—Statics - Volume 1 Dynamics - Volume 2 Third Edition															
Vi Vi	Statics - Volume 1, Dynamics - Volume 21, Third Edition,															
Í	John Wiley and amp; Sons, 1993. Rajasekaran S and Sankarasubramanian G., —Engineering															
4	1828 1													0		0
	Mechai						N. H. H.	_		icsI,	. 3r	d E	ditic	100	Vik	cas
	Publish	ing	Ho	use	Pv	t. L			5.	O F	NIVER	SHY	AUT			
(COs	4	_	_	4	_		Os	0	•	40	44	40		PSC	
	4	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	1	-	-	-	2	3	1	1
	2	3	2	1	1	2	-	-	1	-	-	-	2	3	1	1
	3	3	2	1	1	2	-	-	1	-	-	-	2	3	1	2
	5	3	2	1	1	2	-	-	1	-	-	-	2	3	1	2
	6	3	2	1	1	2	-	-	1	-	-	-	2	3	1	2
Oz	verall	3		1	1		-	-	1	-	-	-		3	1	
Corr	Correlation 3 2 1 1 2 - - 1 - - 2 3 1 2															
Reco	mmende				of S	Stud	lies						1			
	Approved 1st ACM Date 09-09-2023															

23HS203	TAMILS AND TECHNOLOGY	L	T	P	C
		1	0	0	1

- To summarize the weaving industry and ceramic technology during Sangam Age.
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola, Pallava and Pandya period.
- To explain about the water bodies of Sangam age and relate it to the agricultural usage.
- To outline to students the agriculture and irrigation technology during the Chola Period .
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software.

UNIT I WEAVING AND CERAMIC TECHNOLOGY 3

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION 3 TECHNOLOGY

Designing and Structural construction House and Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY 3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use -Agriculture and Agro Processing - Knowledge of Sea - Fisheries -Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. UNIT V | SCIENTIFIC TAMIL and TAMIL COMPUTING 3 Development of Scientific Tamil - Tamil computing Digitalization of Tamil Books -Development of Tamil Software -Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to CO1 Summarize the weaving industry and ceramic technology during Sangam Age. CO2 Explain the design and construction of houses during Sangam Age. CO3 Explain the sculptures and temples of Chola, Pallava and Pandya period. CO4 Explain about the water bodies of Sangam age and relate it to the agricultural usage. CO5 Outline the agriculture and irrigation technology during the Chola Period. CO6 Interpret and explain the digitalization of tamil books and development of Tamil software. **TEXT BOOKS:** Dr.K.K.Pillay, "Social Life of Tamils", A joint publication of TNTB and ESC and RMRL. **REFERENCES:** Dr.S.Singaravelu, "Social Life of the Tamils - The Classical Period", Published by: International Institute of Tamil

Studies.

2 Dr.S.V.	.Subatamanian , Dr.K.D. Thirun													ukkarasu,			
"Histor	rical	l	Ieri	tag	e o	of	the	Τ	am	ils",	Pι	ıblis	hec	l k	y:		
Interna	tior	nal I	nsti	itute	e of	Taı	nil :	Stu	dies	3							
COs POs													I	PSOs			
1 2 3 4 5 6 7 8 9 10 11 12											12	1	2	3			
1	1 1 1													-	1		
2	2 1 1 1										-	-	-	-	-		
3	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-		
4	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-		
5	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-		
6	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-		
Overall						1	1	1									
Correlation - - - - 1 1 1 - - -													_	-	-		
Recommended by Board of Studies 26-07-2023												•					
I		1st ACM Date 0s						09-	09-09-2023								

COURSE OBJECTIVES: To introduce the basics of electric circuits and analysis. To impart knowledge in the basics of working principles and application of electrical machines. To introduce analog devices and their characteristics. To educate on the fundamental concepts of digital electronics, functional elements and working of measuring instruments. To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and	23EE281	BASIC ELECTRICAL AND	L	T	P	C	
 To introduce the basics of electric circuits and analysis. To impart knowledge in the basics of working principles and application of electrical machines. To introduce analog devices and their characteristics. To educate on the fundamental concepts of digital electronics, functional elements and working of measuring instruments. To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications - Construction, Working principle and Applications of Single-Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, -Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms, 		ELECTRONICS ENGINEERING	2	0	2	3	
 To impart knowledge in the basics of working principles and application of electrical machines. To introduce analog devices and their characteristics. To educate on the fundamental concepts of digital electronics, functional elements and working of measuring instruments. To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications of Single-Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, -Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms, 	COURSE OB	COURSE OBJECTIVES:					
and application of electrical machines. To introduce analog devices and their characteristics. To educate on the fundamental concepts of digital.electronics, functional elements and working of measuring instruments. To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, -Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,	To introduce the basics of electric circuits and analysis.						
 To introduce analog devices and their characteristics. To educate on the fundamental concepts of digital electronics, functional elements and working of measuring instruments. To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor - Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State). Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications of Single-Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, -Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms, 		To impart knowledge in the basics of working principles					
 To educate on the fundamental concepts of digital.electronics, functional elements and working of measuring instruments. To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications - Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, -Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms, 							
digital.electronics, functional elements and working of measuring instruments. To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications - Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,		· · · · · · · · · · · · · · · · · · ·					
measuring instruments. To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,							
• To demonstrate the load test on DC machines, working of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single-Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,	0						
of PN Junction diodes, Zener diodes and rectifiers. UNIT I ELECTRICAL CIRCUITS 6 DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications - Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,		· · · · · · · · · · · · · · · · · · ·					
DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,					Kin	g	
DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single-Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,			Cum	215.		6	
Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single-Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, -Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,	CIVITI	LCTRICAL CIRCUITS				U	
analysis with independent sources only (Steady State)-Introduction to AC Circuits -Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,	DC Circuits: Circuit Components: Conductor, Resistor, Inductor,						
Introduction to AC Circuits –Steady state analysis of RL, RC, and RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single-Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) – representation of logic functions-SOP and POS forms,	Capacitor- Ohm 's Law-Kirchhoff's Laws -Nodal Analysis, Mesh						
RLC circuits (Simple problems only). UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,	analysis wit	h independent sources only (Ste	eady	. 6	State	e)-	
UNIT II ELECTRICAL MACHINES 6 Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,	Introduction t	to AC Circuits -Steady state analysis of	RL,	RC	C, aı	nd	
Construction and Working principle of DC Generators, EMF equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,							
equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,	UNIT II EL	ECTRICAL MACHINES				6	
equation, Types and Applications- Working Principle of DC motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,						/IT	
motors, Torque Equation, Types and Applications Construction, Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,							
Working principle and Applications of Single- Phase Transformer. UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,							
UNIT III ANALOG ELECTRONICS 6 PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,							
PN Junction Diodes, Zener Diode-Characteristics and Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET, - Types, I-V Characteristics and Applications - Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) - representation of logic functions-SOP and POS forms,							
Applications–Bipolar Junction Transistor, JFET, SCR, MOSFET, – Types, I-V Characteristics and Applications – Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) – representation of logic functions-SOP and POS forms,	UNIT III AN	NALOG ELECTRONICS				6	
Types, I-V Characteristics and Applications – Rectifier. UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) – representation of logic functions-SOP and POS forms,	PN Junction	n Diodes, Zener Diode-Characte	erist	ics	aı	nd	
UNIT IV DIGITAL ELECTRONICS 6 Review of number systems, Combinational logic (adder and subtractor) – representation of logic functions-SOP and POS forms,							
Review of number systems, Combinational logic (adder and subtractor) – representation of logic functions-SOP and POS forms,	Types, I-V Characteristics and Applications - Rectifier.						
subtractor) - representation of logic functions-SOP and POS forms,	UNIT IV DI	GITAL ELECTRONICS				6	
	Review of number systems, Combinational logic (adder and						
	subtractor) - representation of logic functions-SOP and POS forms,						
variables).			•		-		

UNIT V | MEASUREMENTS AND INSTRUMENTATION |

Functional elements of an instrument, Standards and calibration, Operating Principle, types- Moving Coil and Moving Iron meters, Instrument Transformers- CT and PT, DSO-Block Diagram.

Total: 30 PERIODS

LAB COMPONENT

- 1. Verification of Ohms and Kirchhoff's Laws.
- 2. Load test on DC Shunt Motor.
- 3. Characteristics of PN and Zener Diodes
- 4. Design and analysis of Half wave and Full Wave rectifiers
- 5. Implementation of Binary Adder and Subtractor
- 6. Study of DSO

Total : 30 + 30 = 60 Periods

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Apply fundamental laws to DC electric circuits and demonstrate it experimentally.
- CO2 Explain the steady state AC circuits with RL, RC, and RLC circuits.
- CO3 Identify the working principle and applications of electrical machines with experimental results.
- CO4 Demonstrate the characteristics of various analog electronic devices.
- CO5 Experiment with the basic concepts of digital electronics and demonstrate the implementation of Binary Adder and Subtractor.
- CO6 Illustrate the operating principles of measuring instruments and demonstrate DSO for the basic measurements.

TEXT BOOKS:

1 Kothari D P and I.J Nagrath,—Basic Electrical and Electronics Engineering, Second Edition, McGraw Hill Education, 2020

Sedha R. S., A textbook of Applied Electronics, S. Chand and Co.,2008. A.K. Sawhney, Puneet Sawhney ., A Course in Electrical and Electronic Measurements and Instrumentation', Dhanpat Rai and Co, 2015. REFERENCES: Kothari D P and I.J Nagrath, —Basic Electrical Engineering, Fourth Edition, Mc Graw Hill Education, 2019. Bhattacharya —Basic Electrical Electronics and Engineering I, Pearson Education, Second Edition, 2017. Floyd,_ Digital Fundamentals', Thomas 11thEdition, Pearson Education, 2017. Albert Malvino, David Bates, Electronic Principles, McGraw Hill Education; 7th edition, 2017. Mahmood Nahvi and Joseph A. Edminister, -Electric Circuits, 86 Schaum 'Outline Series, McGraw Hill, 2002. H.S. Kalsi, _Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010 Tames A. Svoboda, Richard C. Dorf, - Dorf's Introduction to Electric Circuits^{II}, Wiley, 2018. POs **PSOs COs Overall** Correlation Recommended by Board of Studies 26-07-2023 1st ACM

Date

09-09-2023

Approved

23ME211	ENGINEERING GRAPHICS	L	T	P	C
		3	0	2	4

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

UNIT II	PROJECTION OF POINTS, LINES AND	9+6
	PLANE SURFACE	

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method. Projection of planes (hexagonal and pentagonal planes

only) inclined to both the principal planes by rotating object method.

LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- 2. Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

UNIT III PROJECTION OF SOLIDS AND FREE HAND 9+6 SKETCHING

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

UNIT IV	PROJECTION OF SECTIONED SOLIDS AND	9+6
	DEVELOPMENT OF SURFACES	

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section plane inclined to the horizontal plane

UNIT V	ISOMETRIC PROJECTION	9+6

Principles of isometric projection - Isometric scale - Isometric view - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions.

LIST OF EXERCISES:

1. Drawing Isometric view and projection of simple solids. Drawing three dimensional modeling of isometric projection of combination of solids. **TOTAL: 75 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to **CO1** Construct the conic curves, involutes and cycloids. CO2 Develop and Sketch the orthographic projections of points, lines and plane surfaces. CO3 Develop and Sketch the orthographic projections of simple solids. projections of CO4 Construct the sectioned solids and development of the lateral surfaces of solids. **CO5** Develop and Sketch the isometric sections of solids. CO6 Develop and Sketch the orthographic projection 2D and 3D objects using Auto CAD. **TEXT BOOKS:** Bhatt N.D. and Panchal V.M., Engineering Drawing, Charotar Publishing House, 53rd Edition, 2019. Basant Agarwal and Agarwal C.M., Engineering Drawing, 2 McGraw Hill, 2nd Edition, 2019. REFERENCES: Natrajan K.V., A Text Book of Engineering Graphics, 1 Dhanalakshmi Publishers, Chennai, 2018. Gopalakrishna K.R., Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition, 2017. Luzzader, Warren.J. and Duff, John M., -Fundamentals of 3 Engineering Drawing with an introduction to Interactive

Computer Graphics for Design and Production, Eastern

	Econom 2005.	ny E	Edit	ion	, Pr	enti	ice l	Hal	l of	Ind	ia P	vt. L	td, N	lev	v De	lhi,
4	Parthas	ara	thy	N	I. S	S.	ano	1 Y	Vela	a l	Mura	ali,	— Е1	ngiı	neer	ing
	Graphic	cs∥,	Ox	for	d L	Jniv	vers	ity,	. Pi	ess	, Ne	ew l	Delh	i, 2	2015	. 5.
	Shah M.B., and Rana B.C., —Engineering Drawing, Pearson															
	Education India, 2nd Edition, 2009.															
5	1															
	New Age International (P) Limited, 2008.															
	POs PSOs															
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	1	-	3	2	2	2	2	-
	2	3	2	1	1	2	-	-	1	-	3	2	2	2	2	ı
	3	3	2	1	1	2	-	-	1	-	3	2	2	2	2	-
	4	3	2	1	1	2	-	-	1	-	3	2	2	2	2	-
	5	3	2	1	1	2	-	-	1	-	3	2	2	2	2	-
	6 .ow	3	2	1	1	2	-	4	1	4	3	2	2	2	2	1
Overall Correlation 3 2 1 1 2 1 - 3 2 2 2 2 -																
Recon	nmended	by	Boa	rd (of S	tud	ies	26-	07-2	2023	3	3	1		150	
1	Approved							1st ACM Date					•	09-09-2023		

23ME221	ENGINEERING PRACTICES	L	T	P	C
	LABORATORY	0	0	4	2

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment; Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

GROUP A (CIVIL and MECHANICAL)

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump.
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK

- a) Sawing
- b) Planning

c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture.
- b) Study of common industrial trusses using models.

PART II MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

BASIC MACHINING PRACTICE

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

SHEET METAL WORK

- a) Forming and Bending
- b) Making of a square Tray

MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.

	pr	eparation.	ļ								
		TOTAL: 30 PERI	ODS								
	(GROUP B (ELECTRICAL and ELECTRONICS)									
PART 1	PART III ELECTRICAL ENGINEERING PRACTICES 15										
1.	1. Residential House wiring using Switches, Fuse, Indicators,										
	1. Residential House wiring using Switches, Fuse, Indicators, Lamp and Energy Meter.										

- 2. Staircase Wiring.
- 3. Fluorescent Lamp Wiring with Introduction to CFL and LED Types.
- 4. Measurement of Energy using Single Phase Energy Meter.
- 5. Study of Iron Box Wiring and Assembly
- **6.** Study of Fan Regulator Electronic Type

PART IV ELECTRONICS ENGINEERING PRACTICES

15

- Study of Electronic components and equipment -Resistors, Colour coding measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering simple electronic circuits and checking continuity.
- 5. Study the elements of smart phone
- **6.** Study of LED TV (Block diagram)

COURSE OUTCOMES:

- **CO1:** Plan the pipeline layout for common household plumbing work.
- CO2 Make use of welding equipment and carpentry tool for making joints.
- CO3 Demonstrate on centrifugal pump, air conditioner and foundry operations.
- CO4 Demonstrate the electrical wiring connections for household applications and study the working of iron box and fan regulator.
- CO5 Identify the basic electronic components and explain the gates and soldering methods.
- **CO6** Examine the performance and operation of CRO, LED TV and Smart phone.

COs						I	POs]	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
2	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
3	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
4	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
5	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
6	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
Overall	3	2	1	1	1	1	1			2	2	2	2	1	
Correlation	•		1	1	1	1	1	-	-	2	4	4	4	1	-
Recommended by Board of Studies 26-07-2023															
Approved								1st ACM Date					09-09-2023		

23M	E 222	APPLIED MECHANICS	L	T	P	C
		LABORATORY	0	0	4	2
COU	RSE OB	JECTIVES:	1			
•	Study	the physics behind the physical system	ms.			
•	Acquir	e knowledge on application of laws o	of m	ech	ani	cs.
•		the dynamics of rigid bodies				
		ERIMENTS:				
1.	Verify th	e Law of Polygon of Forces				
2.	Determi	nation of Rolling Friction				
3.	Determi	nation of Sliding Friction				
4.	Determi	nation of Efficiency of Square Thread	ed S	cre	w Ja	ack
5.	Equilibri	um of Forces in space Apparatus				
6.	Determi	nation of the Force acting on a Balloon	n .			
7.	Determi	nation of Torque transmitted by a Dru	ım		V	
8.	Static an	d Dynamic conditions - Spring mass	syst	em		
9.	Powe <mark>r a</mark> ı	nd Efficiency of the rope brake arrang	eme	ent		
10.	Determ	ination of centre of gravity of connecti	ng r	od		
	SAF	TOTAL	: 60	PEI	RIO	DS
		TCOMES: AFFILIATED TO ANNA UNIVERSITY			моч	5
After	complet	ion of the course, the students will be a	ble	to		
		he laws of mechanics.				
		he concept of rolling friction.				
		he concept of screw friction.				
		e forces acting on the body in space.				
CO ₅	Make us	se of the static and dynamic conditions	s of a	ı riş	gid	

body.

CO6 Apply the concept to find the support reactions.

COs						F	Os]	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
2	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
3	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
4	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
5	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
6	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
Overall	3	2	1	1	1			1		2	2	2	2	1	1
Correlation	3		1	1	1	-	•	1	1	4	4		4	1	1
Recommended by Board of Studies 26-07-2023															
Approved							1st ACM Date					9	09-09-2023		

23HS221	SOFT SKILLS	L	T	P	C
		0	0	2	1

- To help learners improve their interpersonal skills and critical thinking.
- To familiarize learners with the attributes of a leader to enhance team performance.
- To prepare students to face job interviews.
- To help learners to know the importance of ethics in work place.

UNIT I INTERPERSONAL COMMUNICATION

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

UNIT II | TEAM WORK AND LEADERSHIP

3

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

UNIT III TIME MANAGEMENT AND STRESS MANAGEMENT

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self- awareness and regulation.

UNIT IV CRITICAL THINKING AND WORK ETHICS

3

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance, attitude, character, organizational skills, productivity, respect.

UNI	Γ V INTERVIEW SKILLS AND RESUME	3
	BUILDING TECHNIQUES	
Teler	phonic interview, online interviews, f2f interviews, FAQ	2 soft
_	interview questions, drafting error-free CVs/ Resume	
	r Letters, selecting the ideal format for resume, co	
	ing along with sequencing, art of representing	
quali	fications and most relevant work history, video res	ume,
	ite resume.	
	TOTAL: 15 PER	IODS
COU	RSE OUTCOMES:	
After	completion of the course, the students will be able to	
CO1	Express their thoughts, opinions and ideas confidently	to
	one or more people in spoken form.	
CO2	Develop evolving competences required for profession	al
	success.	~
CO3	Demonstrate knowledge and skills in a group as team I	olayer
j	and le <mark>ader.</mark>	
CO4	Compose a comprehensive resume reflecting qualificat	ions,
	exposure and achievements.	
CO5	Exhibit knowledge and skills confidently during job	1005
	interviews.	
CO6	Demonstrate ethical and professional behaviour at	
	workplace in all situations.	
TEX	T BOOKS:	
1	Soft Skills: Key to Success in Workplace and Life	e by
	Meenakshi Raman and Shalini Upadhyay. Cengage	
REFI	ERENCES:	
1	English for Job Seekers (Language and Soft Skills for t	:he
	Aspiring) by Geetha Rajeevan, C.L.N. Prakash) Camb	oridge
	University Press Pvt, Ltd.	
2	Business Benchmark by Norman Whitby. Cambridge	
	University Press Pvt, Ltd.	

COs						F	Os						I	PSC)s	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	-	-	-	-	-	-	-	-	2	2	-	-	-	-	-	
2	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2	
3	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-	
4	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-	
5	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-	
6	-	-	-	-	-	-	-	3	3	3	-	-	-	-	3	
Overall Correlation	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2	
Recommended by Board of Studies 26-07-2023																
Approved							1st ACM Date					9	09-09-2023			

SEMESTER -III

23MA302	TRANSFORMS AND PARTIAL	L	T	P	C
	DIFFERENTIAL EQUATIONS	3	1	0	4

COURSE OBJECTIVES:

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9+3

Formation of partial differential equations –Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

9+3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

UNIT III | APPLICATIONS OF PARTIAL DIFFERENTIAL | 9+3 | EQUATIONS

Classification of second order Quasi Linear PDE - Method of separation of variables - Fourier series solutions of one dimensional wave equation - One dimensional equation of Heat

conduction – Steady state solution of two dimensional equation of heat conduction (Infinite) (Cartesian coordinates only).

UNIT IV | FOURIER TRANSFORMS

9+3

Statement of Fourier integral theorem– Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem (Without proof) – Parseval's identity.

UNIT V Z-TRANSFORMS AND DIFFERENCE 9+3 EQUATIONS

Z-transforms - Elementary properties - Convergence of Z-transforms - Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations - Solution of difference equations using Z-transforms.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Solve the given standard partial differential equations.
- CO2 Compute the general Fourier series which plays a vital role in engineering applications.
- CO3 Examine the half range Fourier series and harmonic analysis.
- **CO4** Find the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems, one dimensional wave equations.
- Apply the mathematical principles on Fourier transforms to solve some of the physical problems of engineering.
- Apply the effective mathematical tools for the solutions of difference equations by using Z transform techniques for discrete time systems.

TEXT BOOKS:

1 Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.

- **2** Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.
- **3** P.Sivaramakrishna Das and C.Vijayakumari "A Text Book on TPDE" Pearson Publications.

REFERENCES:

- Narayanan. S., Manicavachagom Pillay. T.K. and Ramanaiah. G "Advanced Mathematics for Engineering Students", Vol. II and III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.
- 2 Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.

COs						I	POs	,						PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
2	3	2	1	1	_	-	-	1	- ,	-	1	1	3	-	-
3 001	3	2	1	1	-		9	-	A	-	9	1	3	-0	-
47	3	2	1	\1	-	4	-	-	-	-	-	1	3	-	-
5	3	2	1	1	-	-		-	(3)	1		1	3	-	-
6	3	2	1	1	_	_			-	-	337	1	3	-	-
Overall Correlation	3	2	1	1	E	ЭŁ	LE	GE	0	E-TI	EEH	1	3	oG	γ-
Recommended	Recommended by Board of Studies 08-04-2024														

Recommended by Board of Studies 08-04-2024

Approved 2nd ACM Date 25-05-2024

23ME301	ENGINEERING	L	T	P	C								
	THERMODYNAMICS	3	0	0	3								
COURSE OBJECTIVES:													
• Impa	Impart knowledge on the basics and application of zeroth												

- and first law of thermodynamics.
- knowledge on the second law of **Impart** thermodynamics in analyzing the performance of thermal devices.
- Impart knowledge on availability and applications of second law of thermodynamics.
- Teach the various properties of steam through steam tables and Mollier chart.
- Impart knowledge on the macroscopic properties of ideal and real gases.

UNIT I BASICS, ZEROTH AND FIRST LAW OF **THERMODYNAMICS**

Review of Basics - Thermodynamic systems, Properties and processes Thermodynamic Equilibrium -Displacement work - P-V diagram. Thermal equilibrium - Zeroth law - Concept of temperature and temperature Scales. First law - application to closed and open systems - steady and unsteady flow processes.

SECOND LAW OF THERMODYNAMICS AND UNIT II **ENTROPY**

Heat Engine - Refrigerator - Heat pump. Statements of second law and their equivalence and corollaries. Carnot cycle - Reversed Carnot cycle - Performance - Clausius inequality. Concept of entropy - T-s diagram - Tds Equations - Entropy change for a pure substance.

UNIT III | AVAILABILITY AND APPLICATIONS OF 9 SECOND LAW OF THERMODYNAMICS

Ideal gases undergoing different processes - principle of increase in entropy. Applications of second Law. High and low-grade energy. Availability and Irreversibility for open and closed system

proce	esses	- First and Second law Efficiency.	
UNI	ΓΙ	PROPERTIES OF PURE SUBSTANCES	9
Stear	n - fo	 rmation and its thermodynamic properties - p-v, p-T	Т. Т-
		s diagrams. PVT surface. Determination of dryr	
		Calculation of work done and heat transfer in non-f	
and f	flow p	processes using Steam Table and Mollier Chart.	
UNI	ΓV	GAS MIXTURES AND THERMODYNAMIC	9
		RELATIONS	
Prop	erties	of Ideal gas, real gas - comparison. Equations of s	tate
_		and real gases. Vander Waal's relation - Redu	
		- Compressibility factor - Principle of Correspond	
		Generalized Compressibility Chart. Maxwell relation	0
		tions - heat capacities relations - Energy equation, Jo	
	_	experiment - Clausius-Clapeyron equation.	>
	10	TOTAL: 45 PERIO	DDS
COU	RSE	OUTCOMES:	
After	comp	pletion of the course, the students will be able to	
CO1	Mak	te use of the basics of thermodynamic systems	and
	equi	librium. COLLEGE OF TECHNOLOG	Υ
CO2	App	ly thermodynamic concepts in closed and o	pen
	engi	neering systems.	
CO ₃	Exar	mine the performance of thermal devices us	sing
		modynamic concepts.	
CO4	Eval	uate the properties of steam.	
CO5		ly gas laws and appropriate thermodynamic relation	ns.
CO6		ulate property changes of gas mixtures.	
TEX			
1	0	.P.K., "Engineering Thermodynamics", 6th Edit	ion,
		McGraw Hill (2017), New Delhi.	
2		arajan, E., "Engineering Thermodynam	
		damentals and Applications", 2nd Edition (20	14),
	Anu	ragam Publications, Chennai.	

REFI	ERENCE	S:														
1	Cengel	Υ ά	and	M.	Bol	es, [Гhе	rme	ody	nan	nics	- An	Eng	gine	eri	ng
	Approa	ıch,	Tat	a M	IcG:	raw	Hi	11, 9	th I	Edit	ion,	2019	9.			
2	Chatto	oad	hya	y,]	P, '	'En	gin	eeri	ng	Th	ermo	odyr	nami	ics"	, 21	nd
	Edition	Ox	fore	d U	nive	ersit	y P	res	s, 20)16.						
3	Rathakrishnan, E., "Fundamentals of Engineering															
	Thermodynamics", 2nd Edition, Prentice Hall of India Pvt.															
	Ltd, 2006.															
4	Claus Borgnakke and Richard E. Sonntag, "Fundamentals of															
	Thermo	Thermodynamics", 10th Edition, Wiley Eastern, 2019.														
5	Venkat	Venkatesh. A, "Basic Engineering Thermodynamics",														
	Universities Press (India) Limited, 2007															
	COs						I	POs						I	PSC)s
`	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 LOOW	3	2	1	1	1	1		1	1	2	1	2	1	2	1
	2	3	2	1	1	1	1	-	1	1	2	1	2	1	3	2
Ì	3	3	2	1	1	1	1	3	1	1	2	1	2	1	3	2
	4	3	3	3	3	1	1		2	1	2	1	2	1	3	2
Ŷ	5	3	2	1	1	1	1	-	2	1	2	1	2	1	3	2
	6 GIVE	3	2	1	1	1	1	.EC	2	1	2	-1	2	1	3	2
_	verall relation	3	3	2	2	1	1	-0.10	1	1	2	1	2	1	3	2
		d by	у Во	ard	of S	tud	ies	25-	03-2	024						
	Recommended by Board of Studies Approved							2 nd ACM Date					•	25-05-2024		

23ME302	ENGINEERING MATERIALS	L	T	P	C
	AND METALLURGY	3	0	0	3

- Construct the phase diagram and to use iron-iron carbide phase diagram for microstructure formation.
- Select and apply various heat treatment processes and its microstructure formation.
- Illustrate the different types of ferrous and non-ferrous alloys and their uses in engineering field.
- Illustrate the different polymer, ceramics and composites and their uses in engineering field.
- Various testing procedures and failure mechanism in engineering field.

UNIT I CONSTITUTION OF ALLOYS AND PHASE 9 DIAGRAMS

Constitution of alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphous, eutectic, eutectoid, peritectic, and peritectoid reactions, Iron – Iron carbide equilibrium diagram. Classification of steel and cast-Iron microstructure, properties and application.

UNIT II HEAT TREATMENT 9

Definition - Full annealing, stress relief, recrystallization and spheroidising - normalizing, hardening and tempering of steel. Isothermal transformation diagrams cooling curves superimposed I.T. diagram continuous on _ Transformation (CCT) diagram - Austempering, Martempering -Hardenability, Jominy end quench test - case hardening, carburizing, Nitriding, cyaniding, carbonitriding - Flame and induction hardening - Vacuum and Plasma hardening - Thermomechanical treatments - elementary ideas on sintering.

UNIT III	FERROUS AND NON-FERROUS METALS	9
Effect of a	lloying additions on steel (Mn, Si, Cr, Mo, Ni, V, Ti	and

W) – stainless and tool steels – HSLA - Maraging steels – Grey, white, malleable, spheroidal – alloy cast irons, Copper and its alloys – Brass, Bronze and Cupronickel – Aluminum and its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys, Ni-based super alloys – shape memory alloys-Properties and Applications - overview of materials standards.

UNIT IV NON-METALLIC MATERIALS

9

Polymers – types of polymers, commodity and engineering polymers – Properties and applications of PE, PP, PS, PVC, PMMA, PET, PC, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formaldehydes – Nylon, Engineering Ceramics – Properties and applications of Al₂O₃, SiC, Si₃N₄, PSZ and SIALON – inter-metallics- Composites- Matrix and reinforcement Materials – applications of Composites – Nano composites.

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS

9

Mechanisms of plastic deformation, slip and twinning – Types of fracture – fracture mechanics- Griffith's theory- Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), Micro and nano-hardness tests, Impact test lzod and Charpy, fatigue and creep failure mechanisms.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- CO1 Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification.
- CO2 Demonstrate knowledge on isothermal transformation, continuous cooling diagrams and different heat treatment processes.
- CO3 Identify the effect of alloying elements on ferrous and non-ferrous metals.

CO4	Summa	wi z c	, th	0.10:	4010	onti	00.0	nd	2121	alia	ation	o of		. m	oto1	1;0
CO4	materia		2 111	ер	юр	eru	es a	na	арі	JIIC	auoi	15 01	. 1101	1-111	etai	iic
							1		1							
	Explain				_											
	Demon		te t	he o	defo	rm	atıc	n n	necl	nan	ısms					
TEXT	BOOK															
1	Kennetl													_		_
	Materia	ls",	Pı	rent	ice	Ha	all	of	Ind	ia	Priv	ate	Lim	itec	1, 9	9th
	edition, 2018.															
2	Sydney H.Avner, "Introduction to Physical Metallurgy",															
	McGraw Hill Book Company, 1994.															
REFE	EFERENCES:															
1	A. Alavudeen, N. Venkateshwaran, and J.															
	T.WinowlinJappes, A Textbook of Engineering Materials															
	and Metallurgy, Laxmi Publications, 2006.															
2	Amandeep Singh Wadhwa, and Harvinder Singh Dhaliwal,															
	A Textbook of Engineering Material and Metallurgy,															
1	University Sciences Press, 2008.															
3	G.S. Up	•						10000		nva	v. "	Mate	erial	s S	cier	ice
9	and Eng		100	- /				-		-	-					-
4	Raghav		_0									-11				ice
	Hall of										A LINE OF STREET	SITY	AUT	ONO	MOU	5
5	William											nd	Eno	ine	rin	σ"
	Wiley In												2116	11100	JI 11 1	6
	-	Idi			τα, .			Os		·P1		017.		I	SC)c
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	2	1	_	-	-	2	2	_	1
	2	2	1	-	-	-	2	2	1	-	-	-	2	2	-	1
	3	3	2	1	1	1	2	2	1	ı	-	1	2	2	1	1
	4	2	1	1	1	1	2	2	1	ı	1	1	2	2	-	1
	5	2	1	-	-	-	2	2	1	-	-	-	2	2	-	1
	6	2	1	-	-	-	2	2	1	-	-	-	2	2	-	1
	Overall 3 2 1 1 - 2 2 1 - - 2 2 - 1															
	elation mmended	l br	Ro	ard	of S	ltas A	ios				2 .	U3 3	024			
Reco					01 5	iuu	ies	25-03-2024 2nd ACM Date 25-05					05-2	2024		
Approved 2 nd ACM Date 25-05-											JU 2	-J-I				

23HS301	UNIVERSAL HUMAN VALUES	L	T	P	C
	AND ETHICS	3	0	0	3

- Development of a holistic perspective based on selfexploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.
- Strengthening of self-reflection.
- Development of commitment and courage to act.

UNIT I	COURSE INTRODUCTION	9

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self-exploration - Continuous Happiness and Prosperity- A look at basic Human Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority - Understanding Happiness and Prosperity correctly - A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

UNIT II	UNDERSTANDING	HARMONY	IN	THE	9
	HUMAN BEING				

Harmony in Myself - Understanding human being as a co-existence of the sentient 'I' and the material 'Body' - Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer) - Understanding the characteristics and activities of 'I' and harmony in 'I' - Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

UNIT III UNDERSTANDING HARMONY IN THE 9 FAMILY AND SOCIETY

Harmony in Human-Human Relationship - Understanding Harmony in the family - the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust (Vishwas) and Respect as the foundational values of relationship - Understanding the meaning of Vishwas; Difference between intention and competence - Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family) - Visualizing a universal harmonious order in society - Undivided Society (Akhand Samaj), Universal Order - from family to world family.

UNIT IV ENGINEERING ETHICS

9

Senses of <u>Engineering Ethics</u>, - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

UNIT V | SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination - Moral Leadership - Code of Conduct - Corporate Social Responsibility.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

CO1 Understand the need of value education.

CO2 Comprehend the difference between self and body.

CO ₃	Understand the need to exist as an unit of Family and
	society.
	Understand Harmony at all levels.
	Apply the values acquired in the professional front.
CO6	Identify appropriate technologies for ecofriendly production
	systems.
TEX	T BOOKS:
1	Human Values and Professional Ethics by R R Gaur, R
	Sangal, G P Bagaria, Excel Books, New Delhi, 2010 3.
2	Mike W. Martin and Roland Schinzinger, -Ethics in
	Engineering, Tata McGraw Hill, New Delhi, 2003.
3	Govindarajan M, Natarajan S, Senthil Kumar V. S,
	-Engineering Ethics, Prentice Hall of India, New Delhi,
	2004.
REFI	ERENCES:
1	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya
	Prakashan, Amarkantak, 1999.
2	Human Values, A.N. Tripathi, New Age Intl. Publishers,
	New Delhi, 2004.
3	The Story of Stuff (Book).
4	The Story of My Experiments with Truth - by Mohandas
	Karamchand Gandhi AICTE Model Curriculum in
	Humanities, Social Science and Management Courses (UG
	Engineering and Technology).
5	Small is Beautiful - E. F Schumacher.
6	Slow is Beautiful - Cecile Andrews.
7	Economy of Permanence - J C Kumarappa 8. Bharat Mein
	Angreji Raj – Pandit Sunderlal.
8	Rediscovering India - by Dharampal.
9	Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi.
10	India Wins Freedom - Maulana Abdul Kalam Azad.
11	Vivekananda - Romain Rolland (English) 13. Gandhi -
	Romain Rolland (English).
12	Charles B. Fleddermann, —Engineering EthicsI, Pearson
	Prentice Hall, New Jersey, 2004.

13	Charles E. Harris, Michael S. Pritchard and Michael J. Rabins,															
	— Engi	nee	ring	ξE	thic	cs -	- (Conc	cept	s a	nd	Cas	esl,	Ce	nga	ge
	Learnin	g, 2	.009						-							_
WEB SOURCES:																
1	www.onlineethics.org															
2	www.nspe.org															
3	www.globalethics.org															
	POs PSOs															
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	1	-	-	-	-	3	3	3	3	3	-	-	-	-	3
	2	1	ı	1	1	1	3	3	3	3	3	-	-	-	1	3
	3	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3
	4	-	1	ı	ı	ı	3	3	3	3	3	-	1	ı	ı	3
	5	ı	ı	ı	ı	ı	3	3	3	3	3	ı	ı	ı	ı	3
	6	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3
_	Overall Correlation 3 3 3 3 3 3															
Reco	mmended	d by	Bo	ard	of S	tud	lies		900				1 3		-1	
	Approved								2nd ACM Date					05-05-2024		

23ME311	MANUFACTURING PROCESSES	L	T	P	С
		3	0	2	4

- To illustrate the working principles of various metal casting processes.
- To learn and apply the working principles of various metal joining processes.
- To analyze the working principles of bulk deformation of metals.
- To study the concepts and basic mechanics of metal cutting and the factors affecting machinability.
- To learn working of basic and advanced turning machines and super finishing process.

UNIT I METAL CASTING PROCESSES

9+3

Sand Casting: Sand Mould – Type of Patterns - Pattern Materials - Cores –Types and Applications – Melting Furnaces: Cupola Furnaces; Principle of Special Casting Processes: Shell - Investment – Pressure Die Casting - Centrifugal Casting – Stir Casting – CO₂ Casting; Defects in Sand Casting Process-Remedies.

UNIT II PRINCIPLES AND APPLICATIONS OF 9+3 JOINING PROCESSES

Operating Principle, Basic Equipment, Merits And Applications of: Fusion Welding Processes: Gas Welding - Manual Metal Arc Welding - Gas Tungsten Arc Welding - Gas Metal Arc Welding - Submerged Arc Welding; Operating Principle And Applications of: Resistance Welding - Plasma Arc Welding - Thermit Welding; Brazing And Soldering; Weld Defects.

UNIT III FORMING PROCESSES

9+3

Hot and Cold Working of metal - Forging processes- Open, impression and closed die forging - Rolling Mills - Rolling Operations - Principle of rod and wire drawing - Principles of Extrusion - Types - Hot and Cold extrusion. . Sheet metal operations - Blanking, Punching and Working principle and

applications - Hydro forming - Metal spinning and Explosive forming,

UNIT IV MECHANICS OF METAL CUTTING

9+3

9+3

Mechanics of Chip Formation, Forces in Machining, Types of Chip, Cutting Tools – Single Point Cutting Tool Nomenclature, Orthogonal and Oblique Metal Cutting, Thermal Aspects, Cutting Tool Materials, Tool Wear, Tool Life, Surface Finish, Cutting Fluids.

UNIT V TURNING, GEAR CUTTING, SHAPING AND FINISHING PROCESSES

Centre Lathe, Constructional Features, Specification, Operations - Taper Turning Methods, Thread Cutting- Capstan and Turret Lathes. Gear cutting, Gear hobbing and Gear shaping. Types of grinding Process – Cylindrical grinding, surface grinding and internal grinding, Shaper and Milling machines and operations.

LIST OF EXPERIMENTS:

- 1. Preparing green sand moulds with cast patterns.
- 2. Taper Turning and Eccentric Turning on circular parts using lathe machine.
- 3. Knurling, external and internal thread cutting on circular parts using lathe machine.
- 4. Shaping Square and Hexagonal Heads on circular parts using shaper machine.
- 5. Drilling using radial drilling machine.
- 6. Cutting spur and helical gear using milling machine.
- 7. Generating gears using gear hobbing machine.
- 8. Generating gears using gear shaping machine.
- 9. Grinding components using cylindrical grinding machine.
- 10. Grinding components using surface grinding machine.

TOTAL: 45 +15 =60PERIODS

COURSE OUTCOMES:

- CO1 Explain the principle of different metal casting processes.
- **CO2** Describe the various metal joining processes.

CO3 Summarize various bulk deformation processes and sheet metal forming processes. CO4 Apply the mechanism of metal removal process and to identify the factors involved in Improving machinability. **CO5** Explain the constructional and operational features of Centre lathe and other special purpose Lathes. CO6 Describe the constructional features of gear cutting and super finishing process. **TEXT BOOKS:** S., "Manufacturing Kalpakjian, Engineering Technology", Pearson education India, 4th Edition, 2009. P.N.Rao Manufacturing Technology Volume 1 Mc Grawhill Education 5th edition, 2018. REFERENCES: Rao. P.N "Manufacturing Technology," Metal Cutting and Machine Tools, Tata McGraw-Hill, New Delhi, 2009. Hajra Chouldhary S.K and Hajra Choudhury. AK., Elements of workshop Technology, volume I and II, Media promoters and Publishers Private Limited, Mumbai, 1997. Sharma, P.C., A Text book of production Technology, S.Chand and Co. Ltd., 2004. **POs PSOs** COs Overall Correlation Recommended by Board of Studies 01-04-2024 2nd ACM Approved Date 05-05-2024

23ME312	FLUID MECHANICS AND	L	T	P	C
	HYDRAULIC MACHINERY	3	0	2	4

- Study about the properties of the fluids and behaviour of fluids under static conditions.
- Gain basic knowledge of the dynamics of fluids and boundary layer concepts.
- Study the applications of the conservation laws to flow measurements, flow through pipes and forces on pipe bends.
- Learn the significance of boundary layer theory and its thicknesses.
- Study the basic principles of working and design of Pelton wheel, Francis and Kaplan turbine.
 Acquire knowledge on working principles of centrifugal,

reciprocating and rotary pumps.

UNIT I FLUID PROPERTIES AND FLOW 9+3 CHARACTERISTICS

Fluid Definition and Classification – Properties of fluids, Fluid statics - Pressure Measurements - Buoyancy and floatation - forces on submerged bodies, stability of floating bodies, Flow characteristics - Concept of control volume and system – Velocity potential and stream functions, Continuity equation, energy equation and momentum equation - Applications.

UNIT II	FLOW THROUGH PIPES AND BOUNDARY	9+3
	LAYER	

Reynold's Experiment - Laminar flow through circular conduits - Darcy Weisbach equation - friction factor - Moody diagram - Major and minor losses - Hydraulic and energy gradient lines - Pipes in series and parallel - Boundary layer concepts - Types of boundary layer thickness.

UNIT III DIMENSIONAL ANALYSIS AND MODEL 9+3 STUDIES

Fundamental dimensions - Dimensional homogeneity - Rayleigh's method and Buckingham Pi theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted models.

UNIT IV TURBINES

9+3

Impact of jets - Velocity triangles - Theory of rotodynamic machines - Classification of turbines - Working principles - Pelton wheel - Modern Francis turbine - Kaplan turbine - Work done - Efficiencies - Draft tube - Specific speed - Performance curves for turbines - Governing of turbines.

UNIT V PUMPS

9+3

Classification of pumps - Centrifugal pumps - Working principle - Heads and efficiencies - Velocity triangles - Work done by the impeller - Performance curves - Reciprocating pump working principle - Indicator diagram and it's variations - Work saved by fitting air vessels - Rotary pumps.

LIST OF EXPERIMENTS

- 1. Determination of coefficient of discharge of a venture meter.
- 2. Determination of coefficient of discharge of an orifice meter.
- 3. Determination of friction factor for flow through pipes.
- 4. Determination of metacentric height.
- 5. Characteristics of centrifugal pumps.
- 6. Characteristics of reciprocating pump.
- 7. Characteristics of gear pump.
- 8. Characteristics of Pelton wheel turbine.
- 9. Flow measurement using Rotameter.
- 10. Characteristics of Francis turbine.

TOTAL: 45 +15 PERIODS

COURSE OUTCOMES:

CO1 Apply the conservation laws applicable to fluids and its application through fluid kinematics and dynamics and also to understand the properties and behaviour of fluids in static conditions. CO2 Estimate the losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel. CO3 Apply the concept of boundary layer and its thickness on the flat solid surface. CO4 Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies. CO5 | Calculate the power developed by the turbines. **CO6** Calculate the efficiency of the different pumps. TEXT BOOKS: Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, 1 Standard Book House, New Delhi, 22nd edition (2019) R K Bansal, A Text Book of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, New Delhi. 3 Kumar K. L., Engineering Fluid Mechanics, Eurasia Publishing House (p) Ltd. New Delhi, 2016. **REFERENCES:** Streeter, V. L. and Wylie E. B., Fluid Mechanics, McGraw Hill 1 Publishing Co., 2010. Cengel Y A and Cimbala J M, Fluid Mechanics, McGraw Hill 2 Education Pvt. Ltd., 2014. S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill Education Pvt. Ltd., 2012.

COs		POs											PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	2	2	1	1	2	2	2	1	1	1	
2	3	3	3	3	1	2	2	1	ı	2	2	2	1	1	1	
3	3	2	1	1	1	2	2	1	ı	2	2	2	1	1	1	
4	3	3	3	3	1	1	2	1	ı	2	2	2	1	1	1	
5	3	2	1	1	1	1	2	1	-	2	2	2	1	1	1	
6	3	2	1	1	1	1	2	1	-	2	2	2	1	1	1	
Overall Correlation	3	3	3	3	1	1	2	1	1	2	2	2	1	1	1	
Recommended by Board of Studies								01-04-2024								
Approved						2 nd ACM Date					25-05-2024					

23ME321	COMPUTER AIDED MACHINE	L	T	P	С				
	DRAWING LABORATORY	0	0	4	2				
COURSE	OBJECTIVES:								
 Make students understand and interpret drawings of 									
machine components.									
	repare assembly drawings both manual	ly and	l us	ing					
	andard CAD packages.								
	amiliarize the students with Indian Star		on						
	rawing practices and standard compon				2.				
 Gain practical experience in handling 2D drafting and 3D modeling software systems. 									
UNIT I	DRAWING STANDARDS, FIT	'C	AN	D	15				
UNITI	TOLERANCES	3	AIN	ט	13				
C-1(:(· 1						
-	ractice for Engineering Drawing, BIS ymbols, riveted joints, keys, fasteners	-							
	for the selection of standard compo								
	vs, keys etc Limits, Fits – Tolerancir								
	s - Specification of Fits - Preparation								
1,5	and reading of part and assembly of	_							
	of geometric dimensioning and tolerand		0 /						
UNIT II	INTRODUCTION TO 2D DRAFTING	, ,			15				
Drawing,	Drawing, Editing, Dimensioning, Layering, Hatching, Block,								
Array, De	tailing, Detailed drawing Bearings	Bush	ı be	earii	ng,				
	block -Valves - Safety and non-return va	lves.							
UNIT III	3D GEOMETRIC MODELING AND				30				
ASSEMBLY									
Sketcher - Datum planes - Protrusion - Holes - Part modeling -									
Extrusion - Revolve - Sweep - Loft - Blend - Fillet - Pattern -									
	Chamfer - Round - Mirror - Section - Assembly - Couplings -								
	niversal, Oldham's, Muff, Gear coup								
	Gib and cotter, strap, sleeve and cotte								
	on, connecting rod, cross-head (vertical								
stuffing	pox, multi-plate clutch , Miscellar	eous	m	ach	ıne				

TOTAL: 60 PERIODS

 $\underline{\text{Note:}}$ 25% of assembly drawings must be done manually and

components - Screw jack, machine vice, tail stock, chuck, vane and

gear pump

CAD	remaining 75% of assembly drawings must be done by using any CAD software. The above tasks can be performed manually and using standard commercial 2D / 3D CAD software.															
	COURSE OUTCOMES:															
After completion of the course, the students will be able to																
	Examine the drawing standards, Fits and Tolerances.															
CO ₂	~															
	assembly drawings as per standards.															
CO3	Develop standard drawing layout for modelled parts.															
CO4	Develop	o or	tho	gor	nal v	viev	vs c	of m	acł	ine	con	npor	nents	s.		
CO5	Sketch	staı	nda	rd	dra	wir	ıg 1	ayo	ut	for	mo	delle	ed a	sse	mbl	ies
	with BoM.															
	Identify the importance of GD and T.															
TEX	Г ВООК															
1	Gopalal												22nd	l E	ditio	on,
	Subhas												4			-
2	N. D. E										chin	e D	rawi	ng'	', 48	3th
	Edition,										10			- i		
3	Junnark				M	ach	ıne	Dra	awı	ng	, Is	t Ea	ıtıor	ı, P	ears	on
4	Educati N. Sid			_	P	K	anr	viah		7.17	S	Sact	ri,	″\ <i>I</i>	achi	ino
7	Drawin													171	acri	ше
5	S. Tryn	ıba	ka	Mu	rth	v. "	A	Tex	t B	ook	of	Cor	npu	ter	Aid	ed
	Machin															
	COs						I	POs	,]	PSC)s
`	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	3	-	-	3	3	2	2	3	2	2	2
	2	3	2	1	1	3	-	-	3	3	2	2	3	2	2	2
3		3	2	1	1	3	-	-	3	3	2	2	3	2	2	2
4		3	2	1	1	3	-	-	3	3	2	2	3	2	2	2
5		3	2	1	1	3	-	-	3	3	2	2	3	2	2	2
0	6 worall	3	2	1	1	3	-	-	3	3	2	2	3	2	2	2
	Overall 3 2 1			1	3	-	-	3	3	2	2	3	2	2	2	
	nmended	by	Boa	rd o	of S	tudi	es	25-	03-2	2024			<u> </u>	l		l
		_	ove						1 A(Date	2	25-	-05-2	2024

23ES391	PRESENTATION SKILLS	L	T	P	C
		0	0	2	1*

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

UNIT I BRAINSTORMING AND OUTLINING

6

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

UNIT II | STRUCTURING THE PRESENTATION

6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

UNIT III DELIVERY TECHNIQUES

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language-eye contact, gestures, movement on stage.

UNIT IV USE OF TECHNOLOGICAL AIDS

6

6

Use of presentation software like MS Power Point, Google Slides etc, incorporating images, graphs, charts and videos, using interactive tools like quizzes and polls, using remote presentation tools like zoom, MS Teams, WebEx for screen sharing, virtual whiteboards and chat functionalities, incorporating AR/VR for more immersive presentations.

UNIT V HANDLING QUESTIONS AND FEEDBACK

6

Audience engagement through questions, PAR (Point, Answer, Redirect) strategy for structuring responses to questions. Understanding feedback process - Receiving, interpreting and evaluating constructively, active listening techniques for processing feedback, responding to feedback- acknowledging, clarifying and appreciating, Dealing with challenging feedback.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

- CO1 Construct ideas for presentation through mind mapping techniques
- CO2 Organize ideas and structure the presentation with captivating introduction, body paragraphs illustrated with examples and reasons and compelling conclusion
- CO3 Apply vocal variety and body language techniques to enhance delivery
- CO4 Prepare engaging presentations by integrating multimedia elements

- CO5 Demonstrate proficiency in delivering presentations in remote platforms utilizing various technological tools and strategies to engage audience in Virtual environments
- CO6 Exhibit active listening skills by responding to questions with clarity and confidence and incorporating constructive feedback for professional development

TEXT BOOKS:

- Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.
- **2** Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

REFERENCES:

1 Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

COs					_	I	POs	- 2				5	PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
10//	2	2	1	1	-	420	N-	1	1	1	-	1	2	2	1	
2	2	2	1	1	- 9	4	B	1	1	1)	1	2	2	1	
3	2	2	1	1	_	-		1	1	1	-	1	2	2	1	
4	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
5 ONE	2	2	1	1	S	DLI	.EX	1	1	1	CH	110	2	2	1	
6	2	2	1	1	AFE	LIAT	EDT	1	1	1	SHY	1	2	2	1	
Overall Correlation	2	2	1	1	-	-	-	1	1	1	1	1	2	2	1	

Recommended by Board of Studies | 01-04-2024 | Approved | 2nd ACM | Date | 05-05-2024

SEMESTER -IV

23MA401	OPTIMIZATION	L	T	P	С
	TECHNIQUES	3	1	0	4

COURSE OBJECTIVES:

- Formulate and solve linear programming problems (LPP).
- Evaluate Transportation and Assignment Problems.
- Manage purchasing/manufacturing policies.
- Obtain solution to network problems using CPM and PERT techniques.
- Optimize the function subject to the constraints.

UNIT I LINEAR PROGRAMMING MODELS 9+3

Introduction of Operations Research - mathematical formulation of LPP- Graphical Methods to solve LPP- Simplex Method- Big M method, Two phase method.

UNIT II TRANSPORTATION PROBLEMS AND 9+3 ASSIGNMENT PROBLEMS

Transportation problem (TP) - finding basic feasible solution of TP using North-West Corner Rule, Least Cost and Vogel's Approximation Method - MODI method for finding optimal solution for TP - Assignment problem - Hungarian method for solving Assignment problem - Travelling salesman problem as assignment problem - Production Scheduling problem - Introduction, Problems in single machine scheduling.

UNIT III INVENTORY CONTROL

9+3

Introduction, Models – Problems in Purchase and Production (Manufacturing) models with and without shortages – Theory on types of inventory control systems: P and Q, ABC, VED, FNS, XYZ, SDE and HML.

UNIT IV PROJECT MANAGEMENT

9+3

Project definition - Gantt chart - Project network - Diagram representation - Floats - Critical path method (CPM) - PERT-Cost considerations in PERT and CPM.

UNIT V | CLASSICAL OPTIMIZATION THEORY

9+3

Unconstrained problems - necessary and sufficient conditions -

New	ton-Rapl	hso	n ı	net	hod	l, (Con	stra	ine	d j	orob	lem	s –	eq	ual	ity
cons	traints –	ine	qua	lity	cor	nstr	aint	s -]	Kuŀ	ın-T	uck	er co	ondi	tior	ıs.	
											TO	ΓAL	: 60	PEF	RIO	DS
COU	RSE OU	JTC	ON	1ES	5 :											
After	completi	ion	of t	he o	cou	rse,	the	stu	der	nts v	will 1	be al	ble t	o		
CO1	Solve li	nea	r pı	ogi	am	mir	ng p	rob	len	ıs.						
CO ₂	Examin	e T	ran	spo	rtat	ion	Pro	ble	ms.							
CO3	Examin	e A	ssi	gnn	nent	Pro	oble	ems								
CO4	Plan the	e pu	ırch	ase	/ m	เลทเ	ıfac	tur	ing	pol	icies	to n	neet	cus	ton	ner
	demand															
CO ₅	Find so	luti	ions	s to	net	wo	rk p	orol	olen	ns t	เรiทย	g CP	'M a	nd	PE	RT
	techniq															
	Optimi		he f	unc	ction	n st	ıbje	ct to	o th	e cc	nstr	aint	s.			
TEX	Г ВООК															
1	Hamdy								Res	ear	ch:	An	Intr	odu	ictio	on,
	Pearsor		11 + 27							4		<u></u>	A. 11.			
2	R. Pannerselvan, Operations Research, 2nd Edition, PHI Publications, 2006.															
DEEL			ıs, Z	2006).		Α.									
_	ERENCE		рт	V	-		_ 8	10	-			٠.		n :	- Illi	
1	Dontzig	-			ar F	rog	gran	nmı	ng	and	exte	ensic	ons,	rır	icet	on
2	Univers		_	-	Lika	LCC/o	Ta	To de		O.E.	N	1	NLO	LO	T	/4.
2	ND Vo	31814	ALIMAN P						-				_			
3	J. K. Sha															
3	Macmil			-					CII	ше	OI y	anu	дрр	'IIC	itio	115,
		ları	, 511	LLC	artic)11, 4		2. POs						I	PSC)c
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	_	-	_	-	-	1	3	-	-
	2	3	2	1	1	_	_	_	-	_	_	_	1	3	_	_
	3	3	2	1	1	-	-	_	-	_	-	-	1	3	-	-
	4	3	2	1	1	-	-	_	-	-	-	-	1	3	-	_
	5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	-	-	-	-	-	-	1	3		
O	verall	3	2	1	1								1	3		
	elation					_		_	_	_	-	-	1	,	_	_
Reco	mmende				of S	Stud	lies		04-2							
	A	ppi	ove	d				2n	d A (CM		Date	e	25-()5-2	024

23ME401	THERMAL ENGINEERING	L	T	P	C
		3	0	0	3
COURSE OBJ	ECTIVES:				
pred perfo	earn the concepts and laws of thermodict the operation of thermodynamic ormance of Internal Combustion(IC) Furbines.	c cy	cles	ar	nd
	nalyze the performance of steam noz al pressure ratio.	zle,	calo	cula	te
veloc	valuate the performance of steam turb city triangles, understand the need for compounding of turbines.			•	_
	nalyze the working of IC engines iary systems present in IC engines.	and	va	rio	us
• To e engin	valuate the various performance para	met	ers	of 1	íС
UNIT I TH	ERMODYNAMIC CYCLES				9
Air Standard	Cycles - Carnot, Otto, Diesel, Dual, Br	ayto	n –	Cyc	cle
	formance and Comparison, Basic Ra	nkir	ne (Сус	le,
modified, reho	eat and regenerative cycles.	NO	10	GY	
UNIT II ST	EAM NOZZLES AND INJECTOR			40U	9
Types and Sh	napes of nozzles, Flow of steam thro	ugh	no	zzle	es,
Critical pressu	are ratio, Variation of mass flow rate v	with	pre	essu	re
ratio. Effect of	friction. Metastable flow.				
UNIT III ST	EAM AND GAS TURBINES				9
done and effice compounding and closed Regenerative,	se and reaction principles, Velocity dia iency – optimal operating conditions. It and governing. Gas turbine cycle an cycle. Performance and its imp Intercooled, Reheat cycles and their con TERNAL COMBUSTION ENGINES ATURES AND COMBUSTION	Multalysi orovo ombi	i-sta is – eme	agir opent	ng, en -
	Classification, working, componen	ts a	nd	the	-ir
- chighic	characterist, working, component	u		¢11(

functions. Ideal and actual: Valve and port timing diagrams, p-v diagrams- two stroke and four stroke, and SI and CI engines – comparison. Geometric, operating, and performance comparison of SI and CI engines. Desirable properties and qualities of fuels. Air-fuel ratio calculation – lean and rich mixtures. Combustion in SI and CI Engines – Knocking – phenomena and control.

UNIT V	INTERNAL	COMBUSTION	ENGINE	9
	PERFORMAN	CE AND AUXILIARY	SYSTEMS	

Performance and Emission Testing, Performance parameters and calculations. Morse and Heat Balance tests. Multipoint Fuel Injection system and Common rail direct injection systems. Ignition systems – Magneto, Battery and Electronic. Lubrication and Cooling systems. Concepts of Supercharging and Turbocharging – Emission Norms.

Tuib	ocharging – Emission Norms.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
After	compl <mark>etion of</mark> the course, the students will be able to
CO1	Identify the thermodynamic cycles in Internal
	Combustion(IC) engines and Gas Turbines.
CO2	Determine the performance of steam nozzle, calculate
	critical pressure ratio.
CO3	Evaluate the performance of steam turbines.
CO4	Optimize the working of IC engines and various auxiliary
	systems present in IC engines.
CO5	Evaluate the various performance parameters of IC engines.
CO6	Examine the performance of thermodynamic cycles, steam
	nozzles, steam turbines, gas turbines and IC engines.
TEX	T BOOKS:
1	Mahesh. M. Rathore, "Thermal Engineering", 1st Edition,
	Tata McGraw Hill, 2010.
2	Ganesan.V, "Internal Combustion Engines" 4th Edition, Tata
	McGraw Hill, 2012.
	McGraw Hill, 2012.

REFI	ERENCE	S:														
1	Ballane	y. I	, "	Гhе	rma	al E	ngi	nee	ring	z",	25th	Edi	tion	, K	han	na
	Publish	ers,	201	17.												
2	Domku	ndv	war	, K	oth	anc	lara	ıma	n,	anc	d D	omk	und	lwa	r, '	"A
	Course	in '	The	rma	al E	ngi	nee	ring	ξ", (6th	Edit	tion,	Dha	anp	at F	Rai
	and Sor	ns, 2	2011	L.												
3	Gupta	Н.	N,	"F	und	dan	nen	tals	O	f I	nter	nal	Co	mbı	usti	on
	Engines	s", 2	2nd	Edi	itioı	n Pi	ent	ice	Hal	1 of	Ind	ia, 2	013.			
4	Mathur	N	1.L	an	d	Me	hta	F.	S.,	"T	hern	nal	Scie	ence	a	nd
	Engine	erin	g",	3rd	Ed	itio	n, J	ain	Bro	the	rs P	vt. L	td, 2	017		
5	Soman.	K,	"T	her	ma	l Eı	ngir	neer	ing	", 4	2nd	Edi	tion,	Pr	ent	ice
	Hall of	Soman. K, "Thermal Engineering", 2nd Edition, Prentice Hall of India, 2011.														
	60						I	POs						I	PSC)s
· •	COs	1	2	3	4	5	6	7	_8	9	10	11	12	1	2	3
	1ow	3	2	1	1	-	1	9	2	9	-	1	2	3		2
,	2	3	3	3	3	_	1	-	2	Y-	-	1	2	3	-	2
	3	3	3	2	2	- 8	1		2	1		1	2	3	5 - 0	2
	4	3	2	1	1	_	1	7	2	1	_	1	2	3	1	2
	5	3	3	3	3	-	1	-	2	-	-	1	2	3	-	2
	6 GINE	3	3	2	2	CC	1	.EC	2	UI-	LE	1	2	3	(a)	2
	verall relation	3	3	2	2	AFE	1	-0.19	2	NA U	NIVE	1	2	3	4 <u>0</u> U	2
Reco	mmende	d by	Во	ard	of S	tud	ies	08-	04-2	024						
	A	ppr	ove	d				2nd	A(M		Date	:	25-	05-2	2024

23ME402	THEORY OF MACHINES	L	T	P	С
		3	1	0	4

- Study the basic components of mechanisms, analyzing the assembly with respect to the displacement, velocity, and acceleration at any point in a link of a mechanism and design cam mechanisms for specified output motions.
- Study the basic concepts of toothed gearing and kinematics of gear trains.
- Analyze the effects of friction in machine elements.
- Analyze the force-motion relationship in components subjected to external forces and analyzing of standard mechanisms.
- Analyze the undesirable effects of unbalances resulting from prescribed motions in mechanism and the effect of dynamics of undesirable vibrations.

UNIT I KINEMATICS OF MECHANISMS 9+3

Mechanisms – Terminology and definitions – kinematics inversions of 4 bar and slide crank chain – kinematics analysis in simple mechanisms , Mechanisms with lower pairs- Straight line mechanism, steering gear mechanisms– velocity and acceleration polygons – cams – classifications – displacement diagrams – layout of plate cam profiles – derivatives of followers motion.

UNIT II GEARS AND GEAR TRAINS 9+3

Spur gear – law of toothed gearing – involute gearing – Interchangeable gears – Gear tooth action interference and undercutting – nonstandard teeth – gear trains – parallel axis gears trains – epicyclic gear trains – automotive transmission gear trains.

UNIT III | FRICTION IN MACHINE ELEMENTS | 9+3

Surface contacts - Sliding and Rolling friction - Friction drives - Friction in screw threads - Bearings and lubrication - Friction

clutches - Belt and rope drives - Friction aspects in brakes-Friction in vehicle propulsion and braking.

UNIT IV | FORCE ANALYSIS

9+3

Dynamic force analysis – Inertia force and Inertia torque– D Alembert's principle –Dynamic Analysis in reciprocating engines – Gas forces – Inertia effect of connecting rod– Bearing loads – Crank shaft torque – Turning moment diagrams –Fly Wheels – Flywheels of punching presses– Dynamics of Cam- follower mechanism.

UNIT V BALANCING AND VIBRATION

9+3

Balancing of revolving and reciprocating masses – Balancing machines – free vibrations – Equations of motion – natural Frequency – Damped Vibration – bending critical speed of simple shaft – Torsional vibration – Forced vibration – harmonic Forcing – Vibration isolation. Gyroscopic forces and torques – Gyroscopic stabilization – Gyroscopic effects in Automobiles, ships and airplanes.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- **CO1** Select the mechanism for particular application.
- **CO2** Solve problems in gears and gear trains.
- CO3 Examine friction in machine elements.
- **CO4** Calculate the static and dynamic forces of mechanisms.
- CO5 Calculate the balancing masses and their locations of reciprocating and rotating masses.
- CO6 Compute the frequency of free vibration, forced vibration and damping coefficient and gyroscopic effect on Aeroplanes and ships.

TEXT BOOKS:

1 Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 2017.

2	Ramar	nur	thi.	V	7,	"M	ech	ani	cs	of	M	achi	nes'	,	Nar	osa
	Publish	ing	Н	ouse	e, 3:	rd e	dit	ion	201	9.						
REF	ERENCE	S:														
1	Amitab	ha(Gho	sh	an	d	Asc	ok	Ku	mai	r M	allik	ζ, "	The	ory	of
	Mechai	nisn	ns a	ınd	Ma	achi	nes	s", E	٩ffi	liat	ed E	ast-	Wes	t Pv	t. L	td.,
	1988.															
2	Rao.J.S.	. aı	nd	Dι	ıkk	ipat	ti.R	.V.	"N	1ec	nani	sm	and	N	I ach	ine
	Theory	″, N	Iew	Αę	ge Iı	nter	nat	ion	al F	vt.	Ltd.	, 2nd	d ed	itio	n, 20)14.
3	Rattan,	S.S	, "]	he	ory	of	Ma	chir	nes'	', N	1cGr	aw-	Hill	Ed	ucat	ion
	Pvt. Ltd	1., 5	th e	edit	ion	, 20	19.									
4	Robert	L. 1	Vor	ton	, K	ineı	mat	ics	anc	1 D	ynar	nics	of N	Лас	hine	ery,
	Tata M	cGr	aw	-Hi	11, 2	013										
5	Wilson	Wilson and Sadler, Kinematics and Dynamics of Machinery,														
	Pearson	n, 20	008.													
	CO- cow	ER L	PRE	1	,		1	POs		A		-		100	PSC)s
· ·	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	9	2	(-)	1	-	1	3	1	1
	2	3	2	1	1	2	_	_//	2	-		37	1	3	1	1
1	3	3	3	2	2	2	-	-	2	-	-	-	1	3	1	1
	4 SINE	3	2	1	1	2) <u>L</u>	LE	2	U		:Cl	1	3	71	1
	5	3	2	1	1	2	ILIA	ED	2	MMA	UNIVE	HSIII	1	3	1	1
	6	3	2	1	1	2	-	-	2	-	-	-	1	3	1	1
О	verall	3	2	1	1	2			2				1	3	1	1
	relation						_	_		_			1	J	1	1
Dagar	nmended	bv	Boa	rd o	of S	tud	ies	08-	04-2	2024	Į					
Kecoi			ove						1 A(Date			-05-2	

23CE412	STRENGTH OF MATERIALS	L	T	P	С
		3	0	2	4

- To understand the concepts of stress, strain, principal stresses and principal planes.
- To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- To determine stresses and deformation in circular shafts and helical spring due to torsion.
- To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I STRESS, STRAIN AND DEFORMATION OF 9+3 SOLIDS

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound bars – Thermal stresses – Elastic constants, Poisson's ratio – Volumetric strains – Stresses on inclined planes – principal stresses and principal planes – Mohr's circle for plane stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND 9+3 STRESSES IN BEAMS

Beams – types transverse loading on beams – Shear force and bending moment in beams – Cantilevers – Simply supported beams and over – hanging beams. Theory of simple bendingbending stress distribution – Load carrying capacity – Proportioning of sections – Shear stress distribution.

UNIT III DEFLECTION OF BEAMS 9+3

Double Integration method - Macaulay's method - Area moment method - Conjugate beam method for computation of slopes and deflections in determinate beams.

UNIT IV TORSION, SPRINGS AND COLUMNS 9+3

Theory of Torsion - Stresses and deformations in solid and hollow circular shafts - Stepped shafts - Power transmitted by a shaft. Helical springs - Differences between closely coiled and open coiled helical springs - Closely coiled helical springs - Calculation of shear stress, deflection and stiffness. Columns - Euler's theory - Calculation of crippling load for different end conditions for a long column.

UNIT V THIN CYLINDERS, SPHERES AND THICK 9+3 CYLINDERS

Stresses in thin and thick cylindrical shell, deformation in thin and thick cylinders – spherical shells subjected to internal pressure – Deformation in spherical shells.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Tension test on mild steel rod
- 2. Double shear test on mild steel rod
- 3. Torsion test on mild steel rod
- 4. Izod Impact test on metal specimen
- 5. Charpy Impact test on metal specimen
- 6. Rockwell Hardness test on metals
- 7. Brinell Hardness test on metals
- 8. Compression test on helical spring
- Heat Treatment Processes- Annealing, Normalizing, Quenching and Tempering
- 10. Jominy End Quench Test

TOTAL:15 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Calculate the different stresses developed in the solids when subjected to different loading conditions.
- CO2 Analyse the shear force and bending moment diagrams of the beams under the various loading conditions.
- CO3 Examine the bending stress and shear stress distribution of various sections of the beam.

									_							1
CO4	Calcula		he	slop	oe a	ınd	def	lect	tion	of	bea	ms ι	เรiทย	g di	ffer	ent
	method															
CO5	Apply		ba	sic	eq	uati	ons	s to	de	esig	n sl	natts	, sp	ring	gs a	and
	column															
CO6								-	ed i	in t	he t	hin (cylin	ıdeı	th,	ick
	cylinde		nd :	sph	eric	al s	shel	ls.								
	Г ВООК															
1	Bansal,		<., "	Stre	eng	th c	of M	late	rial	s",]	Laxı	mi P	ublio	catio	ons	(P)
	Ltd., 20															
2	Rattan											ata	McC	Grav	w I	Hill
	Educati		Pvt	. Lt	d.,	Nev	N D	elh	i, 20)17.						
REFI	ERENCE															
1	Rajput				_					•						,
	S.Chan															
2	Egor P	Po	opo	v, '	"En	gin	eer	ing	M	ech	anic	s of	Sol	ids	", 2	2nd
		gor P Popov, "Engineering Mechanics of Solids", 2nd ition, PHI Learning Pvt. Ltd., New Delhi, 2015.														
3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	eer. F.P. and Johnston. E.R. "Mechanics of Materials", Tata														
V	McGrav	McGraw Hill, 8th Edition, New Delhi 2019. Subramanian R., "Strength of Materials", Oxford University														
4	1.77					•	,					-00-	ord I	Jni	ver	sity
	Press, Oxford Higher Education Series, 2010.															
(COs	POs PSOs														
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	(D)	οĀι	2	iNIVE	osity	1 ĀUI	3	1	le-
	2	3	2	1	1	1	1	_	_	2		4.000.00	_	3	1	-
			_	_		_	_	_			-	Γ	_		1	
	3	3	2	1	1	1	1	-	-	2	<u>-</u> -	[-	-	3	1	-
	3	_		1	1		_	-	-		- - -	-	-			-
	4	3	2			1	1	-	-	2	- - - -	-	-	3	1	-
	4 5	3 3	2 2 2	1	1	1 1 1	1 1 1	-	-	2 2	- - -	-	-	3 3	1 1 1	-
	4 5 6	3	2	1	1	1	1		- - -	2	- - -	-		3	1	-
Corı	4 5 6 verall relation	3 3 3 3	2 2 2 2 2	1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	-	1 1	2 2 2 2	- - - -	-		3 3	1 1 1	
Corı	4 5 6 verall relation	3 3 3 3	2 2 2 2 2	1 1 1 1 ard	1 1 1 1	1 1 1 1	1 1 1 1	- - 08-	1 1	2 2 2 2 2	- - -	-		3 3 3 3	1 1 1 1	- - - -

23ME421	THERMAL ENGINEERING	L	T	P	C
	LABORATORY	0	0	4	2

- Study the valve and port timing diagram of IC engines.
- Conduct the performance test of IC engines.
- Conduct the performance test on reciprocating compressor.
- Study the performance of steam generator and steam turbine.

LIST OF EXPERIMENTS:

- 1. Valve Timing and Port Timing diagrams.
- 2. Actual p-v diagrams of IC engines.
- 3. Determination of Flash Point and Fire Point of various fuels / lubricants.
- 4. Performance Test on four stroke Diesel Engine.
- Heat Balance Test on 4 stroke Diesel Engine.
- 6. Morse Test on Multi-Cylinder Petrol Engine.
- 7. Retardation Test on a Diesel Engine.
- of p-θ diagram and heat release 8. Determination characteristics of an IC engine.
- 9. Performance test on a two stage Reciprocating Air compressor.
- 10. Study of Steam generators.
- 11. Study of Steam turbines.

	TOTAL: 60 PERIODS
COU	IRSE OUTCOMES:
After	completion of the course, the students will be able to
CO1	Evaluate the performance characteristics of IC engines.
CO2	Examine the Performance of a Steam generator.
CO3	Test the Performance of a Steam turbine.
CO4	Evaluate performance characteristics of reciprocating air
	compressor.
CO5	Experiment with the valve and port timing diagram of
	engines.
CO ₆	Test the performance characteristics of Air compressor.

COs						I	POs						I	PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	3	3	1	1	ı	ı	2	2	2	2	3	1	-	
2	3	3	2	2	1	1	ı	ı	2	2	2	2	3	1	-	
3	3	3	3	3	1	1	-	-	2	2	2	2	3	1	1	
4	3	2	1	1	1	1	-	-	2	2	2	2	3	1	-	
5	3	2	1	1	1	1	-	-	2	2	2	2	3	1	-	
6	3	3	2	2	1	1	-	-	2	2	2	2	3	1	-	
Overall Correlation	3	3	2	2	1	1	ı	ı	2	2	2	2	3	1	_	
Recommende	d by	Во	ard	of S	itud	ies	01-	04-2	2024							
Α		2 nd ACM Date					?	05-05-2024								

23ME422	KINEMATICS AND DYNAMICS	L	T	P	C
	LABORATORY	0	0	4	2

- Supplement the principles learnt in kinematics and Dynamics of Machinery.
- Demonstrate how certain measuring devices are used for dynamic testing.

LIST OF EXPERIMENTS:

- 1. a) Study of gear parameters. b) Experimental study of velocity ratios of simple, compound, Epicyclic and differential gear trains.
- 2. a) Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms. b) Kinematics of single and double universal joints.
- 3. a) Determination of Mass moment of inertia of Fly wheel and Axle system. b) Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus. c) Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.
- 4. Motorized gyroscope Study of gyroscopic effect and couple.
- 5. Governor Determination of range sensitivity, effort etc., for Watts, Porter, Proell, and Hartnell Governors.
- 6. Cams Cam profile drawing, Motion curves and study of jump phenomenon.
- a) Single degree of freedom Spring Mass System Determination of natural Frequency and verification of Laws
 of springs Damping coefficient determination.
 b) Multi
 degree freedom suspension system Determination of
 influence coefficient.
- 8. a) Determination of torsional natural frequency of single and Double Rotor systems.- Undamped and Damped Natural frequencies. b) Vibration Absorber Tuned vibration absorber.
- 9. Vibration of Equivalent Spring mass system undamped and damped vibration.
- 10. Whirling of shafts Determination of critical speeds of shafts with concentrated loads.

- 11. a) Balancing of rotating masses. (b) Balancing of reciprocating masses.
- 12. a) Transverse vibration of Free Free beam with and without concentrated masses b) Forced Vibration of Cantilever beam

	concentrated masses. b) Forced Vibration of Cantilever beam – Mode shapes and natural frequencies. c) Determination of															
M	ode sha	pes	an	d r	natu	ral	fre	que	nci	es.	c) I)eter	min	atio	n (of
tra	ansmissil	bilit	y ra	atio	usi	ng	vib	ratiı	ng t	abl	e.					
											TO	ΓAL	: 60	PEF	RIO	DS
COU	RSE OU	TC	OM	1ES	5:											
After	After completion of the course, the students will be able to															
CO1																
	and slider crank mechanism.															
CO ₂																
	by flywheel and axle system, turn table apparatus and bifilar															
	suspension.															
CO ₃	Analyze the effects of controlling mechanism by doing															
	experiments on Universal Governor apparatus and															
	gyroscope.															
CO4	Determine the natural frequency of Undamped and damped															
1	spring mass system.														III P	Cu
	spring 1	mas	s sy	ste	m.	Y				A			T.		Ī	ca
CO5	spring 1 Determ	mas ine	s sy the	ste nat	m. tura	1 fr	equ	enc	y o	f to	rsior	nal v	ibra	tior	Ī	
	spring 1 Determ	mas ine	s sy the	ste nat	m. tura	1 fr	equ	enc	y o	f to	rsior	nal v	ibra	tior	Ī	
CO5	spring 1 Determ Make u	mas ine	s sy the	ste nat	m. tura	1 fr	equ lev:	enc	y o	f to	rsior	nal v	ibra	tior g.	Ī	-
CO5	spring 1 Determ	mas ine	s sy the	ste nat	m. tura	1 fr	equ lev:	enc	y o	f to	rsior	nal v	ibra	tior g.	ıs.	-
CO5	spring 1 Determ Make u	mas ine se c	s sy the of m	rste nat leas	m. tura turii	ıl fro	equ dev	enc ices	y o	f to	rsior nam	nal v ic te	ibra sting	tior g.	is.	s
CO5	spring i Determ Make u	mas ine se c	the of m	nat nat neas	m. tura urii 4	ol frong o	equ dev:	enc ices	y o	f tor	rsior nam	nal v ic te	ibra sting	tior g. I	rs.)s 3
CO5	spring 1 Determ Make u COs	mas ine se c	the of m	nat neas 3	m. tura turi urii 4	ol frong o	equ dev: I 6	enc ices POs 7	y o	f tor	nam 10 2	nal vic te	ibrasting	tior g. 1	PSO 2 1)s 3
CO5	spring 1 Determ Make u COs 1 2	mas ine se o	the of m	rste nat neas 3 1	m. tura urii 4 1	ol frong of	equidev:	enc ices POs 7	y o	9 2 2	rsion nam 10 2 2	ic te	ibra sting 12 3	tior g. 1 1	PSO 2 1 1)s 3
CO5	Spring 1 Determ Make u COs 1 2 3	mas ine se c 1 3 3	the of m	rste nat neas 1 1 2	m. tura tura 4 1 1 2	1 frong (5)	equ dev:	enc ices POs 7	y o	9 2 2 2	nam 10 2 2 2	11 2 2 2	ibrasting 12 3 3 3	tior g. 1 1 1	PSO 2 1 1 1 1)s 3
CO5	Spring 1 Determ Make u COs 1 2 3 4	mas ine se c 1 3 3 3	the of m 2 2 2 3 3	3 1 1 2 3	m. tura urii 4 1 1 2 3	5 1 1 1	equidev: 6	encices POs 7	y o	9 2 2 2 2 2	10 2 2 2 2	11 2 2 2 2 2	ibra sting 12 3 3 3 3	tior g. 1 1 1 1	PSO 2 1 1 1 1 1)s 3
CO5	Spring 1 Determ Make u COs 1 2 3 4 5	mas ine se c 1 3 3 3 3	2 2 2 3 3	3 1 1 2 3 3	m. tura 4 1 1 2 3 3 3	5 1 1 1	equelev: 6	encices 7	y o	9 2 2 2 2 2	10 2 2 2 2 2	11 2 2 2 2 2 2	12 3 3 3 3	tior g. I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1	9s 3 - - - -

Recommended by Board of Studies 01-04-2024 Approved 2nd ACM 05-05-2024 Date

23ES	491	A				LOGIC	AL	L	T	P	С
				ASON	NING	- 1		0	0	2	1
COU	RSE OB										
•	_		-	blem	solving	g and lo	ogical th	ıinki	ng	abil	ity
	of the s										
•					-	-	sked que				
		is in qu	antita	tive a	ptitud	e and lo	ogical re	easoi	ning	3.	
UNI											4
1	bers, LC	CM, HC	F, Av	verage	es, Rati	o & Pr	oportio	n, M	lixtı	ares	3 &
	gation.										
UNI											4
	entages, [Time ar	nd wo	ork, Pi	ipes an	d Ciste	rn, codi	ng a	nd		
	ding.										
UNI											4
	Speed I	Distance	e, Trai	in, Bo	ats and	l Strear	ns, Ana	logy			
UNI											4
Data	Interpre	tation (BAR,	PIE,L	INE), S	eating	arrange	emer	ıt.	4	
UNI			0								4
	ole Intere	st and (Comp	ound	Intere	st, Prof	it loss a	nd I	Disc	our	ıt,
Partr	nership.	1				100					M.
- 1	18	ظه				7	TOTAL:	: 20 I	PER		DS
COU	RSE OU		4.00	60	LLEG	EOF	TECH	NO		GY	E.
	After co										
CO1:	Analyse			-	-		s, and	fost	er o	criti	cal
	thinking										
CO2:	Solve f								er	ıhaı	nce
	their co										
CO3:	Develop	o strate	egies f	for ta	ckling	a varie	ety of p	robl	em	typ	es,
	and en				of mu	ıltiple	approa	ches	to	so	lve
	problen										
CO4:	Analyse					-	-				me
	and dis										
CO5:	Derive										
	on math		-				ios, proj	porti	ons	, ba	ısic
	algebra,										
CO6:	Solve q		ns in	a fra	iction (of a m	inute u	ısing	sh	ort	cut
	method	S									

TEXT BOOK:																
1	Smith,	Joh	n. ".	AP7	TPI	EDI	A."	2nd	l ed	., W	/iley	Pul	olish	ers,	202	20.
2	Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand															
	Publishing.															
REFI	REFERENCES:															
1	Agarwa	al, F	R.S.	"A	Mo	der	n A	ppr	oac	h to) Ve	rbal	& N	lon-	-Ve	rbal
	Reason	ing.	." 2r	nd e	d., 9	S. C	har	nd F	Publ	ish	ing					
	Cos						I	Os						I	PSC	s
`	CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3 2 2 1 1 2 1 2 3 1 - 3													
	_	_	_	_			_			_	_	_	_		_	_

200	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	-	-	2	1	1	2	1	2	3	1	-	3
2	2	3	3	-	-	2	-	1	3	2	2	3	2	1	3
3	3	3	3	-	-	2	-	1	2	2	2	3	2	-	3
4	2	3	2	3	-	2	1	2	3	3	2	3	1	2	3
5	3	2	2	-	1	3	-	2	2	3	3	3	3	1	3
6	3	3	3	3	2	3	1	3	3	2	3	3	3	1	3
Overall	ER/	PRE.	7					1				1		1	
Correlation	3	3	3	1	1	3	1	2	3	3	3	3	2	1	3
Recommende	d by	Bo Bo	ard	of S	tud	ies	08-	04-2	024	. 54	_				
A		2nd	1 A(M		Date		25-	05-2	2024					

COLLEGE OF TECHNOLOGY

23ME423	MINI PROJECT -1	L	T	P	C
		0	0	2	1

- Encourage students to apply foundational theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork and effective communication.
- Train students in basic research methodology, technical documentation, and presentation techniques to articulate project outcomes clearly.
- Enhance students' ability to systematically design, analyze, and evaluate simple prototypes or models.
- Prepare students for real-world engineering challenges and lay the foundation for multidisciplinary teamwork and problem-solving in advanced projects.

COURSE DESCRIPTION:

This course serves as an introductory platform for students to apply the foundational knowledge acquired from their core and interdisciplinary subjects in a practical setting. This course enables students to work on small-scale, department-relevant projects that focus on problem identification, basic design, and preliminary prototype development. With limited prior expertise, students will explore the process of translating theoretical concepts into tangible solutions, fostering creativity, teamwork, and critical thinking. The course emphasizes hands-on communication, and project documentation, laying a strong foundation for advanced projects and professional challenges in later semesters.

PROJECT OUTLINE:

Week 1	Course Orientation and Topic Selection
Week 2	Problem Definition and Objective Setting

Week 3	Literature Review and Research
Week 4	First Review and Feedback
Week 5	Problem Refinement and Research Gap Identification
Week 6	Conceptual Design and Initial Approach
Week 7	Methodology and Project Planning
Week 8	Second Review and Project Evaluation
Week 9	Design Refinement and Testing
Week 10	Resource Identification and Budget Estimation
Week 11	Report Writing and Presentation Preparation
Week 12	Third Review Presentation and Submission of Thesis
TT 7 A T T I A T	IONI

EVALUATION:

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The project should focus on topics from first three or four semester (whichever is applicable) subjects / industry demand topics, or futuristic technologies. It is recommended for Faculty of Aeronautical Engineering, Civil Engineering, and Mechanical Engineering students, the project should demonstrate an understanding of first principles of engineering.
- Similarly for students of Faculty of Computer Science Engineering, the project may involve programming using Python or C language. For Faculty of Electronics and Communication Engineering, the student project shall

- incorporate appropriate techniques and systems relevant to the field. For the students of Faculty of Fashion Technology, the project based on material innovations, or technology in fashion is recommended.
- The evaluation will focus on how well the project is structured, including clarity and logical flow in both oral presentations and written texts.
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability, innovation, and SDG-aligned goals.
- The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content.

COU	RSE OUTCOMES:
After	completion of the course, the students will be able to
CO1	Apply basic engineering principles to solve simple
	problems.
CO2	Choose relevant sources to understand the current
	knowledge and identify areas to improve.
CO3	Utilise basic tools and techniques to test simple solutions.
CO4	Interpret the impact of engineering solutions on society
	and the environment.
CO5	Combine in teams to plan and complete projects within
	given constraints.
CO6	Develop comprehensive technical reports and deliver
	structured presentations to effectively convey project
	outcomes.

COs						F	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
2	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
3	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
4	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
5	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
6	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
Overall	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
Correlation	3		1	1	1	1	1	•	۷	4	4	1	3	1	3	
Recommende	d by	Bo	ard	of S	Stud	ies	01-	04-2	2024	:						
Α		2nd ACM Date					?	25-05-2024								

SEMESTER -V

SEMESTER -V	
23RE501 RESEARCH METHODOLOGY L T P	C
AND INTELLECTUAL PROPERTY 2 0 0	2
RIGHTS	
COURSE OBJECTIVES:	
To provide an overview on selection of research problem	m
based on the Literature review	
To enhance knowledge on the Data collection and Analy	ysis
To outline the importance of ethical principles to be	
followed in Research work and IPR	
UNIT I INTRODUCTION TO RESEARCH	6
FORMULATION	
Meaning of research problem, Sources of research proble	-m
Criteria - good research problem, and selecting a research proble	
Scope and objectives of research problem. Defining a	
formulating the research problem - Necessity of defining	
problem - Importance of literature review in defining a problem	
UNIT II LITERATURE REVIEW	- 6
COLLEGE OF TECHNOLOG	V.
Literature review - Primary and secondary sources - review	
treatise, monographs-patents – web as a source – searching	
web - Critical literature review - Identifying gap areas from	om
literature review - Development of working hypothesis.	
UNIT III DATA ANALYSIS	6
Execution of the research - Data Processing and Analysis strateg	ies
- Data Analysis with Statistical Packages - Generalization a	ınd
Interpretation.	
UNIT IV REPORT, THESIS PAPER, AND RESEARCH	6
PROPASAL WRITING	
Structure and components of scientific reports - Types of report	

Technical reports and thesis – Significance – Different steps in the preparation – Layout, structure and Language of typical reports –

Illustrations and tables - Bibliography, types of referencing, citations- index and footnotes, how to write report- Paper Developing,- Plagiarism- Research Proposal- Format of research proposal- a presentation - assessment by a review committee.

UNIT V INTELLECTUAL PROPERTY AND PATENT RIGHTS

Ethical principles- Plagiarism, Nature of Intellectual Property - Patents, Designs, Trade and Copyright- patent search, Process of Patenting and Development: technological research, innovation, patenting, and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of Patent Rights - Scope of Patent Rights, Geographical Indications.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- Analyze the literature to identify the research gap in the given area of research.
- CO2 Identify and formulate the research Problem.
- CO3 Analyze and synthesize the data using research methods and knowledge to provide scientific interpretation and conclusion.
- CO4 Prepare research reports and proposals by properly synthesizing, arranging the research documents to provide comprehensive technical and scientific report.
- CO5 Conduct patent database search in various countries for the research problem identified.
- CO6 Apply ethical principles in research and reporting to promote healthy scientific practice.

TEXT BOOKS:

- Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An Introduction to Research Methodology, RBSA Publishers.
- 2 Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.

	COs 1 2	1 3 3	2 2 2	3 1 1	4 1 1	5 1 1	6 - -	POs 7 - -	8 1 1	9 1 1	10 2 2	11 -	12 1 1	1 3 3	2 2 2	3 1 1													
	1	3	2 2	1	1	1	6	7	8	1	2	-	1	1 3	2 2	3													
		_	2			_			8	_		11		1	2	3													
	COs						Ŀ	POs						ŀ	250	s													
	right. ESS Publications. POs PSOs																												
-) L l	E	5E	OF		0	NU	LU	G	Satarkar, S.V., 2000. Intellectual property rights and copy													
7											ertv	rio	hts a	and	CO	ρV													
0	Plannin										ł FI	actio	zai i	Res	earc	11:													
6		From the Internet to Paper. Sage Publications. Leedy, P.D. and Ormrod, J.E., 2004 Practical Research:																											
5		Fink, A., 2009. Conducting Research Literature Reviews:																											
		Cambridge University Press.																											
4		Day, R.A., 1992.How to Write and Publish a Scientific Paper,																											
		Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications.																											
3									A.,	199	0, "P	ropo	osal	Wr	itin	g",													
	developing countries: the TRIPS agreement and policy options. Zed Books, New York.																												
2		Carlos, C.M., 2000. Intellectual property rights, the WTO and developing countries: the TRIPS agreement and policy																											
2	Research Methods: A Process of Inquiry, Allyn and Bacon. Carlos C M. 2000 Intellectual property rights the WTO and																												
1	Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. Research Methods: A Process of Inquiry, Allyn and Bacon																												
REF	ERENCE																												
	Law Pt		shiı	ng.																									
	Copy r																												
5	Wadeh	$\overline{}$						$\overline{}$			$\overline{}$	nts, '	Trac	le N	/larl	κs,													
T												ious.		- ((JIICI	SC													
		Ess Ess Publications. 2 Volumes. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing.																											
4																													

23ME501	DESIGN OF MACHINE	L	T	P	C
	ELEMENTS	3	0	0	3

- To introduce basic concepts of design process.
- To provide experience to students in solving design problems.
- To impart design principles involved in evaluating the critical design parameters of machine elements to satisfy functional and strength requirements.
- To make the students understand about the various failure modes.
- To familiarize standard codes and practices to select materials and geometric parameter.

UNIT I FUNDAMENTAL CONCEPTS IN DESIGN 9

Introduction to the design process - Factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers- Direct, Bending and torsional loading - Modes of failure - Factor of safety - Combined loads - Principal stresses - Eccentric loading - Curved beams - Crane hook and 'C' frame - theories of failure - Design based on strength and stiffness - Stress concentration - Fluctuating stresses - Endurance limit - Design for finite and infinite life under variable loading - Exposure to standards.

UNIT II DESIGN OF SHAFTS AND COUPLINGS 9

Shafts and Axles - Design of solid and hollow shafts based on strength, rigidity and critical speed - Keys and splines - Rigid and flexible couplings.

UNIT III DESIGN OF TEMPORARY AND PERMANENT 9 JOINTS

Threaded fasteners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints - Welded joints Butt, Fillet and parallel transverse fillet welds - Welded joints subjected to bending, torsional and eccentric loads, riveted joints for structures.

UNIT IV DESIGN OF ENERGY STORING ELEMENTS 9 AND ENGINE COMPONENTS Types of springs, design of helical and concentric springs - surge in springs, Design of laminated springs - rubber springs -Flywheels considering stresses in rims and arms for engines and punching machines -- Solid and Rimmed flywheels - Connecting rods and Crank shafts UNIT V DESIGN OF BEARINGS 9 Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs, -- Selection of Rolling Contact bearings. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to **CO1** Select the correct size and materials for the given static loads. CO2 Evaluate stress induced in machine elements subjected to variable loads. CO3 Apply the concepts of stresses to design shafts, key and couplings. **CO4** Evaluate the dimensions of helical and leaf springs. CO5 Evaluate the size of the welded joints. CO6 | Select the sliding and rolling contact bearings based on load conditions. **TEXT BOOKS:** V.B. Bhandari, "Design of Machine Elements", 5e, TMH, 1 2020. 2 Richard G.Budynas, J.Keith Nisbett, Kiatfa Tangchaichit "Shigley's Mechanical Engineering Design", 11e, MGH, 2020. **REFERENCES:**

Indian Edition, TMH, 2008.

Hall, Holowenko, Laughlin, "Machine Design", Special

1

_	D 1 .	_	.			//3 4										-
2	Robert	L.	No:	rtor	١,	"M	ach	ine	L)esi	gn-	Aı	1 11	nteg	grat	ed
	Approach", 6e, Pearson Education, 2021.															
3	J.A.Cha	J.A.Charles, F.A.A Crane, J.A.G, Furness, Selection and use														
	of engineering materials, Butterworth Heinemann, 1997.															
	COs POs PSOs)s
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	-	1	-	2	2	2	3	1	1
	2	3	3	3	3	1	1	-	1	-	2	2	2	3	1	1
	3	3	2	1	1	1	1	-	1	-	2	2	2	3	1	1
	4	3	3	3	3	1	1	-	1	-	2	2	2	3	1	1
	5	3	3	3	3	1	1	-	1	ı	2	2	2	3	1	1
	6	3	2	1	1	1	1	-	1	ı	2	2	2	3	1	1
О	verall	3	3	2	2	1	1		1		2	2	2	3	1	1
Cor	relation	3	3			1	1	_	1		4			3	1	
Reco	mmende	1 by	Bo	ard	of S	Stud	ies	07-	11-2	024			A			-

COLLEGE OF TECHNOLOGY

Date

3rd ACM

30-11-2024

23ME502	HEAT AND MASS TRANSFER	L	T	P	C
		3	0	0	3

- To learn the mechanism of heat transfer under steady state and transient conditions.
- To learn the fundamental concept and principles in convective heat transfer.
- To learn the theory of phase change heat transfer and design of heat exchangers.
- To study the fundamental concept and principles in radiation heat transfer.
- To develop the basic concept and diffusion, convective mass transfer.

UNIT I CONDUCTION

9

General Differential equation – Cartesian, Cylindrical and Spherical Coordinates – One Dimensional Steady State Heat Conduction – plane and Composite Systems – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids – Use of Heisler's charts – Methods of enhanced thermal conduction.

UNIT II | CONVECTION

9

Conservation Equations, Boundary Layer Concept - Forced Convection: External Flow - Flow over Plates, Cylinders Spheres and Bank of tubes. Internal Flow - Entrance effects. Free Convection - Flow over Vertical Plate, Horizontal Plate, Inclined Plate, Cylinders and Spheres. Mixed Convection.

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Nusselt's theory of condensation- Regimes of Pool boiling and Flow boiling - Correlations in boiling and condensation. Heat Exchanger Types - TEMA Standards - Overall Heat Transfer

		t - Fouling Factors. LMTD and NTU metho	ods.
		ntals of Heat Pipes and its applications.	
UNI	ΓΙ	RADIATION	9
Intro	ducti	on to Thermal Radiation - Radiation laws and Radia	tive
prop	erties	- Black Body and Gray Body Radiation - Radiosi	ty -
View	Facto	or Relations. Electrical Analogy, Radiation Shields.	
UNI	ΓV	MASS TRANSFER	9
D .		D'(() M T () F: 1/ I () D'((
		cepts – Diffusion Mass Transfer – Fick's Law of Diffus	
		tate and Transient Diffusion - Stefan flow - Convec	
		asfer – Momentum, Heat and Mass Transfer Analog	5y -
Conv	ectiv	e Mass Transfer Correlations.	
		TOTAL: 45 PERIO	DDS
		OUTCOMES:	
	ARCS	pletion of the course, the students will be able to	
		ly heat conduction principles to solve problems.	
		l <mark>y conve</mark> ction principles to solve problems.	Ų.
CO3	App	ly the correlations in the phenomena of boiling a	and
X	307.79	lensation.	
CO4	Solv	e problems using LMTD and NTU methods.	Y
CO5	Solv	e problems on radiative heat transfer.	US
CO6	App	ly diffusive and convective mass transfer equation	s to
	solve	e problems.	
TEX	ГВО	OKS:	
1	R.C.	Sachdeva, "Fundamentals of Engineering Heat	and
	Mas	s transfer", New Age International Publishers, 2009.	
2	Yun	us A. Cengel, "Heat Transfer A Practical Approach	ı" –
	Tata	McGraw Hill, 5th Edition – 2013.	
REFI	EREN	CES:	
1	Fran	k P. Incropera and David P. Dewitt, "Fundamental	s of
	Heat	t and Mass Transfer", John Wiley and Sons, 7th Edit	ion,
	2014	•	

2	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill,																	
	2010.	2010. Kothandaraman, C.P., "Fundamentals of Heat and Mass																
3	Kothano	dara	ama	ın,	C.F	., "	'Fuı	nda	me	ntal	s of	Не	at a	nd	Ma	iss		
	Transfer	r", I	Nev	v A	ge I	nte	rna	tion	al,	Nev	w De	elhi,	2012	2.				
4	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.																	
5	S.P. Ver	S.P. Venkateshan, "Heat Transfer", Ane Books, New Delhi,																
	2014.	2014.																
	COs								POs						PSOs			
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	3	2	1	1	1	-	-	1	1	-	-	1	3	1	1		
	2	3	2	1	1	1	-	-	1	1	-	-	1	3	1	1		
	3	3	2	1	1	1	-	-	1	1	-	-	1	3	1	1		
	4	3	2	1	1	1	-	-	1	1	-	-	1	3	1	1		
	5	3	2	1	1	1	-	Į.	1	1	-	-	1	3	1	1		
	6 COW	3	2	1	1	1	-2		1	1			1	3	1	1		
	Overall 3 2 1 1 1							-	1	1	- 92	1	1	3	1	1		
Reco	mmended	l by	Во	ard	of S	tud	lies	07-	11-2	024					The same			
· ·	A	nnr	ove	d	11			3rd	AC	M		Date		30-	11-2	024		

23ME511	ENGINEERING METROLOGY	L	T	P	C
	AND MEASUREMENTS	3	0	2	4

- To learn basic concepts of metrology and the importance of measurements.
- To teach measurement of linear and angular dimensions assembly and transmission elements.
- To study the tolerance analysis in manufacturing.
- To develop the fundamentals of GD and T, surface metrology and advanced measurements for quality control in manufacturing industries.
- To study the different measurement equipment and use of this in industry for quality inspection.

UNIT I BASICS OF METROLOGY 9+3

Measurement - Need, Process, Role in quality control; Factors affecting measurement - SWIPE; Errors in Measurements - Types - Control - Measurement uncertainty - Types, Estimation, Problems on Estimation of Uncertainty, Statistical analysis of measurement data, Measurement system analysis, Calibration of measuring instruments, Principle of air gauging - ISO standards.

UNIT II MEASUREMENT OF LINEAR, 9+ ANGULAR DIMENSIONS, ASSEMBLY AND TRANSMISSION ELEMENTS

Linear Measuring Instruments - Vernier caliper, Micrometer, Vernier height gauge, Depth Micrometer, Bore gauge, Telescoping gauge; Gauge blocks - Use and precautions, Comparators - Working and advantages; Opto - mechanical measurements using measuring microscope. Angular measuring instruments - Bevel protractor, Angle gauges, Sine bar, Autocollimator, Angle dekkor, Alignment telescope. Measurement of Screw threads - Single element measurements -

Pitch Diameter, Lead, Pitch. Measurement of Gears – purpose – Analytical measurement – Runout, Pitch variation, Tooth profile, Tooth thickness, Lead – Functional checking – Rolling gear test.

UNIT III TOLERANCE ANALYSIS

9+3

Tolerancing – Interchangeability, Selective assembly, Tolerance representation, Terminology, Limits and Fits, Problems (using tables IS919); Design of Limit gauges, Problems. Tolerance analysis in manufacturing, Process capability, tolerance stackup, tolerance charting.

UNIT IV METROLOGY OF SURFACES

9+3

Fundamentals of GD and T- Conventional vs Geometric tolerance, Datums, Inspection of geometric deviations like straightness, flatness, roundness deviations; Simple problems – Measurement of Surface finish – Functionality of surfaces, Parameters, Comparative, Stylus based and Optical Measurement techniques, Filters, Introduction to 3D surface metrology - Parameters

UNIT V ADVANCES IN METROLOGY

9+3

Lasers in metrology - Advantages of lasers - Laser scan micrometers; Laser interferometers - Applications - Straightness, Alignment; Computer Aided Metrology - Basic concept of CMM - Types of CMM - Constructional features - Probes - Accessories - Software - Applications - Multi sensor CMMs. Machine Vision - Basic concepts of Machine Vision System - Elements - Applications - On-line and In-process monitoring in production - Computed tomography - White light Scanners.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS (Any six experiments)

1. Calibration and use of linear measuring instruments – Vernier Caliper, micrometres, Vernier height gauge.

- 2. Measurement of internal diameter using bore gauge and telescopic gauge
- 3. Measurement of angles using bevel protractor, sine bar.
- 4. Measurement of given components using mechanical / optical comparator
- 5. Measurement of assembly and transmission elements screw thread parameters - Floating carriage micrometres.
- 6. Measurement of gear parameters Micrometers, Vernier caliper, Gear Tooth Thickness.
- 7. Measurement of features in a prismatic component using Coordinate Measuring Machine (CMM)
- 8. Non-contact (Optical) measurement using Measuring microscope - Toolmaker's microscope.
- 9. Surface metrology Measurement of form parameters -Straightness, Flatness, Roundness, Cylindricity, Perpendicularity, Runout, Concentricity - in the given component using Roundness tester.
- 10. Measurement of Surface finish in components manufactured using various processes (turning, milling, grinding, etc.,) using stylus based instruments.

TOTAL: 15 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Identify the various types of errors, standards in measurements. CO2 Explain various types of linear, angular and form measuring instruments and methods. CO3 Apply the concept of limits, fits and tolerances in manufacturing. CO4 Apply the principles and methods of form, surface metrology. CO5 Explain the principle of CMM for quality control.

CO6	Summa			_		-					trolo	ogy a	and	ma	chi	ne
	vision t	ech	nnig	ues	s in	me	ast	ırer	nen	ts.						
TEX	Г ВООК	S:														
1	Dotson		Coni	nie,	"]	Din	nen	sio	nal	M	etro]	logy	.",	Cer	nga	ge
	Learnir	ıg,	Firs	st ec	litio	on,	201	2.								
2	Mark	Cι	ırtis	5,	Fra	nci	s	T.	Fa	rag	0,	"На	ndt	000	k	of
	Dimens	sion	nal	M	eas	ure	me	nt"	, I	ndu	ıstri	al :	Pres	ss,	Fif	th
	edition	, 20	13.													
REFI	EFERENCES:															
1	Ammar Grous, J "Applied Metrology for Manufacturing															
	Engineering", Wiley-ISTE, 2011.															
2	Galyer, J.F.W. Charles Reginald Shotbolt, "Metrology for															
	Engineers", Cengage Learning EMEA; 5th revised															
		edition, 1990.														
3	National Physical Laboratory Guide No. 40, No. 41, No.															
	42, No. 43, No. 80, No. 118, No. 130, No. 131. http://www.npl.co.uk.															
4	Raghav							rish	mar	nur	thy	I.	Eno	rine	eri	nσ
-)	Metrolo										-		_			_
- 1	2013.	0)							-					,		,
5	Venkat											eme	nts"	, Se	2CO1	nd
	edition	, Jo	hn '	Wil	ey a	and				5.	NIVER	SITY	AUTO	_	anu.	ç
(COs]	POs						I	PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	1	1	2	2	2	3	1	1
	2	2	1	-	-	-	-	-	1	1	2	2	2	2	-	1
	3	3	2	1	1	1	-	-	1	1	2	2	2	3	1	1
	4	3	2	1	1	1	-	-	1	1	2	2	2	3	1	1
	5	2	1	-	-	1	-	-	1	1	2	2	2	2	1	1
	6	2	1	-	-	1	-	-	1	1	2	2	2	2	1	1
	verall	3	2	1	1	1			1	1	2	2	2	3	1	1
	relation										_	_	_		1	1
Reco	mmende				of S	Stud	ies		11-2							
	A	ppı	ove	d				3^{r}	d AC	$^{\circ}$ M		Date	•	30-1	1-2	024

23ME521	HEAT TRANSFER LABORATORY	L	T	P	C
		0	0	4	2

- To acquire practical knowledge in predicting the thermal conductivity of solids and liquids.
- To obtain hands-on experience determining various fluids' heat transfer coefficient values.
- To attain experimental experience in analyzing the performance of tubes in tube heat exchangers.
- To acquire practical knowledge in predicting COP and analyzing the psychrometric process in refrigeration and air conditioning system.

LIST OF EXPERIMENTS:

- 1. Evaluation of the thermal conductivity measurement using the guarded hot plate method.
- 2. Measurement of the thermal conductivity of pipe insulation using the lagged pipe apparatus.
- 3. Evaluation of the thermal conductivity of a composite wall.
- 4. Determination of the thermal conductivity of insulating powder.
- 5. Calculation of the heat transfer coefficient of air under natural convection from a vertical cylinder.
- 6. Evaluation of the heat transfer coefficient of air under forced convection.
- 7. Analyze the heat transfer rate from a pin fin in both natural and forced convection modes.
- 8. Determination of the Stefan-Boltzmann constant.
- 9. Measurement of the emissivity of a grey surface.
- 10. Estimation of the effectiveness of parallel flow and counter flow heat exchangers.
- 11. Calculate the coefficient of performance (COP) of a vapor compression refrigeration system.
- 12. Analyze the experimentation on the psychometric process in the year-round air conditioning system.

TOTAL: 60 PERIODS

COU	RSE OU	JTC	ON	1ES	5:											
After	complet	ion	of t	he o	cou	rse,	the	stu	ıder	nts v	vill t	e ab	ole to)		
CO1	Examir	ie tl	he t	her	ma	l co	nd	ucti	ivity	of	soli	ds a	nd l	iqu	ids	
CO2	Test the			ran	sfe	r cc	eff	icie	nt v	alu	es o	f for	ced	and	d fr	ee
CO3	Test the	e ef	fect	ive	nes	s of	he	at e	exch	ang	gers.					
CO4	Test th object.	e ra	adia	itio	n c	ons	star	nt a	nd	emi	issiv	ity	of tl	ne į	giv	en
CO ₅	Examir refriger			-			nce	e o	f th	ie v	apo	ur	com	pre	essi	on
CO6	Analyz condition		_	-				-					nt o	peı	ati	ng
	COs]	POs	5					I	PSC	s
`		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	2	1	1	-	1	-	2	2	2	3	1	1
	2	3	3	2	2	1	1	A	1	1	2	2	2	3	1	1
	3	3	3	2	2	1	1	/-	1/	1	2	2	2	3	1	1
Į.	4	3	3	2	2	1	1	-	1	-	2	2	2	3	1	1
	5	3	3	2	2	1	1		1	d	2	2	2	3	1	1
4	6	3	3	2	2	1	1	1	1	1	2	2	2	3	1	1
	verall relation	3	3	2	2	10	1	E	1	OF	2	2	2	3	4	1
Reco	mmende	d by	Bo	ard	of S	Stud	ies	07-	11-2	024	NIVER	SITY	AUTO	NO!	MOU	5
	Approved 3rd ACM Date 30-11-2024															

23ES	591	APTITUDE AND LOGICAL	L	T	P	C
		REASONING -2	0	0	2	1
COU	RSE OF	BJECTIVES:	ı			
•	To im	prove the problem solving and logi	cal	thin	king	7
		of the students.				
•	To acq	uaint the student with frequently aske	d pa	tteri	ns ir	1
	quanti	tative aptitude and logical reasor	ning	du	ring	5
		s examinations and campus interviews	S			
UNI	ГΙ					4
Prob	ability, I	Permutation & Combination, Algebra,	Prob	olem	s or	l
ages						
UNI	ГІІ					4
Mens	suration	, Logarithms, inequalities and modulu	s, Sy	llog	ism	
UNI	ΓIII					4
Dire	ctions, 1	ogical sequence words, number ser	ies,	Ana	alyt	ical
Reas	oning	ATOREAL .			4	
UNI	ΓΙ	31,0		1		4
Blood	d relatio	n, Clock and Calendar, Picture puzzles	3 \		1	
UNI			3	9		4
Data	sufficie	ncy, cube and cuboids, odd man out				
	OINE	TOTAL	L: 20	PE	RIO	DS
COU	RSE OU	JTCOMES: AFFILIATED TO ANNA UNIVERSITY	AU	TONO	MOU	5
		empletion of the course, the students w		e ab	le to) :
CO1:		concepts of probability, permutation, a	ınd			
		ation to solve real-world problems.				
CO2:		lgebraic problems and age-related pro	blen	ns us	sing	
		approaches and techniques.				
CO3:		e and solve problems in mensuration,	loga	rith	ms,	
		equalities.				
CO4:	-	et and solve problems related to direct	ions	, log	gical	
007	_	ce, and number series.		-		
CO5:		y and solve problems in logical reasoni	_	uch	as	
601		sm, blood relations, clock and calendar				
CO6:		y and solve problems in logical reason		uch	as	
	syllogis	sm, blood relations, clock and calendar	:			

TEX	Г ВООК	:														
1	Smith,	Joh	n. ".	AP	ΓIPΕ	EDL	4." 2	2nd	ed.	., W	iley	Pub	lish	ers,	202	20.
2	Agarw	al, l	R.S.	"Q1	uant	itat	ive	Ap	titu	de.'	2nc	l ed.	, S. (Cha	nd	
	Publish	ning	5.													
REFI	ERENCE	ES:														
1	Agarw													lon-	-	
	Verbal	Rea	asor	ning	g." 21	nd e	ed.,	S. C	Chai	nd I	Publ	ishii	ng.			
	COs						P	Os						I	PSO	s
`	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	3	2	2	2	1	3	1	2	3	2	2
	2	3	2	2	2	3	2	3	2	1	2	1	2	3	2	3
	3	3	3	2	2	2	2	2	2	1	3	1	2	3	3	2
	4	2	3	2	1	2	3	1	2	3	3	2	3	2	2	3
	5	2	3	3	2	2	2	2	3	2	2	2	3	3	3	3
	6	3	3	2	2	3	2	3	3	2	2	1	2	3	3	2
O	verall	2	PRE	2	0	2				^	2		4	_		_

COLLEGE OF TECHNOLOGY

3 3

3

3 2

3rd ACM

3 2 3 3 3 3

13-11-2024

Date

30-11-2024

3 3

Recommended by Board of Studies

Approved

Correlation

2

SEMESTER -VI

23CE611	ENVIRONMENTAL SCIENCE	L	T	P	C
	AND ENGINEERING	3	0	1	4

COURSE OBJECTIVES:

- To provide basic knowledge on environment impact assessment.
- To create an awareness on the pollutants in the environment.
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products
- To develop simple climate models and evaluate climate changes using models.

UNIT I INTRODUCTION TO ENVIRONMENT 9+3 IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework.

UNIT II	MOVEMENT	OF	POLLUTANTS	IN 9+3
	ENVIRONMEN	TFILIATE		ONOMBUS

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

UNIT III	ECOLOGICAL R	ESTORATION	J	9+3
Wastewat	er treatment:	anaerobic,	aerobic	process,
methanog	enesis, treatment	schemes for	waste wate	er: dairy,
distillery,	tannery, sugar,	antibiotic ind	dustries: soli	id waste

treatment: sources and management (composting, vermiculture and methane production, landfill. hazardous waste treatment).

UNIT IV ECOLOGICALLY SAFE PRODUCTS AND 9+3 PROCESSES

Bio-fertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation

UNIT V CLIMATE CHANGE MODELS 9+3

Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date.

TOTAL: 45+45 PERIODS

LIST OF EXPERIMENTS:

- 1. Determination of Bio fuel parameters such as flash point and fire point.
- 2. Determination of density of biofuels.
- 3. Determination of BOD/COD in water.
- 4. Simulating the RCM and GCM model for different geographic conditions.
- **5.** Measurement of Pollutant in environment by Gaussian Plume model.

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Explain the importance of the process of Environmental impact assessment and its types.
- CO2 Illustrate the chemical processes and pollutant chemistry
- CO3 | Identify the methods to solve environmental problems
- CO4 Apply the knowledge to develop eco-friendly products.
- CO5 | Construct the various simple climate models for simulation
- CO6 Apply the climate model simulation to monitor climate change

TEX	TEXT BOOKS:															
1	David	.E	N	leel	in	"C	lima	ate	C	han	ige	anc	l N	lod	ellir	ıg",
	Cambri	dge	Ur	nive	rsit	yР	ress	s, C	alifo	orn	ia 2 0	12.				
2	Evans,	G	.G.	a	nd	F	urlo	ng,	, J		2010).]	Envi	ron	mei	ntal
	Biotech	nol	ogy	: Th	eor	y a	nd.	App	olica	atio	n (2:	nd e	ditio	n).	Wil	ley-
	Blackw	ell I	Pub	lica	tior	ıs.										
3	Pani, B	. 20	007	. Те	extb	ool	S O	f E	nvi	ron	men	tal	Che	mis	try.	IK
	internat	tion	al I	Pub!	lish	ing	Но	use								
4	N.S. R	am	an	, .	A.R	. (Gajl	ohiy	_' e	anc	1 S.	R.	Kha	nde	shv	var,
	Enviror	nme	nta	1 I1	mpa	act	As	sess	sme	nt,	201	4,IK	Int	ern	atio	nal
	Pvt. Ltd	1.														
REF	ERENCE															
1	Carson	(19	07-1	1964	1). E	invi	iror	ıme	nt (Con	serv	atio	n - b	ool	<	
2	Encyclo	рає	edia	of	En	vir	onn	nen	tal	Issı	ies 1	by (Craig	; W	7. A	llin
	Encyclopaedia of Environmental Issues by Craig W. Allin Probe.															
3	Encyclopaedia of Environmental studies by William															
1	Ashworth.															
	Ashwo	-	1	V		4					Brac	arcs	Dy.			. Carri
4	Climate	rth.	ang	ge a	nd	Cliı	mat	e M	Iode	elin	g- K	indl	e Ed	litic	n.	
4 5	Climate	rth. Ch	ang enta	ge a lly-	nd Fri	Clii enc	nat	e M	Iode	elin	g- K	indl	e Ed	litic	n.	
	Climate	rth. Ch	ang enta	ge a lly-	nd Fri	Clii enc	nat	e M	Iode	elin	g- K	indl	e Ed	litic	n.	
5	Climate Enviror Abile ,F	rth. Ch nme Rein	iang enta	ge a lly-	nd Fri	Clii enc	mat lly 05.	e M	lodo	elin	g- K evel	indl	e Ed	litic -Eb	n.	and
5	Climate	rth. Ch	ang enta	ge a lly-	nd Fri	Clii enc	mat Ily 1 05.	e M Pro	lode duc	elin	g- K	indl	e Ed	litic -Eb	on. erha	and
5	Climate Enviror Abile ,F	rth. Ch nme Rein	iang enta	ge a lly- And	nd Fri lerl,	Clinence 200	mat lly 195. I 6	e M Pro	lodo	elin	g- K evel	indl	e Ed	itic -Eb	on. erha	and Os
5	Climate Enviror Abile ,F COs	rth. Chame Rein 1 2	enta er 2 2 1 2	ge a lly- And	nd Fri lerl,	Clinence 200	mat lly 105. I 6 2 3	Pro Pos 1 2	lodo	elin	g- K evel	indl	e Edent - 12 - 1	itic -Eb	on. erha	and Os
5	Climate Enviror Abile ,F COs 1 2 3	rth. Chame Rein 1 2 3 3	aangenta er 1 2 1 2	ge a lly- And 3 - 1	nd Fri lerl,	Clinence 200	mat lly 195. I 6 2 3 3	Pro Pos 7 1 2 2	lode duc	elinet de	g- K evelo 10	indlopm 11	e Edent - 1 1 1	itico-Eb 1 2 3	PSC 2	and Os
5	Climate Enviror Abile ,F COs 1 2 3 4	rth. Chrome Rein 1 2 3 3 3	2 1 2 2 2	3 - 1 1 1	nd Fri lerl, 1 1	Clinence 200	mate the state of	Pro 7 1 2 2 2 2	8 -	elinet de	g- K evelo 10	indlopm 11	12 - 1 1 1	1 2 3 3 3	PSC 2 -	and Os
5	Climate Enviror Abile ,F COs 1 2 3 4 5	rth. Chrime Rein 2 3 3 3 3 3	2 1 2 2 2 2	3 - 1 1 1 1	nd Fri erl, 1 1 1	Clinence 2000 5	mat llly 1.55. I 6 2 3 3 3 3 3 3	Pro	8	elinet d	g- K evelo 10 - -	indlopm 11	e Edent - 1 1 1	1 2 3 3 3	PSC 2	and Os
5	Climate Enviror Abile ,F COs 1 2 3 4 5	rth. Chrome Rein 1 2 3 3 3	2 1 2 2 2	3 - 1 1 1	nd Fri lerl, 1 1	Clinence 2000 5	mate the state of	Pro 7 1 2 2 2 2	8	9	g- K evelo	indlopm 11	12 - 1 1 1	1 2 3 3 3	PSC 2	and Os
5 0	Climate Enviror Abile ,FCOs 1 2 3 4 5 6 verall	rth. Chrime Rein 2 3 3 3 3 3	2 1 2 2 2 2	3 - 1 1 1 1	nd Fri erl, 1 1 1	Clinence 2000 5	mat llly 1.55. I 6 2 3 3 3 3 3 3	Pro	8	9	g- K evelo	11	12 - 1 1 1 1 1	1 2 3 3 3	PSC 2	and Os
O Corr	Climate Enviror Abile ,FCOs 1 2 3 4 5 6 verall relation	1 2 3 3 3 3 3 3 3	2 1 2 2 2 2 2	3 - 1 1 1 1 1 1 1	nd Friderl, 4 - 1 1 1 1 1	5	mat lly : 5. I 6 2 3 3 3 3 3 3 3 3	Pro	8	9	10	11	12 - 1 1 1 1 1 1 1	1 2 3 3 3 3	PSC 2	and Os
O Corr	Climate Enviror Abile ,F COs 1 2 3 4 5 6 verall relation mmended	1 2 3 3 3 3 3 3 3	2 1 2 2 2 2 2 2 2 80	3 - 1 1 1 1 1 1 ard	nd Friderl, 4 - 1 1 1 1 1	5	mat lly : 5. I 6 2 3 3 3 3 3 3 3 3	ProProProProProProProProProProProProProP	8	9	10	11	12 - 1 1 1 1 1 1 1 1	1 2 3 3 3 3 3 3 3	PSC 2	and Os

23ME611	CAD/CAM	L	T	P	C
		3	0	2	4

COURSE OBJECTIVES:

- To provide an overview of how computers are being used in mechanical component design.
- To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout and Material Handling system.
- To understand and apply various CAD standards in computer-aided design systems.
- To study the basic concepts of CNC of machine tools and constructional features of CNC.
- To train students to apply group technology and FMS.

UNIT I FUNDAMENTALS OF COMPUTER 9+3 GRAPHICS

Introduction to CAD, CAD/CAM -CAD/CAM concepts - Product cycle- Design process Shigley model - sequential and concurrent engineering- Computer aided design - CAD system architecture-Computer graphics - co - ordinate systems - 2D and 3D transformations - Line drawing - Clipping - Viewing Transformation.

UNIT II GEOMETRIC MODELING 9+3

Representation of curves- Hermite curve- Bezier curve- B-spline curves-rational curves- Techniques for surface modeling – surface patch- Coons and bi - cubic patches- Bezier and B - spline surfaces. Solid modeling techniques- CSG and B-rep.

UNIT III | CAD STANDARDS | 9+3

Standards for computer graphics - Graphical Kernel System (GKS) - standards for exchange images - Open Graphics Library (OpenGL) - Data exchange standards - IGES, STEP, CALS etc. - communication standards.

UNIT IV	PROGRAMMING OF CNC MACHINE	9+3
	TOOLS	

Numerical Control (NC) machine tools – CNC types, constructional details, part programming fundamentals CNC – Absolute vs Incremental, Program planning, G and M codes, Manual part programming for CNC machining centers and Turning centers – CNC Milling - Linear and circular interpolation and Mirroring and sub program call.

UNIT V CELLULAR MANUFACTURING AND FLEXIBLE MANUFACTURING SYSTEM (FMS) 9+3

Group Technology (GT), Part Families – Parts Classification and coding – Simple Problems in Opitz Part Coding system – Production flow Analysis – Cellular Manufacturing – Composite part concept – Types of Flexibility - FMS – FMS Components – FMS Application and Benefits – FMS Planning and Control.

TOTAL: 45 +15 PERIODS

LIST OF EXPERIMENTS:

3D GEOMETRIC MODELLING

Introduction of 3D Modelling software - (Any three experiments)

- Creation of 3D assembly model of following machine elements using 3D Modelling software
- 2. Flange Coupling
- 3. Plummer Block
- 4. Screw Jack
- 5. Universal Joint

Manual Part Programming

- i) Part Programming CNC Machining Centre
 - a) Step Turning.
- ii) Part Programming CNC Milling

b) Linear and circular interpolation Mirroring and sub program call **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to CO1 | Explain the 2D and 3D transformations, clipping algorithm, Manufacturing models and Metrics. CO2 | Explain the fundamentals of parametric curves, surfaces and Solids. CO3 Summarize the different types of Standard systems used in CAD. **CO4** Apply NC and CNC programming concepts to develop part program. CO5 Explain different types of techniques used in Cellular Manufacturing and Group Technology (GT). Summarize Flexible Manufacturing System, Components, planning and Control. **TEXT BOOKS:** Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill 1 Publishing Co. 2007. "Automation, 2 Mikell. Р .Groover, ProductionSystems and Computer Integrated Manufacturing", Prentice Hall of India, 2008. Radhakrishnan P, Subramanyan 3 S, and Raju "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000. **REFERENCES:** McMahon Browne "CAD/CAM 1 Chris and Jimmie Principles", "Practice and Manufacturing Management ", Second Edition, Pearson Education, 1999. Donald Hearn and M. Pauline Baker "Computer Graphics". 2 Prentice Hall, Inc, 1992.

3	Foley, Wan Dam, Feiner and Hughes - "Computer graphics															
J	5	principles and practice" Pearson Education -2003.														
	1 1															
4	William M Neumann and Robert F.Sproul "Principles of															
	Computer Graphics", McGraw Hill Book Co. Singapore,															
	1989.															
	COs POs PSOs															
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	1	1	2	2	2	2	1	1
	2	2	1	-	-	1	-	-	1	1	2	2	2	2	1	1
	3	2	1	-	-	1	-	-	1	1	2	2	2	2	1	1
	4	3	2	1	1	1	-	-	1	1	2	2	2	3	1	1
	5	2	1	-	-	1	-	-	1	1	2	2	2	2	1	1
	6	2	1	-	-	1	-	-	1	1	2	2	2	2	1	1
O	verall	0)	1	1	1			1	1	•	_	0	0	1	1
Cor	relation	3	2	1	1	1	72	ø	1	1	2	2	2	3	1	1
Reco	mmended	1 by	Ro	ard	of S	Stud	ies	07-	11_2	024			A W	12.1		

Approved

COLLEGE OF TECHNOLOGY

3rd ACM

Date

30-11-2024

		_
3 0	2	4

COURSE OBJECTIVES:

- To study the use of computer in mobility software or mobility.
- To study the concepts computer aided design and rapid prototyping.
- To introduce the basic concepts of the finite element methods.
- To introduce basics and fundamental of the computational fluid dynamics.
- To introduce Turbulence Modelling and various simulation techniques.

UNIT I FINITE ELEMENT FORMULATION OF 9+3 BOUNDARY VALUE PROBLEMS

Introduction to FEA – Weighted residuals methods (Least square method, collocation, subdomain collocation, Galerkin's method) – Variational approach – Rayleigh Ritz method.

UNIT II ONE DIMENSIONAL FINITE ELEMENT 9+3 ANALYSIS

General form of total potential for 1-D applications - generic form of finite element equations - nodal approximation - Development of shape functions - Element matrices and vectors - 1-D finite element analysis: bar element, beam element, spring element and truss element, quadratic element.

UNIT III TWO-DIMENSIONAL FINITE ELEMENT 9+3 ANALYSIS

2-D finite element analysis: types of elements, shape functions, natural coordinate systems - Iso-parametric elements - Transformations to natural coordinates - Gaussian quadrature - Plane stress, plane strain and axisymmetric applications.

UNIT IV DYNAMIC ANALYSIS USING FINITE ELEMENT METHOD

Introduction - Vibration problems - Equations of motion based on weak form - Longitudinal vibration of bars - Transverse vibration of beams - Consistent mass matrices element equations - Solution of Eigenvalue problems - Vector iteration methods - Normal modes - Transient vibrations - Modelling of damping - Mode superposition technique - Direct integration methods.

UNIT V APPLICATIONS IN HEAT TRANSFER 9+3 AND FLUID MECHANICS

1-D heat transfer element - Application to one-dimensional heat transfer problems - Scalar variable problems in 2-D - Applications in heat transfer in 2-D Problems.

TOTAL: 45+15 PERIODS

6

LIST OF EXPERIMENTS: (Any six experiments)

- 1. Force and Stress analysis using link elements in Trusses, cables etc.
- 2. Stress and deflection analysis in beams with different support conditions.
- 3. Stress analysis of flat plates and simple shells.
- 4. Stress analysis of axi-symmetric components.
- 5. Thermal stress and heat transfer analysis of plates.
- 6. Thermal stress analysis of cylindrical shells.
- 7. Vibration analysis of spring-mass systems.
- 8. Model analysis of Beams.
- 9. Harmonic, transient and spectrum analysis of simple systems.

TOTAL:15 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

CO1 Apply the governing equation and boundary conditions for the structural and thermal problems.

CO2	Develo	p fi	nit	e el	eme	ent f	orn	nula	atio	n u	sing	; 1D	eler	nen	ts.	
CO3	Develo	p f	ini	te e	elen	nent	fo	rm	ulat	tion	for	· 2D) pl	ane	str	ess,
	plane s	trai	n a	nd	axi-	syn	nme	etric	co	ndi	tion	s.	-			
CO4	Analyz	e d	yna	ami	c pr	obl	ems	us	ing	dif	fere	nt el	eme	ents		
CO5	Apply	hea	t tr	ans	fer	pro	bler	ns.								
CO6	Analyz	e fl	uic	l me	echa	nic	s pr	obl	em	s.						
TEXT	BOOK	S:														
1	Chand	rup	atla	a a	nd	Be	lagı	und	lu,	"Iı	ntro	duct	ion	to	Fir	nite
	Elemer															ege
	Div, 20															
2												nal	ysis'	', P	rent	ice-
	Seshu, P, "Text Book of Finite Element Analysis", Prentice- Hall of India Pvt. Ltd., New Delhi, 2007.															
REFE	RENCE															
1	Logan,								in	Fin	ite	Elen	nent	M	etho	ď",
	Thoms									3.66	1	1	D1		D 1	
2	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert															
	J. Witt, "Concepts and Applications of Finite Element Analysis" 4th Edition Wiley Student Edition 2002															
3	Analysis", 4th Edition, Wiley Student Edition, 2002. Rao SS "The Finite Flement Method in Engineering" 3rd															
3	Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004.															
4	Bhatti A											mer	nt Aı	nals	reie a	and
_	Applica															
	2013).	4010		, , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-					,	LAU		-	
	,						P	Os							PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	_	1	_	2	2	2	3	1	1
	2	3	2	1	1	1	1	_	1	_	2	2	2	3	1	1
	3	3	2	1	1	1	1	_	1	_	2	2	2	3	1	1
	4	3	3	2	2	1	1	-	1	-	2	2	2	3	1	1
	5	3	2	1	1	1	1	-	1	-	2	2	2	3	1	1
	6	3	3	2	2	1	1	-	1	-	2	2	2	3	1	1
Ov	erall		_				_		_							_
Corr	elation	3	3	2	2	1	1	-	1	-	2	2	2	3	1	1
Reco	nmende	d by	Bo	ard	of S	Stuc	lies	07-	11-2	2024	Į	1		•		
	A	ppı	ove	ed				3rd	AC	CM		Date	5	30	-11-2	2024

23ME621	PROJECT WORK PHASE-1	L	T	P	C
		0	0	4	2

COURSE DESCRIPTION:

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

COURSE OBJECTIVES:

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

PROJECT	OUTLINE:
Week 1	Orientation and course overview. Formation of project
	teams and approval of topics by HoD.
Week 2	Initial meeting with supervisors. Define problem
	statement and objectives
Week 3	Literature review: Research methodologies and topic-
	specific studies.
Week 4	Zeroth Review.

Week 5	Refinement of literature review and identification of
	research gaps.
Week 6	Identification of Base Paper.
Week 7	First Review.
Week 8	Conceptual design discussions and brainstorming
	solutions.
Week 9	Narrowing done on the exact work.
Week 10	Completion of first stage of the Project.
Week 11	Development of detailed conceptual design and
	methodology.
Week 12	Incorporation of feedback and refinement of design
	and methodology.
Week 13	Second Review.
Week 14	Compilation of Phase 1 results, report writing, and
45	presentation preparation.
Week 15	Final Viva Voce Presentations.
To divide a	readings will be active as a read's beside somice stice

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDG-aligned goals.

Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written communication, ensuring effective delivery of technical content.

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Develop feasible solutions by analyzing complex engineering problems using foundational knowledge, mathematics, and science.
- literatures to identify gaps, define research CO₂ Survey questions, and propose designs and methods for solving engineering problems.
- CO3 Make use of modern tools to check the feasibility of the solutions effectively.
- CO4 Evaluate societal and environmental impacts of solutions while incorporating sustainability and ethical practices.
- CO5 Combine in teams to plan, manage, and lead projects within professional and economic constraints.
- CO6 Formulate technical reports, deliver presentations, and engage in lifelong learning to adapt to new technologies.

COs	RR	EALL	No.		CC	/-I	POs	JE.	U	1E	CH	NO	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3	
5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Overall Correlation	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Recommended by Board of Studies 07-11-2024																
Approved								3rd ACM Date 30-11							2024	

23ME622	TECHNICAL TRAINING	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

COURSE OBJECTIVES:

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

COURSE OUTCOMES:

CO O	NOE OUTCOMIES.									
After	After completion of the course, the students will be able to									
CO1	Identify specific domain from the enrolled branch and to get									
	training preferable in computer-oriented platform.									
CO2	Survey and apprehend the learning modules in the training									
	program and to become expert in the specific domain.									
CO3	Apply theoretical learning in the practical environment and									
	enhance the skillset of learner.									

CO4	Estimate the learning using available data.												
CO5	Defend a presentation about the learning done in the												
	specified skillset.												
CO6	Construct a technical report about the training.												

GUIDELINES:

- More than one training program may be given depending on availability and interest of the students. One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

EVALUATION PATTERN:

Training Coordinator:

50 marks (Training Manual – 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall approve the entries in the Training Manual during the weekly meeting with the student), Attendance – 10).

Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

					Training duration - 30 Hours										
COs			PSOs												
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	2	1	1	•	1	1	3	3	-	-
2	3	3	2	1	-	2	1	-	-	-	-	3	3	-	-
3	3	3	3	3	3	-	-	1	1	2	1	3	3	3	1
4 JPOW	3	3	3	2	2	N.	7	1		3		3	3	2	1
5	3	3	3	2	1	2	7	2	-	2	-	2	3	1	2
6	3	3	3	3	2	2		2	-	3		3	3	2	2
Overall Correlation	3	3	3	3	2	2	1	2		3	200	3	3	2	2
Recommended	ies	07-	11-2	2024		LH	INO	LU	O i						
Approved							3rd ACM Date 30-11-2024								2024

23ME623	TECHNICAL SEMINAR - 1	L	T	P	С
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned

Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

CO1	Identify	aca	ade	mic	do	cun	nen	ts f	rom	th	e lite	eratı	ıre v	vhi	ch a	ire
	related t	to h	is/	her	are	as c	of in	itere	est.							
CO2	Survey	and	d a	ppr	ehe	nd	an	aca	ade	mic	do	cum	ent	froi	n t	he
	literatur	e w	hic	h is	rel	ate	d to	his	/he	er a	reas	of ir	ntere	st.		
CO3	Compile	e a _]	pres	sent	atio	on a	bou	ıt a	n ac	cade	emic	doc	ume	nt.		
CO4	U															
CO5	Defend a presentation about an academic document.															
CO6	Construct a technical report.															
	POs PSOs														s	
\ \ \	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
3	verall relation	rerall 3 3 2 1 1 1 1 2 3 3 2 2 3 2 2														
Reco	mmended	d by	Во	ard	of S	tud	ies	07-	11-2	024						
	Approved)[]	3rd ACM Date 30-11-2024						2024		

VEER REP

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

SEMESTER - VII

23ME701	FLUID POWER AUTOMATION	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the basic principles of fluid power.
- Explain the working principles of various pumps.
- To understand the working principle of hydraulic and pneumatic components and its selection.
- To design hydraulic and pneumatic circuits for different applications.
- To learn about the fundamentals of Programmable Logic Controller.

UNIT I INTRODUCTION TO FLUID POWER 9

Introduction to fluid power controls - Hydraulics and pneumatics - Selection criteria, Application of Fluid power, Application of Pascal's Law, equation, Transmission, and multiplication of force - Pressure Losses - Fluids, selection and properties - ISO symbols. Pumps - working principle and construction details of Gear, vane and piston pumps.

UNIT II FLUID POWER ACTUATORS 9

Fluid power actuators - Cylinders - Types and construction, Application, - Hydraulic motors, Pneumatic power supply - compressors, air distribution, air motors. Actuators - Selection and specification, cylinders, mounting, cushioning- Hydrostatic transmission drives and characteristics; Accumulators - Intensifiers.

UNIT III | FLUID POWER CONTROL ELEMENTS 9

Control valves - pressure, flow, direction - working principle and construction - Special type - valves - Cartridge, modular, proportional, and servo - Selection and actuation method - Hydraulic supply components -pipe fittings - Fluid conditioning elements.

UNIT IV HYDRAULIC AND PNEUMATIC CIRCUITS 9 **DESIGN** Regenerative, speed control and synchronizing circuits - Design of Hydraulic and pneumatic circuits for automation, selection and specification of circuit components, sequencing circuits, cascade method. **ELECTRO PNEUMATICS AND PLC CIRCUITS** UNIT V 9 Use of electrical timers, switches, solenoid, relays and proximity sensors electro pneumatic sequencing - PLC - elements, functions and selection - PLC programming - Ladder diagram and different programming methods - Sequencing circuits. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to **CO1** Explain the concepts of fluid power system. CO2 Describe the features and working of fluid power actuators. CO3 | Explain the pneumatic system and its control components. CO4 Describe the features and working of control valves and its functions. CO5 Design hydraulic and pneumatic circuits for industrial applications. Apply the basic concepts, elements and functions of CO₆ Programmable Logic Controller. TEXT BOOKS: Anthony Esposito "Fluid power with applications",7th 1 Edition, Pearson education 2014. 2 Majumdar, "Pneumatic Principles and system: Maintenance", Tata McGraw Hill, 2006.

Majumdar, "Oil hydraulics: Principles and Maintenance",7th

Edition, Tata McGraw Hill, 2005.

3

REFI	ERENCE	S:														
1	Srinivas	san.	R.,	, "H	Iyd	rau	lic a	ind	Pn	eur	natio	: Co	ntro	ls",	Vij	ay
	Nicole l	[mp	rin	ts P	riva	ate l	Lim	itec	1,20	11.						
2	Andrew	v Pa	arr '	'Ну	dra	ulio	cs a	nd :	Pne	um	atics	, Jai	co P	ubl	ishi	ng
	House,	200	4 .													
3	William W.Reaves, "Technology of Fluid Power", Delmer															
	Publishers, 1997															
4	PeterRohner, "Fluid Power Logic circuit", Design Macmillon															
	Press Ltd., 1990.															
	COs PSOs															
•	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	-	1	-	-	-	1	1	-
	2	2	1	-	-	1	-	1	-	1	-	1	-	1	1	ı
	3	2	1	-	-	1	-	5	Ţ	1	-	-	- 5	1	1	-
	4 ow	2	1	-	-	1	-2	9	-7	1	_	<u></u>	A	1	1	-
,	5	2	1	2	\ -	1	4	ζ-	-0	1	-	-	-	1	1	-
Î	6	3	2	1	1	1	4	B	-/	1	-2	7		1	1	-
- 3	verall relation	3	1	1	1	1	-	-	_	1	-	-	-	1	1	60
Reco	mmended	d by	Во	ard	of S	Stud	lies	07-	11-2	024	TE	CH	NO	LO	(G)	
	Approved 3rd ACM Date 30-11-2024															

23ME702	COMPREHENSION	L	T	P	C
		2	0	0	2

PURPOSE:

To provide a complete review of the topics covered in the previous semesters, to ensure that a comprehensive understanding of the subjects is achieved. The student will be tested as per the guidelines given by national level examinations like GATE, TANCET etc. It will also help students to face job interviews and competitive examinations.

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Analyse the phenomena involved in the concerned problem and solve them.
- CO2 Apply principles to new and unique circumstances.
- CO3 Estimate concepts and principles of concerned branch of engineering.
- CO4 Distinguish between facts and opinion in the engineering field.
- CO5 Deduct cause-and-effect relationships of any relationship.
- CO6 Interpret data from charts and graphs and judge the relevance of information.

GUIDELINES:

- The Department shall form an Internal Assessment Committee for the Comprehension with Academic coordinator for that class as the Comprehension Instructor and Class coordinator as member.
- Instructor shall provide required input to their students regarding the overview of all topics covered in the previous semesters.
- Periodic tests can be conducted to assess students.

COs						I	POs						PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	3	2	1	-	2	1	-	-	-	-	1	3	-	-		
2	3	2	1	1	-	1	1	-	-	-	-	1	3	ı	-		
3	3	3	3	3	3	-	-	3	-	3	-	3	3	3	3		
4	3	2	1	1	2	-	-	1	-	3	-	3	3	2	1		
5	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2		
6	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2		
Overall	3	3	3	3	3	2	1	2		3		3	3	3	2		
Correlation	3	3	3	3	3	4	1			3	-	3	3	3			
Recommende	Recommended by Board of Studies									3 07-11-2024							
Approved								3rd ACM Date				30-11-2024					

23ME711	MECHATRONICS AND IoT	L	T	P	C
		3	0	2	4

COURSE OBJECTIVES:

- To make students get acquainted with the sensors and the actuators, which are commonly used in mechatronics systems.
- To provide insight into the signal conditioning circuits, and also to develop competency in PLC programming and control.
- To make students familiarize with the fundamentals of IoT and Embedded systems.
- To impart knowledge about the Arduino and the Raspberry Pi.
- To inculcate skills in the design and development of mechatronics and IoT based systems.

UNIT I INTRODUCTION 9+3

Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance sensors – Strain gauges – Eddy current sensor – Hall effect sensor – Temperature sensors – Light sensors.

UNIT II MICROPROCESSOR AND 9+3 MICROCONTROLLER

Introduction – Architecture of 8085 – Pin Configuration – Addressing Modes –Instruction set, Timing diagram of 8085 – Concepts of 8051 microcontroller – Block diagram,. Keyboard interfacing, LED display –interfacing, ADC and DAC interface, Temperature Control – Stepper Motor Control – Traffic Control interface.

UNIT III	PROGRAMMABLE LOGIC CONTROLLER	9+3

Introduction – Basic structure – Input and output processing – Programming – Mnemonics – Timers, counters and internal relays

- Data handling - Selection of PLC.

UNIT IV ACTUATORS AND MECHATRONIC SYSTEM 9+3 DESIGN

Types of Stepper and Servo motors – Construction – Working Principle – Advantages and Disadvantages. Design process-stages of design process. Advanced system design, - communication tools like GPS and Zig Bee

UNIT V FUNDAMENTALS OF IOT AND EMBEDDED 9+3 SYSTEMS

The Internet of Things (IoT) - Introduction to the IoT Framework – IoT Enabling Technologies. Embedded Systems: An Introduction - Single-Chip Microcontroller Systems - Single-Board Microcontroller Systems. Introduction to Arduino-Types of Arduino Boards - Arduino Peripherals- Arduino IDE.

TOTAL: 45 +15 PERIODS

LIST OF EXPERIMENTS:

MECHATRONICS

- 1. Sequencing of Hydraulic and Pneumatic circuits.
- 2. Electro-pneumatic/hydraulic control using PLC.
- 3. Programming and Interfacing of Stepper motor and DC motor using 8051/PLC.
- Sequencing of Hydraulic, Pneumatic and Electropneumatic circuits using Software.

INTERNET OF THINGS:

- 1. Familiarization with concept of IoT and its open source microcontroller/SBC.
- 2. Write a program to turn ON/OFF motor using microcontroller/SBC through internet.
- 3. Write a program to interface sensors to display the data on the screen through internet.
- 4. Interface the sensors with microcontroller/SBC and write a program to turn ON/OFF Solenoid

	valve through internet when sensor data is
	detected.
	TOTAL: 15 PERIODS
COU	RSE OUTCOMES:
After	completion of the course, the students will be able to
CO1	Explain select suitable sensors and actuators to develop
	mechatronics systems.
CO ₂	Explain signal conditioning circuit for mechatronics systems,
	and also able to implement PLC as a controller for an
	automated system.
	Explain the fundamentals of IoT and Embedded Systems.
CO4	Discuss Control I/O devices through Arduino and
	Raspberry Pi.
CO ₅	Develop an apt mechatronics/IoT based system for the given
	real-time application.
	Analyze the mechatronics system.
TEX	Γ BOOKS:
1	Bradley D.A., Burd N.C., Dawson D., Loader A.J.,
	"Mechatronics: Electronics in Products and Processes",
	Routledge, 2017. AFFILIATED TO ANNA UNIVERSITY LAUTONOMOUS
2	Sami S.H and Kisheen Rao G "The Internet of Mechanical
	Things: The IoT Framework for Mechanical Engineers", CRC
	Press, 2022.
	ERENCES:
1	John Billingsley, "Essentials of Mechatronics", Wiley, 2006.
2	David H., Gonzalo S., Patrick G., Rob B. and Jerome H., "IoT
	Fundamentals: Networking Technologies, Protocols, and
	Use Cases for the Internet of Things", Pearson Education,
	2018.
3	Nitin G and Sharad S, "Internet of Things: Robotic and Drone
	Technology", CRC Press, 2022
4	Newton C. Braga, "Mechatronics for the Evil Genius", Mc
	Graw Hill, 2005.

5	Bell C.	, "]	"Beginning Sensor Networks with Arduino and													
	Raspbe	rry	ry Pi", Apress, 2013.													
	COs				PSOs											
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	ı	1	ı	ı	ı	1	1	ı	ı	2	1	ı
	2	2	1	-	1	1	1	-	-	1	-	-	-	2	1	1
	3	2	1	-	-	1	-	-	-	1	-	-	-	2	1	,
	4	2	1	-	-	1	-	-	-	1	-	-	-	2	1	1
	5	3	2	1	1	2	-	-	-	2	-	-	-	3	2	1
	6	3	3	2	2	2	-	-	-	2	-	-	-	3	2	,
O	verall	3	2	1	1	2				2				3	2	
Corı	relation	3	_	1	1	_	-	-	-	_	-	-	-	3		-
Recommended by Board of							07-11-2024									
Studies																
	Approved							3rd ACM Date 30-11-2024						2024		

23ME721	PROJECT WORK PHASE - 2	L	T	P	C
		0	0	4	3

COURSE DESCRIPTION:

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through fabrication, simulation, or experimental validation. Students will refine their designs, validate test problems, and commission setups for final testing. This phase emphasizes hands-on application, calibration, and demonstration of results, culminating in a final presentation and report submission.

COURSE OBJECTIVES:

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

PROJECT OUTLINE:

,	
Week 1	Review of Phase 1 outcomes and refinement of proposed methodology.
Week 2	Material procurement/ software setup for simulation, and initiation of fabrication/simulation work.
Week 3	Intermediate fabrication/simulation work and initial testing or calibration, troubleshooting challenges.

Week 4	Second Review.
Week 5	Validation of test problem or refinement of prototype/simulation
Week 6	Optimisation of the test setup or solution trials, Data curation / uncertainty analysis
Week 7	Final testing of setup or simulation outcomes, Validation of Data .
Week 8	Third Review
Week 9	Demonstration of the solution with high level of data accuracy and precision.
Week 10	Compilation of Phase 2 results, report writing, and presentation preparation.
Week 11	Preparing or publishing of research article/ Filing or Grant of Patent
Week 12	Final Viva Voce Presentations.

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.

 Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project.

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Apply appropriate methodologies to implement solutions for complex engineering problems identified in phase -1 using hardware / software or both systems.
- CO2 Develop existing functional prototypes or simulations models by integrating theoretical and practical knowledge.
- CO3 Evaluate solutions ensuring compliance with design specifications.
- **CO4** Appraise the performance of solutions by refining designs or improving algorithms for enhanced outcomes.
- CO5 Collaborate effectively with team members to plan, manage, and execute engineering projects adhering to ethical principles and professional standards.
- CO6 Prepare technical reports, impactful presentations that communicate solutions effectively.

COs	POS													PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3	
5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Overall Correlation	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	

Recommended by Board of Studies | 07-11-2024 | Approved | 3rd ACM | Date | 30-11-2024

23ME722	TECHNICAL SEMINAR - 2	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar 2' is intended to be continuation of Technical Seminar 1. It enables a B.E./B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10).

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

COU	RSE OU	TC	ON	1ES	:											
After	completi	ion	of t	he c	cou	rse,	the	stu	der	nts v	will 1	be al	ble t	o		
CO1	Identify	aca	ade	mic	do	cur	nen	ts f	rom	th.	e lite	eratı	ıre v	vhi	ch a	ire
	related	to h	er/	his	are	as c	of ir	iter	est.							
CO2	Survey	and	d a	ppr	ehe	nd	an	aca	ade	mic	do	cum	ent	froi	n t	he
	literature which is related to her/ his areas of interest. Compile a presentation about an academic document.															
CO3	Compile	e a j	pres	sent	atio	on a	ıboı	ıt a	n ac	cade	emic	doc	ume	nt.		
CO4	Estimat	e th	e C	ont	ents	s us	ing	ava	ailal	ole l	litera	atur	2.			
CO5	Defend	a p	rese	enta	tion	n ab	out	an	aca	der	nic (locu	mer	ıt.		
CO6	Constru	ıct a	tec	hni	cal	rep	ort.									
	POs COs													I	PSC	s
,	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
1	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	verall relation	3	3	2	1	1	1	1	2	3	3	2	2	3	2	2
	mmende	lies	13-	11-2	024	NIVER	SITY	AUTO	DIVO	MOU	5					
	Approved									3rd ACM Date 30-11-20						

SEMESTER-VIII

23ME821	CAPSTONE PROJECT COURSE	L	T	P	C
		0	0	20	10

COURSE DESCRIPTION:

Prerequisites:

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

COURSE OBJECTIVES:

The Capstone Project should demonstrate the depth and extent of knowledge of students

During this course, students will

- Investigate and evaluate prominent literature connected to your CP.
- Present a clearly articulated investigative framework, while situating projects within established academic

- practices and/ or ideas.
- Develop and create practical resources (either computational or experimental) for the concerned area of interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

	1
PROJECT	OUTLINE:
Week 1	Identification problem.
Week 2	Literature review.
Week 3	Preliminary work.
Week 4	First review.
Week 5	Completion of first stage of the Project methodology.
Week 6	Development.
Week 7	Testing and Validation.
Week 8	Second review.
Week 9	Repeatability.
Week 10	Report correction and Documentation
Week 11	Third review-Submission of paper for conference/journal
Week 12	Thesis Correction and Submission
Individual	meetings will be set up on a need's basis in conjunction
with devel	oping work
COURSE	OUTCOMES:

After completion of the course, the students will be able to

CO1	Take p					_	_	-			-			and	fir	nd	
CO2	Plan res	sear	ch	me	thoc	dolo	gy	to t	ack	le a	spe	cific	pro	ble	m.		
CO3	Constru	ıct e	exte	ensi	ve s	tud	y o	n p	arti	cul	ar re	sear	ch p	roj	ects	•	
CO4	Develo _j innovat		-						con	npu	tatic	nal	stu	ıdie	es (on	
CO5	Estimat	e ir	icre	me	ntal	stu	dy	on	exis	stin	g res	searc	ch p	roje	cts.		
CO6	Take pa						gin	eeri	ng	cha	ıllen	ges	and	pro	opo	se	
(COs														PSC)s	
	205	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	2	3	2	3	3	2	3	2	3	2	3	2	3	3	2	3	
y.	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	
	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
3	5	2	3	3	3	3	3	3	3	3	3	3	3	2	3	_3	
	6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Corr	verall elation	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Reco	mmende	d by	Во	ard	of S	Stud	ies	07-11-2024									
	Approved							3rd ACM				Date 30-11-202				2024	

VERTICAL -1 - MANUFACTURING ENGINEERING

	IICAL -I - MANUFACTURING ENGIN		`	_					
23ME031	ADDITIVE MANUFACTURING	L	T	P	C				
COLIDOR	DYNOTHING	3	0	0	3				
	BJECTIVES:								
	introduce the development of Additive Ma				0				
*	M), various business opportunities and ap	_							
	familiarize various software tools, pro-								
	nniques to create physical objects that sat	-	-		.ct				
dev	velopment / prototyping requirements, us	sing	ΑN	1.					
• To	be acquainted with vat polymerization	an	d	dire	ect				
ene	ergy deposition processes.								
UNIT I	NTRODUCTION				9				
Overview -	Need - Development of Additive Manufac	turi	ng	(Al	(I)				
Technology	: Rapid Prototyping - Rapid Toolir	ng .	- I	Rap	id				
Manufactur	ing - Additive Manufacturing. AM Pro	ces	s C	hai	n-				
ASTM/ISO	52900 Classification - Benefits. Application	ns:	Bui	ldiı	ng				
Printing - Bio Printing - Food Printing - Electronics Printing. Case									
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tomobile, Aerospace, Healthcare.				0.5				
UNIT II	DESIGN FOR ADDITIVE MANUFACT	JRI	NG	GY	9				
	DFAM) AFFILIATED TO ANNA UNIVERSITY			40U	9				
Concepts a	and Objectives - AM Unique Capabil	ities	; -	Pa	art				
_	on - Topology Optimization - Generati								
Lattice Stru	ctures - Multi-Material Parts and Gradeo	l M	ateı	rials	s -				
Data Proces	sing: CAD Model Preparation - AM File f	forn	nats	s: S]	ΓL				
	vith STL - AMF Design for Part Quality In								
	tation - Support Structure - Slicing -	_							
	- Design rules for Extrusion based AM.								
	VAT POLYMERIZATION AND DIRECT	ΓED)		9				
	ENERGY DEPOSITION								
Photo poly	merization: Stereo lithography Appara	tus	(SI	LA)	-				
Materials -	Process - top down and bottom up	apı	oro	ach	-				
Advantages	s - Limitations - Applications. Digital Ligh	ıt Pr	oce	essiı	ng				

(DLP) - Process - Advantages - Applications. Continuous Liquid Interface Production (CLIP) Technology. Directed Energy Deposition: Laser Engineered Net Shaping (LENS) - Process - Material Delivery - Materials -Benefits - Applications.

UNIT IV POWDER BED FUSION AND MATERIAL EXTRUSION

9

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism - Materials and Application. Selective Laser Melting (SLM): Materials - Process - Advantages and Applications. Material Extrusion: Fused Deposition Modeling (FDM) - Process - Materials - Applications and Limitations.

UNIT V OTHER ADDITIVE MANUFACTURING PROCESSES

)

Binder Jetting: Three - Dimensional Printing - Materials - Process - Benefits- Limitations - Applications. Material Jetting: Multi-jet Modeling - Materials - Process - Benefits - Applications. Sheet Lamination: Laminated Object Manufacturing (LOM) - Basic Principle - Mechanism: Gluing or Adhesive Bonding - Materials - Applications and Limitations.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Identify the development of AM technology into various businesses.
- CO2 Explain about process of transforming a concept into the final product in AM technology.
- CO3 Explain the VAT polymerization and direct energy deposition processes and its applications.
- CO4 Summarize about the process and applications of powder bed fusion and material extrusion.
- CO5 Compare the advantages, limitations, applications of binder jetting, material jetting and sheet lamination processes.

CO6	Evaluat	e 1	he	me	echa	nis	m	of	glu	iine	or	otł	ner	adł	nesi	ve
	bonding								_	_						
TEXT	ГВООК						1-				· I	- г		<i>)</i>		
1	Ian Gib	son	. Da	avid	l Ro	ser	1. B1	rent	Stı	ıck	er. N	lahv	ar K	Tho	rasa	ni
	"Additi										gies	-				
	Springe						0				0					
2	Andrea									ffer	ı H	ötte	r. "	Ad	diti	ve
	Manufa															nd
	Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015.															
REFE	ERENCE			<i>,</i>			1							•		
1	Andrea	s	(Geb	har	dt,		"Į	Jnd	erst	tand	ing		Ad	diti	ve
	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing",															
	Hanser Gardner Publication, Cincinnati., Ohio, 2011.															
2	Milan Brandt, "Laser Additive Manufacturing: Materials,															
	Design, Technologies and Applications", Woodhead															
	Publishing, United Kingdom, 2016.															
3	Amit	Ban	dyc	opa	dhy	ay	ar	nd	Su	smi	ta	Bose	2, "	Ad	diti	ve
4	Manufa	ctu	ring	z", 1	lst I	Edit	ion	, CF	RCI	res	s, U	nited	l Sta	tes,	20	15.
4	Kamrar	ni A	.K.	and	d N	asr	E./	۱., ۱	"Ra	pid	Pro	toty	ping	g: T	heo	ry
	and pra	ctic	œ",	Spr	ing	er.,	Un	ited	Sta	tes	, 200	6.	NO	LO	G)	
	7O a					AFFI	I	Os	3 ANI	NA U	NIVER	511 Y	AUTO	INC	SC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	2	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	3	2	1	-	-	-	-	-	-	-	-	-	-	2	-	ı
	4	2	1	-	ı	ı	-	ı	-	1	-	-	-	2	1	ı
	5	3	3	2	2	ı	ı	ı	-	-	-	ı	ı	3	ı	-
	6 3 3 3 3 3															
_	verall	3	2	1	1	_	_	_	_	_	_	_	_	3	_	_
Corr	elation	1														

23ME032		DIGITAL MANUFACTURING	L	T	P	C
		AND IoT	3	0	0	3
COURSE	OBJ	ECTIVES:				
•	To s	tudy the various aspects of digital mar	nufa	ctur	ing	·
•	To i	nculcate the importance of DM in Prod	uct	Life	сус	le
	Mar	nagement and Supply chain Manageme	ent.			
•	To f	ormulate of smart manufacturing syste	ems	in tl	ne	
	digi	tal work environment.				
•	To i	nterpret IoT to support the digital man	ufac	turi	ing.	
•	To e	laborate the significance of digital twir	١.			
UNIT I	IN	FRODUCTION				9
Introduct	ion	Need - Overview of Digital Manufactu	ırin	T 211	d ti	ho
		of Digital Manufacturing: Product life		_		
	-	llue chain management - Practical Bene	•			
		g – The Future of Digital Manufacturin		ט זכ	ign	lai
0.0000		GITAL LIFE CYCLE AND SUPPLY C		NI		9
CIVITI	/	ANAGEMENT		1		
			7			
1000	The same of	Product Development, Mapping Req			- X1	
-		- Part Numbering, Engineering V				
Product r	euse	 Engineering Change Management, Bi 	11 of	Ma	teri	ial
and Pro	cess	Consistency - Digital Mock up an	d F	rote	otyj	pe
developn	nent -	- Virtual testing and collateral. Overvi	ew (of D	igit	tal
Supply C	Chain	- Scope and Challenges in Digital S	C -	Effe	ecti	ve
Digital Tr	ransfo	ormation - Future Practices in SCM				
UNIT III	SM	IART FACTORY				9
Smart Fac	ctory	- Levels of Smart Factories - Benefits -	Tech	nol	ogi	es
used in S	mart	Factory - Smart Factory in IoT- Key P	rinci	iple	s of	a
Smart Fa	ctory	- Creating a Smart Factory - Smart I	acto	orie	s ar	nd
Cyber sec	curity	·				
UNIT IV	INI	DUSTRY 4.0				9

Introduction - Industry 4.0 - Internet of Things - Industrial

Internet of Things – Framework: Connectivity devices and services – Intelligent networks of manufacturing – Cloud computing – Data analytics –Cyber physical systems –Machine to Machine communication – Case Studies.

UNIT V | STUDY OF DIGITAL TWIN

9

Basic Concepts – Features and Implementation – Digital Twin: Digital Thread and Digital Shadow- Building Blocks – Types – Characteristics of a Good Digital Twin Platform – Benefits, Impact and Challenges – Future of Digital Twins

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Explain the use of various elements in the digital manufacturing.
- CO2 Apply the concepts involved in digital product development life cycle process
- CO3 Apply the concepts of supply chain management in digital environment.
- **CO4** Select the proper procedure of validating practical work through digital validation in Factories.
- CO5 Summarize the concepts of IoT and its role in digital manufacturing.
- CO6 Analyze and optimize various practical manufacturing process through digital twin.

TEXT BOOKS:

- 1 Zude Zhou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of Digital Manufacturing Science, Springer-Verlag London Limited, 2012.
- 2 Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A press, 2016.

REF	ERENCE	S:														
1	Lihui V	Var	ng a	and	Aı	ndr	ew	Ye	hCl	ning	g No	ee,	Coll	abo	rati	ve
	Design	and	d Pl	anr	ning	fo	r D	igit	al N	M an	ufac	turi	ng, S	Spr	inge	er-
	Verlag l	Lon	dor	ı Li	mite	ed,	200	9.								
2	Andrew	Υe	eh C	Chri	s N	ee,	Fei	Tac	o, ar	nd I	Men	g Zh	ang	, "I	Digi	tal
	Twin I	Oriv	en	Sn	nart	: N	1an	ufa	ctur	ing	", I	Elsev	ier	Sci	enc	e.,
	United 9	Stat	tes,	201	9.											
3	Alp Ust	uno	dag	anc	l Er	nre	Ce	viko	can,	"In	dus	try 4	.0: N	/Ian	agii	ng
	the Dig	ital	Tr	ansi	forn	nati	ion'	', S	prir	ngei	: Sei	ries	in A	dv	anc	ed
	Manufa	ctu	ring	g., S	wit	zerl	anc	1, 20	017.							
4	Ronald	R.	. Y	age	r a	ınd	Jo	rda	n :	Pas	cual	Es	pada	a,	"Ne	w
	Advanc	es i	in th	ne Iı	nter	net	of '	Thi	ngs	", S	prin	ger.,	Swi	itze	rlan	ıd,
	2018.															
	COs					_	I	POs					- 53	I	PSO	s
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	10//	2	1	0	\ -	1	2	1	1	Y-	1	-	1	2	2	1
	2	3	2	/1	1	1	2	1	1	1		9	1	3	2	1
	3	3	2	1	1	1	2	1	1	1		_	1	3	2	1

23ME033		SURFACE ENGINEERING	L	T	P	(
			3	0	0	3
COURSE	OBJ	ECTIVES:				
•	Тое	nable the Engineering students about	the v	valu	ıe o	f
	surf	ace engineering.				
•	To r	nake the engineering students to unde	rstaı	nd t	he	
	-	ortance of surface and its interactions range.	with	its		
•		equip the students to understand the varanced surface modification techniques		ıs a	nd	
•	To c	levelop the skill among the students to ect the surface modified materials for	eva		te a	no
	_	ıstrial usages.				
UNIT I	BA	SICS OF SURFACE PROPERTIES	4			9
Introducti	on –	Tribology - surface degradation - we	ear -	typ	oes	of
wear - ad	hesi	ve – abrasive – oxidative – corrosive -	- erc	siv	e aı	nd
		roles of friction and lubrication - corr	- 1			
-		echanism of growth and break down o	f pas	ssiv	e fil	m
- corrosio	7/77		VO	LO	G)	į.
UNIT II	SU	RFACE CLEANING			40U	9
Introducti	on -	- surface pretreatment of metallic ar	nd e	elect	tror	ic
materials	– me	echanical cleaning polishing - chemic	al cl	lean	ing	; –
acid, alkal	ine, a	acetone and carbon tetra chloride clean	ing -	alu	ımi	na
and diamo	ond p	polishing – degreasing – ultrasonic clea	anin	g		
UNIT III	SU	RFACE COATING TECHNIQUES				9
Introducti	on -	- principle - parameters of electro	dep	osit	ion	_
Faraday's	laws	s of electrode position of copper, nicke	el, cl	iroi	niu	m
and gold	for	industrial practices - organic coa	tings	s p	ain	ts-
requireme	nts	of good paints - constituents of pai	ints-	fun	ctio	n-

and gold for industrial practices – organic coatings paints-requirements of good paints - constituents of paints-function-formulation of durable paint enamel coatings-special paints-heat resistant and fire retardant paints - electroless coatings conversion coatings.

UNIT IV ADVANCED SURFACE MODIFICATION 9 **PROCESS** Introduction - physical vapor deposition-chemical deposition- ion beam process - ion beam assisted vapour deposition - ion implantation - reactive ion sputtering coating electron beam process - electron beam assisted vapour deposition - laser assisted surface modification - laser alloying - laser melting - laser ablation - laser sprayed deposit - direct metal deposition by laser. UNIT V STANDARDS FOR SURFACE ENGINEERING 9 **MEASUREMENTS** Constructing a climate model – climate system modeling – climate simulation and drift - Evaluation of climate model simulation regional (RCM) - global (GCM) - Global average response to warming -climate change observed to date. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to CO1 Describe the fundamentals of surface features and different types of friction associated with metals and non-metals. CO2 Classify the different types of wear mechanism and its standard measurement. CO3 Classify the different types of corrosion and its preventive measures. CO4 | Analyze the different types of surface properties CO5 Classify the different types of surface modification techniques. CO6 Analyze the various types of materials used in the friction and wear applications. **TEXT BOOKS:** Ramnarayan Chattopadhyay, advanced thermally assisted surface engineering processes, Kluwer academic publishers,

2004

2	Sudarshan	T	S,	Surface	modification	technologies	_	an
	engineer's g	guio	de;	Marcel D	ekkar, Newyo	ork, 1989.		

REFERENCES:

- 1 Varghese C D, Electroplating and other surface treatments a practical guide, TMH, 1993.
- Adamson A W and Gast A P, Physical chemistry of surfaces, 6th Ed., John Willey and Sons 1997.
- 3 Stanley J.Dapkunas, Surface Engineering Measurement Standards for inorganic materials, National institute of standards and technology (special publication, 960-9).

COs						I	POs						PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	ı	ı	1	1	ı	1	ı	•	1	1	2	1	1
2	2	1	ı	1	1	1	d	1	ď	1	1	1	2	1	1
3 ,00W	2	1	1	-	1	1		1			P 2	1	2	1	1
4	3	3	2	2	1	1	1	1	Y-	-	-	1	3	1	1
5	2	1	Α	1	1	1	d	1	1		7	1	2	1	1
6	3	3	2	2	1	1	1	1	1	-	-	1	3	1	1
Overall Correlation	3	2	1	1	10	1	EC	1	ΟF	TE	E	N ¹ O	3	4	1

23ME034	NON-TRADITIONAL	L	T	P	C
	MACHINING PROCESSES	3	0	0	3

COURSE OBJECTIVES:

- To classify non-traditional machining processes and describe mechanical energy based non-traditional machining processes.
- To differentiate chemical and electro chemical energybased processes.
- To describe thermo-electric energy-based processes
- To explain nano finishing processes.
- To introduce hybrid non-traditional machining processes and differentiate hybrid non-traditional machining processes.

UNIT I INTRODUCTION AND MECHANICAL 9 ENERGY BASED PROCESSES

Introduction - Need for non-traditional machining processes - Classification of non-traditional machining processes - Applications, advantages and limitations of non-traditional machining processes - Abrasive jet machining, Abrasive water jet machining, Ultrasonic machining their principles, equipment, effect of process parameters, applications, advantages and limitations.

UNIT II CHEMICAL AND ELECTRO CHEMICAL 9 ENERGY BASED PROCESSES

Principles, equipments, effect of process parameters, applications, advantages and limitations of Chemical machining, Electrochemical machining, Electro-chemical honing, Electro-chemical grinding, Electro-chemical deburring.

UNIT III	THERMO-ELECTRIC ENERGY BASED	9
	PROCESSES	

Principles, equipments, effect of process parameters, applications, advantages and limitations of Electric discharge machining, Wire

elect	ic discharge machining, Laser beam machining, Plasma a:	rc								
	ining, Electron beam machining, Ion beam machining.									
UNI	IV NANO FINISHING PROCESSES	9								
Princ	iples, equipments, effect of process parameters, application	ıs,								
adva	ntages and limitations of Abrasive flow machining - Chem	10								
mech	mechanical polishing, Magnetic abrasive finishing, Magneto									
rheol	ogical finishing, Magneto rheological abrasive flow finishin	g.								
UNI	TV HYBRID NON-TRADITIONAL MACHINING PROCESSES	9								
	duction - Various hybrid non-traditional machinir	_								
-	sses, their working principles, equipments, effect of proces									
parameters, applications, advantages and limitations. Selection										
and o	and comparison of different non-traditional machining processes.									
	TOTAL: 45 PERIOI)S								
	RSE OUTCOMES:									
	completion of the course, the students will be able to									
CO1	Explain the different types of non-traditional machining processes.	ıg								
CO2	Explain mechanical energy based non-traditional machinir processes.									
CO3	Illustrate chemical and electro chemical energy base processes.	ed								
CO4	Summarize the thermo-electric energy based processes.									
	Interpret nano finishing processes.									
CO6	Explain hybrid non-traditional machining processes an	nd								
	differentiate non- traditional machining processes.									
TEX	BOOKS:									
1	Adithan. M., "Unconventional Machining Processes	",								
	Atlantic, New Delhi, India, 2009. ISBN 13: 9788126910458									
2	Anand Pandey, "Modern Machining Processes", Ane Bool	ks								
	Pvt. Ltd., New Delhi, India, 2019.									

REF	ERENCE	S:														
1	Benedic	t, C	3.F.,	"N	lon-	-tra	diti	ona	1 M	anı	ıfact	urin	ıg Pı	oce	sse	s",
	Marcel	De	ekk	er	Inc	.,]	Nev	v '	Yor	k	1987	. IS	SBN-	-13:	97	78-
	0824773526.															
2	Carl Sommer, "Non-Traditional Machining Handbook",															
	Advanc	e F	ub	lish	ing	., L	Jnit	ed	Sta	tes,	200	0, I	SBN	-1 3	: 97	78-
	Advance Publishing., United States, 2000, ISBN-13: 978-1575373256.															
3	Golam Kibria, Bhattacharyya B. and Paulo Davim J., "Non-															
	traditional Micromachining Processes: Fundamentals and															
	Applications", Springer International Publishing.,															
	Switzerland, 2017, ISBN:978-3- 319-52008-7.															
4	Jagadeesha T., "Non-Traditional Machining Processes", I.K.															
	International Publishing House Pvt. Ltd., New Delhi, India,															
	2017, IS					_					·					
5	Kapil C	Gup	ta,	Nee	eles	h K	. Ja	in a	nd	Laı	ıbsc	her	R.F.,	"I	[ybı	id
	Machin	_													-	
1	Finishin	_												_		
1	Switzer															
	1 37	200	15	6				POs						I	PSO	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	AFF	1	2) AN	NA.U	NIVER	SITY	AUTO	2	400	_
	2	2	1	-	-	-	1	2	-	-	-	-	-	2	-	-
	3	2	1	-	-	-	1	2	-	-	-	-	-	2	-	-
4 2 1 1 2								-	-	2	-	-				
	5	1	-	-	-	1	2	-	-	-	-	-	2	-	-	
	6	2	1	-	-	-	1	2	-	-	-	-	-	2	-	-
	verall	2	1				1	2						2		
Cor	relation	2	1	-	-	-	1	2	-	-	_	-	_	2	-	-

23ME035	PROCESS PLANNING AND COST	L	T	P	C						
	ESTIMATION	3	0	0	3						
COURSE OBJ	ECTIVES:										
• To in	troduce the process planning concepts	to n	nak	e co	ost						
estin	nation for various products after proces	s pl	ann	ing	,•						
• To le	arn the various Process Planning Activ	ities									
1	rovide the knowledge of importance of nation.	cos	ting	; an	d						
• To proceed to costing	rovide the knowledge of estimation of $_{ m I}$	proc	luct	ion	L						
	arn the knowledge of various Machining lations.	ng ti	me								
UNIT I IN	TRODUCTION TO PROCESS PLAN	NIN	G		9						
Interpretation	methods of process planning. Material evaluation – steps in procession and tooling selection.			-0	_						
UNIT II PR	OCESS PLANNING ACTIVITIES				9						
Process para	ameters calculation for various	pro	odu	ctio	on						
processes - S	Selection jigs and fixture selection	of	qι	ıali	ty						
assurance me	thods - Set of documents for process	ss p	lan	nin	g-						
	process planning - case studies										
UNIT III IN	TRODUCTION TO COST ESTIMATI	ON			9						
Importance o	f costing and estimation - methods	of c	ost	ing	; –						
elements of c	ost estimation - Types of estimates -	- Es	tim	atiı	ng						
procedure - E	Estimation labor cost, material cost –	allo	cati	on	of						
overhead char	overhead charges - Calculation of depreciation cost.										
UNIT IV PR	ODUCTION COST ESTIMATION				9						
Estimation of	Different Types of Jobs - Estimation	n of	Fo	rgiı	ng						
Shop, Estima	tion of Welding Shop, Estimation	of I	Fou	ınd	ry						
Shop.											

UNI	T V MACHINING TIME CALCULATION	9									
Estin	nation of Machining Time - Importance of Machine Tir	ne									
Calc	ulation - Calculation of Machining Time for Differe	ent									
Lath	e Operations, Drilling and Boring - Machining tir	ne									
Calc	ulation for Milling, Shaping and Planning - Machining tir	ne									
Calc	ulation for Grinding.										
	TOTAL: 45 PERIO	DS									
COU	IRSE OUTCOMES:										
After	completion of the course, the students will be able to										
CO1	Explain the process, equipment and tools for vario	us									
	industrial products.										
	Illustrate the process planning activity chart.										
	Explain the concept of cost estimation.	xplain the concept of cost estimation.									
CO4	Solve the job order cost problems for different type	of									
	shop floor.										
CO5	Solve the machining time problems for various machini	ng									
	operations.										
CO6	Analyze the process plan and do the cost estimation										
	any one industry .	1									
TEX	T BOOKS: AFFILIATED TO ANNA UNIVERSITY I AUTONOMOU										
1	Peter Scalon, "Process Planning, Design/Manufactu										
	Interface", Elsevier Science Technology Books, Dec 200										
2	Sinha B.P, "Mechanical Estimating and Costing", Ta	ta-									
	McGraw Hill publishing co, 1995.										
	ERENCES:										
1	Chitale A.V. and Gupta R.C., "Product Design at	nd									
	Manufacturing", 2nd Edition, PHI, 2002.										
2	Ostwalal P.F. and Munez J., "Manufacturing Process	ses									
	and systems", 9th Edition, John Wiley, 1998.										
3	Russell R.S and Tailor B.W, "Operations Managemen	t",									
	4th Edition, PHI, 2003.										

4	Mik	ell P. Groov	er, "Autom	ation, Production,	Systems		
	and	Computer	Integrated	Manufacturing",	Pearson		
	Educ	cation 2001.					

5	K.C. Jain and L.N. Aggarwal, "Production Planning
	Control and Industrial Management", Khanna Publishers
	1990.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1	
2	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1	
3	2	1	-		1	-	-	1	-	-	1	-	2	1	1	
4	3	2	1	1	1	-	-	1	-	-	1	-	3	1	1	
5	3	2	1	1	1	-	-	1	-	-	1	-	3	1	1	
6	3	3	2	2	1	-	ч	1	-	-	1	- 5	3	1	1	
Overall Correlation	3	2	1	1	1	d		1	7	-	1	-	3	1	1	

23ME036	NON-DESTRUCTIVE TESTING	L	T	P	C
	AND EVALUATION	3	0	0	3

COURSE OBJECTIVES:

- To understand the importance, principle, concept and inspection methods of various surface NDT methods and develop the skills of interpretation of results effectively.
- To study the working and instrumentation of thermography and eddy current testing methods and apply to interpret the results and investigate the possible defects.
- To get full exposure about principle, instrumentation and standards of various radiographic NDT methods and improve the skill to identify the defects suitably.
- To get deep insight into the principle, types of waves, instrumentation, standards, and calibration methods of ultrasonic NDT methods.
- To understand the importance, principle, concept and inspection methods of various surface NDT methods and develop the skills of interpretation of results effectively.

UNIT I INTRODUCTION 9

NDT Versus Mechanical testing – Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT - Visual inspection – Unaided and aided.

UNIT II SURFACE NDT METHODS 9

Liquid Penetrant Inspection - Principles, Types of dye and methods of application, developers, advantages and limitations of various methods, Interpretation of results. Magnetic Particle Inspection - Magnetic particle testing, Basic theory of magnetism, Magnetization methods, Interpretation of field indicators, Particle application, Inspection, Residual magnetism Principles and methods of demagnetization.

UNIT III THERMOGRAPHY AND EDDY CURRENT 9 TESTING

Thermography- Principles, Contact and non-contact inspection methods, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing - Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Applications, advantages, Limitations, Interpretation/Evaluation.

UNIT IV ULTRASONIC TESTING (UT) AND ACOUSTIC 9 EMISSION (AE)

Ultrasonic Testing - Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A - Scan, B - scan, C- scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique - Principle, AE parameters, Applications.

UNIT V RADIOGRAPHY 9

Principle, interaction of X - Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square law, characteristics of films - graininess, density, speed, contrast, characteristic curves. Penetrometers, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero - Radiography, Digital Radiography.

TOTAL 45 PERIODS

	TOTAL: 45 PERIODS
COU	JRSE OUTCOMES:
After	completion of the course, the students will be able to
CO1	Explain the fundamental concepts of NDT.
CO ₂	Interpret the different methods of NDE.
CO3	Explain the concept of Thermography and Eddy current
	testing.
CO4	Explain the concept of Ultrasonic Testing.
CO ₅	Explain the concept of Acoustic Emission.

666	T 1 .	. 1				(D	1.									
	CO6 Explain the concept of Radiography.															
TEX	г воок	S:														
1	"ASM N	Лet	als	Ha	ndł	ool	ς, Ν	Jon-	-De	stru	ıctiv	e Ev	alua	atio	n a	nd
	Quality	Co	ntro	ol, A	٩m	eric	an S	Soci	iety	of	Met	als",	Me	tals	Pa	rk,
	Ohio, USA, 200, 2018.															
2	Baldev Raj, T. Jayakumar, M. Thavasimuthu "Practical Non-															
	Destructive Testing", Narosa Publishing House, 2014.															
REFERENCES:																
1																
	revised edition, New Age International Publishers, 2010.															
2	Paul E Mix, "Introduction to Non-destructive testing: a															
	training guide", Wiley, 2nd Edition New Jersey, 2005.															
3	Charles, J. Hellier, "Handbook of Nondestructive															
	evaluation", McGraw Hill, New York 2001.															
4	B.P.C. R												Alph	a S	cier	ice
	Internat			1730				107	1	1		0 /				
5	Ravi Pr		- 01	L VI		`	<u> </u>	<u> </u>	7e '	Test	ino	Tec	hnia	1105	" -	1st
	revised										_		1000			
- 1	Tevised	cai	LIOI		//	116		Os		OTIG	11 4	<i>D</i> 1101	icio,		SC)c
(COs	1	2	3	4	5	6		8	9	10	11	12	ų	2	3
	1	2	1	3	-	1	LIAI	D 19	1	UA U	NIVER	11	AUT	2	1	1
	2	2	1	-		1			1			1		2	1	1
				-	-		-	-	1	-	-		-			1
	3	2	1	•		1	-	-		-	_	1	-	2	1	
	4	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1
	5	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1
	6	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1
	verall	2	1	_	_	1	_	_	1	_	_	1	_	2	1	1
Cori	relation															

23ME037	DESIGN FOR MANUFACTURING	L	T	P	C
	AND ASSEMBLY	3	0	0	3
COURSE OBJ	ECTIVES:			Į.	
• To in	troduce economic process selection pr	rinci	ples	ar	ıd
gener	al design principles for manufactura	bilit	- y i1	n tl	he
devel	opment and design of products	for	va	rio	us
engin	eering applications. Also, app	oly	d	esi	дn
consid	deration principles of casting in the d	esig	n o	f ca	st
produ	icts.				
• To lea	rn design consideration principles of fo	ormi	ng i	in tl	he
desig	n of extruded, stamped, and forged pro	duc	ts.		
• To lea	rn design consideration principles of 1	macl	hini	ng	in
	esign of turned, drilled, milled, plan				
slotte	d, and ground products.				
 To lea 	rn design consideration principles of w	eldi	ng i	in tl	he
design	n of welded products.				ř
• To lea	arn design consideration principles of	asse	emk	oly	in
the de	esign of assembled products.				P. II
UNIT I IN	TRODUCTION AND CASTING				9
Introduction	Economics of process selection Co	12 014	1 4	ooi	
	Economics of process selection - Ge				_
	manufacturability; Design consideration— - Permanent mold cast parts.	J115 1	101.	Jai	ıu
	RMING			1	9
UNIT II TO	RIVIING				9
Design consid	erations for: Metal extruded parts -	Imp	act/	'Co	ld
extruded parts	s – Stamped parts –Forged parts.				
UNIT III MA	ACHINING				9
Design consid	erations for: Turned parts - Drilled pa	arts	<u> </u>	[i]]e	<u>-</u>
	d and slotted parts- Ground parts.	.1.60	141	.111	ω,
* *	ELDING				9
771					
Arc welding	- Design considerations for: Cost	red	ucti	on	-
Missississ a d	internations TATeld atmospherical Area	1	1	1 - ~	

Minimizing distortion - Weld strength - Weldment and heat

treatment. Resistance welding – Design considerations for: Spot – Seam – Projection – Flash and Upset weldment. UNIT V ASSEMBLY 9 Design for assembly – General assembly recommendations – Minimizing the no. of parts – Design considerations for: Rivets – Screw fasteners – Gasket and Seals – Press fits – Snap fits – Automatic assembly. TOTAL: 45 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products. CO5 Explain design consideration principles of welding in the design of turned, drilled, milled, planed, shaped, slotted, and ground products. CO5 Explain design consideration principles of welding in the
Design for assembly - General assembly recommendations - Minimizing the no. of parts - Design considerations for: Rivets - Screw fasteners - Gasket and Seals - Press fits - Snap fits - Automatic assembly. TOTAL: 45 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
Design for assembly – General assembly recommendations – Minimizing the no. of parts – Design considerations for: Rivets – Screw fasteners – Gasket and Seals – Press fits – Snap fits – Automatic assembly. TOTAL: 45 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
Minimizing the no. of parts - Design considerations for: Rivets - Screw fasteners - Gasket and Seals - Press fits - Snap fits - Automatic assembly. TOTAL: 45 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
Screw fasteners - Gasket and Seals - Press fits - Snap fits - Automatic assembly. TOTAL: 45 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
Automatic assembly. TOTAL: 45 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
After completion of the course, the students will be able to CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
 CO1 Explain the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
general design principles for manufacturability in the development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
development and design of products for various engineering applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
 applications. CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
 CO2 Apply design consideration principles of casting in the design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
design of cast products. CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
 CO3 Explain design consideration principles of forming in the design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
design of extruded, stamped, and forged products. CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
CO4 Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
design of turned, drilled, milled, planed, shaped, slotted, and ground products.
and ground products.
CO5 Explain design consideration principles of welding in the
design of welded products.
CO6 Explain design consideration principles of assembly in the
design of assembled products.
TEXT BOOKS:
1 James G. Bralla, "Handbook of Product Design for
Manufacture", McGraw Hill, 1986.
2 O. Molloy, E.A. Warman, S. Tilley, "Design for
Manufacturing and Assembly: Concepts, Architectures and
Implementation", Springer, 1998.

REF	ERENCE	S:														
1	Corrado Poli, "Design for Manufacturing: A Structured															
	Approach", Elsevier, 2001.															
2	David	David M. Anderson, "Design for Manufacturability and														
	Concur	oncurrent Engineering: How to Design for Low Cost,														
	Design in High Quality, Design for Lean Manufacture, and															
	Design Quickly for Fast Production", CIM Press, 2004.															
3	Erik Tei	Erik Tempelman, Hugh Shercliff, Bruno Ninaber van Eyben,														
	"Manuf	act	urir	ıg a	nd	Des	sigr	ı: U	nde	erst	andi	ng t	he I	rin	cipl	es
	of How	Manufacturing and Design: Understanding the Principles How Things Are Made", Elsevier, 2014.														
4	Henry I	Pecl	Peck, "Designing for Manufacture", Sir Isaac Pitman													
	and Sor	ıs L	td.,	197	73.											
5	Matous	ek,	"En	gin	eer	ing	Des	sigr	ı", E	Blac	kie a	and S	Sons	, 19	56.	
	COs					_	I	POs					- 5	I	SO	s
`	COS	11	-2	3	4	5	6	7	8	9	10	11	12	1	2	3
,	19/1	2	1	2	\ -	-	6 <u>1</u> ×	-	-4	-	-	-	1	2	-	· -
	2	3	2	1	1	-	4	đ	-	4	- 23	4	1	3	1	-
	3	2	1	Æ	1	_	-			9	-	_	1	2		-
	4	2	1	10	4	-	-	1	-	1	-	-	1	2	1	-
	5 SINE	2	1	A STATE OF THE PARTY OF THE PAR	1	S) LI	Ę) E	2	LE	Ţ	1	2	5	-
	6	2	1	-	-	AFE	LIAT	D.T) ANI	IA.U	NIVER	SITY	1	2	40	-
	verall	2	2	1	1	_	_	_	_	_	_	_	1	2	_	_
Cor	relation	_	_	1	1	-	_	_	_	_	_	_	1	_	_	_

23ME038	QUALITY CONTROL AND	L	T	P	C
	RELIABILTY ENGINEERING	3	0	0	3
COURSE	OBJECTIVES:	· ·			
•	To introduce the concept of SQC.				
•	To understand process control and	l a	ccep	otan	ice
	sampling procedure and their application	n.			
•	To learn the concept of reliability.				
•	To illustrate the basic concepts and t	echi	niqu	ıes	of
	modern reliability engineering tools.				
UNIT I	INTRODUCTION AND PROCESS CO	NTR	OL	1	10
	FOR VARIABLES				
Introduction	on, definition of quality, basic concep	t of	q	uali	ty,
definition	of SQC, benefits and limitation of S	GQC,	Q	ual	ity
assurance,	Quality control: Quality cost-Variation	n ir	ı p	roce	ess
causes of v	rariation -Theory of control chart- uses of	con	tro	ch	art
- Control c	hart for variables – X chart, R chart and σ	hart	- p	roce	ess
capability	 process capability studies and simple process 	prob	len	is. S	Six
sigma conc	<u> </u>				
UNIT II	PROCESS CONTROL FOR ATTRIBUT	ES	LO	(G)	8
Control ch	art for attributes -control chart for non-co	nfo	rmi	ng -	- p
chart and 1	np chart - control chart for nonconformit	ies-	C	and	U
charts, Stat	e of control and process out of control ide	entif	icat	ion	in
charts, patt	tern study.				
UNIT III	ACCEPTANCE SAMPLING				9

Lot by lot sampling - types - probability of acceptance in single, double, multiple sampling techniques - O.C. curves - producer's Risk and consumer's Risk. AQL, LTPD, AOQL concepts - standard sampling plans for AQL and LTPD- uses of standard sampling plans.

UNIT IV LIFE TESTING - RELIABILITY

Life testing - Objective - failure data analysis, Mean failure rate, mean time to failure, mean time between failure, hazard rate - Weibull model, system reliability, series, parallel and mixed configuration – simple problems. Maintainability and availability – simple problems. Acceptance sampling based on reliability test – O.C Curves.

UNIT V QUALITY AND RELIABLITY

9

Reliability improvements – techniques - use of Pareto analysis – design for reliability – redundancy unit and standby redundancy – Optimization in reliability – Product design – Product analysis – Product development – Product life cycles.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Apply the basic techniques of quality improvement, statistics and probability.
- CO2 Make Use of control charts to analyze for improving the process quality.
- CO3 Explain different sampling plans.
- CO4 Summarize basic knowledge of total quality management.
- CO5 Find the most important areas to improve a product's reliability.
- CO6 Make Use of Pareto analysis to improve a product's reliability.

TEXT BOOKS:

- 1 Douglas. C. Montgomery, "Introduction to Statistical quality control", 4th edition, John Wiley 2001.
- 2 Srinath. L.S., "Reliability Engineering", Affiliated East west press, 1991.

REFERENCES:

- 1 John.S. Oakland. "Statistical process control", 5th edition, Elsevier, 2005.
- 2 Connor, P.D.T.O., "Practical Reliability Engineering", John Wiley, 1993.

	C 1 T	,		т /	/C1		. 1	$\overline{}$	11.			1//	110	,	тт	•11
3	Grant, Eugene .L "Statistical Quality Control", McGraw-Hill,															
	1996.															
4	Monohar Mahajan, "Statistical Quality Control", Dhanpat															
	Rai and Sons, 2001.															
5	Gupta. R.C, "Statistical Quality control", Khanna Publishers,															
	1997.															
6	Besterfield D.H., "Quality Control", Prentice Hall, 1993.															
7	Sharma S.C., "Inspection Quality Control and Reliability",															
	Khanna Publishers, 1998.															
8	Danny Samson, "Manufacturing and Operations Strategy",															
_	Prentice Hall, 1991.															
		e Ha	all, î	199	1.				Ü		•				O.	,
	Prentice	е На	all, 1	199	1.			POs						1	PSC	s
		На 1	all, 1	199 ⁻	1. 4	5			8	9	10	11	12	1 1	PSC 2)s 3
	Prentice					5 1	I	POs		9			12			
	Prentice COs	1	2	3	4	_	1 6	POs 7	8	9 -			12	1	2	3
	Prentice COs	1 3	2	3	4	1	6 1	POs 7	8 1	9 -			12 -	1 3	2	3
	Prentice COs 1 2	1 3	2 2 2	3	4 1 1	1	6 1	POs 7 -	8 1 1	9			12	1 3 3	2 1 1	3 1 1
	Prentice COs 1 2 3	1 3 3 2	2 2 2 1	3	4 1 1	1 1 1	1 6 1 1	POs 7 -	8 1 1 1	9			12	1 3 3 2	2 1 1 1	3 1 1 1
	Prentice COs 1 2 3 4	1 3 2 2	2 2 2 1	3 1 1 -	4 1 1 -	1 1 1 1	6 1 1 1	POs 7 -	8 1 1 1 1	9			12 - - -	1 3 3 2 2	1 1 1 1	3 1 1 1 1

VERTICAL - 2 - COMPUTATIONAL ENGINEERING

23ME039	DESIGN CONCEPTS IN	L	T	P	C
	ENGINEERING	3	0	0	3
COURSE OB	JECTIVES:				
• To	study the various design requirem	ents	aı	nd	get
aco	quainted with the processes involve	d ii	n p	rod	luct
de	velopment.				
• To	study the design processes to develo	ра	suc	ces	sful
pre	oduct.				
• To	learn scientific approaches to pr	ovic	le	des	ign
sol	lutions.				
• De	signing solution through relate the hur	nan	nee	ds a	and
pre	ovide a solution.				
• To	study the principles of material selection	n, c	osti	ng a	and
ma	anufacturing in design.			~	
UNIT I DI	ESIGN TERMINOLOGY	1 A		-	9
Definition v	arious methods and forms of design-in	mno	rtai	260	of
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gn-static and dynamic products - va	_			
-	phology of design - requirements of a s				_
_	gineering-computer aided engineering			_	
	oduct and process cycles - bench marki		oue	s ai	ilu
	TRODUCTION TO DESIGN PROCE		C		9
	TRODUCTION TO DESIGN TROCE	SSE	3		9
Basic module	s in design process - scientific method	d an	d d	lesi	gn
method-Need	identification, importance of problem	n d	efin	itio	n-
structured pr	oblem, real life problem- information	ı ga	the	ring	5 -
customer req	uirements Quality Function Deploys	nen	t ((QFI))-
product desig	n specifications-generation of alternat	ive	solı	ıtio	ns

UNIT III | CREATIVITY IN DESIGN

modeling, simulation, testing and evaluation.

9

Creativity and problem solving - vertical and lateral thinking - invention - psychological view, mental blocks Creativity methods

Analysis and selection - Detail design and drawings-Prototype,

-brainstorming, synectics, force fitting methods, mind map, concept map - Theory of innovative problem solving (TRIZ) - conceptual decomposition creating design concepts.

UNIT IV HUMAN AND SOCIETAL ASPECTS IN PRODUCT DEVELOPMENT

Human factors in design, ergonomics, user friendly design-Aesthetics and visual aspects environmental aspects-marketing aspects-team aspects-legal aspects-presentation aspects

UNIT V MATERIAL AND PROCESSES IN DESIGN 9

Material selection for performance characteristics of materials - selection for new design substitution for existing design-economics of materials - selection methods - recycling and material selection-types of manufacturing process, process systems - Design for Manufacturability (DFM) - Design for Assembly (DFA).

TOTAL: 45 PERIODS

9

COURSE OUTCOMES:

After completion of the course, the students will be able to

- **CO1** Apply the processes involved in product development.
- CO2 Apply the design processes to develop a successful product.
- CO3 Apply scientific approaches to provide design solutions.
- **CO4** Solve Societal problems using the developed product.
- CO5 Apply the principles of material selection in design.
- **CO6** Apply the principles of costing and manufacturing in design.

TEXT BOOKS:

- 1 Dieter. G. N., Linda C. Schmidt, "Engineering Design", McGraw Hill, 2013..
- 2 Horenstein, M. N., Design Concepts for Engineers, Prentice Hall, 2010.

REFERENCES:

1 Dieter. G. N., Linda C. Schmidt, "Engineering Design", McGraw Hill, 2013.

2	Horenstein, M. N., Design Concepts for Engineers, Prentice															
	Hall, 2010.															
3	Dieter. G. N., Linda C. Schmidt, "Engineering Design",															
	McGraw Hill, 2013.															
4	Horenstein, M. N., Design Concepts for Engineers, Prentice															
	Hall, 2010.															
5	Dieter. G. N., Linda C. Schmidt, "Engineering Design",															
	McGraw Hill, 2013.															
	POs PSOs PSOs															
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1
	2	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1
	3	3	2	1	1	1	1	-	1	-	-	-	_	3	1	1
	4	3	2	1	1	1	1	ľ	1			-	- 5	3	1	1
	5 LOOW	3	2	1	1	1	1		1	4			-0	3	1	1
	6	3	2	1	1	1	1	7	1	-	-	-	-	3	1	1
О	verall	3	2	1	1	1	1	B	1	A				3	1	1
Cor	relation	3	2		Ŋ‡	1	1	1	V.	1		300	-	3	1	F.(1

COLLEGE OF TECHNOLOGY

23ME040	DESIGN OF TRANSMISSION	L	T	P	C
	SYSTEMS	3	0	0	3
COURSE OB	JECTIVES:		Ţ		
• To :	gain knowledge on the principles and p	proc	ced	ure	for
the					
com	nponents.				
 To 	understand the standard procedure	ava	ilal	ole	for
Des	ign of Transmission of Mechanical el	lem	ent	s sj	pur
gea	rs and parallel axis helical gears.				
• To 1	learn the design bevel, worm and cross	he	lica	l ge	ars
of T	ransmission system.				
 To 1 	earn the concepts of design multi and v	aria	ıble	spe	eed
gea	r box for machine tool applications.				
• To	learn the concepts of design to cams	, bi	rake	es a	and
clut	ches.			1	
(Us	e of P S G Design Data Book is permit	ted)			ř
UNIT I DE	SIGN OF FLEXIBLE ELEMENTS				9
Design of Flat	belts and pulleys - Selection of V belts a	nd	pul	leys	3 –
Selection of	hoisting wire ropes and pulleys -	D	esig	'n	of
Transmission	chains and Sprockets.				
UNIT II SP	UR GEARS AND PARALLEL AXIS HI	ELI	CA	L	9
GE	EARS				
Speed ratios a	nd number of teeth - Force analysis -To	ooth	ı stı	ess	es
•	fects – Fatigue strength - Factor of sa				
•	esign of straight tooth spur and helical	•	•		
	and wear considerations - Pressure a	_			
-	ansverse plane - Equivalent number of	_			
for helical gea					
O	VEL, WORM AND CROSS HELICAL	GE	AR	S	9
1	T (1 (1 (1 (nd.			
Straight bevel	gear: 100th terminology, tooth forces a	ariu	str	esse	25,
-	gear: Tooth terminology, tooth forces a mber of teeth. Estimating the dimension				

terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology - helix angles - Estimating the size of the pair of cross helical gears.

UNIT IV | GEAR BOXES

9

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer unit. - Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT V | CAMS, CLUTCHES AND BRAKES

9

Cam Design: Types - pressure angle and under cutting base circle determination - forces and surface stresses. Design of plate clutches - axial clutches-cone clutches-internal expanding rim Clutches - Electromagnetic clutches. Band and Block brakes - external shoe brakes - Internal expanding shoe brake.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- **CO1** Apply the concepts of design to belts, chains and rope drives.
- CO2 Apply the concepts of design to spur, helical gears.
- CO3 Apply the concepts of design to worm and bevel gears.
- **CO4** Apply the concepts of design to gear boxes.
- CO5 Apply the concepts of design to cams and brakes.
- CO6 Apply the concepts of design to clutches.

TEXT BOOKS:

- 1 Bhandari V, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.
- 2 Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

		_														
REF	ERENCE	S:														
1	Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Flements" 8th Edition Prentice Hall															
	"Design of Machine Elements" 8th Edition, Prentice Hall,															
	2003.															
2	Orthwein W, "Machine Component Design", Jaico															
	Publishing Co, 2003.															
3	Prabhu. T.J., "Design of Transmission Elements", Mani															
	Offset, Chennai, 2000.															
4	Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of															
	Machine Design", 4th Edition, Wiley, 2005.															
5	Sundara	Sundararajamoorthy T. V, Shanmugam .N, "Machine														
	Design", Anuradha Publications, Chennai, 2003.															
	POs PSOs															
	COs										iidi,		·	I	PSO	s
(COs	1	2	3	4	5				9	10	11	12	1 1	PSO 2)s 3
•	COs	1 3	2	3	4 1	ı	I	POs			ı		ı			
		_	_	_		5	6	POs	8		ı		ı	1	2	3
	1 POW	3	2	1	1	5	6 1	POs 7 -	8		ı		ı	1	2	3
	1 00W	3	2	1	1	5 1 1	6 1	POs 7 -	8 1 1		ı		ı	1 1 1	2 1 1	3 1 1
	2 3	3 3 3	2 2 2	1 1 1	1 1 1	5 1 1 1	6 1 1	POs 7 -	8 1 1 1		ı		ı	1 1 1 1	1 1 1	3 1 1 1
	1 2 3 4	3 3 3 3	2 2 2 2	1 1 1 1	1 1 1 1	5 1 1 1 1	1 1 1 1	7 - - -	8 1 1 1		ı		ı	1 1 1 1	1 1 1 1	3 1 1 1 1
0	1 2 3 4 5	3 3 3 3	2 2 2 2 2 2	1 1 1 1 1	1 1 1 1 1	5 1 1 1 1 1	6 1 1 1 1	7 - - -	8 1 1 1 1		ı		ı	1 1 1 1 1 1	1 1 1 1 1	3 1 1 1 1 1

23ME041	PRODUCT DESIGN AND	L	T	P	C
	DEVELOPMENT	3	0	0	3
COURSE	OBJECTIVES:				
•	To understand the modern product	de	velc	pm	ent
	processes.				
•	 To understand and explain the concept 	ot of	ind	lust	rial
	design and robust design concepts.				
•	 To understand the concept of design for 	r ma	anu	fact	ure
	and assembly.				
UNIT I	INTRODUCTION				9

Need for IPPD – Strategic importance of Product development – integration of customer, designer, material supplier and process planner, Competitor and customer – Behaviour analysis. Understanding customer – prompting customer understanding –

involve customer in development and managing requirements – Organization – process management and improvement – Plan and establish product specifications.

UNIT II | CONCEPT GENERATION AND SELECTION 9

Task - Structured approaches - clarification - search - externally and internally - explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits.

UNIT III PRODUCT ARCHITECTURE 9

Implications – Product change – variety – component standardization – product performance – manufacturability – product development management – establishing the architecture – creation – clustering – geometric layout development – fundamental and incidental interactions – related system level design issues – secondary systems – architecture of the chunks – creating detailed interface specification.

UNIT IV	INDUS	STRIAL I	DESIGN				9
Integrate	process	design -	- Managing	costs -	Robust	desig	n -

Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically – Need for industrial design – impact – design process – investigation for industrial design – impact – design process – investigation of customer needs – conceptualization – refinement – management of the industrial design process – technology driven products – user – driven products – assessing the quality of industrial design.

UNIT V DESIGN FOR MANUFACTURING AND 9 PRODUCT DEVELOPMENT

Definition – Estimation of Manufacturing cost – reducing the component costs and assembly costs – Minimize system complexity – Prototype basics – principles of prototyping – planning for prototypes – Economic Analysis – Understanding and representing tasks – baseline project planning – accelerating the project – project execution.

TOTAL: 45 PERIODS

COURSE OUTCOMES: After completion of the co

After completion of the course, the students will be able to

- CO1 Explain the characteristics used for product design and development.
- **CO2** Solve for the customer requirements in product design.
- CO3 Apply structural approach to concept generation, selection and testing.
- CO4 Identify various aspects of design to solve the problems.
- CO5 Apply strategies to reduce manufacturing and assembly costs.
- CO6 Make use of prototyping principles to plan and execute a project.

TEXT BOOK:

1 Kari T.Ulrich and Steven D.Eppinger, "Product Design and Development", McGraw-Hill International Edns. 1999

REFI	ERENCE	S:														
1	Kemnneth Crow, "Concurrent Engg./Integrated Product															
	Development", DRM Associates, 26/3,Via Olivera, Palos															
	Verdes, CA 90274(310) 377-569, Workshop Book.															
2	Stephen	1]	Ros	entl	hal,	11	Effe	ecti	ve	Pr	odu	ct	Desi	ign	aı	nd
	Develop	ome	ent"	, В	usiı	ness	s O:	ne	Orv	vin,	. I	Hom	iewo	od,	199	92,
	ISBN 1-	556	23-6	503-	-4.											
3	Staurt	Pu	gh,	// -	Гоо	1 I	Desi	ign	-I:	nteg	grate	ed :	Metl	nod	s f	or
	Success	ful	Pro	odu	ct I	Eng	ine	erin	g",	Ac	ldiso	on		V	Vesl	ey
	Publish	ing	, Ne	ew `	Yor	k, N	JY.									
	COs						I	POs						I	PSC	s
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	ı	1	1	1	-	1	ı	1	ı	1	2	1	1
	2	3	2	1	1	1	1		1	ď	1	1	1	3	1	1
	3 00W	3	2	1	1	1	1	-	1		(<u></u>	1	3	1	1
,	4	3	2	1	1	1	1	, - N	1	1-	-	-	_	3	1	1
1	5	3	2	1	1	1	1	1	1	1	, - ₂₂	-	1-1	3	1	1
							1	7000	No.	7			100			

1,

1

2 1

1 1

3

Overall

Correlation

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

1 1

23ME042	COMPUTATIONAL FLUID	L	T	P	C
	DYNAMICS AND HEAT	3	0	0	3
	TRANSFER				
COURSE	OBJECTIVES:				
•	 To study the fluid flow simulation tech 	niqı	ıes	and	lits
	mathematical behavior.				
•	 To learn the discretize 1D and 2D system 	ns u	sin	g fii	nite
	difference and finite volume technique	s.			
•	 To Formulate diffusion –convection presented 	robl	ems	us	ing
	finite volume method.				
•	 To study the flow field for different type 	es c	of gr	ids	
•	• To learn the essential for turbulence n	node	els a	and	its
	types.				
UNIT I	INTRODUCTION	- 52			9
	Computational Fluid Dynamics - Governin	A			

Basics of Computational Fluid Dynamics – Governing equations–Continuity, Momentum and Energy equations – Boundary conditions and Types – Time-averaged equations for Turbulent Flow – Classification and Mathematical behavior of PDEs on CFD – Elliptic, Parabolic and Hyperbolic equations, comparison between Analytical, Experimental and Numerical techniques, Techniques of Discretization and Numerical errors.

UNIT II	FINITE DIFFERENCE AND FINITE VOLUME	9
	METHODS FOR DIFFUSION	

Derivation of finite difference equations – General Methods for first and second order accuracy – Finite volume formulation for steady and transient diffusion 1D and 2D problems – Use of Finite Difference and Finite Volume methods, Accuracy of solution, optimum step - size, Euler, Crank Nicholson, and pure implicit methods, stability of schemes.

UNIT III	FINITE VOLUME METHOD FOR CONVECTION DIFFUSION	9
Steady or	ne-dimensional convection and diffusion - Cen-	tral,

upwind differencing schemes, properties of discretization schemes, Hybrid, Power-law, QUICK Schemes, Computation of Boundary layer flow, von Neumann stability analysis.

UNIT IV | FLOW FIELD ANALYSIS

9

Stream function and vortices, Representation of the pressure gradient term, Staggered grid – Momentum equations, Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms, Computation of internal and external thermal boundary layer.

UNIT V TURBULENCE MODELLING

9

Turbulence model requirement and types, mixing length model, Two equation (k-€) models – High and low Reynolds number models, LES, DNS, Mesh Generation and refinement Techniques-software tools, Stability of solver, Courant Fredrick Levy number, relaxation factor, and grid independence test.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Apply the fundamentals of CFD, and develop the governing equations.
- CO2 Apply finite difference and finite volume based analysis for steady and transient diffusion problems.
- CO3 Make use of various mathematical schemes under the finite volume method for convention diffusion
- **CO4** Solve complex problems in the field of fluid flow and heat transfer with the support of high-speed computers.
- CO5 | Make Use of turbulence models to simulate fluid flow.
- **CO6** Evaluate the discretization to improve simulation accuracy.

TEXT BOOKS:

1 Versteeg, H.K., and Malalasekera, W.," An Introduction to Computational Fluid Dynamics": The finite volume Method, Pearson Education, 2014.

2	Ghoshdastidar, P.S., "Computational Fluid Dynamics and Heat Transfer", Cengage Learning, 2017.															
	Heat Tr	ans	fer"	, C	eng	age	Lea	arni	ing,	201	l7.					
REF	ERENCES:															
1	John. F. Wendt, "Computational Fluid Dynamics - An															
	Introduction", Springer, 2013.															
2	K. Muralidhar and T.Sundararajan, Computational Fluid															
	Flow and Heat Transfer, Narora Publishing House, 1994.															
3	Suhas V, Patankar, "Numerical Heat transfer and Fluid															
	flow", Taylor and Francis, 2009.															
4	Uriel Frisch, Turbulence, Cambridge University Press, 1999.															
5	Yogesh Jaluria and Kenneth E. Torrance, "Computational															
	Heat Tr	-								0110	11100,		o III P	0.00	•101	
	110010 11			,		PTO		Os						I	PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 -ow	3	2	1	1	1	1		1					3	1	1
	2	3	2	1	1	1	1	7	1	7	-	70.		3	1	1
	3	3	2	1	1	1	1		1		-	-	-	3	1	1
	V			W -		_		0			-		10		_450	
	4	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1
	5	3	2	1	1	1	1	Ė	1	-	÷	-i	-	3	1	1
	6 VA	3	3	3	3	1	1	JEA.	1	7	LE		NO	3	1	1
O	verall	3	3	2	2	1	1	45.13	1	174.17	MIVER	21171	AV.	3	1	1
	relation															

23ME043	MECHANICAL SYSTEM DESIGN	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To develop competency for system visualization and design.
- To enable student to design cylinders and pressure vessels and to use IS code.
- To enable student select materials and to design internal engine components.
- To introduce student to optimum design and use optimization methods to design mechanical components.
- To enable student to design machine tool gearbox.
- To enable student to design material handling systems.
- To apply the statistical considerations in design and analyze the defects and failure modes in components.

UNIT I DESIGN OF MACHINE TOOL GEARBOX 6

Introduction to machine tool gearboxes, design and its applications, basic considerations in design of drives, determination of variable speed range, graphical representation of speed and structure diagram, ray diagram, selection of optimum ray diagram, deviation diagram, difference between numbers of teeth of successive gears in a change gear box.

UNIT II STATISTICAL CONSIDERATIONS IN DESIGN 6

Frequency distribution - Histogram and frequency polygon, normal distribution - units of central tendency and dispersion - standard deviation-population combinations-design for natural tolerances - design for assembly - statistical analysis of tolerances, mechanical reliability and factor of safety.

UNIT III	DESIGN OF BELT CONVEYER SYSTEM FOR	6
	MATERIAL HANDLING	

System concept, basic principles, objectives of material handling system, unit load and containerization. Belt conveyors, Flat belt and troughed belt conveyors, capacity of conveyor, rubber covered and fabric ply belts, belt tensions, conveyor pulleys, belt idlers, tension take - up systems, power requirement of horizontal belt conveyors for frictional resistance of idler and pulleys.

UNIT IV DESIGN OF CYLINDERS AND PRESSURE 6 VESSELS

Thin cylinders and spherical vessels, Wire wound cylinders. Thick cylinders: Principal stresses in cylinder subjected to internal/external pressure, Lame's equation, Clavarion's and Bernie's equations, Autofrettage, Compounding of cylinders, Gasketted Joints, Thickness of cylindrical and spherical shells, Design of End closures, Area compensations for nozzles. Introduction to Design codes.

UNIT V OPTIMUM DESIGN AND DFMA

Optimum Design: Objectives of optimum design, adequate and optimum design, Johnsons Method of optimum design, primary design equations, subsidiary design equations and limit equations, optimum design with normal specifications of simple machine elements-tension bar, transmission shaft and helical spring, Pressure vessel Introduction to redundant specifications (Theoretical treatment).

Design For Manufacture, Assembly And Safety:

General principles of design for manufacture and assembly (DFM and DMFA), principles of design of castings and forgings, design for machining, design for safety.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Develop the gear arrangements for a machine tool gearbox using ray and deviation diagrams.
- CO2 Apply statistical methods to design components with appropriate tolerances and reliability.

COL	C 1		1	1.							• 1	•			1	1.
CO3	Constru					•	-			cons	siaer	ing	capa	icity	y, b	eit
	tensions															
CO4	Develop cylinders and pressure vessels considering stress															
	distribution and thickness requirements.															
CO ₅	Apply optimum design methods to design simple machine															
	elements.															
CO6	Apply design principles for manufacturing, assembly, and															
	safety to create components.															
TEX	T BOOKS:															
1	Shigley S," Mechanical Engineering Design", 8thEdition,															
	McGraw Hill.															
2	V Bhandari, "Design of Machine Elements", 3/e, McGraw															
	Hill.															
REFI	FERENCES:															
1	R C Juvinall, "Fundamentals of Machine Component															
,	Design", 4/e, Wiley.															
2	R L No	rtor	n, "]	Mad	chir	ne D	esi	gn /	An I	[ntr	odu	ction	n", P	ear	son	
3	E J Hea	rn,	"M	ech	ani	cs o	f M	ate	rials	s", I	ЗН		1		i de la constante de la consta	
		><	4	5			I	POs						I	PSO	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	10.11	1	NA.U	NIVER	SITY	AUT	3	1	1
	2	3	2	1	1	1	1	_	1	_	-	-	-	3	1	1
															1	1
	4	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1
		_		_	1	1	1	-	1	-	-	-	-	3	1	1
	4	3	2	1						1	- -	- -	-			
	4 5	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1

23ME044 COMPUTATIONAL BIO L T P	C
MECHANICS 3 0 0	3
COURSE OBJECTIVES:	
To Introduction of principles and concepts of 1	bio-
mechanics.	
 Focuses on the studies of tissues and structure 	of
musculoskeletal system.	
 To study the mechanics of joints and human motion 	٦.
To explain the computational approaches	in
biomechanics.	
 To learn the quantification of forces and motion. 	
UNIT I INTRODUCTION TO BIOMECHANICS	9
Perspective of biomechanics, Terminologies, Kinematic as	nd
kinetic concepts for analyzing human motion, Kinetic concepts for	
analyzing human motion, Linear kinetics of human movement	24
Equilibrium, Angular kinetics of human Movement, Mechanic	100
properties of soft tissues, bones, and muscles.	
UNIT II BIOMECHANICS OF TISSUES AND	9
STRUCTURES OF THE MUSCULOSKELETAL	10
SYSTEM AFFILIATED TO ANNA UNIVERSITY I AUTONOMIC	
1904 - N M M M	
Biomechanics of Bone, Biomechanics of Articular Cartilag	_
Tendons and Ligaments, Peripheral Nerves and Spinal Ner	ve
Roots, Skeletal Muscle.	0
UNIT III BIOMECHANICS OF JOINTS AND HUMAN MOTION	9
MOTION	
Knee, Hip, Foot and Ankle, Lumbar Spine, Cervical Spin	
	ne,
Shoulder, Elbow Wrist, and Hand, Linear kinematic and kine	
Shoulder, Elbow Wrist, and Hand, Linear kinematic and kine aspects of human movement, angular kinematic and kine	tic
	tic tic
aspects of human movement, angular kinematic and kine	tic tic
aspects of human movement, angular kinematic and kine aspects of human movement, equilibrium and human moment.	tic tic

mode	elling of Vancouver Periprosthetic Fracture in Fem	nur,
Scaff	olds, artificial hip and knee joints, Aortic Valve.	
UNI	TV GAIT ANALYSIS	9
Exos	keleton design, Ergonomics, Sports mechanics, Performa	nce
Anal	ysis, Biomechanical analysis, 3D printing.	
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
After	completion of the course, the students will be able to	
CO1	Explain the principles of mechanics.	
CO2	Summarize the tissues and structures of the musculoskel	etal
	system.	
CO3	Apply kinematic and kinetic principles to analyze	the
	movement of human joints.	
CO4	Make use of biomechanical concepts to assess human mot	tion
	activities.	
CO5	Develop the computational mathematical modelling	in
	biomechanics.	
CO6	Apply gait analysis techniques to design exoskeletons a	and
	ergonomic solutions.	Υ
TEX	T BOOKS: AFFILIATED TO ANNA UNIVERSITY I AUTONOMO	
1	Susan J Hall, - Basic Biomechanics, 6th Edition, The McGra	aw-
	Hill Companies Inc., 2011.	
2	Jay D Humphrey and Sherry L Delange, - An Introduct	
	to Biomechanics: Solids and Fluids, Analysis and Design,	1st
	edition, Springer-Verlag, 2010.	
REFI	ERENCES:	
1	Margareta Nordin and Victor H Frankel,"Ba	
	Biomechanics of the Musculoskeletal System", 3rd Editi	ion,
	Lippincott Williams and Wilkins, 2001.	
2	Ozkaya, Nihat, Nordin, and Margareta, "Fundamentals	
	Biomechanics: Equilibrium, Motion, and Deformation",	2nd
	Edition, Springer, 2009.	

- 3 Pritam Pain, Sreerup Banerjee, Goutam Kumar Bose, "Advances in Computational Approaches in Biomechanics", 2022.
- 4 Piotr Paneth and Agnieszka Dybala-Defratyka ,"Kinetics and Dynamics: From Nano- to Bio-Scale: 12" (Challenges and Advances in Computational Chemistry and Physics) | 12 August 2010.
- 5 Gábor Náray-Szabó and Arieh Warshel ,"Computational Approaches to Biochemical Reactivity: 19 (Understanding Chemical Reactivity)", 31 March 2002.

COs						I	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	1	-	1	ı	-	-	-	2	1	1	
2	2	1	ı	ı	1	1	d	1	-	1	1	- 2	2	1	1	
3 ,00W	3	2	1	1	1	1		1			<u>-</u>	A	3	1	1	
4	3	2	1	1	1	1	-	1	Y-	-	-	-	3	1	1	
5	3	2	1	1	1	1	À	1	7		9	-	3	1	1	
6	3	2	1	1	1	1	7	1	1	-	-		3	1	1	
Overall Correlation	3	2	1	1	40	1	EC	1	OF	TE	CH	NO	3	4	1	
					AFF	LIAT	EDTO	MAC	NA.U	NIVER	SITY	AUTO	ONO)	MOU	5	

23ME045	ERGONOMICS IN DESIGN	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To introduce to industrial design based on ergonomics.
- To consider ergonomics concept in manufacturing.
- To apply ergonomics in design of controls and display.
- To apply environmental factors in ergonomics design.
- To develop aesthetics applicable to manufacturing and product.

UNIT I INTRODUCTION 9

An approach to industrial design, Elements of design structure for industrial design in engineering application in modern manufacturing systems - Ergonomics and Industrial Design: Introduction to Ergonomics, Communication system, general approach to the man - machine relationship, Human component of work system, Machine component of work system, Local environment-light, Heat, Sound.

UNIT II ERGONOMICS AND PRODUCTION 9

Introduction, Anthropometric data and its applications in ergonomic, working postures, Body Movements, Work Station Design, Chair Design. Visual Effects of Line and Form: The mechanics of seeing, Psychology of seeing, Figure on ground effect, Gestalt's perceptions - Simplicity, Regularity, Proximity, Wholeness. Optical illusions, Influences of line and form.

UNIT III DESIGN PRINCIPLES FOR DISPLAY AND 9 CONTROLS

Displays: Design Principles of visual Displays, Classification, Quantitative displays, Qualitative displays, check readings, Situational awareness, Representative displays, Design of pointers, Signal and warning lights, colour coding of displays, Design of multiple displays Controls: Design considerations, Controls with little efforts – Push button, Switches, rotating Knobs.

Controls with muscular effort – Hand wheel, Crank, Heavy lever, Pedals. Design of controls in automobiles, Machine Tools.

UNIT IV | ENVIRONMENTAL FACTORS

9

Colour: Colour and light, Colour and objects, Colour and the eye – after Image, Colour blindness, Colour constancy, Colour terms – Colour circles, Munsel colour notation, reactions to colour and colour combination – colour on engineering equipments, Colour coding, Psychological effects, colour and machine form, colour and style.

UNIT V | AESTHETIC CONCEPTS

9

Concept of unity, Concept of order with variety, Concept of purpose, Style and environment, Aesthetic expressions - Symmetry, Balance, Contrast, Continuity, Proportion. Style - The components of style, House style, Style in capital good. Introduction to Ergonomic and plant layout software's, total layout design.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- **CO1** Apply ergonomics need in the industrial design.
- CO2 Apply ergonomics in creation of manufacturing system
- CO3 Apply design principles to display indicators for various systems.
- CO4 Develop and design control mechanisms with user effort and ergonomics.
- CO5 Summarize the environmental factors in ergonomics design.
- CO6 Explain the importance of aesthetics to manufacturing system and product.

TEXT BOOKS:

1 Marcelo M. Soares , Francisco Rebelo "Ergonomics in Design: Methods and Techniques" (Human Factors and Ergonomics)

2	"Ergono	omi	cs i	n P	rod	uct	Des	sign	" S	end	poir	its P	ubli	shir	ng (Co.
	Ltd.							Ü			•				Ü	
REF	ERENCE	S:														
1	Benjam	in V	V.N	ieb	el, '	'Mo	otio	n a	nd T	Γim	e St	udy	", Ri	cha	rd,	D.
	Irwin Ir	ıc., '	7th]	Edit	tion	, 20	02.					•				
2	Brain	Brain Shakel," Applied Ergonomics Hand Book",														
	Butterw	Butterworth Scientific London 1988.														
3	Bridger	Bridger, R.C., "Introduction to Ergonomics", 2ndEdition,														
		2003, McGraw Hill Publications.														
4	Martin	Martin Helander, "A Guide to human factors and														
		Ergonomics", Taylor and Francis, 2006.														
	Ergono	mic	s", ˈ	Гау	lor	anc	l Fr	anc	is, 2	2006	5.					
		nic	s",	l'ay	lor	anc		anc POs		2006	Ď.			I	PSC)s
	COs	mic	s",	l'ay 3	lor 4	and				9	10	11	12	1	PSC 2)s 3
						1	I	POs	 	1	1	11 -	12			_
	COs	1	2	3	4	5	6	POs	8	1	1	11 -	12	1	2	3
	COs	1 3	2 2	3	4	5 1	6 1	POs	8	1	1	11 -	12	1 3	2	3
	COs 1 2	1 3	2 2 2	3 1 1	4 1 1	5 1 1	6 1 1	POs	8 1 1	1	1	11 -	12	1 3 3	1 1	3 1 1
	COs 1 2 3	1 3 3 3	2 2 2 2	3 1 1	4 1 1 1	5 1 1	6 1 1	POs	8 1 1	1	1	11 -	12	1 3 3 3	1 1 1	3 1 1 1
	COs 1 2 3 4	1 3 3 3 3	2 2 2 2 2	3 1 1	4 1 1 1	5 1 1 1	6 1 1 1	7 - -	8 1 1 1	1	1	11	12	3 3 3 3	1 1 1 1	3 1 1 1 1

23MT055	MACHINE LEARNING FOR	L	T	P	C
	INTELLIGENT SYSTEMS	3	0	0	3

COURSE OBJECTIVES:

- To introduce basic machine learning techniques such as regression, classification.
- To learn about introduction of clustering, types and segmentation methods.
- To learn about fuzzy logic, fuzzification and defuzzification.
- To learn about basics of neural networks and neuro fuzzy networks.
- To learn about Recurrent neural networks and Reinforcement learning.

9

UNIT I INTRODUCTION TO MACHINE LEARNING

Philosophy of learning in computers, Overview of different forms of learning, Classifications vs. Regression, Evaluation metrics and loss functions in Classification, Evaluation metrics and loss functions in Regression, Applications of AI in Robotics.

UNIT II CLUSTERING AND SEGMENTATION 9 METHODS

Introduction to clustering, Types of Clustering, Agglomerative clustering, K-means clustering, Mean Shift clustering, K-means clustering application study, Introduction to recognition, K-nearest neighbor algorithm, KNN Application case study, Principal component analysis (PCA), PCA Application case study in Feature Selection for Robot Guidance.

UNIT III FUZZY LOGIC 9

Introduction to Fuzzy Sets, Classical and Fuzzy Sets, Overview of Classical Sets, Membership Function, Fuzzy rule generation, Fuzzy rule generation, Operations on Fuzzy Sets, Numerical examples, Fuzzy Arithmetic, Numerical examples, Fuzzy Logic, Fuzzification, Fuzzy Sets, Defuzzification, Application Case Study of Fuzzy Logic for Robotics Application.

UNIT IV | NEURAL NETWORKS 9 Mathematical Models of Neurons, ANN architecture, Learning rules, Multi - layer Perceptrons, Back propagation, Introduction of Neuro-Fuzzy Systems, Architecture of Neuro Fuzzy Networks, Application Case Study of Neural Networks in Robotics. RNN AND REINFORCEMENT LEARING UNIT V 9 Unfolding Computational Graphs, Recurrent neural networks, Application Case Study of recurrent networks in Robotics, Reinforcement learning, Examples for reinforcement learning, Markov decision process, Major components of RL, Q -learning. Application Case Study of reinforcement learning in Robotics. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to CO1 Apply basic machine learning techniques such as regression, classification. CO2 Summarize about clustering and segmentation. CO3 Model a fuzzy logic system with fuzzification defuzzification. CO4 Explain the concepts of neural networks and neuro fuzzy networks. CO5 Apply recurrent neural networks (RNNs) to solve problems in robotics. CO6 Apply reinforcement learning techniques and their application in robotics. TEXT BOOK: Micheal Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 3rd Edition, Addision Wesley, England, 2011. REFERENCES: Bruno Siciliano, Oussama Khatib, "Handbook of Robotics", 1

2016 2nd Edition, Springer.

2	Simon Haykin, "Neural Networks and Learning Machines:
	A Comprehensive Foundation", Third Edition, Pearson,
	delhi 2016.

3	Timothy	J	Ross,	"Fuzzy	Logic	with	Engineering
	Application	ons'	, 4th Ed	lition, Chi	chester,	2011, Sι	ıssex Wiley.

COs						I	POs						PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1		
2	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1		
3	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1		
4	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1		
5	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1		
6	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1		
Overall Correlation	3	2	1	1	1	1		1			-		3	1	1		

COLLEGE OF TECHNOLOGY

VERTICAL -3 - THERMAL SCIENCES

23ME046		POWER PLANT ENGINEERING	L	Т	P	С
			3	0	0	3
COURSE	ОВЈ	ECTIVES:				
•	То	study the coal based thermal power p	lant	s.		
•	То	study the diesel, gas turbine and co	omb	inec	d cy	<i>j</i> cle
	po	wer plants.				
•	То	learn the basic of nuclear engineering	ng a	nd	pov	wer
	pla	ants.				
•	То	learn the power from renewable energ	gy.			
•	То	study energy, economic and enviror	ımeı	ntal	iss	ues
	of	power plants.				
UNIT I	CO	AL BASED THERMAL POWER PLA	NTS	5		9
plant, Sup Steam and and ash ha Cycles and UNIT II Otto, Diese Componer Cycle Pow systems.	er C Heandl I Co DII CY el, D ats o	- improvisations, Layout of modern Critical Boilers, FBC Boilers, Turbines, at rate, Subsystems of thermal powering, Draught system, Feed water treat generation systems. ESEL, GAS TURBINE AND COLE POWER PLANTS The provided Head of Diesel and Gas Turbine power plant Plants. Integrated Gasifier based Consequences.	Corplar mer MBI Optin	ndents - nt. B NE miz	nse: Fusina D atic bine	rs, uel ry 9 on. ed cle
UNIT III	NU	CLEAR POWER PLANTS				9
		ear Engineering, Layout and subsysten				
		Working of Nuclear Reactors: Boiling V				
` ′		rized Water Reactor (PWR), CANada				
		tor (CANDU), Breeder, Gas Cooled			-	
Metal Coo	led I	Reactors. Safety measures for Nuclear I	ow	er p	lan	ts.

UNIT IV POWER FROM RENEWABLE ENERGY Hydro Electric Power Plants - Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems. UNIT V **ECONOMIC** ENERGY, AND 9 ENVIRONMENTAL. ISSUES **POWER** OF **PLANTS** Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits and demerits, Capital and Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants. TOTAL: 45 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the layout, construction and working of the components of thermal power plant. CO2 Explain the layout, construction and working of the components of Diesel, Gas and Combined cycle power plants. CO3 Explain the layout, construction and working of the components of nuclear power plants. CO4 Explain the layout, construction and working of the components of Renewable energy power plants CO5 Apply concepts tariffs and load distribution to optimize power plant operations. CO6 Evaluate pollution control technologies and waste disposal options for coal and nuclear power plants.

TEXT BOOKS:

1 Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw - Hill Publishing Company Ltd., 2008.

2	R.K. Rajput ,"A	Textbook	of Power	Plant	Engineering",
	January 2016.				

REFERENCES:

- 1 El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 2 Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- Thomas C. Elliott, Kao Chen and Robert C. Swanekamp,
 "Power Plant Engineering", Second Edition, Standard
 Handbook of McGraw Hill, 1998.
- B. Vijaya Ramnath C. Elanchezhian, L. Saravanakumar,"Power Plant Engineering November 2019.
- Dipak Kumar Mandal, Somnath Chakrabarti, "Power Plant Engineering", As per AICTE: Theory and Practice by, et al. | 1 January 2019.

COs	٨	1	Λ	1	1	I	POs	\					I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	(5)	//_	1	1	-	1	-	1	1	-	2	1	1
2 GINE	2	1	diam'r.	-	1	1	Ψ	1	<u>U</u> 1	LE	G	NO	2	1	1
3	2	1	-	-	1	1	ED II	1	NA U	MIVER	SHY	AUT	2	1	1
4	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1
5	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1
6	3	3	2	2	1	1	-	1	-	1	-	-	3	1	1
Overall Correlation	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1

23ME047	REFRIGERATION AND	L	T	P	C
	AIRCONDITIONING	3	0	0	3
COURSE	OBJECTIVES:				
•	To introduce the underlying principles of	ope	rati	ons	s ir
	different Refrigeration and Air-conditioning	gsy	ster	ns a	anc
	components.				
•	To provide knowledge on design aspects of	Ref	rige	erat	ior
	and Air conditioning systems.				
•	To study the various refrigeration systems.				
•	To learn the psychrometric properties and J	proc	cess	es.	
	To study the air conditioning system	ns a	and	10	oac
	estimation.				
UNIT I	INTRODUCTION				9
Introducti	on to Refrigeration - Unit of Refrigeration	and	l C.	O.I	P. –
	es - Refrigerants Desirable properties - Cla			707	
7,0000,000	ture - ODP and GWP.	K	1		
UNIT II	VAPOUR COMPRESSION REFRIGERA	TIC	N	4	9
	SYSTEM				
Vapor con	 npression cycle: p-h and T-s diagrams - dev	rioti.	0100	fro	m
-	l cycle - sub - cooling and super heating				
	and evaporator pressure on COP- mu				
	low temperature refrigeration - Cascade		_		
problems.		-			
1	devices, Evaporators.				,
UNIT III	OTHER REFRIGERATION SYSTEMS				9
TA7 1:	1	1 1	1	<u> </u>	
	principles of vapor absorption systems and				
	stems – Steam jet refrigeration- Ejector : - Thermoelectric refrigeration- Air refi		_		JΠ
•	Vortex and Pulse tube refrigeration systems	_	ıall	<i>)</i> 11	_
UNIT IV		э.		1	9
OINII IV	PROCESSES				J
	INOCEOSES				

Properties of moist Air - Gibbs Dalton law, Specific humidity, Dew

point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air - conditioning processes, mixing of air streams.

UNIT V AIR CONDITIONING SYSTEMS AND LOAD 9 ESTIMATION 9

Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort and IAQ principles, effective temperature and chart, calculation of summer and winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators and safety controls.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basic concepts of refrigeration and the impact of refrigerants in the environment.
- CO2: Illustrate the vapour compression refrigeration systems and to solve problems.
- **CO3:** Summarize the various types of refrigeration systems.
- **CO4:** Apply and calculate the psychrometric properties and its use in psychrometric processes.
- CO5: Develop and calculate the air conditioning system load
- **CO6:** Apply the principles of air distribution and control systems to design efficient air conditioning.

TEXT BOOKS:

1 Arora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 2010.

2	R.S. K	huı	mi	,"	Tex	tbo	ok	of	R	efri	gera	ition	. A	nd	A	ir-
	Conditi	oni	ng"	10	Feb	rua	ry.									
REF	ERENCE	S:														
1	ASHRA	EΕ	lan	d bo	ook	, Fu	nda	ime	nta	ls, 2	2010					
2	JonesW	.P.,	"A	ir	con	diti	ioni	ng	en	gine	eerir	ıg",	5th	ec	litic	n,
	Elsevier	Elsevier Butterworth-Heinemann, 2007														
3	Roy J.	Roy J. Dossat, "Principles of Refrigeration", 4th edition,														
	_	Pearson Education Asia, 2009.														
4	Stoecke	r,W	.F.	an	d	Jone	es	J.W	٠,	"Re	frige	eratio	on	anc	1 A	ir
		Stoecker,W.F. and Jones J.W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi,1986.														
5		R.K. Rajput ,"A Textbook of Refrigeration and Air-														
		Conditioning" January 2013.														
							I	POs						I	PSC	s
•	COs	1	2	3	4	5	6	Os 7	_8	9	10	11	12	1 1	PSC 2)s 3
•	COs	1 2	2	3	4	5 1	1			9	10	11	12			
		_			4 -	10000	6		8	9 -	10 - -	11	12	1	2	3
	1 pow	2	1.		4 - -	1	6		8	9 -	10	11 - -	12	1 2	2	3
	1 00W	2 2	1		4 - - 1	1	6 1 1		8 1 1	9	10	11	12	1 2 2	2 1 1	3 1 1
	2 3	2 2 2	1 1 1	- 0	-	1 1 1	6 1 1		8 1 1	9	10	11	12	1 2 2 2	1 1 1	3 1 1 1
	1 2 3 4	2 2 2 2 3	1 1 1 2	- 1	- - - 1	1 1 1 1	6 1 1 1 1		8 1 1 1 1	9	10 - - - -	11	12	1 2 2 2 3	1 1 1 1	3 1 1 1 1
	1 2 3 4 5	2 2 2 3 3	1 1 1 2 2	- - 1	- - 1	1 1 1 1 1	6 1 1 1 1 1	7 - - -	8 1 1 1 1 1	9	10 - - - -	11	12	1 2 2 2 3 3	1 1 1 1 1	3 1 1 1 1 1

23ME048	NON-CONVENTIONAL ENERGY	L	T	P	С
	SOURCES	3	0	0	3
COURSE O	BJECTIVES:		I		
At th	e end of the course, the students are expe	cted	to		
ident	ify the new methodologies technologies f	or e	ffec	tiv€	<u>,</u>
utiliz	ation of renewable energy sources				
UNIT I	SOLAR AND WIND ENERGY				9
Introduction	a - Flat plate collectors - Concentrating so	olar	Col	lect	or
	ver – Tower plant – Solar pond – Phot				
_	ar applications (Trombe wall and sola				
through wir	ndows). Wind turbines and power perfor	mar	nce	cur	ve
- Wind pov	ver potential - Wind power density - V	Vinc	d tu	rbi	ne
efficiency -	Betz limit for wind turbine efficiency – Co	onsi	dera	atio	ns
in wind pov	ver applications.				
UNIT II	GEOTHERMAL ENERGY	4		1	9
Introduction	– Geothermal applications – Geothern	nal l	neat	ing	_
	method for annual energy consumption -	VIII.000			
	bsorption cooling system - Geotherma				
systems -	Heat pump systems - Ground source	he	at p	oun	np
systems- Ge	othermal cogeneration.		NON		5
	OCEAN ENERGY, HYDROGEN AN		FUE		9
(CELLS				
Introduction	n – Ocean thermal energy conservation – V	Mar	0.01	oro	
	uction from waves – Waves power techno			_	,,,
-	Hydrogen: An energy carrier - F	_			ıaı
	amic analysis of fuel cell.	uei	CE	115	_
	BIOMASS ENERGY			T	9
ONIT IV	NOWIAGO LIVERGI				,
Introduction	n - Biomass resources - Conversion of	f bio	oma	iss	to
biofuel - Bi	omass products – Ethanol – Biodiesel -	- Me	etha	nol	-
	l - Biogas - Producer gas - Synthesis gas	s – E	Elect	rici	ity
and heat pro	oduction by biomass.				

UNIT V ENVIRONMENT AND ECONOMICS OF 9 RENEWABLE ENERGY Introduction - Air pollutants - Emissions from automobiles - The greenhouse effect - CO₂ Production - Stratospheric ozone depletion - Introduction of engineering economics - The time value of money - Effect of inflation and taxation on interest rate -Life cycle cost analysis - cost benefit analysis - Unit product cost -Comparison of projects based on life cycle cost analysis - Payback period analysis. **TOTAL: 45 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to **CO1** Explain the Indian and global energy scenario. CO2 Summarize the various solar energy technologies and its applications. CO3 Explain the various wind energy technologies. CO4 Interpret the various bio-energy technologies. CO5 Compare the different methods of ocean energy production. CO6 Apply knowledge of geothermal energy sources and power plant types to assess their applications and environmental impacts. **TEXT BOOKS:** Fundamentals and Applications of Renewable Energy Indian Edition, by Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala, McGraw Hill; First edition (10 December 2020), ISBN-10: 9390385636 Renewable Energy Sources and Emerging Technologies, by 2 Kothari, Prentice Hall India Learning Private Limited; 2nd edition (1 January 2011), ISBN-10: 8120344707 REFERENCES: Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.

Publishers, New Delhi, 2014.

Rai.G.D., "Non-Conventional Energy Sources", Khanna

2

3	Sukhatme.S.P.,	"Solar	Energy:	Principles	of	Thermal
	Collection and	Storage	", Tata	McGraw H	ill P	ublishing
	Company Ltd., 1	New Del	hi, 2009.			o .

4 Tiwari G.N., "Solar Energy - Fundamentals Design, Modelling and applications", Alpha Science Intl Ltd, 2015.

COs						I	POs						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1
2	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1
3	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1
4	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1
5	2	1	-	-	1	1	-	1	-	1	-	-	2	1	1
6	3	2	1	1	1	1	-	1	-	1	-	-	3	1	1
Overall Correlation	3	2	1	1	1	1	-	1	- 1	1	-	-	3	1	1

AFFILIATED TO ANNA UNIVERSITY LAUTDNOMOUS

223 45040	DIO ENEDOVICONNEDCIONI	T .	T	D	
23ME049	BIO ENERGY CONVERSION	L	T		C
	TECHNOLOGIES	3	0	0	3
COURSE OBJ					
	elucidate on biomass, types, ava	ilabi	lity	, 8	and
	acteristics				
	udy the bio-methanation process.	<i>c</i> 1			
	npart knowledge on combustion of bio				
	lescribe on the significance of equiva nochemical conversion of biomass	lenc	e ra	atio	on
	rovide insight to the possibilities of pro	duc	ina	lia	
	from biomass	Juuc	mıg	, mq	uiu
	TRODUCTION				9
Biomass: typ	pes – advantages and drawbacks	s –	t	ypic	al
characteristics	- proximate and ultimate analysis -	· co1	npa	ariso	on
with coal -	Indian scenario - carbon neutrality	7 -	bio	oma	SS
assessment s	studies - typical conversion me	cha	nisı	ns	_
densification t	echnologies.				
UNIT II BIO	OMETHANATION			d	9
Di di	A La	_	_		
The state of the s	on process - influencing parameters -	1111		J 10	
	as plants: types and design, Biogas				
	aries and power generation systems	- 1	ndı	ıstr	ial
	biogas plants.				
UNIT III CC	OMBUSTION				9
Perfect, comp	lete and incomplete combustion - stoic	hior	net	ric a	air
=	or biofuels - equivalence ratio - fixed l				
bed combustic	-				
UNIT IV BIO	O-ENERGY				9
Chemistry of	gasification - types - compariso	n -	· t	ypic	al
-	performance evaluation – economics		-	_	
	- process governing parameters – Typic	-		-	
	- merits of carbonized fuels - technic	-			
	incites of carbonized facts – technic	1 ^{ucs}	uu	op"	Ju

for carbonization.

UNI	T V LIQUIFIED BIOFUELS	9
0111	EIQUITED BIOTOLES	
	ght Vegetable Oil (SVO) as fuel - Biodiesel production fr	
oil se	eeds, waste oils and algae - Process and chemistry - Biodi	esel
Vs I	Diesel - comparison on emission and performance fro	nts.
	uction of alcoholic fuels (methanol and ethanol) from biom	ıass
- eng	gine modifications	
	TOTAL: 45 PERIO	DDS
COU	JRSE OUTCOMES:	
After	completion of the course, the students will be able to	
CO1	Develop e the surplus biomass availability of any given a	rea.
CO2	Construct a biogas plant for a variety of biofuels.	
CO3	Apply and compare the cost of steam generation fr	om
	biofuels with that of coal and petroleum fuels.	
CO4	Apply gasification and pyrolysis principles to evalu	ıate
	performance and economic factors in energy production.	
CO5	Develop carbonization techniques and assess the merit	s of
	carbo <mark>nized f</mark> uels.	
CO6	Summarize on liquid biofuels for power generation fr	om
	biomass.	Y
TEX	T BOOKS: AFFILIATED TO ANNA UNIVERSITY I AUTONOMO	
1	Nidhi Adlakha, Rakesh Bhatnagar , Syed Shams Yazda	
	Biomass for Bioenergy and Biomaterials" CRC Press;	1st
	edition (22 October 2021), ISBN-10 : 0367745550	
2	Augustine O. Ayeni, Samuel Eshorame Sanni, Solomor	
	Oranusi ,"Bioenergy and Biochemical Process	ing
	Technologies" Springer (30 June 2022).	
	ERENCES:	
1	Ellis Hoknood, Chichester, David Boyles, "Bio Ene	rgy
	Technology Thermodynamics and costs",1984.	
2	Iyer PVR et al, "Thermochemical Characterization	of
	Biomass", M N E S.	
3	Khandelwal KC, Mahdi SS, "Biogas Technology – A Pract	ical
	Handbook", Tata McGraw Hill, 1986.	

4	Mahaeswari,	"R.C.	Bio	Energy	for	Rural	Energisation",
	Concepts Pub	licatio	n, 199	97.			

5	Tom	В	Reed,	"Biomass	Gasification	-	Principles	and
	Techr	nolo	ogy", N	oyce Data (Corporation, 1	981	l.	

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
2	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
3	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
4	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
5	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
6	2	1	1	-	1	1	-	1	-	-	-	-	2	1	1	
Overall	3	2	1	1	1	1		1					3	1	1	
Correlation	3	_	1	1	Ė	1	-		-	_	_	-	3	1	1	

23ME050	THERMAL MANAGEMENT OF	L	T	P	C
	BATTERIES AND FUEL CELLS	3	0	0	3
COURSE OB	JECTIVES:				
	study the working principle of Li-ion B	atte	ries	an	d
	tery Packs. learn the thermal management systen	n in	Rat	Hor	5 7
	dules.	11 111	ра	lle1	y
• To	develop the different case studies	in	Ba	tter	y
	ermal Management System. learn the working principle of Fuel C	عالم'	COC	lin	σ
	thods.	CIIS	COC	,1111	Б
• To	learn the inside components of	of [The:	rma	ıl
	nagement Systems .				
UNIT I AI	OVANCED BATTERIES				9
Li-ion Batteri	es - chemistry, different formats, ope	rati	ng a	area	as,
	ing. Battery Management System - C	- 400	_		
	s. Tesla Model S - 18650 Cell specif		_		
2.000	nechanical structure, Texas Instruments	1000			
70/1/	batteries. Diamond battery concepts.			No.	
UNIT II TH	IERMAL MANAGEMENT IN BATTE	RIF	C		9
ONIT IN CASE	COLLEGE OF TECH	VO	LO	GY	
C N	nagement Systems- impact, Types -	NO	LO	iqui	
Thermal Mar	COLLEGE OF TECH	Air	, Li	_	d,

Thermal Management Systems- impact, Types - Air, Liquid, Direct refrigerant, Heat pipe, Thermo Electric, Phase Change Material Cooling methods. Solid-liquid PCM Types - Organic, Inorganic, Eutectics. PCM Thermal properties and applications. Tesla Model - S Battery Module - bonding techniques, thermal management.

ĺ	UNIT III	BATTERY THERMAL MANAGEMENT CASE	9
		STUDIES	

EV Battery Cooling - challenges and solutions. Heat Exchanger Design and Optimization Model for EV Batteries using PCMs - system set up, selection of PCMs. Chevrolet Volt Model Battery Thermal Management System- Case study. Modelling Liquid Cooling of a Li-Ion Battery Pack with COMSOL Multiphysics-

		n concepts.	
UNI	ΓΙ	THERMAL MANAGEMENT IN FUEL CELLS	9
Fuel	Cells	- operating principle, hydrogen - air fuel cell sys	tem
chara	acteris	stics, other fuel cell technologies, polarization cur	ves,
appli	catio	ns. Fuel cell thermal management - basic model, ene	ergy
balar	nce, g	overning equations, characteristic curve, sizing, coo	ling
meth	ods, a	advantages, restrictions.	
UNI	ΓV	FUEL CELL THERMAL MANAGEMENT CASE	9
		STUDIES	
Fuel	cell sy	ystem - balance of plant- components required. Fuel	cell
powe	er pla	ant sizing problems - Fuel Cell Electric Vehicle I	Fuel
	-	Calculations-Battery EVs Vs Fuel Cell EVs. Toyota M	
		erating principle, High pressure hydrogen tank, Bo	
conv	ertor,	NiMH Battery, Internal circulation system, Hydro	gen
refue	ling -	Case studies.	
· ·	T. Y	TOTAL: 45 PERIO	ODS
- 0	11	OUTCOMES:	
		pletion of the course, the students will be able to	
CO1	_	ain the different Li-ion Batteries and Fuel ormances.	
CO2	Deve	elop a Battery Pack with appropriate PCM.	
CO3	App	ly Cooling Models using Simulation.	
CO4	Deve	elop the fuel economy estimation.	
CO5	App	ly fuel cell system principles to size and evaluate	fuel
	cell 1	power plants.	
CO6	Sum	marize the components and principles of fuel	cell
	oper	rated vehicles.	
TEX	ГВО	OKS:	
1	Ibral	him Dinçer, Halil S. Hamut, and Nader Javani, "Ther	mal
	Man	agement of Electric Vehicle Battery Systems", Wi	ley,
	2017	•	

2	Jiuchun Jiang and Caiping Zhang, "Fundamentals and
	applications of Lithium-Ion batteries in Electric Drive
	Vehicles", Wiley, 2015.

- Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay and Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals, Theory, and Design", CRC Press, 2005.
- 4 John G. Hayes and G. Abas Goodarzi, "Electric Powertrain", Wiley, 2018.
- Davide Andrea, "Battery Management Systems for Large Lithium-Ion Battery Packs" ARTECH House, 2010.

REFERENCES:

- Nag.P.K, "Engineering Thermodynamics", 5th Edition, Tata McGraw Hill Education, New Delhi, 2013.
- 2 "Vehicle thermal Management Systems Conference Proceedings", 1st Edition; 2013, Coventry Techno Centre, UK.
- 3 Younes Shabany," Heat Transfer: Thermal Management of Electronics Hardcover" 2010, CRC Press.
- T. Yomi Obidi, "Thermal Management in Automotive applications", 2015, SAE.
- 5 Jerry Sergent, Al Krum, "Thermal Management Handbook: For Electronic Assemblies Hardcover", 1998, McGraw-Hill.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
2	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
3	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
4	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
5	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
6	2	1	1	1	-	1	-	1	-	-	-	-	2	-	1	
Overall Correlation	3	2	1	1	1	1	-	1	-	1	-	-	3	1	1	
Correlation																

23ME051	ENERGY STORAGE DEVICES	L	T	P	С
		3	0	0	3
COURSE OBJ	ECTIVES:		•	•	
• To st	udy the various types of energy storag	ge de	evic	es a	ınd
techr	nologies and them comparison.				
• To le	arn the techniques of various energy s	tora	ge d	levi	ces
and t	heir performances.				
• To le	arn the basics of batteries and hybrid s	yster	ns f	or I	EVs
and o	other mobile applications.				
• To le	arn about the renewable energy storag	ge sy	ster	ns a	ınd
mana	agement systems.				
• To h	ave an insight into other energy sto	orag	e d	evi	ces,
hydr	ogen, and fuel cells.				
UNIT I IN	TRODUCTION TO ENERGY STORA	GE			9
Need for Ene	rgy Storage - Types of Energy Stora	ge -	Va	rio	us
1 Million 1997	rgy Storage - Mechanical- Thermal				
Electrochemic	al - Electrical - Other alternative en	ergy	st	ora	ge
technologies -	Efficiency and Comparison.				0.5
UNIT II EN	ERGY STORAGE SYSTEMS	NO	LO	GΥ	9
Pumped Air E	Energy Storage - Compressed Air Ene	rgy S	Stor	age	-
Flywheel - Ser	nsible and Latent Heat Storage - Storag	ge M	ateı	ials	s –
Performance I	Evaluation - Thermochemical systems	- Ba	atte	ries	-
Types Charg	ing and Discharging - Battery	test	ing	ar	nd
performance.					
	DBILE AND HYBRID ENERGY STO	RAG	E		9
SY	STEMS				
Batteries for el	ectric vehicles - Battery specifications i	or c	ars,	hea	ırt
pacemakers,	computer standby supplies - V20	G a	nd	G^2	2V
technologies -	HESS				
	NEWABLE ENERGY STORAGE AND ERGY MANAGEMENT	D			9
Storage of Re	newable Energy Systems - Solar En	ergy	_	Wir	nd

Energy – Energy Storage in Micro grid– Smart Grid – Energy Conversion Efficiency - Battery Management Systems – EVBMS – Energy Audit and Management.

UNIT V OTHER ENERGY DEVICES

9

Superconducting Magnetic Energy Storage (SMES), Super capacitors – MHD Power generation – Hydrogen Storage - Fuel Cells – Basic principle and classifications – PEMFC, AMFC, DMFC, SOFC, MCFC and Biofuel Cells – Biogas Storage.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Summarize the need and identify the suitable energy storage devices for applications.
- CO2 Explain the working of various energy storage devices and their importance.
- CO3 Explain the basic characteristics of batteries for mobile and hybrid systems.
- **CO4** Apply knowledge of energy storage systems to manage solar and wind energy effectively.
- CO5 Make use of energy management techniques to improve efficiency and conduct energy audits.
- **CO6** Explain the need for other energy devices and their scope for applications.

TEXT BOOKS:

- 1 Rober Huggins, "Energy Storage: Fundamentals, Materials and Applications", 2 nd Edition, Springer, 2015.
 - 2 Dell, Ronald M Rand, David A J, "Understanding Batteries", Royal Society of Chemistry, 2001.

REFERENCES:

1 Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt," Energy Storage in Power Systems" Wiley Publication, 2016.

2	Ibrahim	ı D	inc	er	and	l N	Iark	(A	R	ose	n, "	'The	rma	1 E	ner	gy
	Storage Systems and Applications", John Wiley and Sons,															
	2002.															
3	Lindon David, "Handbook of Batteries", McGraw Hill, 2002.															
4	Aulice Scibioh M. and Viswanathan B, "Fuel Cells -															
	principles and applications', University Press(India), 2006.															
5	Ru-Shiliu, Leizhang, Sueliang Sun, "Electrochemical															
	Technologies for Energy Storage and Conversion", Wiley															
	Publications, 2012.															
COs		POs											PSOs			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		2	1	ı	1	1	1	-	1	-	ı	ı	1	2	1	1
2		2	1	ı	1	1	1	-	1	-	ı	ı	1	2	1	1
3		2	1	ı	1	1	1		1		1	1	- 23	2	1	1
	4 00W	3	2	1	1	1	1		1		ľ			3	1	1
,	5	3	2	1	1	1	1	-	1	Y-	-	-	-	3	1	1
	6	2	1	/ -	-	1	1	g	1	7	- 3	1		2	1	1
Overall Correlation		3	2	1	1	1	1	-	1	-	_	_	-	3	1	1

23ME052	ENERGY CONSERVATION IN	L	T	P	C
	INDUSTRIES	3	0	0	3

COURSE OBJECTIVES:

- To learn Quantifying the energy demand and energy supply scenario of nation and explaining the need for energy auditing for becoming environmentally benign
- To analyze factors behind energy billing and applying the concept of demand side management for lowering energy costs
- To learn Computing the stoichiometric air requirement for any given fuel and quantifying the energy losses associated with thermal utilities of industries
- To diagonize the causes for under performance of various electrical utilities and suggesting remedies for improving their efficiency
- To apply CUSUM and other financial evaluation techniques to estimating the accruable energy savings/monetary benefits for any energy efficiency project

UNIT I INTRODUCTION 9

Energy scenario of World, India and TN - Environmental aspects of Energy Generation - Material and Energy balancing - Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Basic instruments for Energy Auditing.

UNIT II ELECTRICAL SUPPLY SYSTEMS 9

Electricity Tariff structures - Typical Billing - Demand Side Management - HT and LT supply - Power Factor - Energy conservation in Transformers - Harmonics

UNIT III ENERGY CONSERVATION IN MAJOR THERMAL UTILITIES 9

Stoichiometry - Combustion principles. Energy conservation in: Boilers - Steam Distribution Systems - Furnaces - Thermic Fluid

Heaters - Cooling Towers - D.G. sets. Insulation and Refractories - Waste Heat Recovery Devices. UNIT IV ENERGY CONSERVATION IN MAJOR 9 **ELECTRICAL UTILITIES** Energy conservation in: Motors - Pumps - Fans - Blowers -Compressed Air Systems - Refrigeration and Air Conditioning Systems - Illumination systems ENERGY MONITORING, TARGETING, UNIT V 9 LABELLING AND ECONOMICS Elements of Monitoring and Targeting System - CUSUM - Energy / Cost index diagram - Energy Labelling - Energy Economics -Cost of production and Life Cycle Costing - Economic evaluation techniques - Discounting and Non-Discounting - ESCO concept -PAT scheme TOTAL: 45 PERIODS **COURSE OUTCOMES:** After completion of the course, the students will be able to CO1 Explain the energy demand and supply scenario of nation and need for energy auditing. CO2 Analyze factors behind energy billing. CO3 Develop and compute the stoichiometric air requirement for any given fuel. CO4 Summarize the causes for under performance of various electrical utilities. CO5 Apply energy monitoring techniques to track and optimize energy usage. CO6 Make use of economic evaluation methods to assess the costeffectiveness of energy projects. TEXT BOOKS: Guide book for National Certification Examination for 1 "Energy Managers and Energy Auditors" (4 Volumes). Available at http://www.em-ea.org/gbook1.asp.

website is administered by Bureau of Energy Efficiency

	(BEE),	a	sta	tuto	ory	bo	ody	u	nde	er :	Min	istry	of	F	ow	er,
	Govern	mei	nt o	f In	dia.	•										
2	K. Nag	abł	nusł	nan	Ra	ıju,'	" Iı	ndu	stri	al I	Ener	gy	Con	ser	vati	on
	Techniq	ues	s: (c	con	cep	ts,	Ap	plic	atic	ns	and	Ca	ise S	Stuc	dies)",
	Atlantic	: Pu	blis	sher	s aı	nd I	Dist	, 20	07.							
REF	ERENCE	S:														
1	Abbi Y	P, S	Shas	shar	nk J	ain	., "I	lan	dbo	ook	on I	Ener	gy A	\ud	it a	nd
	Environ	me	nt l	Mar	nage	eme	ent"	, TE	ERI	Pre	ss, 2	006.				
2	Albert 7	Γhu	ma	nn a	and	Pa	ul l	Mel	ita 1	D, "	'Har	ndbo	ok (of E	ner	gy
	Engine	erin	g",	7th	Edi	itio	n, T	he l	Fair	mo	nt P	ress,	201	3.		
3	Murphy	7. I	N.R	l. a	nd	Mo	cKa	y.	G,	"Eı	nerg	y N	Iana	ger	nen	t",
	Murphy. W.R. and McKay. G, "Energy Management", Butterworth, London 1982.															
4	Paul W.	.O '	Cal	lagl	nan	, "I	Desi	gn	and	ma	anag	eme	ent fo	or e	ner	gy
	conserv	atic	n:	A	har	ndb	ook	: fc	or e	enei	gy	maı	nage	rs,	pla	nt
	enginee	rs,	and	de	sigr	ners	", F	erg	am	on l	Pres	s, 19	81.		4	
5	Steve 1	Dot	y,	Wa	yne	e 7	urr	ner	C,	"]	Ener	gy	Mar	nag	eme	ent
	Handbo	ook	7th	Ed	itio	n",	The	Fa	irm	ont	Pres	ss, 20	009.			
	COs				-		I	POs		1			-	I	PSC	s
ľ	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1		-	1	1	Ę	1	5		5	NO	2	1	1
	2	3	3	2	2	1	1	10.11	1	NA U	ZIVE	Y	AUT	3	1	1
	3	3	2	1	1	1	1	-	1	-	1	ı	-	3	1	1
	4	2	1	-	-	1	1	-	1	-	1	ı	-	2	1	1
	5	3	2	1	1	1	1	-	1	_	-	-	-	3	1	1
	6	3	2	1	1	1	1	-	1	_	-	-	-	2	1	1
	11	l	l			l	1	ı	l				l		1	ı

1

1 1

Overall

Correlation

2 1

1 | 1 | 1

3

23MT047	AUTOMOBILE ENGINEERING	L	T	P	C
		3	0	0	3

- To study the construction and working principle of various parts of an automobile.
- To study the practice for assembling and dismantling of engine parts and transmission system.
- To study various transmission systems of automobile.
- To study about steering, brakes and suspension systems.
- To study alternative energy sources.

UNIT I VEHICLE STRUCTURE AND ENGINES 9

Types of automobiles vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC engines – components - functions and materials, variable valve timing (VVT).

UNIT II ENGINE AUXILIARY SYSTEMS 9

Electronically controlled gasoline injection system for SI engines, Electronically controlled diesel injection system (Unit injector system, Rotary distributor type and common rail direct injection system), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Turbo chargers (WGT, VGT), Engine emission control by three way catalytic converter system, Emission norms (Euro and BS).

UNIT III TRANSMISSION SYSTEMS 9

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Overdrive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

UNIT IV | STEERING, BRAKES AND SUSPENSION **SYSTEMS** Steering geometry and types of steering gear Box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control. UNIT V | ALTERNATIVE ENERGY SOURCES 9 Use of Natural Gas, Liquefied Petroleum Gas, Bio - diesel, Bio ethanol, Gasohol and Hydrogen in Automobiles - Engine modifications required - Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels -Electric and Hybrid Vehicles, Fuel Cell Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students. **TOTAL: 45 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Explain the various parts of the automobile and their functions and materials. CO2 Summarize the engine auxiliary systems and engine emission control. CO3 Compare the working of different types of transmission systems. Apply knowledge of steering and suspension systems to CO₄ improve vehicle handling and stability. CO5 Interpret on braking systems like ABS and EBD to enhance vehicle safety. CO6 Develop the possible alternate sources of energy for IC Engines. **TEXT BOOKS:**

McGraw Hill Publishers, New Delhi, 2002.

Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata

1

2	Kirpal Singh, "Automobile Engineering", Vol 1 and 2,
	Seventh Edition, Standard Publishers, New Delhi, 13th
	Edition 2014.

REFERENCES:

- 1 Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2012.
- Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 3 Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.
- 4 Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart Will Cox Company Inc, USA, 1978.

COs					_	I	POs					- 5	I	PSC	s
COS	1	-2	3	4	5	6	7	8	9	10	11	12	1	2	3
17/4	2	1		1	1	1	-	1	7-	-	-	-	2	1	1
2	2	1	4	4	1	1		1	4	-8	1		2	1	1
3	2	1		4	1	1		1	1		1	/	2	1	1
4	3	2	1	1	1	1	-	1	1	-	-	-	3	1	1
5 GAVE	2	1	No.	-	1	1	E	1	7	LE	GH	N <u>O</u>	2	1	1
6	3	2	1	1	1	1	ED T	1	NA U	NIVER	SHY	AUTO	3	1	1
Overall Correlation	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1

VERTICAL 4 - MODERN MOBILITY SYSTEMS

23AU064	AUTOMOTIVE CONTROL	L	T	P	C
	SYSTEMS	3	0	0	3
COURSE	OBJECTIVES:				
•	To understand the technologies relevant	to	inte	ellig	gent
	vehicle systems				
•	To appreciate the role of electronics	in	pro	vid	ling
	improved control to a variety of vehicle sy	sten	ns.		
•	To recognize the electronically controlled s	yste	em ı	ıse	d in
	driving mechanics.				
UNIT I	DRIVER ASSISTANCE SYSTEMS				9
Orzanziarz	and examples of vehicle control system	<u> </u>	Cor	200	***
	and controller modules - Vehicle con				
400	- System Engineering V-diagram -		_		
1 / All TV . A /	ent - Steps in vehicle control system design				
100	Manipulated, Measured disturbance	VIIII00			
7. 10. 10. 10.	ion of the variables in various automotive	sys	tem	ıs li	ke
	uspension, Braking.				
UNIT II	CONTROL SCHEMES, CRUISE AND			91	9
	HEADWAY CONTROL TO ANNA UNIVERSITY			40U	5
Feed - For	ward control - Cascade control - Design co	onsi	dera	atio	ns
	e control, Time delay compensation, Inferen				
	control - Adaptive control etc. Cruise cor				
	ous cruise control - Anti locking brakes - Tra			_	
	Vehicle stability control linear and non-l				
model.	3				
UNIT III	DRIVER MODELING AND POWERTR	AIN	Ī		9
	CONTROL SYSTEMS				
Driving s	imulators - Percentage of road departu	ıre	- I	Driv	er

247

modeling - Transfer function models - Preview/ Predictive models - Longitudinal driver models Control oriented engine modeling - Air intake model - Fuel dynamics model - Air Fuel ratio dynamics

•		
	ine Control Loops - Air Fuel Ratio control - EGR Control.	
UNI	Γ IV CONTROL OF HYBRID AND FUEL CELL	9
	VEHICLES	
Serie	s-Parallel - Split Hybrid Configurations - Hybrid Vehi	icle
Cont	rol Hierarchy - Control Concepts of Series Hybrids	s -
Equi	valent Consumption minimization strategy - Control conce	pts
for s	olit hybrid modelling of fuel cell systems - Fuel stack mod	el -
Cont	rol of fuel cell system.	
UNI	Γ V HUMAN FACTORS AND INTELLIGENT	9
	TRANSPORT SYSTEM	
771		•
	safety risks - Guidelines to fly safely - Specific aviat	
_	ation and standardization - Drone license - Miniaturization	
	es - Increasing autonomy of drones - The use of drones	ın
swar	ms. OWER DREAM AT DEPLO	NDC
COL	TOTAL: 45 PERIO	פענ
	RSE OUTCOMES:	
	completion of the course, the students will be able to	
	Explain the basics of control system used in automobiles.	
CO2	Identify the electronically controlled system used in driving	ing
	mechanics. AFFILIATED TO ANNA UNIVERSITY LAUTONOMOR	12
CO ₃	Summarize the working principle of driver modelling a	and
	power train control systems.	
CO4	Identify the control system used in hybrid and electric	ical
	vehicles.	
CO5	Illustrate the need of automated transport systems.	
CO ₆	Categorize the recent trends and intelligent technolog	gies
	associated with modern day vehicles.	
TEX	Γ BOOKS:	
1	Galip Ulsoy, "Automotive Control System", Cambrid	dge
	University Press, 2012.	
2	Uwe Kiencke and Lars Nielson, "Automotive Cont	trol
	System", SAE Publications, 2006.	

REF	ERENCE	S:														
1	Bosch A	uto	mo	tive	е На	and	boc	k, S	Sixt	h E	ditio	n, 20	004.			
2	Benjam	in C	C.Kı	10 a	nd	Far	id (Golı	nara	agh	i, "A	uto	mati	c C	ont	rol
	System", John Wiley & Sons, Eighth edition, 2003.															
3	Katsuhiko Ogata, "System Dynamics", Prentice Hall															
	International, Inc. Third Edition, 1998.															
4	Richard C.Dorf and Robert H.Bishop, "Modern Control															
	Systems", Pearson Prentice Hall, 2008.															
	POs PSOs PSOs															
· '	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	-	-	-	-	-	-	-	2	2	-
	2	3	2	1	1	2	-	-	-	-	-	-	-	3	2	-
	3	2	1	-	-	2	-	-	-	-	-	-	-	2	2	-
	4	3	2	1	1	2	-	4	1	1	-	1	- 8	3	2	-
	5 POW	2	1	1	-	2	-2		-7	4	-	1	4	2	2	-
,	6	3	3	2	2	2	620	-	-0	_	-	-	-	3	2	ï-
	verall relation	3	2	1	1	2	-		-	1				3	2	J

COLLEGE OF TECHNOLOGY

23AU701	INTELLIGENT VEHICLE	L	T	P	C
	TECHNOLOGY	3	0	0	3

- To understand the importance of intelligent vehicle systems to the modern world and learn the working principles of various ADAS systems and focusing on those in-vehicle solutions.
- To appreciate the role of electronics in providing improved control to a variety of vehicle systems.
- To utilize appropriate methodologies and be aware of the design and implementation issues of advanced techniques.

UNIT I INTRODUCTION TO INTELLIGENT VEHICLE 9 SYSTEMS

Definition, modern trends in Auto industry, various intelligent systems present in the vehicle, Need for IVS, Benefits, Advanced Driver Assistance System -Types/Levels, Next Generation Intelligent Vehicles, and General Vehicle Control.

UNIT II AUTOMOTIVE IOT INTEGRATION 9

Developments on IoT in Automotive Sector, Connected Car Services and Applications- Infotainment, Vehicle and Smartphone Integration, Driving Insights- Analytics, On Board Diagnostics, Stolen Vehicle Tracking, Biometrics Information for Driver Identification, Vehicle Communication- V2V, V2X, V2R, IoT in Intelligent Transportation, Introduction to Autonomous Vehicle.

UNIT III TRAFFIC SURROUNDING SYSTEM 9

Modelling traffic and driver interactions, Simulation of driver and city interaction, Behavior and driving pattern, simulation of driver and highway interaction, Behavior and driving pattern, Application: Traffic alert - Real time road data on Navigation, Navigation System- Global Positioning System, Geographical Information Systems Architecture, Road Sign Recognition.

UNIT IV ADVANCED VEHICLE CONTROL SYSTEMS AND SAFETY SYSTEMS FOR MODERN VEHICLES

Introduction- Design overview, circuit diagram and Algorithm, Driver safety systems- ABS, Driver Aid system - ESP, Blind Spot monitoring system, Collision mitigation system, Adaptive Headlamps, Automatic parking system, Eight-way seating system, Adaptive cruise control system, Collapsible and tiltable steering column, Lane Departure Warning.

UNIT V CONNECTED VEHICLE SYSTEMS

9

Introduction to CVS, Telematics control system architecture - driver information systems, Vehicle -vehicle interaction using TCS, Current trends in auto industry, In-Vehicle Entertainment System - Mirror link, Web link, App link, Apple Car Play, Android Auto. Application: e-call system - design, functions and limitations.

TOTAL: 45 PERIODS

COURSE OUTCOMES: After completion of the course, the students will be able to **CO1** Analyze the importance of modern trends in vehicle System. CO2 Apply the knowledge for selection of sensor communication protocols for interfacing sensors. CO3 Apply the knowledge for understanding the traffic information in the surroundings. **CO4** Illustrate the various intelligent systems used in automobiles and entertainment features inside the vehicle. CO5 | Explain the intelligent systems associated with Autonomous vehicle. the perception, prediction of CO6 Explain and routing autonomous driving.

TEX	Г ВООК	S:														
1	A. Pera	llos	s, L	J. F	Ierr	nan	dez.	-jay	o, I	Е. С)nie	va a	nd :	I. C	Garc	ia-
	Zuazola	a (E	ds.), Ir	itell	ige	nt T	ran	spo	ort S	Syste	ems:	Tec	hnc	log	ies
	and Ap	plic	catio	ons,	Wi	iley	pul	blic	atio	ns,	2015	5.				
2	A. Eska	and	laria	an	(Ed	.),	Har	ndb	ook	of	Int	ellig	ent	Ve	hicl	es,
	Springe	r-V	erla	ag L	ono	don	Lto	1, 20	012.							
REFI	ERENCE	S:														
1	R. K. J	urg	gen,	N	avi	gati	on	ano	d Iı	ntel	liger	nt T	rans	poi	tati	on
	Systems	s -	Pr	ogr	ess	Te	chn	olo	gy,	Αι	ıtom	otiv	e E	lect	ron	ics
	Series, V	Naı	rrer	ıdal	e, P	'A:	SAI	E In	terr	natio	onal	2014	4.			
2	H. Ch	eng	, <i>1</i>	Aut	onc	mo	us	In	telli	gen	t V	⁷ ehi	cles:	T	heo	ry,
	Algoritl	nms	s, aı	nd I	mp	lem	ent	atio	n, I	Berl	in: S	prin	ıger,	201	l1.	
3	P. C.	Cad	ccia	bue	e (1	Ed.)	, N	Лod	lelli	ng	Dri	ver	Beł	navi	or	in
	Automo	otiv	e	Env	viro	nm	ent	s	Crit	ical	Is	sues	s ir	1]	Driv	<i>i</i> er
	Interact	ion	s w	ith	In	telli	iger	nt T	'ran	spo	rt S	yste	ems	Spr	ing	er-
	Verlag l	Lon	ıdoı	n Lt	d, 2	2007	7.							1		ř.
4	Michael	À	E.	A	Mo	Gr	ath,		— /	luto	onor	nous	S	Ve	hicl	es:
1	Opport	uni	ties	, St	rate	gies	s, ai	nd,	Dis	rup	tions	sl, A	maz	on,	201	8.
	COs	7	15	42			1	POs						I	PSC	s
'	CANE	.1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	2	1	2	ED II	1	NA.U	NIVER	SHY	1	3	1	1
	2	3	2	1	1	1	2	_	1	-	_	_	1	3	1	1

COs	><	=	12			1	Os						1	SC	S
COS GINE	,1,	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	2	1	2	11.11	1	IA U	MIVER	SHY	1	3	1	1
2	3	2	1	1	1	2	-	1	-	-	-	1	3	1	1
3	3	2	1	1	1	2	-	1	-	-	-	1	3	1	1
4	2	1	-	-	1	2	-	1	-	-	-	1	2	1	1
5	2	1	-	-	1	2	-	1	-	-	-	1	2	1	1
6	2	1	-	-	1	2	-	1	-	-	-	1	2	1	1
Overall Correlation	3	2	1	1	1	2	-	1	-	-	-	1	3	1	1

23ME053	HYBRID AND ELECTRIC	L	T	P	C
	VEHICLE TECHNOLOGY	3	0	0	3

- To introduce the concept of hybrid and electric drive trains.
- To elaborate on the types and utilization of hybrid and electric drive trains.
- To expose on different types of AC and DC drives for electric vehicles.
- To learn and utilize different types of energy storage systems.
- To introduce concept of energy management strategies and drive sizing

UNIT I INTRODUCTION

9

Basics of vehicle performance, vehicle power source characterization, transmission characteristics, History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

UNIT II HYBRID ELECTRIC DRIVE TRAINS

5

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

UNIT III | CONTROL OF AC and DC DRIVES

9

Introduction to electric components used in hybrid and electric vehicles, Configuration, and control - DC Motor drives, Induction Motor drives, Permanent Magnet Motor drive, and Switch Reluctance Motor drives, drive system efficiency.

UNIT IV ENERGY STORAGE 9 Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Energy storage and its analysis - Battery based, Fuel Cell based, and Super Capacitor based, Hybridization of different energy storage devices. DRIVE SIZING AND ENERGY UNIT V 9 **MANAGEMENT STRATEGIES** Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selection of appropriate energy storage technology, Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification, and comparison of energy management strategies, Implementation issues. **TOTAL: 45 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to CO1 Interpret and configure hybrid drivetrains requirement for a vehicle. CO2 Apply appropriate hybrid and electric drive trains in a vehicle. CO3 | Select suitable AC and DC drives for electric vehicles. CO4 Illustrate a suitable energy storage system for a hybrid / electric vehicle. CO₅ Apply drive sizing techniques to match electric machines, internal combustion engines, and energy storage systems in vehicles. CO6 Make use of energy management strategies to optimize the performance of hybrid vehicles.

TEXT BOOKS:

1 Iqbal Husain, "Electric and Hybrid Vehicles: Design Fundamentals", Third Edition, 2021.

2 2. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.

REFERENCES:

- Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, "Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004.
- **2** Rand D.A.J, Woods, R "Dell RM Batteries for Electric vehicles", John Wiley.
- 3 Jack Erjavec "Hybrid, Electric and Fuel-Cell Vehicles", International Edition June 2012.
- 4 Christian Paar ,"Energy Management in Hybrid Electric Vehicles using Co-Simulation" February 2011.
- 5 Yangsheng Xu, Jingyu Yan, et al. "Hybrid Electric Vehicle Design and Control: Intelligent Omnidirectional Hybrids". December 2013.

-60% / 40mm		1000				- 40									
COs		1	10	1	1	/ I	POs	- 1	Y				I	PSO	s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	% -	<i>)</i> }-	1	1	7	1	-	_	-	_	2	1	1
2	3	2	1	1	1	1	-	1	-	-	1		3	1	1
3 CINE	3	2	1	1	1	1	F	1	<u>U</u> 1	LE	5	N <u>O</u>	3	1	1
4	2	1	-	1	1	1	10.19	1	NA.U	NIVER	SHY	AUT	2	1	1
5	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1
6	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1
Overall Correlation	3	2	1	1	1	1	1	1	-	-	-	-	3	1	1

23ME054	ENERGY STORAGE AND	L	T	P	C
	MANAGEMENT SYSTEMS FOR	3	0	0	3
	ELECTRIC VEHICLES				

- To study the various types of energy storage devices and technologies.
- To learn the techniques of various energy storage devices and their performances.
- To learn the basics of batteries and hybrid systems for EVs and other mobile applications.
- To learn about the renewable energy storage systems and management systems.
- To have an insight into other energy storage devices, hydrogen, and fuel cells.

UNIT I ENERGY STORAGE TECHNOLOGIES

9

Classification of Storage Technologies by Energy type- Thermal Energy: Heat Storage; Chemical Energy: Organic and Non-Organic; Mechanical Energy: Kinetic and Potential Energy; Electrical Energy: Electrical Potential.

UNIT II ENERGY STORAGE SYSTEMS IN MODERN 9 ELECTRICAL SYSTEMS

Lead-acid battery, Nickel - cadmium battery, Lithium - ion battery, Sodium-sulfur battery, Nickel metal hydride battery, Fuel cells, Capacitors and Super capacitors. Solid state Batteries. Differences amongst different ESS.

UNIT III TYPICAL ESS AND BATTERY CHEMISTRY 9

Electrodes, Electrolytes, Collectors, Thermal management, Packaging of battery pack Lithium based batteries: Lithium manganese oxide, Lithium iron phosphate, Lithium nickel manganese cobalt oxide, Lithium nickel cobalt aluminum oxide and Lithium titanate; Silicon based Batteries, Sodium-sulfur Batteries, Proton Batteries, Graphite Dual-Ion Batteries, Salt-water Batteries and Potassium - Ion Batteries.

UNIT IV | BATTERY MANAGEMENT SYSTEMS (BMS) Introduction to BMS, Objectives of the BMS: Discharging control, Charging control, State - of - Charge Determination, State - of -Health Determination, Cell Balancing; **BMS** topologies: Distributed Topology, Modular Topology and Centralized Topology, Firmware development, Certification, Aging. BATTERIES FOR THE EV APPLICATION 9 Performance criterion for EV batteries Energy density, Amp hour density, Energy efficiency, Cost, Operating temperature, number of life cycles, recharge and self - discharge rates and commercial availability, some reference batteries and extension nonautomotive sectors. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to CO1 | Apply knowledge of different energy storage technologies to select appropriate storage methods based on energy type. CO2 Compare various energy storage systems to select and differentiate between battery types and other storage technologies in modern electrical systems. CO3 Apply knowledge of battery components to understand different types of batteries used in energy storage. CO4 Discuss battery management systems to control charging, discharging, and monitor battery health. CO5 | Apply performance criteria for EV batteries based on energy density, efficiency, cost, and other factors. CO6 Compare different battery types for electric vehicles and their applications in non-automotive sectors. **TEXT BOOKS:** Alfred Rufer, "Energy Storage systems and components",

CRC Press, 2017.

- 2 Tom Denton, "Automotive Electrical and Electronic Systems", 5th Edition, Routledge, 2018.
- Mehard Ehsani, Yiming Gao, Stefano longo and Kambiz Ebrahimi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles", CRC Press, 3rd Edition. 2019.

REFERENCES:

- E. Karden, S. Ploumen, B. Fricke, T. Miller and K. Snyder, "Energy storage devices for future hybrid electric vehicles," J. Power Sources, vol. 168, no. 1, pp. 2–11, 2007.
- 2 Iqbal Husain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press. 2021.

COs						I	POs						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	d	1	- 1	1	1	- 0	2	1	1
2 DOW	2	1	1	-	1	1	9	1	4	1	<u></u>	A	3	1	1
3	3	2	1	1	1	1	- 2	1	Y-	-	-	-	3	1	1
4	2	1	A	1	1	1	3	1	7	- 3	7		2	1	1
5	3	2	1	1	1	1	1	1	1	1	-		3	1	1
6	2	1	5	//-	1	1	-	1	-	-	-	-	3	1	1
Overall Correlation	3	2	1	1	1	1	EO TO	1.	OF NA U	NIVER	CH SITY	AUTO	3	G)	1

23ME055	ELECTRIC VEHICLE DESIGN	L	T	P	C
		3	0	0	3

- To model and design of electric vehicle technology with high efficiencies.
- To evaluate various choices available to designers to optimize their vehicle design.
- To select various electric drives and controller suitable for electric vehicles.
- To design and select ancillaries such as the heating and cooling system.
- To investigate the need for further research in promising areas.

UNIT I ELECTRIC VEHICLE MODELLING 9

Tractive Effort - Rolling resistance force - Aerodynamic drag - Hill climbing force - Acceleration force - Total tractive effort - Modelling Vehicle Acceleration - Acceleration performance parameters - Modelling the acceleration of a small car - Modelling Electric Vehicle Range - Driving cycles - Range modelling of battery electric vehicles - Constant velocity range modelling - Range modelling of fuel cell vehicles - Range modelling of hybrid electric vehicles.

UNIT II	ELECTRIC	VEHICLE	DESIGN	9
	CONSIDERAT	TIONS		

Transmission Efficiency - Consideration of Vehicle Mass - Electric Vehicle Chassis and Body Design - Body/chassis requirements - Body/chassis layout - Body/chassis strength, rigidity and crash resistance - Designing for stability - Suspension for electric vehicles - Chassis used in modern fuel cell electric vehicles.

UNIT III	SERIES	HYBRID	ELECTRIC	DRIVE	TRAIN	9
	DESIGN	1				

Operation Patterns - Control Strategies - maximum state-of-charge

of peaking power source (PPS) – Thermostat Control Strategy (Engine-On-Off) - Sizing of the Major Components - Power Rating Design of the Traction Motor - Power Rating Design of the Engine/Generator - Design of PPS - Power Capacity of PPS - Energy Capacity of PPS.

UNIT IV PARALLEL HYBRID ELECTRIC DRIVE TRAIN 9 DESIGN

Control Strategies of Parallel Hybrid Drive Train - Maximum State-of-Charge of Peaking Power Source (Max. SOC-of PPS) Control Strategy - Engine Turn-On and Turn-Off (Engine-On-Off) Control Strategy Design of Drive Train Parameters - Design of Engine Power Capacity - Design of Electric Motor Drive Power Capacity - Transmission Design - Energy Storage Design.

UNIT V ANCILLARY SYSTEMS AND THE 9 ENVIRONMENT

Heating and Cooling Systems - Design of the Controls - stick controller - Power Steering - Choice of Tyres - Electric Vehicle Recharging and Re-fuelling Systems - Vehicle Pollution in context with conventional vehicles - Quantitative Analysis - Alternative and Sustainable Energy.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Explain the given design specification and model the various components required for electrical vehicles with high performance.
- CO2 Choose proper drives and control for developing a new electric vehicle.
- CO3 Summarize the behaviour of electric vehicle by sophisticated mechanical and mathematical knowledge.
- CO4 Interpret the design and controls of heating, cooling, and power steering systems to enhance vehicle comfort and performance.

- CO5 Model the environmental impact of vehicle pollution and alternative energy sources to promote sustainable practices in automotive systems.
- CO6 Evaluate the environmental impact of vehicle pollution and alternative energy sources to promote sustainable practices in automotive systems.

TEXT BOOKS:

- 1 James Larminie and John Lowry, "Electric Vehicle Technology Explained" John Wiley and Sons, 2013.
- 2 Mehrdad Ehsani, Yimin Gao, Stefano Longo Kambiz M. Ebrahimi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles", CRS Press, 2018.

REFERENCES:

- 1 Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2011.
- 2 Seref Soylu "Electric Vehicles The Benefits and Barriers" InTech Publishers, Croatia, 2011.
- 3 Amir Khajepour, M. Saber Fallah, Avesta Goodarzi "Electric and hybrid vehicles technologies, modeling and control: a mechatronic approach" John Wiley and Sons Ltd 2014.

COs					AFF	I	Os	D AN	NA.U	NIVE	511 Y	AUT	Ī	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1
2	3	2	1	1	1	1	-	1	-	-	-	-	2	1	1
3	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1
4	2	1	-	-	1	1	-	1	-	-	-	-	3	1	1
5	3	2	1	1	1	1	ı	1	-	-	-	-	2	1	1
6	3	3	3	3	1	1	ı	1	-	-	ı	-	3	1	1
Overall Correlation	3	2	1	-	1	1	-	1	-	-	-	-	3	1	1

23ME056	VEHICLE HEALTH	L	T	P	C
	MONITORING, MAINTENANCE	3	0	0	3
	AND SAFETY				

- To enable the student to understand the principles, functions and practices adapted in maintenance activities of vehicles.
- To study the powertrain maintenance, fault diagnosis, maintenance of Batteries.
- To develop vehicle system maintenance and service of clutch, brake.
- To study the concepts of vehicle safety and regulations.
- To study and understand the simulation of safety concepts.

9

UNIT I INTRODUCTION

Need for Maintenance – importance, classification of maintenance work-basic problem diagnosis. Maintenance of vehicle systems – power pack, tyres, safety systems. Scheduled maintenance services – service intervals – On-board diagnostics, Computerized engine analyzer study and practice- OBD and scan tools.

UNIT II POWERTRAIN MAINTENANCE 9

Exhaust emission test of petrol and diesel engine; - Electronic fuel injection and engine management service - fault diagnosis- OBD-III and scan tool, identifying DTC and servicing emission controls, Maintenance of Batteries, Starting System, Charging System and Body Electrical -Fault Diagnosis Using Scan Tools.

UNIT III VEHICLE SYSTEM MAINTENANCE 9

Clutch- adjustment and service, Maintenance and Service of Hydraulic brake, Bleeding of brakes, Checking ABS and components. Maintenance and Service of McPherson strut, coil spring. tyre wear, measurement of read depth and tyre rotation, Computerized wheel balancing and wheel alignment, Maintenance and Service of steering linkage, steering column, Rack and pinion steering.

UNIT IV VEHICLE SAFETY

9

Concepts of vehicle safety -Seat belt, regulations, automatic seat belt tightner system, collapsible steering column, air bags, electronic system for activating air bags, bumper design for safety, Active Safety - ABS, EBD, CSC, Traction control system, Modern electronic features in vehicles like tyre pressure monitoring, Automatic headlamp ON, Rain sensing wipers.

UNIT V | SIMULATION OF SAFETY CONCEPTS

9

Active safety: driving safety, conditional safety, perceptibility safety, operating safety passive safety: exterior safety, interior safety, deformation behavior of vehicle body, speed and acceleration characteristics of passenger compartment on impact. Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system Interactions.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Illustrate the performance of the vehicle and follow the safety operations.
- **CO2** Explain the power train maintenance concepts
- CO3 Identify and analyze the problems in vehicle system
- **CO4** Explain the vehicle safety.
- CO5 Summarize active and passive safety concepts and their impact on vehicle safety
- CO6 | Explain collision warning and object detection systems.

TEXT BOOKS:

1 Tom Denton "Advanced Automotive Fault Diagnosis Automotive Technology: Vehicle Maintenance and Repair" 5th Edition.

2	S. V. Pa	ul,"	'Saf	ety	Ma	nag	gem	ent	Sys	ster	n an	d D	ocur	nen	tati	on
	Training	g Pı	ogı	am	me	На	ndb	ool	<" I	SBN	J: 97	8812	2392	344	4.	
REF	ERENCE	S:														
1	Ed May	, "A	uto	mo	tive	e Me	echa	anic	s V	olu	me (One"	and	Tw	70, N	Иc
	Graw H	ill I	Pub	lica	tio	ns, [Γen	th e	diti	on,	2018	3.				
2	"Bosch	Au	ton	noti	ve l	Har	ndbo	ook	", T	ent'	h Ed	litio	n, 20	18.		
3	Jack E	rjav	æk,	"	Α	sys	sten	าร	ap	pro	ach	to	Αu	ıton	noti	ve
	Technol	logy	₇ ", (Cen	gag	ge L	earı	ning	g, 5	th E	ditio	on, 2	2012.			
4		William H. Crouse and Donald L. Anglin, "Automotive														
	Mechan	Mechanics", Tata McGraw Hill, 10thEdition, 2004.														
5	"Vehicle	e	Se	rvio	ce	N	lanı	uals	3	of	R	lepu	ted	I	ndi	an
	Manufa	ctu	rers	<i>"</i> .								•				
	60						I	POs	,					I	PSO	s
'	COs	1	2	3	4	5	6	7	_8	9	10	11	12	1	2	3
	1 LOW	2	1	-	-	1	1	-	1	-	-	2	A	1	1	1
,	2	2	1	0	\ -	1	1	<u>_</u>	1	Y-	-	-	7	1	1	1
	3	3	2	1	1	1	1	B	1	7	-).	1	1	1	1
	4	2	1	/-	1	1	1	7	1	1	_	_	-	1	1	1
1	5	2	1	5	/_	1	1	-	1	-	-	-	-	1	1	1
	6 GINEE	2	1	diam'r.	-	1	1	ĿĶ	1	U)	LE	CH.	NO	1	1	1
O	verall	3	2	1	1	1	1	EO 11	DAN 1	NA U	NIVER	SHY	AUT	JNO:	400 1	1
Cor	relation	3		1	1	I	1	-	1	-	-	-	_	1	1	1

23ME057	CONVENTIONAL AND	L	T	P	C
	FUTURISTIC VEHICLE	3	0	0	3
	TECHNOLOGY				

- To study the advanced engine technologies.
- To learn various advanced combustion technologies and its benefits.
- To learn the methods of using low carbon fuels and its significance.
- To learn and understand the hybrid and electric vehicle configurations.
- To study the application of fuel cell technology in automotives.

UNIT I ADVANCED ENGINE TECHNOLOGY 9

Gasoline Direct Injection, Common Rail Direct Injection, Variable Compression Ratio Turbocharged Engines, Electric Turbochargers, VVT, Intelligent Cylinder De-activation, After Treatment Technologies, Electric EGR, Current EMS architecture.

UNIT II COMBUSTION TECHNOLOGY 9

Spark Ignition combustion, Compression Ignition Combustion, Conventional Dual Fuel Combustion, Low Temperature Combustion Concepts- Controlled Auto Ignition, Homogeneous Charge Compression Ignition, Premixed Charge Compression Ignition, Partially Premixed Compression Ignition, Reactivity Controlled Compression Ignition, Gasoline Direct Injection Compression Ignition.

UNIT III LOW CARBON FUEL TECHNOLOGY 9

Alcohol Fuels, Ammonia Fuel and Combustion, Methane Technology, Dimethyl Ether, Hydrogen Fuel Technology, Challenges, and way forward.

		,	
UNI	ΓIV	HYBRID AND ELECTRIC VEHICLE (BATTERY	9
		POWERED	
Conv	ventio	nal Hybrids (Conventional ICE + Battery), Mod	lern
Hybı	rids (RCCI/GDCI Engine + Battery), Pure Electric Veh	icle
Tech	nolog	y - Challenges and Way forward.	
UNI	TV	FUEL CELL TECHNOLOGY	9
Fuel	cells	for automotive applications - Technology advance	s in
fuel	cell v	rehicle systems - Onboard hydrogen storage - Liq	uid
hydr	ogen	and compressed hydrogen - Metal hydrides, Fuel	cell
contr	ol sys	stem - Alkaline fuel cell - Road map to market.	
		TOTAL: 45 PERIO	ODS
COU	IRSE	OUTCOMES:	
After	comp	eletion of the course, the students will be able to	
CO1	Expl	ain the latest trends in engine technology	
CO2	Disc	uss the need of advanced combustion technologies	and
1	1007	n <mark>pact on</mark> reducing carbon foot-print on the environm	
CO3	Ana	lyze the basic characteristics of low carbon fuels,	its
	(A) (A)	act over conventional fuels and in achieving sustaina	
	deve	elopment goals.	Y
CO4	Expl	ain the working and energy flow in various hybrid	and
	elect	ric configurations.	
CO ₅	Expl	ain the technology and advances in fuel cell systems	for
	auto	motive applications.	
CO6	Sum	marize different types of fuel cells and their con	trol
	syste	ems to evaluate their potential for market integration	١.
TEX	Г ВО	OKS:	
1	1. M	ehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Em	adi,
		dern Electric, Hybrid Electric and Fuel Cell Vehic	:les:
		damentals, Theory and Design", CRC Press, 2004.	
2		akesh Kumar Maurya, "Characteristics and Contro	l of
	Low	Temperature Combustion".	

REFI	ERENCE	S:														
1	Iqbal H	Ius	seir	ı, '	'Ele	ectri	c a	and	Н	ybr	id	Veh	icles	: I)esi	gn
	Fundan	nen	tals	", C	CRC	Pre	ess,	200	3.							
2	James L	arn	nini	ie, J	ohr	ı Lo	owr	y, "	Ele	ctri	c Ve	hicl	е Те	chn	olo	gy
	Explain	ed"	, W	iley	7, 20	003.										
3	Rand D	.A.	J, W	Voo	ds,	"R	and	d D	ell :	RM	Bat	terie	es fo	r E	lect	ric
	vehicles	s", J	ohr	ı W	iley	an	d So	ns,	199	98.						
4	Iqbal I	qbal Hussein, "Electric and Hybrid Vehicles: Design														
	Fundan	nen	ntals", CRC Press, 2003.													
5	James L	Larn	minie, John Lowry, "Electric Vehicle Technology													
	Explain	ed"	, W	iley	7, 20	003.										
	COs						I	POs						I	PSO	s
,		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	1	-	1	-	_	-	-5	2	1	1
	2 POW	2	1	-	-	1	1	F	1	9	_	<u>-</u>	A	2	1	1
	3	3	3	2	2	1	1	ĸ-	1	Y -	-	-	-	2	1	1
	4	2	1	A	1	1	1	A	1	A	-8	-		2	1	1
	5	2	1	7) -	1	1		1	7		_	/	2	1	1
	6	2	1	5	/-	1	1	-	1	-	-	-	-	2	1	1
	verall relation	3	2	1	1	1	1	EUT	1	UF	NIVER	SITY	AUTO	2	1	1

	AUTOMOTIVE MATERIALS,	L	T	P	C
	COMPONENTS, DESIGN AND	3	0	0	3
	TESTING				
COURSE OF	JECTIVES:				
• To	study the functional requirements	of	er	gin	e
con	ponents and suitable materials.			O	
	earn to design of cylinder and piston co	mpo	one	nts.	
	earn to design of connecting rod and cra	-			
	earn to design of flywheel and valve tra				
• To	•		mis	ssio	n
	surement technologies.	,			
	JNCTIONAL REQUIREMENTS OF E	NGI	NE		9
	OMPONENTS AND SUITABLE MAT				
T 1					
	equirements of engine components – F		_	-907	
* ***	liner, connecting rod, crank shaft, va		-		_
	cylinder head, and flywheel. Suitable	mat	erıa	ıls t	or
engine comp					_
	ESIGN OF CYLINDER AND PISTON				9
*G _{AVE}	OMPONENTS			G)	
Design of cyl	inder, cylinder head, piston, piston ring	gs aı	nd j	oist	on
pin - more d	etails is necessary.				
UNIT III D	ESIGN OF CONNECTING ROD AND)			9
C	RANK SHAFT				
-	MAINK SHAFI				
		l des	sign	_ l	oig
Design of cor	nnecting rod – Shank design – small end		_		_
Design of corend design –	nnecting rod – Shank design – small end bolts design. Design of overhang crank	s sha	aft 1	und	ler
Design of corend design – bending and	nnecting rod – Shank design – small end	s sha	aft 1	und	ler
Design of corend design – bending and Shaft design.	nnecting rod – Shank design – small end bolts design. Design of overhang crank	k sha web	aft i	und	ler
Design of corend design – bending and Shaft design. UNIT IV D	nnecting rod – Shank design – small end bolts design. Design of overhang crank twisting – Crank pin design – Crank v	k shaweb	aft des	and sigr	ler 1 -
Design of corend design – bending and Shaft design. UNIT IV Design of value	nnecting rod – Shank design – small end bolts design. Design of overhang crank twisting – Crank pin design – Crank v ESIGN OF FLYWHEEL AND VALVE	k shaweb	aft des	und sigr	ler 1 - 9
Design of corend design – bending and Shaft design. UNIT IV Design of variable to core	nnecting rod – Shank design – small end bolts design. Design of overhang crank twisting – Crank pin design – Crank v	rRA	aft des	ind sigr ngs giv	ler 1 - 9 8 - en

arm.

UNI	ΓV	ENGINE TESTING	9
Engi	ne tes	t cycles - WLTC - WHSC - WHVC - NRTC - ISO 8	178.
_		neter - Chassis dynamometer - transient dynamome	
Emis	sion	measurement technologies and instruments - NO	X -
Smol	ke - P	articulate matter - CO - CO2 - HCParticle counter.	
		TOTAL: 45 PERIO	ODS
COL	IRSE	OUTCOMES:	
After	comp	eletion of the course, the students will be able to	
CO1	Expl	ain the requirements of engine components and se	lect
	suita	ble materials.	
CO2	App	ly the concept of design to cylinder and pis	ston
	com	ponents and solve problems.	
CO3	App	ly the concept of design to Connecting rod and cr	ank
	shaft	and solve problems.	>
CO4	App	ly the concept of design to flywheel and valve train	and
1	solve	e <mark>problem</mark> s.	4.
CO5	. 3-61	pret engine test cycles and measurement technologie	es to
	asses	ss engine performance and emissions.	-
CO6	14000	marize dynamometer types and emission measurem	
	instr	uments to evaluate engine efficiency and environme	ntal
	impa		
TEX	ГВО		
1		rmi. R.S. and Gupta. J.K., "A text book of Mach	nine
		gn", Eurasia Publishing House (Pvt) Ltd, 2001.	
2		carlo Genta and Lorenzo Morello,"The Automo	
		ssis: Volume 1: Components Design (Mechan	ical
		neering Series)" 24 December 2019.	
	EREN		
1		shima Yamagata, "The science and technology	
		erials in automotive engines", Woodhead Publish	ning
		ted, Cambridge, England.	
2		R.K, "Machine Design", Khanna Publishers, New De	elhi,
	2005		

3	Lobna A. Elseify, Mohamad Midani, et al. "Manufacturing
	Automotive Components from Sustainable Natural Fiber
	Composites" (SpringerBriefs in Materials), 9 August 2021.

- 4 Andreas Öchsner and Holm Altenbach, "Mechanical and Materials Engineering of Modern Structure and Component Design" (Advanced Structured Materials Book 70) June 2015.
- George C. Sih, Alberto Carpinteri, et al. "Advanced Technology for Design and Fabrication of Composite Materials and Structures: Applications to the Automotive, Marine, Aerospace and Applications of Fracture Mechanics)" December 2010.

COs		POs											PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	ı	1	1	d	1	ı,	1	١,	- 1	2	1	1	
2 DOW	3	2	1	1	1	1		1	0		-	4	3	1	1	
3	3	2	1	1	1	1	-	1	Y-	-	-	-	3	1	1	
4	3	2	1	1	1	1	2	1	1	, - ₂₂	7	[-]	3	1	1	
5	2	1	4	1	1	1	1	1	1	-	-		2	1	1	
6	2	1	5	//_	1	1	-	1	-	-	-	-	2	1	1	
Overall Correlation	3	2	1	1	1,	1	EOTO	1,	OF	NIVER	CH siTy	AUTO	3	G)	1	

VERTICAL 5: ROBOTICS AND AUTOMATION

23AE069	DRONE TECHNOLOGIES	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the fundamental concepts, history, and business opportunities associated with drone technology.
- To acquire knowledge of drone design, fabrication, and programming, including assembling and configuring components.
- To learn drone flight operations, control mechanisms, and the integration of sensors and storage devices.
- To explore commercial applications of drones in various industries such as agriculture, logistics, and inspection services.
- To understand safety practices, aviation regulations, licensing, and advancements in drone autonomy and swarm technology.

UNIT I INTRODUCTION TO DRONE TECHNOLOGY 9

Drone Concept - Vocabulary Terminology - History of drone - Types of current generation of drones based on their method of propulsion - Drone technology impact on the businesses - Drone business through entrepreneurship - Opportunities/applications for entrepreneurship and employability.

UNIT II DRONE DESIGN, FABRICATION AND PROGRAMMING 9

Classifications of the UAV - Overview of the main drone parts - Technical characteristics of the parts - Function of the component parts - Assembling a drone - The energy sources - Level of autonomy- Drones configurations - The methods of programming drone - Download program - Install program on computer-Running Programs - Multi rotor stabilization - Flight modes - Wi-Fi connection.

UNIT III DRONE FLYING AND OPERATION

9

Concept of operation for drone - Flight modes - Operate a small drone in a controlled environment - Drone controls Flight operations - management tool - Sensors - Onboard storage capacity - Removable storage devices - Linked mobile devices and applications.

UNIT IV DRONE COMMERCIAL APPLICATIONS

9

Choosing a drone based on the application - Drones in the insurance sector - Drones in delivering mail, Parcels and other cargo - Drones in agriculture - Drones in inspection of transmission lines and power distribution - Drones in filming and panoramic picturing.

UNIT V FUTURE DRONES AND SAFETY

9

The safety risks - Guidelines to fly safely - Specific aviation regulation and standardization - Drone license - Miniaturization of drones - Increasing autonomy of drones - The use of drones in swarms.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1 Know about a various type of drone technology, drone fabrication and programming.
- CO2 Execute the suitable operating procedures for functioning a drone.
- CO3 | Select appropriate sensors and actuators for Drones.
- **CO4** Develop a drone mechanism for specific applications.
- CO5 Create the programs for various drones.
- CO6 Summarize drone commercial applications.

TEXT BOOKS:

Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", John Wiley & Sons, Inc. 2021.

2	Garvit Pandya, "Basics of Unmanned Aerial Vehicles: Time
	to start working on Drone Technology", Notion Press, 2021.

REFERENCES:

- John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016.
- **2** Jha, A. R. "Theory, design, and applications of unmanned aerial vehicles". CRC Press, 2016.
- 3 Sachi Nandan Mohanty, J.V.R. Ravindra, "Drone Technology: Future Trends and Practical Applications", Wiley, 2023.
- 4 Terry Kilby and Belinda Kilby, "Make: Getting Started with Drones", Maker Media, Inc., 2016.

COs		POs												PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1 POW	3	2	2	1	1	1	1	2	3	-	<u>-</u>	2	2	3	3		
2	3	3	2	1	1	2	1	2	Y-	-	-	3	2	3	3		
3	3	3	2	1	1	2	1	2	4	- 3	1	3	2	3	3		
4	3	2	2	1	1	1	1	2	1	1	-	2	2	3	3		
5	3	3	2	1	1	2	1	2	-	-	-	3	2	3	3		
6 CINE	3	3	2	1	1	2	1	2	<u>U</u> 1	LE	J	3	2	3	3		
Overall Correlation	3	3	2	1	1	2	1	2	NA U	NIVER	511 Y	3	2	3	3		

23ME059		ELECTRICAL DRIVES AND	L	T	P	C		
		AUTOMOTIVE ACTUATORS	3	0	0	3		
COURSE	OBJ	ECTIVES:						
To understand the basic concepts of different types of								
	electı	rical machines and their performance.		_				
•	To st	udy the different methods of starting I).C 1	not	ors			
	and i	nduction motors.						
•	To st	udy the conventional and solid-state d	rive	s.				
•	To uı	nderstand the basic concepts of differen	nt ty	pes	of			
	Actu	ators.						
UNIT I	IN	TRODUCTION				9		
Basic Fler	nents	s – Types of Electric Drives – factors in	flue	ncir	nσ f	he		
		rical drives – heating and cooling curv			_			
		classes of duty – Selection of power ra				_		
		egard to thermal overloading and Lo			-4/			
factors.	4	egara to thermal overloading that 20	Jud		ici ci c			
UNIT II	DR	IVE MOTOR CHARACTERISTICS		-	4	9		
Machania	ol ol	haracteristics - Speed-Torque chara	actor	icti.	20	of		
1000	The same of	of load and drive motors – Braking			1			
	-	notors: Shunt, series and compound -						
		se induction motors.	31118	510	pria	.SC		
	-	MOTORS AND DRIVES				9		
CIVIT III		MOTORS AND DRIVES						
Types of I	D.C N	Motor starters - Typical control circuits	for s	hur	ıt aı	nd		
series mo	tors -	- Three phase Squirrel cage and slip ri	ing i	ndı	ıcti	on		
motors.								
UNIT IV	AU	TOMOTIVE ACTUATORS				9		
Electrome	echan	ical actuators - Fluid-mechanical	act	uate	ors	-		
Electrical machines - Direct-current machines - Three-phase								
machines - Single-phase alternating-current Machines - Duty-type								
					٠.			

ratings for electrical machines. Working principles, construction and location of actuators viz. Solenoid, relay, stepper motor etc.

TINIT	T 37	ALITOMATIC TEMPERATURE CONTROL	0							
UNI	1 V	AUTOMATIC TEMPERATURE CONTROL ACTUATORS	9							
		ACTUATORS								
Diffe	rent t	ypes of actuators used in automatic temperature con	trol							
- Fix	ed ar	nd variable displacement temperature control - S	emi							
Auto	matic	e- Controller design for Fixed and variable displacem	nent							
type	air co	anditioning system.								
		TOTAL: 45 PERIO	ODS							
COU	JRSE	OUTCOMES:								
After	comp	eletion of the course, the students will be able to								
CO1	Explain the principles and working of relays, drives and									
		motors.								
CO ₂	_	Explain the working and characteristics of various drives								
		motors.								
CO3	- 30	Apply the solid state switching circuits to operate various								
	100	s of Motors and Drivers.								
		ain the performance of Motors and Drives.	1.							
CO ₅	* 1	ain the classifications and operation of stepper mo	tors							
		their applications in various systems.								
CO6	-	ain the principles and working of relays, drives	and							
	moto	ALTERIAL DAMES OF THE ACTOR OF THE STATE OF	Ú5							
TEX	ГВО									
1		raja B.L. and Theraja A.K., "A Text Book of Electr								
		nology", 2nd Edition, S.Chand and Co. Ltd., New De	elhi,							
	2012									
2		iam Kimberley," Bosch Automotive Handbook",	6th							
		ion, Robert Bosch GmbH, 2004.								
	EREN									
1		al K. Dubey, "Fundamentals of Electrical Drives",	2nd							
		ion, Narosal Publishing House, New Delhi, 2001.								
2		ta V.K. and Rohit Mehta, "Principles of Electr								
		hines", 2nd Edition, S.Chand and Co. Ltd., New De	elhi,							
	2016									

3	Singh M.D. and Kanchandhani K.B., "Power Electronics",																
	McGraw Hill, New Delhi, 2007.																
	COs	POs												PSOs			
`	COs		2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
	2	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
	3	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
	4	2	1	-	ı	1	1	-	1	-	•	-	-	2	1	1	
	5	2	1	-	ı	1	1	-	1	-	ı	ı	-	2	1	1	
6		2	1	-	ı	1	1	-	1	-	1	1	1	2	1	1	
_	verall relation	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	

23ME060	INTRODUCTION TO ROBOTICS	L	T	P	C				
		3	0	0	3				
COURSE	OBJECTIVES:								
• To	learn about basics of robots and their class	sifica	ıtioı	ns.					
• To	understand the robot kinematics in v	ario	us	pla	nar				
me	chanisms.								
 To learn about the concepts in robot dynamics. 									
To understand the concepts in trajectory planning a									
pro	gramming.								
• To	know about the various applications of ro	bots							
	BASICS OF ROBOTICS				9				
T . 1 .:	D : (D1 . I			<u></u>					
	on- Basic components of Robot-Laws								
	on of robot- robot architecture, work spa	ace-a	ıccı	ırac	:y-				
	-repeatability of robot.	1							
UNIT II	ROBOT KINEMATICS				9				
Robot kin	ematics: Introduction- Matrix represen	tatic	m-	rie	rid				
37.	d homogeneous transformation- D-H,	700		_					
1,400,000	nematics of 2DOF and 3 DOF planar								
mechanism		NO	LO	G)					
	ROBOT DYNAMICS	AUTO	NO	au U	9				
	on - Manipulator dynamics - Lagra	nge	-	Ευ	ıler				
formulatio	n- Newton - Euler formulation.								
UNIT IV	TRAJECTORY, PATH PLANNING ANI)			9				
	PROGRAMMING								
				_L					
-	Planning- Joint space and Cartesian space			_					
	on to robot control, Robot program	mmi	ng	aı	nd				
0 0	- Introduction to ROS.								
UNIT V	ROBOT AND ROBOT APPLICATIONS	1			9				
Sensors an	d Actuators for Robots, Power transmiss	sion	sys	ten	ns,				
	rotary motion, Rotary to linear motion		-						
1	gear system - belt drives. Robot end e								
	5 J J								

Grippers: Introduction- types and classification- Mechanical gripper- gripper force analysis- other types and special purpose grippers. Robot Applications: pick and place, manufacturing, automotive, medical, space and underwater.

bers. Robot Applications: pick and place, manufacturing,
motive, medical, space and underwater.
TOTAL: 45 PERIODS
RSE OUTCOMES:
completion of the course, the students will be able to
Explain the basic concepts and terminologies of robots.
Summarize the Procedures for Forward and Inverse
Kinematics, Dynamics for various Robots.
Interpret the Forward and Inverse Kinematics, Dynamics for
Various Robots.
Apply the various programming techniques in industrial
applications.
Illustrate the types and functions of sensors and actuators in
robots to understand their role in robotic systems.
Explain robot applications and end effectors to interpret
their use in various fields.
Γ BOOKS:
John.J.Craig, " Introduction to Robotics: Mechanics and
control", Pearson Publication, Fourth edition, 2018.
K.S.Fu, R.C.Gonzalez, C.S.G.Lee, "Robotics: Sensing, Vision
and Intelligence", Tata McGraw-Hill Publication, First
Edition, 1987.
ERENCES:
M.P.Groover, M.Weiss ,R.N. Nagal, N.G.Odrey, "Industrial
Robotics - Technology, programming and Applications"
Tata, McGraw-Hill Education Pvt. Limited 2 nd Edition, 2012.
Jazar, "Theory of Applied Robotics: Kinematics, Dynamics
and Control", Springer, 2nd Edition, 2010.
S K Saha, Introduction to Robotics, Tata McGraw-Hill, ISBN:
9789332902800, Second Edition, 9789332902800.

4 Sathya Ranjan Deb, "Robotics Technology and flexible Automation" Second edition, Tata McGraw-Hill Publication, 2009.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
2	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
3	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
4	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
5	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
6	2	1	ı	ı	1	1	ı	1	ı	1	ı	1	2	1	1	
Overall Correlation	3	2	1	-	1	1	-	1	-	-	-	-	3	1	1	

23ME061	DIGITAL TWIN AND INDUSTRY	L	T	P	C
	5.0	3	0	0	3

COURSE OBJECTIVES:

- To understand the basics concepts in digital twin.
- To introduce the concepts in digital twin in a discrete Industry.
- To introduce the concepts in digital twin in a process Industry.
- To obtain the knowledge in industry 5.0
- To know about the advantages in industry 5.0

UNIT I INTRODUCTION 9

Digital twin – Definition, types of Industry and its key requirements, Importance, Application of Digital Twin in process, product, service industries, History of Digital Twin, DTT role in industry innovation, Technologies/tools enabling Digital Twin – Virtual CAD Models – control Parameters- Real time systems – control Parameters – Handshaking Through Internet – cyber physical systems.

UNIT II DIGITAL TWIN IN A DISCRETE INDUSTRY 9

Basics of Discrete Industry, Trends in the discrete industry, control system requirements in a discrete industry, Digital Twin of a Product, Digital Thread in Discrete Industry, Data collection and analysis for product and production improvements, Automation simulation, Digital Enterprise.

UNIT III | DIGITAL TWIN IN A PROCESS INDUSTRY | 9

Basics of Process Industry, Trends in the process industry, control system requirements in a process industry, Digital Twin of a plant, Digital Thread in process Industry, Data collection and analysis for process improvements, process safety, Automation simulation, Digital Enterprise.

UNIT IV INDUSTRY 5.0

Industrial Revolutions, Industry 5.0 – Definition, principles, Application of Industry 5.0 in process and discrete industries, Benefits of Industry 5.0, challenges in Industry 5.0, Smart manufacturing, Internet of Things 5.0, Industrial Gateways, Basics of Communication requirements – cognitive systems 5.0.

UNIT V ADVANTAGES OF DIGITAL TWIN

9

9

Improvement in product quality, production process, process Safety, identify bottlenecks and improve efficiency, achieve flexibility in production, continuous prediction and tuning of production process through Simulation, reducing the time to market.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 Apply the basics concepts in digital twin.
- CO2 Explain the concepts in digital twin in a discrete Industry.
- CO3 Summarize the knowledge in industry 5.0.
- **CO4** Interpret the benefits of digital twin technology.
- **CO5** Explain the benefits of digital twin technology.
- **CO6** Explain digital twins to enhance production processes.

TEXT BOOKS:

- 1 Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation", Springer Series in Advanced Manufacturing., Switzerland, 2018.
- 2 Andrew Yeh Chris Nee, Fei Tao, and Meng Zhang, "Digital Twin Driven Smart Manufacturing", Elsevier Science., United States, 2019.

REFERENCES:

1 Uthayan Elangovan," Industry 5.0: The Future of the Industrial Economy", CRC Press, 2022.

2	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of
	Things", Apress., United States, 2015.

- 3 Christoph Jan Bartodziej, "The Concept Industry 4.0 an Empirical Analysis of Technologies and Applications in Production Logistics", Springer Gambler., Germany, 2017.
- 4 Ibrahim Garbie, "Sustainability in Manufacturing Enterprises, Concepts, analyses and assessments for Industry 4.0", Springer., Switzerland, 2016.
- 5 Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018.
- 6 Ulrich Sendler, "The Internet of Things, Industries 4.0 Unleashed", Springer., Germany, 2018.

COs					_	I	POs						PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
17//	3	2	1	1	1	1	·-	1	Y-	-	-	_	3	1	1	
2	2	1	4	4	1	1	4	1	4	-8	1		2	1	1	
3	2	1		4	1	1		1	/		1	/	2	1	1	
4	2	1	9	4	1	1	1	1	ı	1	1	1	2	1	1	
5 GINE	2	1	diam	1	1	1	E	1	0	LE	5	NO.	2	1	1	
6	2	1	-	-	1	1	ED T	1	NA.U	NIVER	SHY	AUTO	2	1	1	
Overall Correlation	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	

23MT031	ROBOTS AND SYSTEMS IN	L	T	P	С
	SMART MANUFACTURING	3	0	0	3

COURSE OBJECTIVES:

- To get a knowledge of working on Industrial robots and their load handling capacity.
- To enlist with an application of robots in various operation.
- To familiar with a material handling system.
- To impart the knowledge on robotic welding.
- To obtain the knowledge on various type of robot welding operation.

UNIT I INTRODUCTION

7

Types of industrial robots - Load handling capacity - general considerations in Robotic material handling-material transfer - machine loading and unloading - CNC machine tool loading - Robot centered cell.

UNIT II SELECTION OF ROBOTS AND OTHER APPLICATIONS

9

Factors influencing the choice of a robot - robot performance testing - economics of robotization - Impact of robot on industry and society. Application of Robots in continuous arc welding - Spot welding - Spray painting -assembly operation - cleaning - robot for underwater applications.

UNIT III | MATERIAL HANDLING

13

Concepts of material handling - principles and considerations in material handling systems design - conventional material handling systems - industrial trucks - monorails - rail guided vehicles - conveyor systems - cranes and hoists - advanced material handling systems - automated guided vehicle systems - automated storage and retrieval systems (ASRS) - bar code technology - radio frequency identification technology - Introduction to Automation Plant design software.

UNIT IV ROBOTIC WELDING

8

Robotic welding system, Programmable and flexible control facility –Introduction-Types- Flex Pendant-Lead through programming, Operating mode of robot, Jogging-Types, programming for robotic welding, Welding simulation, Welding sequences, Profile welding.

UNIT V APPLICATIONS OF ROBOTS IN WELDING AND ALLIED PROCESSES

8

Application of robot in manufacturing: Exploration of practical application of robots in welding: Robots for car body's welding, robots for box fabrication, robots for microelectronic welding and soldering – Applications in nuclear, aerospace and ship building, case studies for simple and complex applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- CO1 | Explain the various concepts of Industrial Robot.
- CO2 Apply the appropriate manufacturing procedure for Robots
- **CO3** Explain the various industrial applications of robots.
- CO4 Explain the applications of robots in material handling.
- **CO5** Explain the concepts of robots for the Welding operation.
- CO6 Construct the procedure of a manufacturing plan for developing a robot.

TEXT BOOKS:

- 1 Richard D Klafter, Thomas Achmielewski, MickaelNegin,
 "Robotic Engineering An integrated Approach", Prentice
 Hall India, New Delhi, 2006.
- 2 Mikell P Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing", Pearson Education, New York, 2019.

DEE	EDENIOE															
	EFERENCES: I Pires J N, Loureiro A, Bolson G, "Welding Robots:															
1	-												_		lobo	
	Techno	logy	y, 9	Syst	tem	Is	sue	s a	ınd	$\mathbf{A}_{\mathbf{I}}$	ppli	catio	n",	Spi	ring	er,
	London	, 20	10.													
2	Parmar	RS	5,"	We	ldir	ng F	roc	ess	es a	nd	Tecl	hnol	ogy	", K	han	na
	Publish	ers,	Νe	w I	Dell	ni, 2	nd	Edi	tion	n, 20	013.					
3	John A.	John A. Piotrowski, William T. Randolph, "Robotic welding:														
		A Guide to Selection and Application, Welding Division,														
									-				_			
		Robotics International of SME", Publications Development Dept., Marketing Division, 1987.														
4		Mikell P Groover, Mitchel Weiss, Roger N Nagel,														
-												_			_	
	N.G.Odrey, Ashish Dutta "Industrial Robotics (SIE): Technology, Programming and Applications", 2nd Edition,															
	McGraw Hill Education India Pvt Ltd, 2012.															
5						11-1		_						T T:11	10	07
3	Yoram !	107	en,	N	ODO	ucs			_	eers	5 , IV.	ICGI	aw-	_		
	COs		N				_	Os	_						PSC	
	A.V.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	×7)+	-	-		2	7	-	_	2	2	2	2
	2	3	2	1	1	-	-	-	3	-	-	-	3	3	2	3
	3 CINE	2.	1	diam'r.	-	C		Ę.	2	O)	112	3	2	2	2	2
	4	2	1	-	-	AFE	LIAT	ED.T	2	NAL	NIVE	ISITY	2	2	2	2
	5	2	1	-	-	-	-	-	2	-	-	-	2	2	2	2
	6	3	2	1	1	-	-	-	3	-	-	-	3	3	2	3
О	verall 2 1 1 1 2 2 2 2 2 2															
Cor	relation	_	1	1	1	_	-	-		_	-	_		_		_

23MT033	AGRICULTURAL ROBOTICS AND	L	Т	P	C
201111000	AUTOMATION	3	0	0	3
COURSEC	DBJECTIVES:				
	arn about Farming-related Machines.				
	nderstand the global position and informa	tion	SVS	sten	n in
mach	0 1		o y c		
• To kn	now about traction and testing.				
	miliarize the concept on weed managemer	ıt.			
	arn about machinery selection.				
	INTRODUCTION				9
3	Mechanized Agriculture - Farming Op				
	chines - Tillage, Planting Cultivation, and		rve	stir	ıg,
O	l Automation - Agricultural Vehicle Robo	t.			
UNIT II	PRECISION AGRICULTURE				9
Sensors - t	ypes and agricultural applications, Globa	1 Po	siti	oni	nσ
17 40000 1000	PS) - GPS for civilian use, Differential C				_
307	Real-time kinematic GPS, Military GPS,	100			
- 1/4111/1/21	System, Variable Rate Applications an		_	-	
Area Netwo		VO	LO	G)	
UNIT III	TRACTION	AUTL	NON	ntitu	9
-	Principles of hitching, Types of hitches, I		_	_	
_	nsfer, Control of hitches, Tires and Trac				
-	edictor spread sheet, Soil Compaction, T	racti	ion	Aic	ls,
Tractor Tes	0				
UNIT IV	SOIL TILLAGE AND WEED MANAGEN	MEN	JT		9
Tillage Me	thods and Equipment, Mechanics of T	'illag	ge [Гоо	ls,
-	e of Tillage Implements, Hitching	_			
Implements	s, Weed Management - Conventiona	al (Crop	ppi	ng
-	ools, Crop Rotation, Mechanical Cultivatio			-	Ü
	MACHINERY SELECTION				9
				1	

Screw Conveyors, Pneumatic Conveyors, Bucket Elevators, Forage

Blowers and Miscellaneous Conveyors, Machinery Selection -Field Capacity and Efficiency, Draft and Power Requirements, Machinery Costs. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to **CO1** Explain the fundamental concepts of mechanizing robots in agricultural automation. CO2 | Illustrate sensor and system for a required specific process in agricultural applications. CO3 Explain traction system for agricultural robots. methods, performance CO4 Explain the and equipment mechanics of soil tillage. CO5 Explain the concepts of weed management cropping and cultivation system. CO6 Develop suitable robotic system for specific agricultural tasks. TEXT BOOKS: Ajit K. Srivastava, Carroll E. Goering, Roger P. Rohrbach, 1 Buckmaster, "Engineering Principles of Dennis R. Agricultural Machines", ASABE Publication, 2012. Myer Kutz, "Handbook of Farm, Dairy and Food Machinery Engineering", Academic Press, 2019. REFERENCES: Qin Zhang, Francis J. Pierce, "Agricultural Automation 1 Fundamentals and Practices", CRC Press, 2016. Stephen L Young, Francis J. Pierce, "Automation: The 2 Future of Weed Control in Cropping Systems", Springer, Dordrecht Heidelberg New York London, 2014. 3 R.A. Kepner, Roy Bainer, E.L. Barger, "Principles of Farm Machinery", 3rd Edition, CBS Publishers, New Delhi, 2005. Guangnan Chen, "Advances in Agricultural Machinery and 4

Technologies", 1st Edition, CRC Press, 2021.

COs						I	POs	1					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	-	-	2	-	-	-	2	2	2	2	
2	2	1	-	-	-	-	-	3	-	-	-	2	2	2	3	
3	2	1	-	-	-	-	-	2	-	-	-	2	2	2	3	
4	2	1	-	-	-	-	-	2	-	-	-	2	2	2	2	
5	2	1	-	-	-	-	-	2	-	-	-	2	2	2	3	
6	3	2	1	1	-	-	-	3	-	-	-	2	2	2	2	
Overall Correlation	3	2	1	1	1	1	ı	2	-	1	ı	2	2	2	3	

23MT065	TOTAL INTEGRATED	L	Т	P	С
	AUTOMATION	3	0	0	3
COURSE	OBJECTIVES:				
• To g	ain knowledge in automation in industrie	es.			
 To g 	ain knowledge in various electrical and ϵ	lect	roni	C	
	rammable automations and their applica				
	now about the basic in SCADA and DCS				
	ain knowledge in communication protoco	ols i	n an		
_	grated system				
	now about the advanced in automation in		strie	S	
UNIT I	TOTALLY INTEGRATED AUTOMATIC	JN			9
Need, com	ponents of TIA systems, advantages, I	rog	ram	mal	ble
Automation	n Controllers (PAC), Vertical Integration	str	ıctu	re.	
UNIT II I	HUMAN MACHINE INTERFACE (HMI	[)			9
NT '	WER WOLL		-	TT) (T
1875	and Role in Industrial Automation, N				
// // // // // // // // // // // // //	ypes of HMI- Text display - operator p		ls -	Tou	ıch
	nel PCs - Integrated disp <mark>l</mark> ays (PLC & HM			-di	
7 (MILITA 1921)	SUPERVISORY CONTROL AND DATA	1			9
A A	ACQUISITION (SCADA)			1753	
Overview	- Dev eloper and runtime packages -	arch	nitec	ture	- c
	g – Internal &External graphics, Alarm				
•	ructured tags– Trends – history– Report g				_
	for SCADA application.	30110	ıatı	J11,	٧D
	COMMUNICATION PROTOCOLS OF	SC /	<u> </u>		9
UNITIV	COMMUNICATION FROTOCOLS OF	SCF	NDA	•	9
Proprietary	and open Protocols - OLE/OPC- UPC U	JA/	DA	- DI	DE
	Client Configuration - Messaging - F				
administra	tion - Interfacing of SCADA with PLC, di	ive,	anc	loth	ner
field device	e.				
UNIT V I	DISTRIBUTED CONTROL SYSTEMS (DCS	5)		9
DCS arch	itecture – local control unit- programmi:	n a 1	ance	1200	0
		_	_	_	
	ation facilities – operator interface –		-		-
interfaces.	APPLICATIONS OF PLC & DCS: Ca	ise	stud	ıes	ot

	chine automation, Process automation, Introduction to SCADA nparison between SCADA and DCS.															
Com	parison b	oetv	veeı	n S(_AI	JΑ	anc	DC	25.							
											TO	[AL:	45]	PER	lio	DS
	RSE OU															
L	completi)		
_	Explain												m.			
	Explain															
CO3		Apply concepts of SCADA and C programming for report generation.														
CO4	Explain	Explain the information's on communication protocols in														
	automation systems.															
CO5	Develop the automatic control system using distributed															
60.6	control systems.															
	Explain the Distributed Control System.															
-	T BOOKS:															
1		John. W. Webb& Ronald A. Reis, "Programmable logic														
l l		controllers: Principles and Applications", Prentice Hall India, 2009.														
2		Michael P. Lukas, "Distributed Control systems", "Van														
_	Nostrar										itioi	буб	tem	,		ai i
REFI	ERENCE		1	67		00	NE I	E			TE	CLI	NIO	10	CV	10.
1	Win C (C Sc	ftw	are	Ma	nu	al, S	Sien				CITY	ALLTS	MOI	ACTU	
2	RS VIEV	N 3	2 Sc	oftw	are	Ma	nu	al, 1	Alle	n B	radl	y, 20	05.			
3	CIMPLI	CIT	TY S	SCA	AD/	P	ack	age	s N	Ianı	ıal,	Fanı	uc Iı	ndia	a Lt	td,
	2004.							O								
	Cos						I	POs						I	SO	s
	CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	2	-	-	-	2	2	1	2
	2	2	1	-	-	-	-	-	2	-	ı	-	2	2	1	2
	3	3	2	1	1	-	-	-	3	-	-	-	3	3	1	3
	4	2	1	-	-	-	-	-	2	-	-	-	2	2	1	2
	5	3	2	1	1	-	-	-	3	-	-	-	3	3	1	3
	6	2	1	-	-	-	-	-	2	-	-	-	2	2	1	2
	verall relation															

23MT401	SENSORS AND	L	T	P	C
	INSTRUMENTATION	3	0	0	3
COLIDGE ODI					

COURSE OBJECTIVES:

- To understand the concepts of measurement technology.
- To learn the various sensors used to measure various physical parameters.
- To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development.
- To learn about the optical, pressure and temperature sensor.
- To understand the signal conditioning and DAQ systems.

UNIT I INTRODUCTION 9

Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types.

UNIT II MOTION, PROXIMITY AND RANGING 9 SENSORS

Motion Sensors - Potentiometers, Resolver, Encoders - Optical, Magnetic, Inductive, Capacitive, LVDT - RVDT - Synchro - Microsyn, Accelerometer - GPS, Bluetooth, Range Sensors - RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).

UNIT III FORCE, MAGNETIC AND HEADING 9 SENSORS

Strain Gage, Load Cell, Magnetic Sensors -types, principle, requirement and advantages: Magneto resistive - Hall Effect - Current sensor Heading Sensors - Compass, Gyroscope, Inclinometers.

UNIT IV	OPTICAL, PRESSURE AND TEMPERATURE	9
	SENSORS	

Photo conductive cell, photo voltaic, Photo resistive, LDR - Fiber

optic sensors - Pressure - Diaphragm, Bellows, Piezoelectric - Tactile sensors, Temperature - IC, Thermistor, RTD, Thermocouple. Acoustic Sensors - flow and level measurement, Radiation Sensors - Smart Sensors - Film sensor, MEMS & Nano Sensors, LASER sensors.

UNIT V SIGNAL CONDITIONING AND DAQ 9 SYSTEMS

Amplification - Filtering - Sample and Hold circuits - Data Acquisition: Single channel and multi- channel data acquisition - Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, Environmental monitoring.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- **CO1** Explain with various calibration techniques and signal types for sensors.
- CO2 Explain the concepts, working principle and motion, proximity and ranging sensor.
- CO3 Explain the fundamental concepts of force, magnetic and heading sensors.
- **CO4** Apply the photo conductive, voltaic and resistive concepts in optical and pressure sensors.
- **CO5** Explain the concepts of various types of temperature sensors and its application.
- **CO6** Apply the concepts of signal conditioning and DAQ system for various industrial applications.

TEXT BOOKS:

- 1 Ernest O Doebelin, "Measurement Systems Applications and Design", Tata McGraw-Hill, 2009.
- 2 Sawney A K and Puneet Sawney, "A Course in Mechanical measurements and Instrumentation and Control", 12th edition, Dhanpat Rai & Co, New Delhi, 2013.

REFERENCES:

1	C. Sujatha Dyer, S.A., Survey of Instrumentation and															
	Measurement, John Wiley & Sons, Canada, 2001.															
2	Hans Kurt Tönshoff (Editor), Ichiro, "Sensors in															
	Manufacturing" Volume 1, Wiley-VCH April 2001.															
3	John Turner and Martyn Hill, "Instrumentation for															
	Engineers and Scientists", Oxford Science Publications, 1999.															
4	Patranabis D, "Sensors and Transducers", 2nd Edition, PHI,															
	New Delhi, 2011.															
COs		POs												PSOs		
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		2	1	-	-	-	-	-	2	1	-	-	2	2	1	3
2		2	1	-	-	-	-	-	2	1	1	-	2	2	1	3
3		3	2	1	1	1	1	-	2	ı	•	-	2	2	1	3
4		2	1	-	-	_	-	-	2	-	-	-	2	2	1	3
5w		3	2	1	1	1	1	7	2	-	7	-	2	2	1	3
6		2	2	1	1	1	1	, -	2	-	-	-	2	2	1	3
O	verall	2	1	V	N.	Y		B	2		- 0	9	2	2	1	3
Correlation		_	1	1		-	_	4	4	1	-	_	2		1	3

COLLEGE OF TECHNOLOGY