

REGULATIONS - 2023

CURRICULUM AND SYLLABI

(2023-2024)

B.E. COMPUTER SCIENCE AND ENGINEERING -CYBER SECURITY

KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

VISION OF KCG

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

MISSION OF KCG

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

VISION OF CSE - CYBER SECURITY

The Department of Computer Science and Engineering (CYBER SECURITY) envisions developing highly skilled, sustainable, socially responsible and ethical cybersecurity professionals, researchers and entrepreneurs.

MISSION OF CSE - CYBER SECURITY

- To provide comprehensive education and hands-on training to develop the technical skills required for effective cyber security professionals.
- To raise awareness about cyber security issues and advocate for policies and practices that enhance the security of digital environments, while also fostering entrepreneurial development.
- To work and research alongside industry, government, and community partners to tackle real-world cybersecurity challenges and encourage best practices with a commitment to societal well-being.
- To support ongoing professional development and certification opportunities for students and practitioners to ensure they remain at the forefront of the cyber security field with the ethical grounding.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

The graduates will be able to:

PEO 1	Identify and assess security risks and vulnerabilities in various information and networks using core Cyber Security principles, practices, tools and technologies.
PEO 2	Evaluate the effectiveness of security systems by continuous learning about evolving threats and emerging technologies.
PEO 3	Exhibit skilled communication and collaboration, to work in multidisciplinary teams and explain complex cyber security concepts to others.
PEO 4	Have a solid ethical foundation and commit to respecting integrity, confidentiality, and privacy in all aspects of their career and entrepreneurship.

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

	Apply the knowledge of mathematics, science,
PO 01	engineering fundamentals, and an engineering
	specialization to the solution of complex engineering
	problems.

PO 02	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 03	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 04	Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 05	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 07	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 08	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 09	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 01	Demonstrate the ability to design, implement, and evaluate cyber security solutions for business and societal needs.
PSO 02	Exhibit professionalism in programming, hacking, malware analysis, and cyber forensics through hands-on expertise with relevant tools.
PSO 03	Apply logical thinking and ethical behaviour to analyze and solve complex real-world Cyber security problems.

INDEX

Sl.No	Description	Page No.
1	Curriculum	1
2	I Semester Syllabus	16
3	II Semester Syllabus	43
4	III Semester Syllabus	73
5	IV Semester Syllabus	100
6	V Semester Syllabus	126
7	VI Semester Syllabus	148
8	VII Semester Syllabus	167
9	VIII Semester Syllabus	179
10	Vertical 1 : Cyber Security And Data Privacy	182
11	Vertical 2 : Cyber Security Applications And Ethics	208
12	Vertical 3 : Computer Science	235
13	Vertical 4 : Full Stack Development	262
14	Vertical 5 : Emerging Technologies	291

KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

REGULATIONS 2023

B.E. COMPUTER SCIENCE AND ENGINEERING CYBER SECURITY CHOICE BASED CREDIT SYSTEM

CHOICE BASED CREDIT SYSTEM CURRICULA FOR SEMESTERS I TO VIII

SEMESTER-I

Sl. No.	Course Code	Course Title	Cate gory	Periods Per Week			Total Contact	Credits
INU.	Coue		gury	L	T	P	Periods	
	23IP101	Induction Programme		-	-	-	-	-
		TH	IEORY					
1	23HS101	Essential Communication	HSMC	3	0	0	3	3
2	23MA101	Matrices and Calculus	BSC	3	0	0	3	3
3	23CS101	Programming in C	ESC	3	0	0	3	3
4	23HS102	Heritage of Tamils	HSMC	1	0	0	1	1
	THE COL	THEORY AN	D PRAC	TIC	ΑI	LS	INOLO	GY
5	23PH111	Engineering Physics	BSC	3	0	2	r I AUSONOI	1004
6	23CY111	Engineering Chemistry	BSC	3	0	2	5	4
		PRAG	CTICALS	,				
7	23CS121	C Programming Laboratory	ESC	0	0	4	4	2
8	23HS121	Communication Skills Laboratory	HSMC	0	0	2	2	1
9	23HS122	General Clubs / Technical Clubs / NCC / NSS / Extension Activities	HSMC	0	0	2	2	1*
	l .	TOTAL	ı	16	0	14	30	22

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER -II

S1. No.	('ourse l'itle ('ategory		Category	Period Per Weel		1	Total Contact Periods	Credits
				L	T	P	Perioas	
		THE	ORY					
1	23HS201/ 23HS202	Professional English/ Foreign language	HSMC	3	0	0	3	3
2	23MA204	Probability and Statistics	BSC	3	1	0	4	4
3	23PH205	Physics for Information Science	BSC	3	0	0	3	3
4	23CS201	Data Structures using C	PCC	3	0	0	3	3
5	23HS203	Tamils and Technology	HSMC	1	0	0	1	1
	18	THEORY AND	PRACTI	CA	LS			
6	23EE281	Basics Electrical and Electronics Engineering	ESC	2	0	2	NOLO AUTONOM	G 3
7	23ME211	Engineering Graphics	ESC	3	0	2	5	4
		PRACT	ΓICALS					
8	23ME221	Engineering Practices Laboratory	ESC	0	0	4	4	2
9	23CS221	Data Structures Using C Laboratory	PCC	0	0	4	4	2
10	23HS221	Soft Skills	EEC	0	0	2	2	1*
		TOTAL		18	1	14	33	25

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-III

Sl. No.	Course Course Title Category		Category]	rio Per /ee		Total Contact Periods	Credits		
				L	T	P	Terrous			
	THEORY									
1	23MA202	Discrete Mathematics	BSC	3	1	0	4	4		
2	23CS301	Object Oriented Programming	PCC	3	0	0	3	3		
3	23CB301	Database Management Systems and Security	PCC	3	0	0	3	3		
4	23HS301	Universal Human Values and Ethics	HSMC	3	0	0	3	3		
	10	THEORY AND	PRACTIC	ALS	S					
5	23CB311	Digital Principles and Computer Organization	PCC	3	0	2	5	4		
6	23CS312	Design and Analysis of Algorithms	PCC	3	0	2	OL5G	4		
		PRACT	ICALS					15		
7	23CS321	Object Oriented Programming Laboratory	PCC	0	0	4	4	2		
8	23CB321	Database Management Systems and Security Laboratory	PCC	0	0	4	4	2		
9	23ES391	Presentation Skills	EEC	0	0	2	2	1*		
* 771		TOTAL	.911 1	18	1	14	33	25		

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-IV

S1.	Course	Course Title	Category	Periods Per Week			Total Contact	Credits
No.	code		Curegory	L	T	P	Periods	Creares
THEORY								
1	23MA301	Linear Algebra	BSC	3	1	0	4	4
2	23CB401	Operating Systems and Security	PCC	3	0	0	3	3
3	23CB402	Cyber Security	PCC	3	0	0	3	3
4	23CS402	Artificial Intelligence	PCC	3	0	0	3	3
	WILE.	THEORY AN	ND PRACT	ΓICA	LS			
5	23CB411	Computer Networking	PCC	3	0	2	5	4
6	23CS611	Internet Programming	PCC	3	0	2	5	4
	18	PRA	CTICALS					
7	23CB421	Operating Systems and Security Laboratory	PCC	0	0	4	VOLOG 4	2
8	23CB422	Cyber Security Laboratory	PCC	0	0	4	4	2
9	23ES491	Aptitude and Logical Reasoning – 1	EEC	0	0	2	2	1*
		TOTAL		18	1	14	33	25

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER-V

S1. No.	Course Code	Course Title	Category	vveek			Total Contact Periods	Credits
				L	T	P	remous	
			ORY	ı				
1	23RE501	Research Methodology and Intellectual Property Rights	ESC	2	0	0	2	2
2	23CB501	Cryptography and Steganography	PCC	3	0	0	3	3
3		Department Elective – 1	DEC	-	-	1	1	3
4	OWE	Department Elective – 2	DEC		67	4		3
5	Sec. B.	Open Elective - 1 (Emerging Technology)	OEC	3	0	0	3	3
1		THEORY AND	PRACTI	CAl	LS	-6	NOLO	CV
6	23CB511	Vulnerability Assessment and Penetration Testing	PCC	3	0	2	5	4
		PRAC	TICALS					
7	23CB521	Cryptography and Steganography Lab	PCC	0	0	4	4	2
8	23CB522	Summer Internship	EEC	0	0	0	0	1
9	23CB523	Mini Project	EEC	0	0	3	3	2
10	23ES591	Aptitude and Logical Reasoning - 2	EEC	0	0	2	2	1*
		TOTAL		-	-	-	-	23

^{*} The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VI

S1. No.	Course Code	Course Title	Category		erio er We T		Total Contact Periods	credits
		T	HEORY					
1	23CB601	Engineering Secure Software Systems	PCC	3	0	0	3	3
2		Department Elective – 3	DEC	-	-	-	-	3
3		Department Elective – 4	DEC	1	-	1	1	3
4		Open Elective – 2 (Management / Safety Courses)	OEC	3	0	0	3	3
		THEORY A	ND PRAC	TI	CAL	S		
5	23CE611	Environmental Science and Engineering	ESC	3	0	2	5	4
6	23CB611	Malware Analysis	PCC	3	0	2	5	4
	1 1	PRA	CTICALS	3				_
7	23CB621	Project Work - Phase 1	EEC	0	0	4	4	2
8	23CB622	Technical Training	EEC	0	0	2	2	1
9	23CB623	Technical Seminar- 1	ESC	0	0	2	2	1
		TOTAL		-	-	-	-	24

SEMESTER-VII

S1. No.	Course Code	Course Title	Cate Gory	periods Per Week L T P			Total Contact Periods	Credits
		THE	ORY					
1		Open Elective - 3 (Management Courses)	OEC	3	0	0	3	3
2		Department Elective – 5	DEC	-	-	-	-	3
3		Department Elective – 6	DEC	-	-	-	-	3
4	23CB701	Technical Comprehension	EEC	2	0	0	2	2
		THEORY AND	PRAC	CTIC	AL	S		
5	23CB711	Cyber Forensics	PCC	3	0	2	5	4
	100	PRACT	TICAL	S				
6	23CB721	Project Work – Phase 2	EEC	0	0	6	6	3
7 23CB722 Technical Seminar - 2 ESC 0 0 4 4								2
	GINE	TOTAL	.EGE	QF	L	:Cl	HNOLC	20

SEMESTER -VIII

Sl. No.	Course code	Course Title	Category]	rio Per Vee T	•	Total Contact Periods	
		PRACTI	CALS					
1	23CB821/ 23CB822	Capstone Project / Internship cum project	EEC	0	0	20	20	10
	TOTAL						20	10

TOTALCREDITS: 174

DEPARTMENT ELECTIVE COURSES: VERTICALS

VERTICAL 1: CYBER SECURITY & DATA PRIVACY

S1. No.	Course Code	Course Title	Category	V	riod Per Veel	«	Total Contact periods	Credits
				L	T	P	Perious	
1	23CB031	Ethical Hacking	DEC	2	0	2	4	3
2	23CB032	Digital and Mobile Forensics	DEC	2	0	2	4	3
3	23CB033	Social Network Security	DEC	2	0	2	4	3
4	23CB034	Security in Computing	DEC	2	0	2	4	3
5	23CB035	Applied Cryptography	DEC	2	0	2	4	3
6	23CB036	Privacy Preserving Data Mining	DEC	2	0	2	4	3
7	23CB037	Information Security Principles	DEC	2	0	2	4	_ 3
8	23CB038	Intrusion Detection, Prevention and Key Management Techniques	DEC	2	0	2	4	3

VERTICAL 2: CYBER SECURITY APPLICATIONS AND ETHICS

Sl. No.	Course Code	Course Title	Category		rioc Per Veel	«	Total Contact periods	Credits
				L	T	P	perious	
1	23CB039	Machine Learning Security	DEC	2	0	2	4	3
2	23CB040	Security in IoT	DEC	2	0	2	4	3
3	23CB041	Mobile and Wireless Security	DEC	2	0	2	4	3
4	23CB042	Cyber physical system security	DEC	2	0	2	4	3
5	23CB043	Security in Cloud Computing	DEC	2	0	2	4	3
6	23CB044	Ethical practices in Open-Source Intelligence	DEC	3	0	0	3	3
7	23CB045	Cyber Crimes and Investigation procedures	DEC	3	0	0	3	3
8	23CB046	Behavioral Ethics in the Digital Realm	DEC	3	0	0	3	3

VERTICAL 3: COMPUTER SCIENCE

Sl. No.	Course Code	Course Title	Category		rioc Per Veel	C	Total Contact periods	Credits
				L	T	P	perious	
1	23CB047	Software Engineering Foundations and Practices	DEC	3	0	0	3	3
2	23CB048	Computational Theory	DEC	3	0	0	3	3
3	23CB049	Design of Compilers	DEC	3	0	0	3	3
4	23CB050	Object oriented Analysis and Design	DEC	3	0	0	3	3
5	23CB051	Software Testing principles	DEC	3	0	0	3	3
6	23CB052	Data Warehousing	DEC	3	0	0	3	3
7	23CB053	Fundamentals of Distributed Computing	DEC	3	0	0	3	3
8	23CB054	Principles of Human Computer Interaction	DEC	3	0	0	3	3

VERTICAL 4: FULL STACK DEVELOPMENT

Sl. No.	Course Code	Course Title	Category	V	rioc Per Veel	(Total Contact periods	Credits
				L	T	P	perious	
1	23CS031	Java Full Stack Development	DEC	2	0	2	4	3
2	23CS032	Mobile App Development	DEC	2	0	2	4	3
3	23CS033	UI and UX Design	DEC	2	0	2	4	3
4	23CS034	MERN Stack Web Development	DEC	2	0	2	4	3
5	23CB055	Secure Coding Practices for Full Stack Development	DEC	2	0	2	4	3
6	23CB056	DevSecOps: Integrating Security into Development	DEC TED TO ANN	2	0 IVER		4	3
7	23CB057	Cloud Security Architecture for Full Stack Solutions	DEC	2	0	2	4	3
8	23CS038	Python Full Stack Development with Machine Learning (Industry Supported Course)	DEC	2	0	2	4	3

VERTICAL 5: EMERGING TECHNOLOGIES

Sl. No.	Course Code	Course Title	Category		Periods Per Week L T P		Total Contact periods	Credits
1	23AD043	Intelligent Robots	DEC	3	0	0	3	3
2	23CS040	AR VR Technology	DEC	2	0	2	4	3
3	23CS041	Game Development	DEC	2	0	2	4	3
4	23CS042	IoT based Smart Systems	DEC	2	0	2	4	3
5	23CB058	Cryptocurrency	DEC	2	0	2	4	3
6	23CB059	Quantum Cryptography	DEC	2	0	2	4	3
7	23CB0 <mark>60</mark>	Deep Learning Techniques	DEC	2	0	2	4	3
8	23CB061	Big Data Analytics and Security	DEC	2	0	2	4	3

MEET LATED TO ANNA DNIVERSITY | ALTONOMOUS

OPEN ELECTIVE - EMERGING TECHNOLOGIES

Sl. No.	Course Code	Course Title	Category		Periods Per Week		Total Contact periods	Credits
				L	T	P	perious	
1	23OAE971	Aviation Management	OEC	3	0	0	3	3
2	23OAS971	Space Engineering	OEC	3	0	0	3	3
3	23OEC971	IoT concepts and applications	OEC	3	0	0	3	3
4	23OEC972	Fundamentals of Wearable Devices	OEC	3	0	0	3	3
5	23OEE971	Renewable Energy Technologies	OEC	3	0	0	3	3
6	23OEE973	Electric and Hybrid Vehicles	OEC	3	0	0	3	3
7	23OMA971	Resource Management Techniques	OEC	3	0	0	3	3
8	23OMT971	Foundation of Robotics	OEC	3	0	0	3	3

OPEN ELECTIVE - MANAGEMENT COURSES

S1. No.	Course Code	Course Title	Category]	Periods Per Week		Per Total		Credits
				L	T	P	remous		
1	23OMG971	Total Quality Management	OEC	3	0	0	3	3	
2	23OMG972	Engineering Economics and Financial Accounting	OEC	3	0	0	3	3	
3		Engineering Management and Law	OEC	3	0	0	3	3	
4	23OMG974	Knowledge <mark>M</mark> anagement	OEC	3	0	0	3	3	
5	23OMG975	Industrial Management	OEC	3	0	0	3	3	
6	23OMG976	Entrepreneurship and Business Opportunities	OEC	3	0	0	о <u>го</u> зомо	3	
7	23OMG977	Modern Business Administration and Financing	OEC	3	0	0	3	3	
8	23OMG978	Essentials of Management	OEC	3	0	0	3	3	

OPEN ELECTIVE - SAFETY RELATED COURSES

Sl. No.	Course Code	Course Title	Category		rio Per Vee	r e k	Total Contact Periods	Credits
1	23OAU981	Automotive Safety	OEC	3	0	0	3	3
2	23OCE981	Disaster Management	OEC	3	0	0	3	3
3	23OME981	Industrial Safety	OEC	3	0	0	3	3

SEMESTER-WISE CREDIT DISTRIBUTION

SEMESTER	HSMC	BSC	ESC	PCC	DEC	OEC	EEC	Total
Semester I	5+1*	11	6					22
Semester II	4	7	9	5			1*	25
Semester III	3	4	0	18			1*	25
Semester IV		4	Section to be	21	e e e e		1*	25
Semester V	att dans		2	9	6	3	3+1*	23
Semester VI			5	7	6	3	3	24
Semester VII			2	4	6	3	5	20
Semester VIII							10	10
Total	12	26	24	64	18	9	21	174

SEMESTER -I

23IP101	INDUCTION PROGRAMME	L	T	P	С
		ı	ı	ı	0

COURSE OBJECTIVES:

- This is a mandatory 2 weeks Programme to be conducted as soon as the students enter the institution.
 Normal classes start only after the induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character
- Hence, the purpose of this Programme is to make the

students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature

• Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

Value Based Communication

This module will focus on improving the communication skills of students

Lectures by Alumni

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

Familiarization to Dept/Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities

Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests / assessments during this Programme.

REFERENCES:

Guide to Induction program from AICTE

23HS101	ESSENTIAL COMMUNICATION	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

9

UNIT I FORMATION OF SENTENCES

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing- framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development-Parts of Speech, Wh- Questions, yes or no questions, direct and indirect questions. Vocabulary development- prefixes- suffixes-articles – countable and uncountable nouns

UNIT II NARRATION AND DESCRIPTION 9

Reading – Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development – Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing – Write short narrative paragraphs, biographies of friends/relatives - writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested

vocabular	y and structures.	
UNIT III	COMPARING AND CONTRASTING	9
Reading-	short texts and long texts -understanding different ty	pes
of text	structures, -coherence-jumbled sentences. Langu	ıage
developm	ent- degrees of comparison, concord- Vocabu	lary
developm	ent – single word substitutes- discourse markers- us	e of
reference	words Writing - comparative and contrast paragra	phs
writing- t	copic sentence- main idea, free writing, compare	and
contrast u	sing some suggested vocabulary and structures.	
UNIT IV	SOCIAL MEDIA COMMUNICATION	9
Reading-	Reading blogs, social media reviews, posts, comme	ents,
_	lescription, Language development - relative cla	
_	ry development- social media terms-wo	lb-
100	ions and acronyms Writinge-mail writing-conventi	
7 12	al email, descriptions for simple processes, critical on	
. 60	olog, website posts, commenting to posts.	
1000	ESSAY WRITING	Y 9
Reading-	Close reading non-technical longer texts Langu	age
-	ient - modal verbs, phrasal verbs- Vocabu	-
developm	ent - collocation. Writing- Writing short essa	ays-
brainstorr	ning - developing an outline- identifying main	and
subordina	ite ideas.	
	TOTAL: 45 PERIO	DDS
COURSE	OUTCOMES:	
Afte	r completion of the course, the students will be able	to:
	marize simple, level-appropriate texts of around 300)
wor	ds recognizing main ideas and specific details.	
CO2: Dem	nonstrate the understanding of more complex	

grammatical structures and diction while reading and

writing.

CO3:	Use app	-			-							-		na		
CO4.	contrast people, things, situations etc., in writing. Establish the ability to communicate effectively through															
CO4:	emails.															
COE																
CO3:	Determine the language use appropriate for different social															
COC	media platforms.															
CO6:		Use appropriate expressions for narrative descriptions and process descriptions.														
TEV	_		scrij	2110	ns.											
	EXT BOOKS: 1 Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange															
1															nan	ge
	Level 2. Cambridge University Press and Assessment															
2	Susan Proctor, Jack C. Richards, Jonathan Hull. Interchange															
	Level 3. Cambridge University Press and Assessment															
	FERENCES: Dutt P. Kiranmai and Rajeevan Geeta. Basic Communication															
1	- A			POL		,	- 40		Gee	eta.	Basi	c Co	mm	uni	cati	on
	Skills, F		- 51	N/				h						10		
2	Means,										_		16000			
	Commu	ınic	atic	n fo	or C	Colle	_		eng	age	Lea	rnin	g,L			
(COs	7	=	2			0.00	Os			70				SC	
	VINE	_R 1,	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	-	-	-	-	_	1	1	PACINI	2	3		2	_	200	-
	2	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
	3	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
	4	-	-	-	-	-	-	-	-	-	3	-	2	-	-	-
	5	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
6		-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
Overall Correlation		-	-	-	-	_	1	1	_	3	3	-	2	-	_	-
Recommended by Board of Studies 28-07-2023																
Reco	mmende	d by	Ro	ard	of S	hut	ies	28-	07-2	023						
Reco		d by			of S	Stud	ies		07-2 AC			Date	<u> </u>	09-0	19-20	023

23MA101	MATRICES AND CALCULUS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley – Hamilton theorem – Diagonalization of matrices by orthogonal transformation – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms – Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

UNIT IV INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques of

Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V | MULTIPLE INTEGRALS

9

Double integrals - Change of order of integration - Double integrals in polar coordinates - Area enclosed by plane curves - Triple integrals - Volume of solids - Change of variables in double and triple integrals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2: Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3: Find the derivative of functions of several variables
- **CO4:** Examine the application of partial derivatives
- CO5: Compute integrals by different techniques of Integration.
- CO6: Apply the concept of integration to compute multiple integrals.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

REFERENCES:

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2 Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016

- Bali. N., Goyal. M. and Watkins. C., —Advanced Engineering Mathematics, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 4 Narayanan. S. and Manicavachagom Pillai.T. K., —Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.

COs		POs											PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	-	-	-	-	-	-	•	1	3	-	-	
2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-	
3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-	
4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-	
5	3	2	1	1	-	-	-	-	-	-	•	1	3	-	-	
6	3	2	1	1	1	-	1	1	1		1	1	3	1	-	
Overall Correlation	3	2	1	1	-	4	-	-/	-	-	-	1	3	-	ī	
Recommended by Board of Studies 02-08-2023																

Approved

1st ACM

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

09-09-2023

23CS101	PROGRAMMING IN C	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the basic constructs of C Language.
- To develop C Programs using basic programming constructs.
- To develop C programs using arrays and strings.
- To develop modular applications in C using functions and pointers.
- To develop applications in C using structures and Unions.
- To understand file handling in C.

UNIT I BASICS OF C PROGRAMMING 9

Introduction to programming paradigms - Applications of C Language - Structure of C program - C programming: Data Types

- Constants Enumeration Constants Keywords Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements - Decision making statements
- Switch statement Looping statements Preprocessor directives
- Compilation process.

UNIT II ARRAYS AND STRINGS

5

Introduction to Arrays: Declaration, Initialization – One dimensional array – Two dimensional arrays - String operations: length, compare, concatenate, copy – Selection sort, linear and binary search.

UNIT III | FUNCTIONS AND POINTERS

9

Modular programming - Function prototype, function definition, function call, Built-in functions (string functions, math functions) - Recursion, Binary Search using recursive functions - Pointers - Pointer operators - Pointer arithmetic - Arrays and pointers - Array of pointers - Parameter passing: Pass by value, Pass by reference.

UNI	Γ IV STRUCTURES AND UNION	9
Struc	ture - Nested structures - Pointer and Structures - Arra	v of
	tures - Self-referential structures - Dynamic mem	•
	ation - Singly linked list - typedef - Union - Storage clas	-
		sses
	Visibility.	-
UNI	T V FILE PROCESSING	9
Files-	Types of file processing: Sequential access, Random Acc	ess-
Sequ	ential access file- Random access file- Command	line
argui	ments.	
	TOTAL: 45 PERIO	DDS
COU	IRSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Describe the basic constructs of C Programming Language	ge.
CO2:	Develop simple applications using C basic constructs.	
CO3:	Construct and Implement applications using Arrays	and
1	Strings.	
CO4:	Develop and Implement applications using Functions	and
	pointers.	_
	Construct applications using structures and Unions.	Y
CO6:	Demonstrate File handling concepts and Command	line
TEV	arguments. Γ BOOKS:	
		-:1
1	Reema Thareja, "Programming in C", Oxford Univer	sity
	press, Second Edition, 2016.	
2	Kernighan B.W and Ritchie D.M, "The C Programm	iing
	language", Second Edition, Pearson Education, 2015.	
REFI	ERENCES:	
1	Paul Deitel and Harvey Deitel, "C How to program with	
	introduction to C++", Eighth Edition, Pear	son
	Education, 2018.	
2	Yashwant Kanetkar, "Let us C", seventeenth Edition, l	3PB
	Publications, 2020.	

3	Anita G	loel	and	d A	jay	Mi	ttal,	"C	om	put	er F	und	ame	nta	ls a	nd
	progran	nmi	ing	in (Z",]	Firs	t Ec	litic	n, l	Pear	rson	Edu	ıcati	on,	201	3.
4	Byron	S.	Go	tfrie	ed,	"S	cha	um	s (out	line	of	The	eory	a	nd
	Problem	ns	of	Р	rog	ran	nmi	ng	W	rith	C	",	McC	Grav	w-H	[i]]
	Educati	on,	1996	5.												
5	PradipI	Dey,	, M	lana	asG	hos	h, '	"Co	mp	ute	r Fı	ında	mer	ntal	s a	nd
	Progran	PradipDey, ManasGhosh, "Computer Fundamentals and Programming in C" Second Edition, Oxford University														
	0	Press, 2013.														
	POs													I	PSC	s
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	-	1	1	1	1	3	1	-
	2	3	2	1	1	1	-	-	-	1	1	1	1	3	1	_
	3	3	2	1	1	1	-	-	ı	1	1	1	1	3	1	-
	4	3	2	1	1	1	-		1	1	1	1	1	3	1	-
	5 .ow	3	2	1	1	1	-2		- 7	1	1	1	1	3	1	-
,	6	2	1	0	\ -	1	620	×-	-0	1	1	1	1	3	1	v -
	verall relation	3	2	1	1	1	4	P	\	1	1	1	1	3	1	_
	ecommended by Board of Studies 28-07-2023															
	Approved									M		Date	10	09-	09-2	2023

ACERTATED TO ANNA UNIVERSITY | ALTONOMOUS

23HS102	HERITAGE OF TAMILS	L	T	P	С
		1	0	0	1

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil Nadu.

UNIT I LANGUAGE AND LITERATURE

3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism & Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART - SCULPTURE

3

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

UNIT III FOLK AND MARTIAL ARTS 3 Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu,

Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance – Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature – Aram Concept of Tamils – Education and Literacy during Sangam Age – Ancient Cities and Ports of Sangam Age – Export and Import during Sangam Age – Overseas Conquest of Cholas

UNIT V | CONTRIBUTION OF TAMILS TO INDIAN | NATIONAL MOVEMENT AND INDIAN | CULTURE

3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine - Inscriptions & Manuscripts - Print History of Tamil Books.

TOTAL: 15 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the evolution of Tamil language and literature, focusing on its cultural, ethical, and secular themes.
- CO2: Outline the making of musical instruments related to Tamil heritage.
- CO3: Discuss the sports and games of Tamils
- **CO4:** Explain the education and literacy during Sangam age.
- CO5: Express the importance and contribution of Tamils to Indian Freedom Struggle
- CO6: Outline the print history of books in Tamil Nadu

TEXT BOOKS:

1 தமிழக வரலாறு–மக்களும் பண்பாடும்–கே.கேபிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).

கணினித்தமிழ் – முனைவர் இல. சுந்தரம் (விகடன் பிரசுரம்). **REFERENCES:** கீழடி- வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு) பொருனை- ஆற்றங்கரை **நாகரிகம்** (**தொல்லியல்** துறை வெளியீடு) POs **PSOs** COs _

1st ACM

Recommended by Board of Studies 28-07-2023

Approved

Overall

Correlation

COLLEGE OF TECHNOLOGY

Date

09-09-2023

23PH111	ENGINEERING PHYSICS	L	T	P	C
		3	0	2	4

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses- factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule – torque –rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

UNIT II | ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

UNIT III	OPTICS AND LASERS	9
Reflection	and refraction of light waves - total internal reflecti	on -

types of optical fiber, Numerical Aperture and acceptance angle - interference -Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating
- 6. Airwedge- Determination of thickness of a thinsheet / wire

- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
 - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Determine the mechanical properties of materials.
- CO2: Apply the principles of electromagnetic waves to real world system.
- CO3: Determine the thickness of thin wire and the characteristic parameter of an optical fiber.
- **CO4:** Apply the principles of lasers to real world application.
- CO5: Organize the quantum mechanical properties of particles and waves.
- **CO6:** Utilize the quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1 D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", McGraw Hill Education (Indian Edition), 2017.
- 2 Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", McGraw-Hill (Indian Edition), 2017.

REFI	ERENCE	S:														
1	R.Wolfs	son	," E	Esse	ntia	al U	niv	ers	ity	Phy	sics	", V	olur	ne î	1 &	2.
	Pearson	Ed	uca	tio	n (Iı	ndia	ın E	dit	ion)	, 20	09.					
2	Paul A	. T	iple	r, '	'Ph	ysic	: -	Vo	lum	ne 1	&	2",	CBS	5, (I	Indi	an
	Edition)	, 20	004.													
3	K.Thya	gar	ajar	n aı	nd	A.C	Gha	tak,	"La	sers	s: F	unda	ame	ntal	s a	nd
	Applica	tion	ıs,"	La	xmi	Pu	blic	atic	ns,	(In	dian	Edi	tion), 20)19.	
4	D.Hallio	day	, R.	Res	nicl	k an	d J.	Wa	1ke	r, "I	Princ	ciple	es of	Phy	ysic	s",
	Wiley (I	Viley (Indian Edition), 2015.														
5	N.Garc	.Garcia, A.Damask and S.Schwarz, "Physics for Computer														
	Science	rience Students",Springer Verlag, 2016.														
	I	POs						I	PSO	s						
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	_	-	J	1	-	_	1,	1	3	1	1
	2 DOW	3	2	1	1	-	7	7	-/	9		P	1	3		1
8	3	3	2	1	1	-		2	-(Y -	-	-	1	3	-	-
ľ	4	3	2	/1	1	- "	-	9	- 1	P	. - 2	1	1	3	-	-
1	5	3	2	1	1	-	-			1	_	1	1	3	1	-
	6	3	2	1	1	-	-	-	-	-	÷	e i i	1	3).	1
O	verall	3	2	1	1	C	LL	LEK	JE.	OF.	IE	UH.	ATT	3	9	
Cor	relation	9		1	1	A T F	LIAT	ED T) AN	107.17	MIAE	alT I	(4)	J	A O U	_
Reco	mmende				of S	Stud	ies									
	Approved						1st	AC	M		Date	?	09-	09-2	2023	

23CY111	ENGINEERING CHEMISTRY	L	T	P	C
		3	0	2	4

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical

vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO₂ system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO₂ emission and carbon sequestration, Green Hydrogen.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid battery and lithium-ion battery; Electric vehicles – working

principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2: Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3: Estimate the knowledge of phase rule and composites for material selection requirements
- CO4: Choose a suitable fuel for engineering processes and applications
- CO5: Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6: Explain the different types of batteries, fuel cells and working principles of Electric vehicles

TEXT BOOKS:																
1																
	Edition			pat	Ra	i P	ubl	ishi	ng	Co	mpa	ny	(P) I	Ltd,	Ne	ew
	Delhi, 2			<i>(</i> /E							// -	. .	1.6		_	T+11
2	Sivasar												Mc	raر	w-l	1111
	Publish	_			_								. //	<u> </u>	~1	1
3	S.S. Dar							_		_			-			
	Publish															
	Enginee 44 th Edi				еш	auc	.s ,	NII	атш	аг	ubii	sner	S, IN	ew	Dei	111,
REE	ERENCE		ı, 20	710.												
1		B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James														
1		·														
		Murday, "Text book of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials														
	Science,			·	, 111	,,	, С110		,	1000		6) .	41101	11101	terr	CI D
2				, "	Eng	gine	eri	ng	Ch	em	istrv	″ N	ИcG	raw	- I	Hill
		O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.														
3	Friedrich Emich, "Engineering Chemistry", Scientific															
	International PVT, LTD, New Delhi, 2014New Delhi, 2018.															
4	Shikha/	ShikhaAgarwal, "Engineering Chemistry-Fundamentals and														
		Applications", Cambridge University Press, Delhi, Second														
	Edition,			8		CC	LLC	_	-				NO		G)	10
5	O.V. Ro															
	Book fo												inge	r S	cier	ıce
	Busines	s M	edi	a, N	lew	Yo				litic	n, 2	013			200	
	COs		_	_		_		POs		_					PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	3	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	4	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	5	3	2	1	1	-	-	3	-	ı	1	1	2	3	-	-
	6	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
О	verall	rall 3 2 1 1 3 2 3														
Cor	relation	3	2	1	1	_	_	3	_	-	-	-	2	3	_	-
Reco	mmende	d by	Во	ard	of S	Stud	lies	28-	07-2	2023						
	A	ppr	ove	d				1 st	AC	M	Date			09-09-2023		

23CS121	C PROGRAMMING	L	T	P	C
	LABORATORY	0	0	4	2

- To familiarize with C programming constructs.
- To develop programs in C using basic constructs.
- To develop programs in C using arrays.
- To develop applications in C using strings, pointers, functions.
- To develop applications in C using structures.
- To develop applications in C using file processing.

PRACTICALS:

- 1. I/O statements, operators, expressions.
- 2. Decision-making constructs: if-else, goto, switch-case, break-continue.
- 3. Loops: for, while, do-while.
- 4. Arrays: 1D and 2D, multi-dimensional arrays, traversal.
- 5. Strings: operations.
- 6. Functions: call, return, passing parameters by (value, reference), passing arrays to function.
- 7. Recursion.
- 8. Pointers: Pointers to functions, Arrays, Strings, Pointers to Pointers, Array of Pointers.
- 9. Structures: Nested Structures, Pointers to Structures, Arrays of Structures and Unions.
- 10. Files: reading and writing, File pointers, file operations, random access, processor directives.

TOTAL: 60 PERIODS

LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS:

HARDWARE: Standalone desktops – 30 No's

SOFTWARE: : C / C++ / Equivalent Compiler

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Demonstrate knowledge on C programming constructs.

CO2:	Develop	pr	ogr	am	s in	Cι	ısin	g b	asic	COI	nstru	ıcts.				
CO3:	Develop	pr	ogr	am	s in	Cι	ısin	g a	rray	rs aı	nd s	tring	gs			
CO4:	Develop	ap	plio	cati	ons	in (C us	sing	g fu	ncti	ons	and	poir	nter	s.	
CO5:	Develop	ap	plio	cati	ons	in (C us	sing	g str	uct	ures	and	l uni	on.		
CO6:	Develop	evelop applications in C using file processing.														
	COc	POs PSOs														
	LUS	Os 1 2 3 4 5 6 7 8 9 10 11 12									1	2	3			
	1	1 2 1 1 1 - 1 - 2 - 1										1	2	1	1	
	2	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
	3	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
	4	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
	5	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
	6	3	2	1	1	3	1	-	1	-	2	-	1	3	3	1
O	verall	erall							_1		·		1	2	2	1
Corr	relation	ation 3 2 1 1 3 1 - 1 - 2 - 1 3 3 1														
Reco	mmended	l by	Во	ard	of S	Stud	ies	es 28-07-2023								
1	Approved Approved					A	1st ACM Date			09-09-2023						

23HS121	COMMUNICATION SKILLS	L	T	P	C										
	LABORATORY	0	0	2	1										
COURSE OB	JECTIVES:														
To ena	ble the students to comprehend the mai	n id	ea a	ınd											
specific	information of the listening passage														
	o students express themselves clearly, as	nd													
	unicate effectively with others.														
	oduce authentic language use and conte		_												
vocabu	llary that might not be encountered in to	extb	ook	s.											
Exercise:1	Listening to conversations set in every	day	soc	cial											
	context and complete gap-filling exerc	ise													
Exercise: 2	Listening to a monologue in everyday	soc	ial												
	context. Diagram labelling and MCQ														
Exercise: 3	Listening to a group conversation in a	cade	emi	C											
(POW	setting and answer MCQ			4											
Exercise: 4	Listening to a lecture and answer MC	Q or	gaj	9											
	filling				J.										
Exercise: 5	Listening to Ted Talks, podcasts, docu	ımeı	ntar	ies	-										
	discussion			CV	eo eo										
Exercise: 6	Listening to a lecture and reading a te	xt o	n th	e.											
	same subject- compare and contrast														
Exercise: 7	Speaking Introducing oneself														
Exercise: 8	Answering questions based on the int	rodı	ıcti	on											
Exercise: 9	Speaking on a given prompt for 2 min	ıs.													
Exercise: 10	Answering questions based on the top	oic s	pok	en											
Exercise: 11	Role play- Engaging in conversation														
Exercise: 12	Engaging in Podcast Discussion														
	TOTAL:	25 I	PER	IO	D9										
COURSE OU	TCOMES:														
After co	mpletion of the course, the students wil	1 be	abl	e to	:										
CO1. Demons	trate fluency in speaking in variety of si	tust	ion	2											

CO1: Demonstrate fluency in speaking in variety of situations

CO2: Express their knowledge by talking continuously for more than two minutes on a topic

CO3:De	:Develop active listening for more meaningful interactions															
an	d con	vers	satio	ons		Ü					Ü					
CO4:Us	se a fu	ll ra	nge	e of	strı	ıctu	ıres	nat	ura	lly	and	app	ropr	iate	ly	
CO5:Id	entify	the	spe	cifi	c in	for	mat	ion	in c	on	versa	atior	ns, ir	iter	viev	ws,
tal	ks and	d le	ctur	es												
CO6: De	Develop the ability to compare and analyse different forms of															
int	formation, identifying key similarities and differences.															
COs											I	PSC)s			
CC	COs		2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		1	1	ı	1	1	1	1	ı	2	3	-	2	ı	ı	-
2		ı	ı	ı	1	-	-	-	ı	2	3	ı	2	ı	ı	-
3		ı	ı	ı	ı	-	1	1	ı	2	3	-	2	ı	ı	-
4		-	-	ı	1	-	-	-	1	ı	3	1	2	1	1	-
5		-	-	-	-	_	1	1_	-	3	3	1	2	-	1	-
6	WOO	ER L	ď	1/4	-	-	1	1	-	2	3		(-)	ŀ		-
	Overall Correlation - - - - 1 1 - 3 3 - 2 - - -															
Recomi	Recommended by Board of Studies 28-07-2023															

AFFILIATED TO ANNA UNIVERSITY! AUTONOMOUS

1st ACM

Approved

Date

09-09-2023

SEMESTER - II

23HS201	PROFESSIONAL ENGLISH	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays.
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

UNIT I WORKPLACE COMMUNICATION

9

Reading – Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing – Writing emails -emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development– Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary - One-word substitutes; Abbreviations & Acronyms as used in technical contexts and social media.

UNIT II EXPRESSING CAUSE AND EFFECT

9

Reading - Reading longer technical texts- Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development- Active, Passive and Impersonal Passive Voice transformations, Infinitive and Gerunds Vocabulary - Synonyms- contextual meaning of

words, Same word acting as different parts of speech, causal expressions.

UNIT III PROVIDING SOLUTIONS TO PROBLEMS

9

Reading - Case Studies, editorials, news reports etc. Writing - Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional sentences Vocabulary - Compound Words, discourse markers.

UNIT IV | INTERPRETATION OF GRAPHICS

9

Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. Language development-Possessive & Relative pronouns, numerical adjectives Vocabulary Homonyms and Homophones, sequence words.

UNIT V REPORT WRITING AND RESUME WRITING

9

Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing
- CO3: Use appropriate expressions to describe process and product, compare and contrast data, analyze problems, provide solutions and prove an argument in writing

ability to communicate **CO4:** Establish the effectively professional environment through emails and reports CO5: Determine the language use appropriate for different social media platforms used for digital marketing CO6: Convert skills to assets and position themselves in job market through their own professional narratives TEXT BOOKS: V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha Priyadharshini, Veena Selvam, English for Science & Technology I, Cambridge University Press and Assessment V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha Priyadharshini, Veena Selvam, English for Science & Technology II, Cambridge University Press and Assessment **REFERENCES:** Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi. **POs PSOs** COs **Overall**

Correlation

23MA204	PROBABILITY AND STATISTICS	L	T	P	С
		3	1	0	4

- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To acquaint the knowledge of Estimation Theory for small and large samples this plays an important role in real life problems.
- To provide required advanced statistical tools in solving engineering problems
- To introduce the basic concepts of classifications of statistical quality control this plays very important roles in the field of agricultural engineering

UNIT I PROBABILITY AND RANDOM VARIABLES 9+3

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

UNIT II TWO- DIMENSIONAL RANDOM 9+3 VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Curve Fitting-Method of Least Squares-Central limit theorem (for independent and identically distributed random variables, without proof)-Simple problems.

UNIT III ESTIMATION THEORY

Unbiased estimators - Efficiency - Consistency - Sufficiency - Robustness - Method of moments - Method of maximum Likelihood - Interval estimation of Means - Differences between means.

9+3

UNIT IV	NON- PARAMETRIC TESTS	9+3
Introducti	on - The Sign test - The Signed - Rank test - Rank -	sum

tests - The U test - The H test- Tests based on Runs - Test of randomness - The Kolmogorov Tests. UNIT V | STATISTICAL QUALITY CONTROL 9+3Control charts for measurements (**X** and R charts) – Control charts for attributes (p, c and np charts) - Tolerance limits - Acceptance sampling. **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Apply the fundamental knowledge of the concepts of probability and one dimensional random variables in engineering. CO2: Apply standard probability distributions to real life phenomenon. CO3: Apply the basic concepts of two dimensional random variables in engineering applications. CO4: Apply the concept of estimation theory for small and large samples in real life problems. CO5: Apply the notion of sampling distributions and statistical techniques used in engineering and management problems. CO6: Apply the basic concepts of classifications of statistical quality control in the field of engineering. **TEXT BOOKS:** Johnson. R.A., Miller. I.R and Freund. J.E, " Miller and 1 Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016. Milton. J. S. and Arnold. J.C., "Introduction to Probability 2 and Statistics", Tata Mc Graw Hill, 4th Edition, 2007. REFERENCES: Dr.P. Sivaramakrishna Das, C. Vijayakumari, —A text book 1 of probability and statistics, Pearson Publications.

Gupta. S.C. and Kapoor. V. K., -Fundamentals of

Mathematical Statistics, Sultan Chand & Sons, New Delhi,

2

12th Edition, 2020.

3	Devore	. J.I	اا ر.د	Pro	bab	oilit	y aı	nd S	Stat	isti	cs fo	r Er	ngine	eeri	ng a	ınd
	the Scie	enc	esI,	Ce	nga	ıge	Lea	arni	ng,	Ne	ew I	Delh	i, 8t	h E	Editi	on,
	2014.															
4	Ross. S	.M.	, "I	ntro	odu	ctio	on i	to I	Prol	bab	ility	and	1 Sta	atis	tics	for
	Engine	ers	and	Sci	ient	ists	s", 5	thE	diti	ion,	Else	evie	r, 20	14.		
	COs		POs PSOs													
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	1	-	-	-	-	1	3	ı	-
	3	3	2	1	1	-	-	1	-	-	-	-	1	3	ı	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	-	1	-	-	-	-	1	3	ı	-
	6	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
O	verall	3	2	1	1		ř.	_/	_				1 ==	3		
Cor	relation	3	RE.	Pho	1		Ľ,			Ā		4	1	3	1	P

A AND

Recommended by Board of Studies

Approved

COLLEGE OF TECHNOLOGY

Date

09-09-2023

28-07-2023 1st ACM

23PH205	PHYSICS FOR INFORMATION	L	T	P	C
	SCIENCE	3	0	0	3

- To make the students understand the importance in studying electrical properties of materials.
- To enable the students to gain knowledge in semiconductor physics
- To instill knowledge on magnetic properties of materials.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement, ensuing nano device applications and quantum computing.

UNIT I ELECTRICAL PROPERTIES OF MATERIALS 9

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Wiedemann-Franz law - Success and failures - electrons in metals - Particle in a three-dimensional box - degenerate states - Fermi- Dirac statistics - Density of energy states - Electron in periodic potential - Energy bands in solids - tight binding approximation - Electron effective mass - concept of hole.

UNIT II SEMICONDUCTOR PHYSICS 9

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – variation of Fermi level with temperature and impurity concentration – Carrier transport in Semiconductor: random motion, drift, mobility and diffusion (qualitative) – Hall effect and devices – Ohmic contacts – Schottky diode – introduction to solid state drive (SSD)

UNIT III | MAGNETIC PROPERTIES OF MATERIALS

9

Magnetic dipole moment – atomic magnetic moments- magnetic permeability and susceptibility - Magnetic material classification: diamagnetism – paramagnetism – ferromagnetism – antiferromagnetism – ferrimagnetism – Ferromagnetism: origin and exchange interaction- saturation magnetization and Curie temperature – Domain Theory- M versus H behaviour – Hard and soft magnetic materials – examples and uses-– Magnetic principle in computer data storage – Magnetic hard disc (GMR sensor).

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques.

UNIT V NANODEVICES AND QUANTUM COMPUTING

9

Introduction - quantum confinement - quantum structures: quantum wells, wires and dots -- band gap of nanomaterials. Tunneling - Single electron phenomena: Coulomb blockade - resonant- tunneling diode - single electron transistor - quantum cellular automata - Quantum system for information processing - quantum states - classical bits - quantum bits or qubits -CNOT gate - multiple qubits - Bloch sphere - quantum gates - advantage of quantum computing over classical computing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the knowledge of classical and quantum electron theories to energy band structures.
- CO2: Utilize the basics of intrinsic and extrinsic semiconductor physics and its application in various devices.
- CO3: Apply the knowledge of magnetic properties of materials in data storage.

CO4: Explain the electro optical properties and optoelectronic devices. CO5: Explain the quantum structures, quantum confinement and Nano devices. CO6: Explain the role of quantum structures in information processing technique. **TEXT BOOKS:** Jasprit Singh, "Semiconductor Devices: Basic Principles", 1 Wiley (Indian Edition), 2007. S.O. Kasap. Principles of Electronic Materials and Devices, McGraw-Hill Education (Indian Edition), 2020. Parag K. Lala, Quantum Computing: A Beginner's Introduction, McGraw-Hill Education (Indian Edition), 2020. **REFERENCES:** Charles Kittel, Introduction to Solid State Physics, Wiley 1 India Edition, 2019. Y.B.Band and Y.Avishai, Quantum Mechanics with Applications to Nanotechnology and Information Science, Academic Press, 2013. V.V.Mitin, V.A. Kochelap and M.A.Stroscio, Introduction to 3 Nanoelectronics, Cambridge Univ. Press, 2008. G.W. Hanson, Fundamentals of Nanoelectronics, Pearson 4 Education (Indian Edition) 2009. 5 B.Rogers, J.Adams and S.Pennathur, Nanotechnology: Understanding Small Systems, CRC Press, 2014. **POs PSOs** COs 1 8 10 11 12 1 1 3 2 1 1 1 3 2 3 2 1 1 3 1 3 3 2 1 1 1 4 2 1 1 2 5 2 1 1 _ 6 2 1 1 2 Overall 3 2 1 1 3 1 Correlation Recommended by Board of Studies 28-07-2023 **Approved** 1st ACM Date 09-09-2023

23CS201 DATA STRUCTURES USING C	L	Т	P	С
	3	0	0	3
COURSE OBJECTIVES:				
To understand the concepts of ADTs.				
To learn linear data structures – lists, stacks, a	nd q	ueu	es.	
• To understand non-linear data structures – tre				hs.
 To understand sorting, searching and hashing 	algo	oritl	nms	3.
To apply Tree and Graph structures.				
UNIT I LISTS				9
Abstract Data Types (ADTs) - List ADT -	Arra	v-b	ase	d
implementation - Linked list implementation - Singl		-		
- Circularly linked lists - Doubly-linked lists - Ap				
lists – Polynomial ADT.	L			
UNIT II STACKS AND QUEUES				9
WIFR Do.	1			
Stack ADT - Operations - Applications - Balancin	_			
Evaluating arithmetic expressions- Infix to Postfix of				H
Queue ADT - Operations - Circular Queue -	DeÇ	ueı)	ie	H
Applications of Queues.				
UNIT III TREE STRUCTURES			GY	9
Tree ADT - Tree Traversals - Binary Tree ADT -	Ext	ores	sio	n
trees - Binary Search Tree ADT -Priority Queue	_			
Binary Heap-Multiway Search Trees - B-Tree - B+	•	_	-)	
UNIT IV SORTING AND SEARCHING				9
Sorting – Bubble sort – Selection sort – Insertion sort	-Me	rge	Soı	rt
 Quick Sort -Shell sort - Radix sort. Searching - Lir 	ear!	Sea	rch	-
Binary Search.				
UNIT V GRAPH STRUCTURES				9
Graph Definition - Representation of Graphs - Type	s of	Gra	nph	_
Breadth-first traversal –Depth-first traversal – Bi-co	nne	ctiv	ity	_
Topological Sort - Dijkstra's algorithm - Minimus			-	
	-			-
Tree – Prim's algorithm – Kruskal's algorithm.				

COU	COURSE OUTCOMES:															
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to):
CO1:	Make u problen		of va	rio	us l	ink	ed 1	ist (pei	ratio	ons t	o so	lve t	he g	give	n
CO2:	Apply 1	line	ar c	lata	str	uct	ure	s sta	ack	and	d qu	eue	for 1	real	tim	ie
	applica	tior	ıs.													
CO3:	Utilize	the	nc	n-li	inea	ar d	lata	stı	uct	ure	tree	e for	r rea	al v	vorl	d
	applica															
CO4:	Apply v	vari	ous	SOI	rtin	g al	gor	ithr	ns f	or t	he g	iver	sce	nar	io	
CO5 :	Apply v	vari	ous	sea	irch	iing	alg	gori	thm	s fo	or th	e giv	zen s	scer	ari	О
CO6:	Apply graph algorithms for graph applications															
TEX	TEXT BOOKS:															
1	Mark A	ller	ı W	eiss	, Da	ata S	Stru	ıctu	res	anc	l Alg	gorit	hm .	Ana	alys	is
	in C, 2n															
2	Kamtha	ne,	Int	rod	uct	ion	to I)ata	Str	uct	ures	in C	C, 1st	Ed	itio	n,
	Pearson Education, 2007															
	REFERENCES:															
1	Langsam, Augenstein and Tanenbaum, Data Structures															
	Using C and C++, 2nd Edition, Pearson Education, 2015. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest,															
2																
	Clifford								Algo	ritr	nms'	', Fo	urth	Ed:	1 t 101	n,
3	Mcgrav Alfred								2 44	T 1.	MVE	SIL		- CL	D.	L
3	Structu														Da	la
		103	arro	1 11	801	11111		POs		.1011	, 1 (a1 50	11, 20		PSC)c
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	2 3 2 1 1 1 1 1 2 3 3 3 3 1 1									1						
	3 3 2 1 1 1 1 1 1 2 2 3 3 3 1 1															
	4	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	5	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	6	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	verall	3	2	1	1	1	1	1	1	2	3	3	3	3	1	1
	elation															\Box
Keco	mmende				of S	tud	ıes		07-2			D í		00	00.5	2000
	Approved					1^{st}	1st ACM Date (09-2	2023		

23HS203	TAMILS AND TECHNOLOGY	L	T	P	C
		1	0	0	1

- To summarize the weaving industry and ceramic technology during Sangam Age
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola, Pallava and Pandya period
- To Explain about the water bodies of Sangam age and relate it to the agricultural usage
- To Outline to students the agriculture and irrigation technology during the Chola Period
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software

UNIT IWEAVING AND CERAMIC TECHNOLOGY3Weaving Industry during Sangam Age - Ceramic technology -Black and Red Ware Potteries (BRW) - Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III | MANUFACTURING TECHNOLOGY 3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV | AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use -Agriculture and Agro Processing - Knowledge of Sea - Fisheries -Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3 Development of Scientific Tamil -Tamil computing Digitalization of Tamil Books -Development of Tamil Software -Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize the weaving industry and ceramic technology during Sangam Age CO2: Explain the design and construction of houses during Sangam Age CO3: Explain the sculptures and temples of Chola, Pallava and Pandya period. **CO4:** Explain about the water bodies of Sangam age and relate it to the agricultural usage CO5: Outline the agriculture and irrigation technology during the Chola Period. **CO6:** Explain the digitalization of tamil books and development of Tamil software **TEXT BOOKS:** Dr.K.K.Pillay ,"Social Life of Tamils", A joint publication of 1 TNTB & ESC and RMRL

REFI	ERENCE	S:														
1	Dr.S.Sir	ngai	rave	elu	,"So	ocia	1 Li	fe o	of tl	ne 🛚	[ami	ils -	The	Cla	assio	cal
	Period"	, F	ubl	ish	ed	by:	In	teri	nati	ona	l In	stitu	ıte	of	Tan	nil
	Studies															
2	Dr.S.V.S	Sub	ataı	mar	niar	1	,	Dı	r.K.	D.	T	hiru	navı	ıkk	aras	su,
	"Histor	ical	F	Ieri	tag	e (of	the	: Т	am	ils",	Pι	ublis	shec	i k	y:
	Interna	International Institute of Tamil Studies														
	CO.						I	POs						I	PSO	s
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	-	1	-	-	-	1	1	1	-	-	-	-	-	-	-
	2	-	ı	-	-	-	1	1	1	-	-	-	-	-	-	-
	3	-	ı	-	-	-	1	1	1	-	-	-	-	-	-	-
	4	-	ı	-	-	-	1	1	1	-	-	-	-	-	-	-
	5	-	ı	-	-	-	1	1_	1	-	1	-	- 5	_	-	-
	6 1 1 1								-							
	Overall rrelation 1 1 1 1															
Reco	mmende	d by	Во	ard	of S	tud	lies	28-	07-2	023					The same	P
1	Approved					1st ACM Date				09-09-2023						

23EE281	BASIC ELECTRICAL,	L	Т	P	С				
2022201	<u> </u>	2	0	2	3				
COURSE OB		= 1							
	ntroduce the basics of electric circuits and ana	lvs	is						
	mpart knowledge in the basics of working pri	-		s an	d				
	ication of electrical machines		-						
	ntroduce analog devices and their characterist								
	ducate on the fundamental concepts of digital				cs,				
	tional elements and working of measuring ins				N.T				
	emonstrate the load test on DC machines, wo tion diodes, Zener diodes and rectifiers.	rkı	ng (or P	IN				
	LECTRICAL CIRCUITS				6				
DC Circuits:	Circuit Components: Conductor, Resistor	r, I	Ind	ucto	or,				
Capacitor- O	hm 's Law-Kirchhoff's Laws -Nodal Ana	lys	sis,	Me	sh				
analysis wit	th independent sources only (Stead	dy	S	tate	e) -				
Introduction to AC Circuits –Steady state analysis of RL, RC, and									
RLC circuits ((Simple problems only).	r							
UNIT II ELECTRICAL MACHINES 6									
C	1 M 1: : : 1 (DC C			EX	4E				
	and Working principle of DC Genera								
- SS 277.9759	pes and Applications- Working Princi	シリ							
	ue Equation, Types and Applications Co								
	ciple and Applications of Single- Phase Ti	ran	sfo	rme	er.				
UNIT III A	NALOG ELECTRONICS				6				
PN Iunction I	Diodes, Zener Diode-Characteristics & Ap	ppl	icat	ion	s-				
-	tion Transistor, JFET, SCR, MOSFET, -	-							
-	es and Applications – Rectifier.	-)	r	-, -					
	IGITAL ELECTRONICS				6				
	IGITAL ELECTRONICS				Ū				
Review of n	umber systems, Combinational logic (ad	der	aı	nd				
subtractor) - 1	representation of logic functions-SOP and	PC	OS f	orn	ıs,				
K-map repres	sentations and minimization using K-ma	ps	(սյ	o to	3				
variables).	3	-							
	EASUREMENTS AND INSTRUMENTA	ΑT	IOI	N	6				
Functional ele	ements of an instrument, Standards and	cal	libr	atic	n,				

Operating Principle, types- Moving Coil and Moving Iron meters, Instrument Transformers- CT and PT, DSO-Block Diagram

Total: 30 PERIODS

LAB COMPONENT

- 1. Verification of Ohms and Kirchhoff's Laws.
- 2. Load test on DC Shunt Motor.
- 3. Characteristics of PN and Zener Diodes
- 4. Design and analysis of Half wave and Full Wave rectifiers
- 5. Implementation of Binary Adder and Subtractor
- 6. Study of DSO

Total : 30 + 30 = 60 Periods

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply fundamental laws to DC electric circuits and demonstrate it experimentally.
- CO2: Explain the steady state AC circuits with RL, RC, and RLC circuits
- CO3: Identify the working principle and applications of electrical machines with experimental results
- CO4: Demonstrate the characteristics of various analog electronic devices
- CO5: Experiment with the basic concepts of digital electronics and demonstrate the implementation of Binary Adder and Subtractor
- **CO6:** Illustrate the operating principles of measuring instruments and demonstrate DSO for the basic measurements.

TEXT BOOKS:

- 1 Kothari D P and I.J Nagrath,—Basic Electrical and Electronics Engineering , Second Edition, McGraw Hill Education, 2020
- 2 Sedha R. S.,—A textbook book of Applied Electronics, S. Chand & Co.,2008

3	A.K. Sav	ı, h	2017	D11	200	۰+ C	2247	220		<u>۸ </u>	011#0	o in	Floo	trio	al &	_
3			•						•							
	Electron			sur	em	enu	5 Œ	ms	ıruı	пеп	ııaıı	ш, і	Dhai	пра	ιΝċ	11
DEE	and Co,		15.													
	ERENCE			1.7			.1					. 1.				
1	Kothari					_							ingi	nee	rıng	5,
	Fourth 1															
2	S.K. Bha			5												
	Enginee															
3	Thomas	L.	Floy	yd,	_ Di	igita	al F	und	lam	ent	als',	11^{th}	Edit	ion	,	
	Pearson	Pearson Education,2017. Albert Malvino, David Bates, _Electronic Principles,														
4	Albert N	Mal	vino	o, D	avi	d B	ates	s, _I	Elec	troi	nic P	rinc	iples	5,		
	McGrav	vΗ	ill E	Edu	cati	on;	7th	ed	itio	n, 2	017.					
5	Mahmo	od i	Nal	ıvi	and	l Jos	sepl	ı A	Ed	mir	niste	r, —	Elect	tric		
	Circuits	I, 8€	6 Sc	hau	ım '	'Ou	tlin	e Se	erie	s, N	[cGr	aw I	Hill,	200	2.	
6	H.S. Kal	H.S. Kalsi, _Electronic Instrumentation', Tata McGraw-Hill,														
	New Delhi, 2010															
7	James A	James A. Svoboda, Richard C. Dorf,—Dorf's Introduction to														
	Electric Circuits, Wiley, 2018.															
	1 3	><3	4	6				POs						I	PSC	s
· •	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	AFF	LIAI	U.1	1	1	1	SILLA	1	3	nou	1
	2	2	1	_	_	_	_	_	1	1	1	_	1	2	_	1
	3	3	2	1	1	_	1	1	1	1	1	_	1	3	_	1
	4	2	1	_	_	_	1	1	1	1	1	_	1	2	_	1
	5	3	2	1	1	_	_	_	1	1	1	_	1	3	_	1
	6	2	1	_	_	_	_	_	1	_	_	_	_	3	_	1
O	verall	_	_													
	relation	3	2	1	1	-	1	1	1	1	1	-	1	3	-	1
Reco	mmended	d by	Во	ard	of S	Stud	lies	28-	07-2	2023	<u> </u>	1		1		1
Approved						1st ACM Date			9	09-09-2023						
	EE															

23ME211	ENGINEERING GRAPHICS	L	T	P	C
		3	0	2	4

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

UNIT II	PROJECTION OF POINTS, LINES AND	9+6
	PLANE SURFACE	

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method. Projection of planes (hexagonal and pentagonal planes

only) inclined to both the principal planes by rotating object method.

LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

UNIT III PROJECTION OF SOLIDS AND FREE HAND 9+6 SKETCHING

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

UNIT IV	PROJECTION OF SECTIONED SOLIDS AND	9+6
	DEVELOPMENT OF SURFACES	

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section plane inclined to the horizontal plane

UNIT V ISOMETRIC PROJECTION 9+6

Principles of isometric projection - Isometric scale - Isometric view - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions.

LIST OF EXERCISES:

- 1. Drawing Isometric view and projection of simple solids.
- 2. Drawing three dimensional modeling of isometric projection of combination of solids.

TOTAL: 75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Construct the conic curves, involutes and cycloids.
- CO2: Develop and Sketch the orthographic projections of points, lines and plane surfaces.
- CO3: Develop and Sketch the orthographic projections of simple solids.
- CO4: Construct the projections of sectioned solids and development of the lateral surfaces of solids.
- CO5: Develop and Sketch the isometric sections of solids.
- CO6: Develop and Sketch the orthographic projection 2D and 3D objects using Auto CAD.

TEXT BOOKS:

- 1 Bhatt N.D. and Panchal V.M., —Engineering Drawingl, Charotar Publishing House, 53rd Edition, 2019.
- 2 Basant Agarwal and Agarwal C.M.,—Engineering Drawingl, McGraw Hill, 2nd Edition, 2019

REFERENCES:

- 1 Natrajan K.V., —A Text Book of Engineering Graphicsl, Dhanalakshmi Publishers, Chennai, 2018.
- 2 Gopalakrishna K.R., —Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition, 2017.

3	Luzzad	er,	Wa	rre	n.J.	and	d D	uff,	. Jol	hn i	M.,	–Fu	nda	mei	ntals	s of
	Engine	erin	g I	Orav	win	g v	vitl	n ai	n ir	ıtro	duc	tion	to	Int∈	eract	ive
	Compu	ter	Gr	apł	nics	fo	r D)esi	gn	and	d Pı	odu	ctio	n,]	East	ern
	Econon	ny E	Edit	ion	, Pr	enti	ce l	Hal	l of	Ind	ia P	vt. L	td, N	Vev	v De	lhi,
	Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.															
4	Parthasarathy N. S. and Vela Murali, —Engineering															
	Graphics, Oxford University, Press, New Delhi, 2015. 5.															
	-	Shah M.B., and Rana B.C., —Engineering Drawing, Pearson														
		Education India, 2nd Edition, 2009.														
	Venugopal K. and Prabhu Raja V., —Engineering Graphics",															
5	Venugo	pal	K.	ano	d Pı	abl	nu I	Raja	V.	, —I	Engi	neer	ing	Gra	phi	cs",
5								,			0	neer	ing	Gra	phi	cs",
	New A						(P)	,	ite		0	neer	ring		phi PSC	
							(P)	Lim	ite		0		ring 12			
	New A	ge I	nte	rna	tior	nal ((P) I	Lim POs	ite	d, 2	008.				PSC)s
	New A	ge I	nte	rna	tior 4	nal ((P) I	Lim POs	ited 8	d, 2	10	11	12	1	PSC 2)s
	New A	ge I 1 3	2 2	3 1	4 1	5 2	(P) I	Lim POs	8	d, 2	10 3	11 2	12 2	1 2	PSC 2 2)s
	New As	ge I 1 3	2 2 2	3 1 1	4 1	5 2 2	(P) I	Lim POs	8 1	d, 2	10 3 3	11 2 2	12 2 2	1 2 2	PSC 2 2 2)s
	New As	ge I 1 3 3 3	2 2 2 2 2	3 1 1	4 1 1	5 2 2	(P) I	Lim POs	8 1 1	d, 2	10 3 3 3	11 2 2 2	12 2 2 2	1 2 2 2	PSC 2 2 2 2 2)s

2

1 1

Recommended by Board of Studies

Approved

3

1

28-07-2023

1st ACM

2

Date

2 2

2

09-09-2023

Overall

Correlation

6	3

23ME221	ENGINEERING PRACTICES	L	T	P	C
	LABORATORY	0	0	4	2

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work;
 Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment; Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

GROUP A (CIVIL and MECHANICAL)

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK

- a) Sawing
- b) Planning
- c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture
- b) Study of common industrial trusses using models.

PART II MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

BASIC MACHINING PRACTICE

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

SHEET METAL WORK

- a) Forming and Bending
- b) Making of a square Tray

MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.

Pre	eparation.	
	TOTAL: 30 PERI	ODS
	GROUP B (ELECTRICAL & ELECTRONICS)	
PART III	ELECTRICAL ENGINEERING PRACTICES	15
1 Pos	idential House wiring using Switches Euse Indic	ators

- 1. Residential House wiring using Switches, Fuse, Indicators, Lamp and Energy Meter.
- 2. Staircase Wiring.

- Fluorescent Lamp Wiring with Introduction to CFL and LED Types.
- 4. Measurement of Energy using Single Phase Energy Meter.
- 5. Study of Iron Box Wiring and Assembly
- 6. Study of Fan Regulator Electronic Type

PART IV | ELECTRONICS ENGINEERING PRACTICES | 15

- 1. Study of Electronic components and equipment Resistors, Colour coding measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.

COURSE OUTCOMES:

and Smart phone.

- 4. Soldering simple electronic circuits and checking continuity.
- 5. Study the elements of smart phone
- 6. Study of LED TV (Block diagram

After completion of the course, the students will be able to: CO1: Plan the pipeline layout for common household plumbing work. CO2: Make use of welding equipment and carpentry tool for making joints. CO3: Demonstrate on centrifugal pump, air conditioner and foundry operations. CO4: Demonstrate the electrical wiring connections for household applications and study the working of iron box and fan regulator. CO5: Identify the basic electronic components and explain the gates and soldering methods. CO6: Examine the performance and operation of CRO, LED TV

COs						I	POs	,					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-	
2	3	2	1	1	1	1	1	•	-	2	2	2	2	1	-	
3	3	2	1	1	1	1	1	•	-	2	2	2	2	1	-	
4	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-	
5	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-	
6	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-	
Overall	3	2	1	1	1	1	1			2	2	2	2	1		
Correlation	•		1	1	1	1	1	1	-	2	4	2	4	1	-	
Recommended	d by	Во	ard	of S	Stud	lies	26-	07-2	2023	,						
A	ove	d	•			1st ACM Date					9	09-09-2023				

23CS221	DATA STRUCTURES USING C	L	T	P	C
	LABORATORY	0	0	4	2

- To demonstrate array implementation of linear data structure algorithms.
- To implement the applications using Stack.
- To implement the applications using Linked list
- To implement Binary search tree algorithms.
- To implement the Heap algorithm.
- To implement Dijkstras algorithm.
- To implement Prims algorithm
- To implement Sorting, Searching algorithms.

PRACTICALS:

- Array implementation of Stack, Queue and Circular Queue ADTs.
- 2. Implementation of Singly Linked List.
- 3. Linked list implementation of Stack and Linear Queue ADTs.
- 4. Implementation of Polynomial Manipulation using Linked list.
- 5. Implementation of Evaluating Postfix Expressions, Infix to Postfix conversion.
- 6. Implementation of Heaps using Priority Queues.
- 7. Implementation of Linear Search and Binary Search.
- 8. Implementation of Insertion Sort and Selection Sort.
- 9. Implementation of Quick Sort.
- 10. Implementation of Binary Search Trees.
- 11. Implementation of Dijkstra's Algorithm.
- 12. Implementation of Prim's Algorithm.

TOTAL: 60 PERIODS

LABORATORY REQUIREMENT FOR BATCH OF 30																		
STU	DENTS:																	
HAR	DWARI	E: S	tan	dal	one	des	sktc	ps ·	- 30) No	o's	SOF	TW.	AR	E: (C /		
C++ / Equivalent Compiler																		
COURSE OUTCOMES:																		
	After completion of the course, the students will be able to:																	
CO1:	Construct linear data structure algorithms.																	
CO2:	Develop applications using Stacks and Queue.																	
CO3:	Develop applications using Linked lists.																	
CO4:	Constru	ict l	oina	ry	sear	ch t	tree	alg	ori	thm	١.							
CO5:	Constru	Construct binary search tree algorithm. Construct Prim's and Dijkstra's graph algorithms.																
CO6:	Analyze	e th	e va	rio	us s	ear	chiı	ng a	nd	sor	ting	algo	rith	ms.				
	20-						I	POs I								PSOs		
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1 COW	3	2	1	1	2	-7	9	1	1	1	-	1	3	2	1		
8	2	3	2	1	1	2		-	-	1	1	1	_	3	2	ř-		
Ĭ.	3	3	3	3	2	2	-	3	-/	4	1	7	1	3	2	-		
1	4	3	2	1	1	2	-	7	-	-	1	-	-	3	2	-		
1	5	3	2	1	1	2	-	-	1	1	1		-	3	2	1		
	6 CINE	3	3	2	2	2	Ļ	Ė	1	<u>U</u> 1	1	5	NO	3	2	1		
	verall elation	3	3	2	2	2	LIAT	-	1 1	1	1	oll Y	1	3	2	1		
	mmended	1 by	, Bo	ard	of S	Stud	ies	28-	07-2	0023								
Reco	illilicitace	a vy	DU	uru	01 0		100		AC							2023		

23HS221	SOFT SKILLS	L	T	P	С
		0	0	2	1

- To help learners improve their interpersonal skills and critical thinking
- To familiarize learners with the attributes of a leader to enhance team performance
- To prepare students to face job interviews
- To help learners to know the importance of ethics in work place

UNIT I INTERPERSONAL COMMUNICATION

5

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

UNIT II TEAM WORK AND LEADERSHIP

Į

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

UNIT III TIME MANAGEMENT AND STRESS MANAGEMENT

Ċ

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self- awareness and regulation.

UNIT IV CRITICAL THINKING AND WORK ETHICS

5

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance, attitude, character, organizational skills, productivity, respect.

UNI	TV INTERVIEW SKILLS AND RESUME 5
	BUILDING TECHNIQUES
Telep	phonic interview, online interviews, f2f interviews, FAQ soft
skills	interview questions, drafting error-free CVs/ Resumes and
Cove	r Letters, selecting the ideal format for resume, content
draft	ing along with sequencing, art of representing one's
quali	fications and most relevant work history, video resume,
webs	ite resume.
	TOTAL: 25 PERIOD
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Express their thoughts, opinions and ideas confidently to
	one or more people in spoken form
CO2:	Develop evolving competences required for professional
	success
CO3:	Demonstrate knowledge and skills in a group as team player
	and leader
CO4:	Compose a comprehensive resume reflecting qualifications,
	exposure and achievements
CO5:	Exhibit knowledge and skills confidently during job
	interviews
CO6:	Demonstrate ethical and professional behaviour at
	workplace in all situations
TEX	BOOKS:
1	Soft Skills: Key to Success in Workplace and Life by
	Meenakshi Raman & Shalini Upadhyay. Cengage
REFI	ERENCES:
1	English for Job Seekers (Language and Soft Skills for the
	Aspiring) by Geetha Rajeevan, C.L.N. Prakash) Cambridge
	University Press pvt, Ltd.
2	Business Benchmark by Norman Whitby. Cambridge
	University Press pvt, Ltd

COs						I	POs	,					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	-	-	-	-	-	-	-	-	2	2	-	-	-	-	-	
2	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2	
3	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-	
4	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-	
5	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-	
6	-	-	-	-	-	-	-	3	3	3	-	-	-	-	3	
Overall Correlation	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2	
Recommende	ies	28-07-2023														
A		1st ACM Date						09-09-2023								

SEMESTER -III

23MA202	DISCRETE MATHEMATICS	L	T	P	C
		3	1	0	4

COURSE OBJECTIVES:

- To develop student's logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science related courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures
- To understand the concepts and significance of Lattices and Boolean algebra which are widely used in computer science and engineering.

UNIT I LOGIC AND PROOFS

9+3

Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.

UNIT II | COMBINATORICS

9+3

Mathematical induction - The basics of counting - Well ordering - Strong induction - The pigeonhole principle - Permutations and Combinations - Recurrence relations - Solving linear recurrence relations - Generating functions - Inclusion and exclusion principle and its applications.

UNIT III GRAPHS

9+3

Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV | ALGEBRAIC STRUCTURES

9+3

Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets -

Lagrange's theorem - Definitions and examples of Rings and Fields. UNIT V LATTICES AND BOOLEAN ALGEBRA 9+3Partial ordering - Posets - Lattices as posets - Properties of lattices - Lattices as algebraic systems - Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra -Boolean Homomorphism. **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply the concepts of propositional and predicate calculus to the given logical statements. CO2: Apply the idea of combinatorial techniques to various engineering problems. CO3: Find the solutions for technical problems using graphs. CO4: Apply the concepts and properties of algebraic structures in computational theory. CO5: Apply the lattice structure and its properties to engineering problems. CO6: Apply Boolean expressions in areas like computational theory. TEXT BOOKS: Rosen. K.H., "Discrete Mathematics and its Applications", 1 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2017. Tremblay. J.P. and Manohar. R, "Discrete Mathematical 2 Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011. **REFERENCES:**

Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari,

Mathematics Pearson Publications.

Discrete

- Grimaldi. R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5thEdition, Pearson Education Asia, Delhi, 2013
 Koshy. T. "Discrete Mathematics with Applications",
- 3 Koshy. T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.
- 4 Lipschutz. S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.

COs		POs												PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-		
2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-		
3	3	2	1	1	-	-	ı	•	-	-	-	1	3	-	-		
4	3	2	1	1	-	-	- 1	-	- 1	ā	1	1	3	-	-		
5 POW	3	2	1	1	-	-,	9	۲.	B	-	-	1/	3	-0	-		
6	3	2	1	\1	-	4	1	-	-	-	-	1	3	-	-		
Overall Correlation	3	2	1	1	_	-		-		1		1	3	-	-		
Recommended	by	Boa	rd o	of S	tud	ies				08	3-04-	2023					

Recommended by Board of Studies 08-04-2023

Approved by Academic 2nd ACM Date 25-05-2025

23CS301	OBJECT ORIENTED	L	T	P	С
	PROGRAMMING	3	0	0	3
COURSE OBJ	ECTIVES:		-		

- To understand Object Oriented Programming concepts and basics of Java Programming language
- To know the principles of packages, inheritance and interfaces
- To develop a Java application with threads and generics classes
- To define exceptions and use I/O streams
- To design and build Graphical User Interface Application using JAVAFX

UNIT I INTRODUCTION TO OOP AND JAVA 9

Overview of OOP - Object Oriented Programming paradigms - Features of Object Oriented Programming - Java Buzzwords - Overview of Java - Data Types, Variables and Arrays - Operators - Control Statements - Programming Structures in Java - Defining classes in Java - Constructors-Methods - Access specifiers - Static members- Java Doc comments

UNIT II INHERITANCE, PACKAGES AND 9 INTERFACES

Overloading Methods – Objects as Parameters – Returning Objects –Static, Nested and Inner Classes. Inheritance: Basics – Types of Inheritance -Super keyword -Method Overriding – Dynamic Method Dispatch –Abstract Classes – final with Inheritance. Packages and Interfaces: Packages – Packages and Member Access –Importing Packages – Interfaces.

UNIT III EXCEPTION HANDLING AND 9 MULTITHREADING

Exception handling basics - Multiple catch Clauses - Nested try Statements - Java's Built-in Exceptions - User defined Exception. Multithreaded Programming: Java Thread Model-Creating a

			1
		d Multiple Threads - Priorities - Synchronization - I	
Threa	ad Co	ommunication - Suspending -Resuming, and Stopp	ing
Threa	ads -l	Multithreading. Wrappers - Auto boxing.	
UNI	ΓΙ	I/O, GENERICS, STRING HANDLING	9
I/O	Basic	s - Reading and Writing Console I/O - Reading	and
Writi	ing Fi	les. Generics: Generic Programming - Generic class	es -
Gene	ric M	ethods - Bounded Types - Restrictions and Limitation	ons.
Strin	gs: Ba	sic String class, methods and String Buffer Class.	
UNI	ΓV	JAVAFX EVENT HANDLING, CONTROLS,	9
		COMPONENTS	
JAVA	AFX E	Events and Controls: Event Basics - Handling Key	and
Mous	se Ev	ents. Controls: Checkbox, ToggleButton – RadioButt	ons
- List	tView	- ComboBox - ChoiceBox - Text Controls - ScrollPa	ane.
Layo	uts -	FlowPane - HBox and VBox - BorderPane - StackP	ane
– Gri	dPan	e. <mark>Menus -</mark> Basics - Menu - Menu bars - MenuItem.	
T.	The second	TOTAL: 45 PERIO	DDS
COU	RSE	OUTCOMES:	
	After	completion of the course, the students will be able t	o:
CO1:	App	ly the concepts of classes and objects to solve sim	ıple
	prob	lems AFFILIATED TO ANNA UNIVERSITY AUTONOMO	US
CO2:	Deve	elop programs using packages and interfaces	
CO3:	Cons	struct programs using inheritance concepts.	
CO4:	App	ly exception handling mechanisms and multithread	ded
	mod	el to solve real world problems	
CO5:	Cons	struct Java applications with I/O packages, str	ring
	class	es, Collections and generics concepts	
CO6:	App	ly the concepts of event handling and Java	aFX
	com	ponents and controls for developing GUI ba	sed
	appl	ication	
į			

TEX	Г ВООК	S:															
1	Herbert	S	chil	dt,	"Ja	va:	Tł	ne	Cor	npl	ete	Refe	eren	œ",	11	th	
	Edition,	, Mo	Gr	aw	Hil	l Ed	luca	tio	n, N	Iew	Del	hi, 2	.019				
2	Herbert	Sc	Schildt, "Introducing JavaFX 8 Programming", 1st										lst				
	Edition,	, Mo	AcGraw Hill Education, New Delhi, 2015														
REFI	ERENCE	S:															
1	Cay S.	Но	Iorstmann, "Core Java Fundamentals", Volume 1										1,				
	11th Ed	itio	ion, Prentice Hall, 2018.														
	COs						I	POs						I	PSOs		
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-	
	2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	_	
	3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	_	
	4	3	2	1	1	1	-	-	1	-	-	-	1	3	1	1	
	5 00W	3	2	1	1	2	-2	4	1	4	_	<u></u>	1	3	2	1	

2

2

1

1 | 1

6

Overall

Correlation

3 2 1

3 2

Recommended by Board of Studies

Approved

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

1

1

08-04-2024

2nd ACM

1

3 2 1

1

25-05-2024

23CB301	DATABASE MANAGEMENT	L	T	P	С				
	SYSTEMS AND SECUIRITY	3	0	0	3				
COLIDGE ODIECTIVES.									

- To learn the fundamentals of data models, conceptualize and depict a database system using ER diagram.
- To study the principles to be followed to create an effective relational database and write SQL queries to store/retrieve data to/from database systems.
- To know the fundamental concepts of transaction processing, concurrency control techniques and recovery procedure.
- To learn about the need of storage in Database Management systems.
- To learn how to secure Database Management systems.

UNIT I RELATIONAL DATABASES

9

Purpose of Database System - Views of Data - Data Models - Database System Architecture - Introduction to Relational Databases - Relational Model - Keys - Relational Algebra - Relational Calculus - SQL Fundamentals - Advanced SQL features - Triggers - Embedded SQL

UNIT II DATABASE DESIGN

9

Mapping Entity-Relationship Model – ER Diagrams – Functional Dependencies – Non-Loss Decomposition Functional Dependencies – First Normal Form – Second Normal Form – Third Normal Form – Dependency Preservation – Boyce/Codd Normal Form – Multi-Valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form.

UNIT III TRANSACTION MANAGEMENT

9

Transaction Concepts - ACID Properties - Serializability - Transaction Isolation Levels - Concurrency Control - Need for Concurrency - Lock-Based Protocols - Deadlock Handling - Recovery System - Failure Classification - Recovery Algorithm.

UNIT IV | STORAGE AND QUERY PROCESSING 9 RAID - File Organization - Organization of Records in Files -Indexing and Hashing -Ordered Indices - B+ tree Index Files - B tree Index Files - Static Hashing - Dynamic Hashing - Query Processing Overview - Query optimization using Heuristics and Cost Estimation. UNIT V DATABASE SECURITY 9 Database Security: Security issues -SQL Injection -SQLi Attack Avenues and Types- DBMS Access control based on privileges -Role Based access control -Cascading authorization-Statistical Database security - Flow control - Encryption and Public Key infrastructures - Challenges. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the concepts of Database Management Systems and Apply SQL Queries Using relational Algebra. CO2: Apply conceptual modeling to real world applications and design database schemas. CO3: Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database. **CO4:** Explain the concepts of Transaction Processing and maintain consistency of the database. CO5: Explain the need of storage in Database Management systems. CO6: Learn how to secure Database Management systems. **TEXT BOOKS:** Abraham Silberschatz, Henry F. Korth, S. Sudharshan, 1 Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of 2

2021.

Database Systems", Seventh Edition, Pearson Education,

REFI	ERENCE	S:														
1	Alfred	Ва	sta,	Me	lisa	a	Zgo	ola,	Dar	ıa	Bul	labo	y,Th	om	as	L
	WhitLo	ck		S	r,		"I)ata	bas	se		Sec	urity	,",C	Cou	se
	Technol	logy	ı,C€	enag	ge I	Lear	nin	g 20	012.							
2	C. J. Da	te, /	4. K	lanı	nan	, S.	Swa	amy	mat	har	ı, "A	n Ir	itroc	luct	ion	to
	Databas	se S	yste	ems	", E	igh	th E	dit	ion,	Pea	arsoı	n Ed	ucat	ion	, 200	06.
3	Raghu	R	ama	akri	shn	an,	J	oha	nne	es	Gel	nrke	, "	Dat	taba	ise
	Manage	eme	nt S	Syst	em	s",	Fou	ırth	Ed	itio	n, T	ata l	McG	raw	νН	ill,
	2010.															
4	G. K.	Gu	pta	, "	Dat	taba	ise	Ma	ana	gen	nent	Sy	stem	ıs",	Ta	ata
	McGrav	νH	ill,	201	1.											
5	Carlos	Co	oror	ıel,	St	eve	n	Mo	rris	, I	Peter	r R	.ob,"	Ι)esi	gn
	Implem	ent	atio	n a	nd i	Maı	nag	eme	ent"	, N	inth	Edi	tion,	Ce	nga	ge
	Learning,2011															
	COs	ER L	REA	1			I	POs					1	I	PSC	s
,	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	2	3	2	1	2	-	-1	2	1	1	2	2	1	
	2	3	1	3	1	1	-	-	-	2	1	3	2	3	1	- 1
	3	3	2	3	2	(1()El	E	ΞE	2	1	-1	2	3	(1)	0 <u>-</u>
	4	1	2	2	2	AFF	5	(PT)	Ā	2	N1ER	51 1 Y	1 10	10	MPU	-
	5	1	1	2	2	-	ı	-	ı	1	1	ı	1	1	-	-
	6	2	1	3	2	1	ı	-	ı	ı	1	ı	2	2	1	-
O	verall	2	2	3	2	1				2	1	1	2	2	1	
	relation						_	_	_		•	1			1	_
Reco	mmende				of S	Stud	ies									
	A	ppr	ove	d				2nd	1 A(CM		Date	9	25-	05-2	2024

23HS301	UNIVERSAL HUMAN VALUES	L	T	P	C
	AND ETHICS	3	0	0	3

- To develop a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- To understand (or developing clarity) the harmony in the human being, family, society and nature/existence.
- To strengthen the self-reflection.
- To develop commitment and courage to act.

UNIT I	COURSE INTRODUCTION	9

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration - Continuous Happiness and Prosperity- A look at basic Human Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority -Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

	· · · · · · · · · · · · · · · · · · ·	
UNIT II	UNDERSTANDING HARMONY IN THE	9
	HUMAN BEING	

Harmony in Myself- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body'- Sukh and Suvidha- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Harmony in Human-Human Relationship -Understanding Harmony in the family – the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust(Vishwas) and Respect as the foundational values of relationship -Understanding the meaning of Vishwas; Difference between intention and competence -Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family)-Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order- from family to world family.

UNIT IV ENGINEERING ETHICS

9

9

Senses of <u>_Engineering</u> Ethics, - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

UNIT V | SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination-Moral Leadership -Code of Conduct - Corporate Social Responsibility.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Explain the need of value education.

CO2: Interpret the difference between self and body.

CO3: Demonstrate the need to exist as a unit of Family and society. CO4: Classify Harmony at all levels. **CO5:** Apply the values acquired in the professional front. CO6: Identify appropriate technologies for ecofriendly production systems. **TEXT BOOKS:** 1 R R Gaur, R Sangal, G P Bagaria, Human Values and Professional Ethics, Excel Books, New Delhi, 2010 3. Mike W. Martin and Roland Schinzinger, -Ethics in 2 Engineering, Tata McGraw Hill, New Delhi, 2003. 3 Govindarajan M, Natarajan S, Senthil Kumar V. S, -Engineering Ethicsl, Prentice Hall of India, New Delhi, 2004 **REFERENCES:** Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya 1 Prakashan, Amarkantak, 1999. Human Values, A.N. Tripathi, New Age Intl. Publishers, 2 New Delhi, 2004. The Story of Stuff (Book). 3 The Story of My Experiments with Truth - by Mohandas 4 Karamchand Gandhi AICTE Model Curriculum Humanities, Social Science and Management Courses (UG Engineering & Technology) 169 | Page . 5 Small is Beautiful - E. F Schumacher. Slow is Beautiful - Cecile Andrews. 6 Economy of Permanence - J C Kumarappa 8. Bharat Mein 7 Angreji Raj - Pandit Sunderlal. Rediscovering India - by Dharampal. 8 Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi. 10 India Wins Freedom - Maulana Abdul Kalam Azad. Vivekananda - Romain Rolland (English) 13. Gandhi -11 Romain Rolland (English).

12	Charles	В. І	Flec	ldei	rma	nn,	—Е	ingi	nee	ring	g Etl	nics	, Pea	arso	n		
	Prentice	На	all, I	Nev	v Je	rse	y, 2	004									
13	Charles	E. I	Har	ris,	Mi	cha	el S	. Pr	itch	ard	and	Mic	chae	1 J.			
	Rabins,	— Е	ngi	nee	ring	g Et	hics	s – (Con	сер	ts ar	nd C	ases	∥,			
	Cengag	e Le	earr	ing	5, 2 0	09.											
WEB	SOURC	CES	:														
1	www.oi	nlin	eet	hics	org	5											
2	www.ns	www.nspe.org															
3	www.g	loba	aletl	nics	.or	5											
	COs						1	POs	,					I	PSOs		
,	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3	
	2	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3	
	3	ı	-	-	-	ч	3	3	3	3	3	1	- 5	-	1	3	
	4 00W	1 <u>2</u> L	200	1	-	-	3	3	3	3	3	2	4	-	7	3	
	5	-	-	0	<u> </u>	- 1	3	3	3	3	3	-	-	-	-	3	
	6	4	-))-	1	- 0	3	3	3	3	3	-	[-]	-	-	3	
	verall relation	1		1	}	_	3	3	3	3	3	-	-	-	-	3	
Reco	mmende	d by	Во	ard	of S	tud	lies	08-	04-2	2024	TE	CH	NO	LO	G)		
	A	ppr	ove	d		AFF	ILIAT	2nd	A(\mathbf{M}	NIVER	Date	AUT	25-	05-2	2024	

23CB311	DIGITAL PRINCIPLES AND	L	T	P	С
	COMPUTER ORGANIZATION	3	0	2	4
COURSE O	BJECTIVES:				
• To	analyze and design combinational circuit	its.			
• To	analyze and design sequential circuits.				
• To	learn the basic structure and operation	n of	a d	ligit	al
CO1	nputer.				
• To	study the design of data path unit, con	ntrol	un	it f	or
pro	ocessor and hazards.				
• To	learn the concept of various memor	ies	and	. I/	O
int	erfacing.				
UNIT I	COMBINATIONAL LOGIC				9
Combination	nal Circuits - Karnaugh Map - Half and	f1111	Ad	ldei	
	 Binary parallel adder - Magnitude C 				
	Encoder - Multiplexers - Demultip	- A		-0/	
converters	Pentarip	ICAC		Co	l
	YNCHRONOUS SEQUENTIAL LOGI			4	9
18					
	operation and excitation tables, Trigg	NI/O			
-	d design of clocked sequential circuits			_	
	ly models, state minimization, state a	ssig	nm	ent,	
Ü	Counters- Ripple counters				
UNIT III	COMPUTER FUNDAMENTALS				9
Functional	Units of a Digital Computer: Voi	n N	Jeu:	mai	nn
	- Operation and Operands of Comput				
Instruction -	- Instruction Set Architecture (ISA):- Ins	struc	ctio	n aı	nd
Instruction S	Sequencing - Addressing Modes, Encodir	ng of	Ma	chi	ne
Instruction	- Interaction between Assembly and	Hig	gh	Lev	⁄el
Language.					
UNIT IV F	PROCESSOR				9
Inchurchion	Ivoqution Ruilding a Data Dath Dasign	in ~	2 C	201-	101
	Execution - Building a Data Path - Design	U			OI
Unit - Ha	ardwired Control, Microprogrammed		onti	OI	-

Pipelining – Data Hazard – Control Hazards.	
UNIT V MEMORY AND PROGRAMMABLE LOGIC	9
CIVIT V WILMORT AND I ROGRAMMABLE EOGIC	,
Memory Concepts and Hierarchy – Memory Management – Cao	che
Memories: Mapping and Replacement Techniques - Virt	ual
Memory - DMA - ROM-Programmable Logic Arra	ay-
Programmable Array logic.	
TOTAL: 45 PERIC	DS
PRACTICAL EXERCISES : 30 PERIODS	
1. Verification of Boolean theorems using logic gates.	
2. Design and implementation of combinational circu	ıits
using gates for arbitrary functions.	
3. Implementation of 4-bit binary adder/subtractor circuit	ts.
4. Implementation of code converters.	
5. Implementation of BCD adder, encoder and decoder	der
circuits.	
6. Implementation of functions using Multiplexers.	
7. Implementation of the synchronous counters.	
8. Implementation of a Universal Shift register.	_
9. Simulator based study of Computer Architecture	V.
TOTAL: 45 +30 =75 PERIC	DS
COURSE OUTCOMES:	
After completion of the course, the students will be able to	
CO1: Develop digital fundamentals using number systems, lo	gic
gates, Boolean algebra and Karnaugh map.	
CO2: Build various combinational circuits using logic gates.	
CO3: Construct sequential circuits such as flip flops, counters a	ınd
registers.	
CO4: Interpret the functional units of computers, instruction	set
and addressing modes.	
CO5: Explain the various functional units of processor, pipeling	ing
and hazards.	
CO6: Compare the various memory concepts of the processor a	ind
programmable logic devices.	

	Т ВООК	S:														
1	M. Mor	ris	Maı	no,	Mic	chae	el D). C	ilet	ti, "	Digi	tal I	Desi	gn :	Wi	th
	an Intro	odu	ctio	n t	o t	he '	Ver	ilog	; Н	DL,	VH	IDL,	and	d S	yste	m
	Verilog	", Si	ixth	Ed	itio	n, F	ear	son	Ed	uca	tion	, 201	l8.			
2	David	A.	Pa	atte	rso	n,	Joh	n	L.	Н	enne	essy,	"(Com	ıpu	er
	Organiz	zatio	on	ar	nd	De	esig	n,	Tł	ne	На	rdw	are/	Sof	twa	re
	Interfac	e",	Sixt	h E	diti	on,	Mo	orga	n K	auf	mar	ın/E	Elsev	ier,	202	20.
REF	ERENCE															
1	Floyd	Γ.L.,	, "I	Digi	tal	Fui	nda	mei	ntal	s",	Cha	rles	Е.,	Ele	ven	th
	edition	Pea	rso	n,20)19.											
2	Charles	Н.	Ro	th,	Jr,	'Fu	nda	me	ntal	s o	f Lo	gic 1	Desi	gn',	, Jai	со
	Books, 7	7th	Edi	tior	ı, 20)21.										
3	M. Moi	rris	Ma	no,	"I	Digi	tal	Log	gic	anc	l Co	mpı	uter	De	sign	ı",
	Pearsor					1340001										
4	Carl H	Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig														
	Manjiki				N			_						mbe	edd	ed
	Systems			10	- 1			Value of the			-		1			
_	William Stallings, "Computer Organization and											_		n		
5	18 N 18 1	Architecture - Designing for Performance", Tenth Edition,														
5	Archite	ctui	re -	De	sig	ning	g fc	r P	erfo	orm	ance	e", T	enth'	ı Ec	litic	n,
5	18 N 18 1	ctui	re – luca	De ition	sig n, 20	ning 016)LI	.E(erfo	orm	ance	e", T	enth'	LO	G)	n,
	Archite Pearsor	ctui Ed	uca	De tio	sig n, 20	016.	DLI	POs	erfo	OF	NIVE	CH	NO	LO	PSO	n,
	Archite Pearsor COs	ctui Ed	re – luca	De tion	sign, 20	016.)LI	.E(erfo	orm 9	ance	11	NO	LO I 1	PSO 2	n,
	Archite Pearsor COs	etui Ed 1	2 2	3 1	1 4 1	016. 5 1	DLI	POs	erfo	9	10 1	CH	NO	1 1 3	PSO 2 1	n, s
	Archite Pearson COs 1 2	1 3 3	2 2 2	tion 3	1, 20	016. 5 1	1 6	POs	erfo	9 2 2	10 1 1	11	12 2 -	1 3 3	2 1 1	n, s
	Archite Pearsor COs 1 2 3	1 3 3 2	2 2 2 2	3 1	1 4 1	5 1 1 1	6 - -	POs 7	8 -	9 2 2 2	10 1 1 1	11 -	12 2 - 2	3 3 2	2 1 1 1	on, 18 3
	Archite Pearson COs 1 2 3 4	1 3 3 2 2	2 2 2 2 2	3 1	1 4 1	5 1 1 1	1 6 -	POs 7	8 -	9 2 2 2 3	10 1 1 1 1 2	11 -	12 2 -	1 3 3 2 2	PSO 2 1 1 1 1 1 1	on, 9s 3
	Archite Pearsor COs 1 2 3 4 5	1 3 3 2 2 2 2	2 2 2 2 2 1	3 1 1	1 1 1	5 1 1 1 1	1 6 - - - 1	POs 7	8 - -	9 2 2 2 3 2	10 1 1 1 2 1	11 - -	12 2 - 2 2 -	1 3 3 2 2 2	PSO 2 1 1 1 1 1 1 1 1	on, os 3
	Archite Pearson COs 1 2 3 4 5	1 3 3 2 2	2 2 2 2 2	3 1 1 -	1 1 -	5 1 1 1	6 - - 1	POs 7	8	9 2 2 2 3	10 1 1 1 1 2	11 - - -	12 2 - 2 2	1 3 3 2 2	PSO 2 1 1 1 1 1 1	on, 28 3
O	Archite Pearson COs 1 2 3 4 5 6 verall	1 3 3 2 2 2 2	2 2 2 2 2 1	3 1 1 -	1 1 -	5 1 1 1 1	1 6 - - - 1	POs 7 1	8	9 2 2 2 3 2	10 1 1 1 2 1	11 - - -	12 2 - 2 2 -	1 3 3 2 2 2	PSO 2 1 1 1 1 1 1 1 1	on,
O	Archite Pearson COs 1 2 3 4 5	1 Ed 3 3 2 2 2 2 3	2 2 2 2 2 1 1	3 1 1 - - -	1 1 1	016. 5 1 1 1 1 1 2	I 6 1 - 1 1	7 1 - 1	8	9 2 2 2 3 2 2 3	10 1 1 1 2 1 1 2	11	12 2 - 2 2 - 2	1 3 3 2 2 2 3	PSO 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	on,

23CS312	DESIGN AND ANALYSIS OF L T P ALGORITHMS 3 0 2											
	ALGORITHMS	3	2	4								
COURSE OF	BIECTIVES:											
	understand and apply the algorit	hm	an	alys	is							
	iques on searching and sorting algorith) -								
• To cr	itically analyze the efficiency of graph a	algo	rithi	ns								
	nderstand different algorithm design te											
	lve programming problems using state	-										
	nderstand the concepts behind NP C				S,							
	oximation algorithms and randomized	algo	orith	nms								
UNIT I IN	TRODUCTION				9							
Time and sp	pace complexity - Asymptotic Notation	ons	- S	olvi	ng							
Recurrences:	substitution method - Lower bounds -	has	h fu	ıncti	ion							
- searching: l	inear search, binary search and Interpo	olati	on S	Sear	ch,							
String Match	ning: The naïve string - matching algor	rithr	n -	Rab	in-							
Karp algoritl	nm - Sorting: Insertion sort, heap sort											
UNIT II G	RAPH ALGORITHMS	1		-	9							
D		TC	3.6									
10 V 10 V	ons of graphs - Graph traversal: DFS - B											
_	ee: Kruskal's and Prim's algorithm -			-								
	rd algorithm - Dijkstra's algorithm - M											
	rks - Ford-Fulkerson method - Maxir	nun	n bi	part	ite							
matching.												
	DVANCED DESIGN AND ANALYSI	S			9							
TH	ECHNIQUES											
Divide and	Conquer methodology: Merge sort	- Ç	uicl	< sc	ort-							
Dynamic pr	ogramming: Elements of dynamic pr	rogr	amr	ning	z -							
Matrix-chain	multiplication - Multi stage gra	aphs	s. (Gree	dy							
Technique: 1	Elements of the greedy strategy - Act	ivit	y-se	lecti	ion							
11	66											

89

problem - Huffman Trees

UNIT IV STATE SPACE SEARCH ALGORITHMS

Backtracking: n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem - Graph colouring problem Branch and

Bound : Solving 15-Puzzle problem - Assignment problem - Knapsack Problem - Travelling Salesman Problem.

UNIT V NP-COMPLETE AND APPROXIMATION ALGORITHM

9

Tractable and intractable problems: Polynomial time algorithms - Venn diagram representation - Non Deterministic algorithms - NP-hardness and NP-completeness - Problem reduction: TSP - 3 CNF problem. Approximation Algorithms: Bin Packing problem - Randomized Algorithms: concept and application - primality testing - randomized quick sort.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- 1. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted. The elements can be read from a file or can be generated using the random number generator.
- 2. Implement a Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted. The elements can be read from a file or can be generated using the random number generator.
- 3. (A) Obtain the Topological ordering of vertices in a given digraph. (B) Compute the transitive closure of a given directed graph using Warshall's algorithm.
- 4. Implement 0/1 Knapsack problem using Dynamic Programming.
- 5. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijikstra's algorithm
- 6. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.

- 7. (A) Print all the nodes reachable from a given starting node in a digraph using BFS method. (B) Check whether a given graph is connected or not using DFS method.
- 8. Find a subset of a given set $S = \{s1, s2,...., sN\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and d = 9 there are two solutions $\{1,2,6\}$ and $\{1,8\}$. A suitable message is to be displayed if the given problem instance doesn't have a solution.
- 9. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.
- 10. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 11. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.
- 12. Implement N Queen's problem using Back Tracking.

COURSE OUTCOMES:

- After completion of the course, the students will be able to:
- CO1: Apply recursive and non-recursive algorithms to solve problem.
- CO2: Apply appropriate framework to meet algorithm's efficiency.
- CO3: Apply graph algorithms to solve problems and analyze their efficiency.
- CO4: Solve problems using algorithm design techniques like divide and conquer, dynamic programming and greedy techniques.
- CO5: Apply State Space Tree Analysis for Problem-Solving.
- CO6: Solve problems using approximation algorithms and randomized algorithms

TEX	Т ВООК	S:														
1	Thomas H. Cormen, Charles E. Leiserson, Ronald L.															
	Rivest and Clifford Stein, "Introduction to Algorithms",															
	3rd Edition, Prentice Hall of India, 2009.															
2	Ellis Horowitz, SartajSahni, SanguthevarRajasekaran															
	Compu	ter	Alg	gori	ithr	ns/	C+	+ O	riei	nt B	lack	.swa	an, 2	nd		
	Edition, 2019.															
REF	EFERENCES:															
1	Anany Levitin, "Introduction to the Design and Analysis															
	of Algorithms", 3rd Edition, Pearson Education, 2012.															
2	Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman,															
	"Data Structures and Algorithms", Reprint Edition,															
	Pearson Education, 2006.															
3	S. Sridhar, "Design and Analysis of Algorithms", Oxford															
	university press, 2014.															
	COs		1	6	1		/ I	POs						PSOs		
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-		1	1	_	-	_	3	2	-
	2	3	2	1	1	2	-	-	-	1	1	-	1	3	2	-
	3 CINE	3	2	1	1	2		. <u>L</u> () E	U.F	LE	CH	AO.	3	2	-
	4	3	2	1	1	2	LIAI	D.11	ANI	IA U	MIVER	SHY	1	3	2	-
	5	3	2	1	1	2	-	-	-	-	-	-	-	3	2	-
	6	3	2	1	1	2	-	-	-	-	-	-	-	3	2	-
O	verall	2	2	1	1	2							1	3	2	
	relation	3			1	2	_	-	_	_	_		1	3	2	_
Reco	mmende				of S	Stud	ies		04-2							
Approved 2nd ACM								זער		Date	`	25 ()5-2	024		

23CS321	OBJECT ORIENTED	L	T	P	C
	PROGRAMMING LABORATORY	0	0	4	2

- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, inheritance, exception handling and file processing.
- To develop applications using generic programming and event handling

LIST OF EXPERIMENTS:

- 1. Solve problems by using sequential search, binary search, and quadratic sorting algorithms (selection, insertion)
- 2. Develop stack and queue data structures using classes and objects.
- 3. Develop a java application with an Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10% of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club funds. Generate pay slips for the employees with their gross and net salary.
- 4. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea() that prints the area of the given shape.
- 5. Solve the above problem using an interface.
- 6. Implement exception handling and creation of user defined exceptions.
- 7. Write a java program that implements a multi-threaded application that has three threads. First thread generates a

random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.

- 8. Write a program to perform file operations.
- 9. Develop applications to demonstrate the features of generics classes.
- 10. Develop applications using JavaFX controls, layouts and menus.
- 11. Develop a mini project for any application using Java concepts.

(concepts	· .														
	TOTAL: 45 PERIODS															
COU	RSE OU	TC	OM	1ES	:											
	After co	mp	leti	on (of th	ne c	our	se, 1	the	stu	dent	s wi	ll be	abl	e to):
CO1:	Develo	p java programs using object oriented														
	progran	nming concepts ct the java program in inheritance concepts.														
CO2:	Constru	ıct 1	the	jav	a pı	rog	ram	ı in	inh	eri	tanc	e co	ncep	ots.	-11.	П
CO3:	Develo ₁	p simple applications using object oriented														
4	concepts such as package, exceptions															
CO4: Solve multithreading, and generics concepts in Java																
	programming															
CO5:	Create (reate GUIs and event driven programming applications														
	for real world problems															
CO6:	CO6: Construct and deploy web applications using Java															
	Os						I	POs						PSOs		
	.08	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1
	2	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1
	3	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1
	4	3	2	1	1	2	-	-	1	1	1	-	1	3	2	1
	5	3	2	1	1	2	ı	ı	1	1	1	1	1	3	2	1
	6	3	2	1	1	2	ı	ı	1	1	1	-	1	3	2	1
Ov	erall	3	2	1	1	2			1	1	1		1	3	2	1
	elation							-			_	_	1	,	_	1
Recor	Recommended by Board of Studies				ies	08-04-2024										
	Approved				2nd	1 A(CM		Date	9	25-0)5-2	024			

23CB321	DATABASE MANAGEMENT	L	T	P	С
	SYSTEMS AND SECURITY	0	0	4	2
	LABORATORY				

- To learn and implement important commands in SQL.
- To learn the usage of nested and joint queries.
- To understand functions, procedures and procedural extensions of databases.
- To understand attacks on databases and to learn to defend against the attacks on databases.
- To learn to store and retrieve encrypted data in databases.

LIST OF EXPERIMENTS:

- 1. Create a database table, add constraints (primary key, unique, check, Not null), insert rows, update and delete rows using SQL DDL and DML commands.
- 2. Query the database tables using different 'where' clause conditions and also implement aggregate functions.
- **3.** Query the database tables and explore sub queries and simple join operations.
- **4.** Write user defined functions and stored procedures in SQL.
- **5.** Create View and index for database tables with a large number of records.
- **6.** Write program that use SQLi to authenticate as administrator, to get unauthorized access over sensitive data, to inject malicious statements into form field.
- 7. Write a program that will defend against the SQLi attacks given in the previous exercise.
- **8.** Write queries to insert encrypted data into the database and to retrieve the data using decryption.

9. Write queries to find all permissions and access control for all users in database.

10.]	10. Implement Role Based access control in Database.															
										-	ГОТ	AL:	45]	PER	RIO	DS
COURSE OUTCOMES:																
	After completion of the course, the students will be able to:															
CO1:	CO1: Create databases with different types of key constraints.															
1	Construct simple and complex sub queries and join queries.															
CO3:	Demonstrate advanced features such as stored															
	procedures and triggers.															
I I	04: Identify attacks on databases and to learn to defend															
	against the attacks on databases.															
	Implement to store and retrieve encrypted data in															
	databases.															
CO6:	CO6: Apply the concepts of encryption in Database.															
COs POs PS														1/4		
	TV.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	3	3	3	3	3	-			3	1	3	2	2	3	*>_
	2 CINEI	3	3	3	3	3	71.1	보) E	1	2	3	3	2	1	-
	3	3	3	2	2	3	LIAT	100	P ATHL	1	1	1	3	2	3	-
	4	1	3	3	3	3	-	-	-	1	1	3	2	3	1	-
	5	3	2	2	2	3	-	ı	-	2	2	3	1	3	1	-
	6	3	3	3	3	3	-	ı	-	1	2	2	1	1	2	-
Ov	erall	2	_	2		_				_	1	2	_	_	_	
Corr	elation	3	3	3	2	3	-	-	-	2	1	3	2	2	2	-
Recor	nmended	d by	Во	ard	of S	tud	ies	08-	04-2	024						
	Approved							2 nd ACM Date 25-0				05-2024				

23ES391	PRESENTATION SKILLS	L	T	P	C
		0	0	2	1*

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

6

UNIT I BRAINSTORMING AND OUTLINING

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

UNIT II STRUCTURING THE PRESENTATION 6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

UNIT III DELIVERY TECHNIQUES 6

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language- eye contact, gestures, movement on stage.

UNIT IV USE OF TECHNOLOGICAL AIDS

6

Use of presentation software like MS Power Point, Google Slides etc, incorporating images, graphs, charts and videos, using interactive tools like quizzes and polls, using remote presentation tools like zoom, MS Teams, WebEx for screen sharing, virtual whiteboards and chat functionalities, incorporating AR/VR for more immersive presentations.

UNIT V HANDLING QUESTIONS AND FEEDBACK

6

Audience engagement through questions, PAR (Point, Answer, Redirect) strategy for structuring responses to questions. Understanding feedback process - Receiving, interpreting and evaluating constructively, active listening techniques for processing feedback, responding to feedback- acknowledging, clarifying and appreciating, Dealing with challenging feedback.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Construct ideas for presentation through mind mapping techniques
- CO2: Organize ideas and structure the presentation with captivating introduction, body paragraphs illustrated with examples and reasons and compelling conclusion
- CO3: Apply vocal variety and body language techniques to enhance delivery
- CO4: Prepare engaging presentations by integrating multimedia elements
- CO5: Demonstrate proficiency in delivering presentations in remote platforms utilizing various technological tools and strategies to engage audience in Virtual environments
- CO6: Exhibit active listening skills by responding to questions with clarity and confidence and incorporating constructive feedback for professional development

TEXT BOOKS:

1 Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.

2 Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

REFERENCES:

Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
2	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
3	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
4	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
5	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
6	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1	
Overall Correlation	2	2	1	1	-	-	4	1	1	1		1	2	2	1	
Recommended	Recommend <mark>ed by</mark> Board of Studie								s 08-04-2024							
A	Approved							2 nd ACM Date						25-05-2024		

SEMESTER -IV

23MA301	LINEAR ALGEBRA	L	T	P	С
		3	1	0	4
COURSE OBJ	ECTIVES:				
	the consistency and solve system of li		equ	ıatio	ons
To fine	d the basis and dimension of vector sp	ace			
	tain the matrix of linear transform	atio	n a	ınd	its
_	ralues and eigenvectors				
	d orthonormal basis of inner product	•			
	d eigenvalues of a matrix using numer	ical t	ech	niq	ues
	erform matrix decomposition.				
	TRICES AND SYSTEM OF LINEAR	L		9	9+3
1 ~	UATIONS				
	Row echelon form - Rank - Syst				
equations - C	Consistency - Gauss elimination me	etho	d -	Ga	uss
	od - Gauss Seidel Method	- 4		-	
	CTOR SPACES				9+3
	<mark>es -</mark> Subspace - Linear indepe				ind
	- Linear Span - Basis and dimension	on -	· M	axir	nal
	pendent Subsets.				-
4/38	NEAR TRANSFORMATION	111)L(-	9+3
	ormation - Rank space and null spa				
	ension theorem - Matrix representa				
	on - Eigenvalues and eigenvector				
	on – Invertibility and Isomorphisms	- Du	ıal S		
	NER PRODUCT SPACES				9+3
	act and norms - Properties -				
	vectors - Gram Schmidt ortho				
	joint of Linear operator - Normal ar				
-	Unitary and orthogonal operator	rs	and	th	ıeir
Matrices					
	GENVALUE PROBLEMS AND MATECOMPOSITION	(RI)	(1	9+3
	Problems - Power method, Jacobi ro	tatic	n n	neth	nod
	value decomposition - QR deco				
0	Inverse - Least square solution	P	551		
	TOTAL	: 60	PEI	RIO	DS

COL	COURSE OUTCOMES:															
COU						ho	2011	400	+bc	o eta	1400	to T	-:11 L	0 0	h10 +	0.
CO1.	After co	_										iis w	/III L	e a	oie t	0.
	Solve the															
	Find th											_			-	• •
CO3:	Find t									trar	nsto	rma	tion	a	nd	its
	eigenva				$\overline{}$											
	Find or									_						
	Find ei	_								_						
	Find M		ix I	Dec	om	pos	sitic	nι	ısin	ıg d	liffe	rent	tecl	nnic	ques	3
TEX		BOOKS:														
1	Friedbe												near	Alg	gebr	a",
	Prentic	e H	[all	of I	Ind	ia,	Nev	wΓ	ell	1i, 2	2004					
2	Faires J.D. and Burden R., "Numerical Methods",															
	Brooks/Cole (Thomson Publications), New Delhi, 2002.															
REFI	ERENCES: Kumaresan S, "Linear Algebra - A geometric approach",															
1	Kumar	esa	n S	, "I	Jine	ear	Al۶	geb:	ra -	A	geoi	met	ric a	ppi	roac	h",
															4	P
2	P.S.Das	Prentice Hall of India, New Delhi, Reprint, 2010. P.S.Das - "Numerical Analysis", Pearson Educations,														
	New D															
3	Richard	d B	ran	son	ı, "I	Mat	trix	Or	era	tio	ns",	Sch	aun	n's	outl	ine
4	series,															
		~		(8)		0	o i I	POs	/CE	0	con	CZL	BNI	817	PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	weenwa	255.11	1	3	etionset:	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4 3 2 1 1 -								-	-	_	-	1	3	-	-
	5 3 2 1 1 -							-	-	-	_	-	1	3	-	-
	6	3	2	1	1	-	-	-	_	-	-	-	1	3	-	-
O	verall	0	_	1	1								1	0		
Corı	elation	3	2	1	1	_	-	-	-	-	_	-	1	3	-	-
Reco	mmended	d by	Во	ard	of S	Stuc	lies	08-	04-2	2024	Į.					
	A	ppr	ove	d				2nd	1 A(CM		Date	9	25	-05-2	2024

23CB401	OPERATING SYSTEMS AND	L	T	P	С
	SECURITY	3	0	0	3

- To understand the basic concepts and functions of operating systems.
- To understand Processes and Threads
- To analyse Scheduling algorithms.
- To understand the concept of Deadlocks.
- To analyse various memory management schemes.
- To describe Security and Protection Mechanism in operating systems.
- To describe the concepts of trusted OS design.

UNIT I INTRODUCTION

10

Introduction to Operating Systems – Views of Operating system, Computer System organization, Computer System Architecture; Operating System Structures – Operating System Services - User Operating System Interface - System Calls – System Programs - Design and Implementation - Structuring methods; Processes - Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication – Shared Memory Systems, Message Passing Systems, Threads - Multithread Models.

UNIT II | PROCESS MANAGEMENT

11

CPU Scheduling – Basic Concepts, Scheduling criteria - Scheduling algorithms; Process Synchronization - The Critical-Section problem, Synchronization hardware, Mutex Locks, Semaphores, Monitors, Classical problems of synchronization; Deadlock – Deadlock Characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

UNIT III MEMORY MANAGEMENT

9

Main Memory - Address Binding, Logical and Physical Address Space, Contiguous Memory Allocation, Segmentation, Paging, Structure of the Page Table; Virtual Memory - Demand Paging, Copy on Write, Page Replacement, Thrashing.

UNIT IV | SECURITY AND PROTECTION

8

File System Interface – File Protection, File Sharing; Security - The Security Problem, Program Threats, System and Network Threats, Cryptography, User Authentication, Implementing Security Defenses; Protection – Goals, Principles, Protection Rings, Domain Protection, Access Matrix, Implementation of Access Matrix, Revocation of Access Rights, Role-Based Access Control, Mandatory Access Control, Capability-Based Systems, Protection Improvement Methods, Language-Based Protection.

UNIT V TRUSTED OS DESIGN

7

Security in Operating Systems - Operating System Structure, Security Features, Protected Objects, Tools to Implement Security Functions; Security in the Design of Operating Systems - Simplicity of Design, Layered Design, Kernelized Design, Reference Monitor, Correctness and Completeness, Secure Design Principles, Trusted Systems, Trusted System Functions.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain operating system structures and various services provided by operating systems.
- CO2: Apply Process synchronization, process scheduling, and deadlocks concepts in the given scenario to solve the problems.
- CO3: Apply algorithms and suitable techniques for memory management.
- **CO4:** Explain the concepts of securing the Operating Systems.
- **CO5:** Explain the mechanisms to protect the Operating Systems.
- **CO6:** Explain the concepts of designing a trusted operating system.

TEY	T BOOK	۲ς.														
1	Abraha		Silh	OFC	ah at	1	Poto	v R	201	Ca	lzzin	200	1 Cr	οσ (~~~	no
1	"Opera													_	_	
	Sons In	•					-	is,	101	пЕ	лио	11, J	лш	V V 110	ey a	na
2				,				: т			D	na		Т	(1-	
2	Charles				_								_	-		
		Margulies, "Security in Computing", 5th Edition, Prentice														
DEE		Hall, 2018. (Unit 5)														
	ERENCE					<u> </u>					1 7					
1	Ramaz													-		0
	System	s -	Α 5	Spir	al 1	App	roa	ch"	, Ta	ata	McC	Grav	v Hi	ΗЕ	diti	on,
	2010.				_											
2	Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016.															
3	Trent Ja	_		-		_	, ,	- 40			-	-	-			
	Springer Nature Switzerland AG 2008 – ISBN – 978-3-031-															
	01205-1.															
4	Willian	n St	alli	ngs	, "O	per	atir	ıg S	yste	ems	: Int	erna	als ar	nd I	Desi	ign
	Princip	les"	, 7t	h E	diti	on,	Pre	ntic	e H	[all,	2018	8.	_			
	COs	><	4	62			I	POs]	PSC)s
`	COSCINE	1.	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	1	1	ILIA	ED.T	1	1	1	1	2	2	1	-
	2	3	2	1	1	1	-	-	1	1	1	1	2	3	1	-
	3	3	2	1	1	1	-	-	1	1	1	1	2	3	1	-
	4	2	1	1	1	1	1	,	1	1	1	1	1	1	ı	-
	5	3	2	1	1	1	-	-	1	1	1	ı	1	1	ı	-
	6	2	1	1	1	1	-	-	1	1	1	-	2	2	1	-
O	verall	2	1	1	1	1			1	1	1	1	2	2	1	
Cor	relation	2	1	1	1	1	_	_	1	1	1	1	2	2	1	_
Reco	mmende	d by	у Во	ard	of S	Stuc	lies									
	A	ppı	rove	ed				2 ^{no}	1 A(CM		Date	e	25-	-05-2	2024

23CB402	CYBER SECURITY	L	T	P	C
		3	0	0	3

- To have a comprehensive understanding of the fundamental concepts of cybersecurity and its history.
- To familiarize with various types of cyber-attacks, attack vectors, and the principles of countermeasures used to mitigate security breaches.
- To equip with the skills to conduct reconnaissance and scanning techniques to assess vulnerabilities and discover potential security threats.
- To introduce to intrusion detection systems (IDS), their architecture, and the role of honeypots in identifying and analyzing cyber threats.
- To have hands-on knowledge of intrusion prevention systems (IPS).

UNIT I INTRODUCTION

9

Cyber Security - History of Internet - Impact of Internet - CIA Triad; Reason for Cyber Crime - Need for Cyber Security - History of Cyber Crime; Cybercriminals - Classification of Cybercrimes - A Global Perspective on Cyber Crimes; Cyber Laws - The Indian IT Act - Cybercrime and Punishment.

UNIT II ATTACKS AND COUNTERMEASURES

9

OSWAP; Malicious Attack Threats and Vulnerabilities: Scope of Cyber-Attacks – Security Breach – Types of Malicious Attacks – Malicious Software – Common Attack Vectors – Social engineering Attack – Wireless Network Attack – Web Application Attack – Attack Tools – Countermeasures.

UNIT III | RECONNAISSANCE

9

Harvester - Whois - Netcraft - Host - Extracting Information from DNS - Extracting Information from E-mail Servers - Social Engineering Reconnaissance; Scanning - Port Scanning - Network

Scan	ning and Vulnerability Scanning - Scanning Methodolog	T 7
		-
_	Sweer Techniques - Nmap Command Switches - SYN	
	th – XMAS – NULL – IDLE – FIN Scans – Banner Grabb	ıng
	OS Finger printing Techniques.	
UNI	T IV INTRUSION DETECTION	9
Host	-Based Intrusion Detection - Network -Based Intrus	ion
Dete	ction - Distributed or Hybrid Intrusion Detection - Intrus	ion
Dete	ction Exchange Format – Honeypots – Example System Sn	ort.
UNI	Γ V INTRUSION PREVENTION	9
Firev	valls and Intrusion Prevention Systems: Need for Firewal	ls –
Firev	vall Characteristics and Access Policy - Types of Firewal	ls –
Firev	vall Basing – Firewall Location and Configurations – Intrus	ion
	ention Systems - Example Unified Threat Managem	
	ucts. OWER DRE	Þ
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
1	After completion of the course, the students will be able t	o:
CO1:	Explain the basics of cyber security, cybercrime and cy	ber
	law. WEER REALTH COLLEGE OF TECHNOLOG	Υ
CO2:	Analyse different types of cyber-attacks and understand	the
	techniques and tools used by cybercriminals to bre	ach
	systems.	
CO3:	Make use of tools to collect vital information about tar	get
	systems, networks, and organizations.	
CO4:	Build the advanced scanning techniques for netw	ork
	vulnerability analysis.	
CO5:	Apply the intrusion detection systems (IDS).	
CO6:	Construct and configure firewalls and intrusion prevent	ion
	systems.	
TEX	Γ BOOKS:	
1	Anand Shinde, "Introduction to Cyber Security Guide to	the
	World of Cyber Security", Notion Press, 2021 (Unit 1)	

2	Nina	G	odb	ole,	,	Su	nitE	Bela	pur	e,	"(lybe	r	Sec	curi	ty:
	Unders	tan	din	g (Cyb	er (Crii	nes	, C	om	pute	er F	orer	sics	s a	nd
	Legal P	ers	pect	tive	s",	Wil	ey I	ub	lish	ers,	201	1 (U	nit 1).		
REF	ERENCE	ES:														
1	David	Ki	m,	Mi	cha	el	G.	So	lon	non,	, "I	unc	lame	enta	ıls	of
	Informa	atio	n S	yste	ems	Se	cur	ity"	, Jo	nes	&	Bart	lett	Lea	ırni	ng
	Publish	ers	, 20	13 ((Un	it 2))									
2	Patrick	Eng	gebi	rets	on,	"Th	e Ba	asic	s of	На	ckin	g an	d Pe	net	rati	on
	Testing	: E	thic	al	Had	kin	ıg a	and	Pe	net	ratic	n T	esti	ng	Ma	de
	easy", I	Else	vie	r, 20)11	(Un	it 3)								
3	Kimber	ly	Gra	ves	, "(CEF	H C	Offic	ial	Ceı	rtifie	d E	thic	al l	nack	cer
	Review	Review Guide", Wiley Publishers, 2007 (Unit 3)														
4	William	William Stallings, Lawrie Brown, "Computer Security														
	Princip	Principles and Practice", Third Edition, Pearson Education,														
	2015 (U	nits	s 4 a	ind	5)		- 2	9				-			4	
5	OWAS	P.	OW	IAS	P	Top	Г	en.	h	ttps	://c	was	sp.oi	g/v	ww	w-
	project-	top	-ter	1/,	202	4. (Uni	t 1).	. 1	A	. 2					
	COs		.6	y)			F	Os		-				I	PSC	s
Ì	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	A STATE OF THE STA	-	1	2	1	3	1	2	1	2	2	1	3
	2	3	3	2	2	3	2	2	2	2	2	1	2	3	3	2
	3	3	2	1	1	3	2	1	2	2	2	1	2	3	3	2
	4	3	2	1	1	3	2	2	1	3	3	2	3	3	3	1
	5	3	2	1	1	3	2	2	2	3	3	2	3	3	3	2
	6	3	2	1	1	3	2	2	2	3	3	2	3	3	3	2
O	verall	3	2	1	1	3	2	2	2	3	3	2	3	3	3	3
Cor	relation	9	_	1	1		_	_	_	9	,	_	,	9	9	,

2nd ACM

Date

25-05-2024

Recommended by Board of Studies | 08-04-2024

Approved

				_	
23CS402	ARTIFICIAL INTELLIGENCE	L	T	P	C
		3	0	0	3
COURSE OB	<u> </u>				
	inderstand the various characteristics	of in	tell	igeı	nt
agen					
	earn the different search strategies in A			,	. т
	learn to represent knowledge in lems.	SOI	ving	5 F	V 1
-	nderstand the different ways of design	ina	eoft	TA721	ro.
agen	į	mig.	3011	wai	
	TRODUCTION				6
Introduction-	Definition - Future of Artificial I	ntell	ige	nce	_
Characteristic	s of Intelligent Agents– Typical Intelli	gent	Ag	ent	s –
Problem Solvi	ng Approach to Typical AI problems.		Ü		
UNIT II PR	OBLEM SOLVING METHODS				12
Search Strate	egies: Uninformed search - Inform	ned	sea	rch	ř-
// I I I I I I I I I I I I I I I I I I	nctions - Local Search Algorithms and		-		
264	Constraint Satisfaction Problems	-			
Propagation -	Backtracking Search				
1 0	OGICAL REASONING	NO AUT	LO	MIDU	10
First Order I	Predicate Logic: syntax and semanti	cs -	- us	sage	· -
knowledge r	epresentation - Inference in First	ord	ler	log	;ic:
Unification -	- Forward Chaining - Backward	Ch	aini	ing	_
Resolution.	Ç				
UNIT IV KN	NOWLEDE REPRESENTATION AND)			9
RE	ASONING				
K 1.1 D			, ,		
	epresentation: Ontological Engineering	_		_	
1	- Events - Mental Events and Me			-	
	stems for Categories - Reasoning	with	ı D	eta	ult
Information.				1	
UNIT V MI	ULTI AGENT SYSTEMS				8
Architecture	for Intelligent Agents - Agent com	mun	icat	tion	-

Negotiation and Bargaining - Argumentation among Agents - Trust and Reputation in Multi-agent systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the typical AI problems to identify the suitable Intelligent agents and apply the problem-solving approach on them.
- CO2: Implement and compare different search strategies to solve AI problems.
- CO3: Design and apply local search algorithms and constraint satisfaction techniques.
- CO4: Interpret the problem and represent it using first order predicate logic.
- CO5: Describe the ontological engineering and reasoning systems.
- CO6: Illustrate the architecture of Intelligent agents, agent communication and Multi agent systems.

TEXT BOOKS:

- S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Third Edition, 2009.
- **2** Gerhard Weiss, "Multi Agent Systems", Second Edition, MIT Press, 2013.
- Michael Wooldridge, "An Introduction to MultiAgent Systems". Second Edition, Chichester: Wiley, 2009.
- 4 Gerhard Weiss, "Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence". Cambridge: MIT Press, 1999.

REFERENCES:

1 Bratko, "Prolog: Programming for Artificial Intelligence", Fourth edition, Addison Wesley Educational Publishers Inc., 2011.

2	M Tim	Lor	200	// Λ	whif	icio	1 In	t-11:	i cot	3001	ΛΟ	troto		1 22	3400	ah
_	M. Tim								_			•				
	(Compu			enc	:e) ¨,	Jon	es a	and	Baı	tiet	t Pu	blisi	ners,	Inc	.; F1	rst
	Edition	, 20	08.													
3	Nils J.	Ni	lssc	n,	"Tl	he	Qu	est	foi	: A	rtifi	cial	Inte	ellig	enc	e",
	Cambri	dge	Ur	nive	ersit	y P	ress	s, 20	009.							
4	William	1	F.	Clo	ock	sin	a	nd	С	hris	stopl	her	S.	M	lelli	sh,
	"Progra	mn	ning	g ir	ı Pı	rolo	g: ˈ	Usi	ng	the	ISC	Sta	ında	rd"	, Fi	fth
	Edition		•				O		O						,	
5	David	-	`	_			Δ1	an	K	М	ackı	wort	h '	" Δ r	tific	rial
3													,			
		Intelligence: Foundations of Computational Agents",														
	Cambri	Cambridge University Press, 2010. POs PSOs														
	COs	POs]	PSC)s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	-	2	-	5	-	1	_	-	1	3	2	-
	2 .ow	3	3	2	2	-	-3	4		4	2		1	3	2	-
	3	3	3	3	2	2	1	-	-/	2	2	-	1	3	3	ï-
1	4	2	3	3	3	_ 3	4	9	-/	2	2	1	1	3	3	-
1	5	2	2	1	+	2	1	1	-	1	2	-	-	2	1	-
	6	2	2	1	/-	1	1	-	-	1	1	-	-	2	1	-
\mathbf{O}	verall		7)	1	1	1	E)E	01		CH	NO	2	g	
	The state of the s	12	'.													
_	relation	3	3	2	1	JAN F	IL BY	EO.T	O AN	1	2	1511 Y	AUT	3	2	5
Cor	relation mmended					MIL	11.104	08-	04-2			ISH Y	AUT	3	14 -2 11.	5

23CB411	COMPUTER NETWORKING	L	T	P	C
		3	0	2	4

- To understand the basics of network components and protocols.
- To explore the concepts of Physical layer and Datalink layer.
- To learn to configure the routers and interfaces.
- To understand the IPv4 and IPv6 addressing.
- To learn the different types of Security attacks.
- To know to build a small network.

UNIT I	BASIC NETWORK CONNECTIVITY AND	9
	COMMUNICATIONS	

Network Today: Network Components – Network Representations and Topologies – Common Types of Networks – Internet Connections – Reliable Networks – Network Trends – Security Threats and Solutions.

Basic Switch and End device configuration: IOS Access – IOS Navigation – The command structure – Basic device Configuration

 Save configurations - Ports and Addresses - Configure IP addressing - Verify Connectivity

Protocols and Models: Introduction - The Rules - Protocols - Protocol Suites - Standards - Organizations - Reference Models - Data Encapsulation - Data Access

UNIT II ETHERNET 9

Physical Layer: Introduction - Purpose of the Physical Layer - Physical Layer Characteristics - Copper Cabling - UTP Cabling - Fiber-Optic Cabling - Wireless Media

Number Systems: Introduction - Binary Number System - Hexadecimal Number System

Data Link Layer: Introduction - Purpose of the Data Link Layer - Topologies - Data Link Frame

Ethernet Switching: Introduction - Ethernet Frames - Ethernet

MAC Address - The MAC Address Table - Switch Speeds and Forwarding Methods

UNIT III | NETWORK COMMUNICATION

9

Network Layer: Introduction - Network Layer Characteristics - IPv4 Packet - IPv6 Packet - Host Routing - Introduction to Routing Address Resolution: Introduction - MAC and IP - ARP - IPv6 Neighbor Discovery

Basic Router Configuration: Introduction - Configure Initial Router Settings - Interfaces configuration - The Default Gateway configuration.

UNIT IV | IP ADDRESSING

Mitigations - Device Security

9

IPv4 Addressing: Introduction - IPv4 Address Structure - IPv4 Unicast, Broadcast, and Multicast - Types of IPv4 Addresses - Network Segmentation - Subnet an IPv4 Network - Subnet a Slash 16 and a Slash 8 Prefix - Subnet to Meet Requirements - VLSM - structured Design

IPv6 Addressing: Introduction - IPv4 Issues - IPv6 Address Representation - IPv6 Address Types - GUA and LLA Static Configuration - Dynamic Addressing for IPv6 GUAs - Dynamic Addressing for IPv6 LLAs - IPv6 Multicast Addresses - Subnet an IPv6 Network ICMP: Introduction - ICMP Messages - Ping and Traceroute Tests

UNIT V | TRANSPORT AND APPLICATION LAYER

9

Transport Layer: Introduction - Transportation of Data - TCP Overview - UDP Overview - Port Numbers - TCP Communication Process - Reliability and Flow Control - UDP Communication Application Layer: Introduction - Application, Presentation, and Session - Peer-to-Peer - Web and Email Protocols - IP Addressing Services - File Sharing Services

Network Security Fundamentals: Introduction - Security Threats and Vulnerabilities - Network Attacks - Network Attack

Build a Small Network: Introduction - Devices in a Small Network

- Small Network Applications and Protocols - Scale to Larger Networks - Verify Connectivity - Host and IOS Commands -Troubleshooting Methodologies - Troubleshooting Scenarios

TOTAL: 45 PERIODS

PRACTICAL EXERCISES:

- 1. Implement terminal Emulation Programs
- 2. Using Syntax Checker
 - Do basic Device Configuration
 - Verify Windows PC IP Configuration
 - Configure a Switch Virtual Interface
 - Configure the Default Gateway
- 3. Using Packet Tracer
 - Configure Initial Switch Settings
 - Implement Basic Connectivity
 - Investigate the TCP/IP and OSI Models in Action
 - View Wired and Wireless NIC Information
 - Examine the ARP Table
 - Verify IPv4 and IPv6 Addressing
 - Connect a Router to a LAN
 - Use Ping and Traceroute to Test Network
 Connectivity
 - Configure Secure Passwords and SSH
- 4. Install Wireshark
- 5. Use Wireshark to View Network Traffic.
- 6. Use Wireshark to Examine Ethernet Frames.
- 7. View Network Device MAC Addresses.
- 8. Navigate the IOS by Using Tera Term for Console Connectivity.
- 9. Test Network Latency with Ping and Traceroute.
- 10. Troubleshoot Connectivity Issues.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Construct the TCP/IP and OSI models and configure the switch, end device.
- CO2: Examine the Ethernet frames and view network device MAC addresses.

- CO3: Examine the ARP table and configure the basic routers and interfaces.
- CO4: Test for addressing the IPv4 and IPv6 and verify the network connectivity.
- CO5: Categorize the IP addressing, file sharing services and configure the network devices with SSH.
- CO6: Construct a small network and troubleshoot the connectivity issues.

TEXT BOOKS:

- 1 Cisco Networking Academy. "Introduction to Networks Companion Guide (CCNAv7)."1st edition., Cisco Press, 2020. ISBN: 9780136633679
- Allan Johnson, and Cisco Networking Academy. "Introduction to Networks Labs and Study Guide (CCNAv7) (Lab Companion)."1st edition., CISCO Press, 2020.

REFERENCES:

- James T. Kurose, Keith W. Ross. "Computer Networking: A Top-Down Approach". 8th Edition, Pearson, 2021. ISBN: 9780136681558.
- Todd Lammle. "CCNA 200-301 Official Cert Guide", Volume 1. 1st Edition, Cisco Press, 2020. ISBN: 9780135792747.
- Wendell Odom. "CCNA 200-301 Official Cert Guide", Volume 2. 1st Edition, Cisco Press, 2020. ISBN: 9780135792754.

COs						I	Os						I	PSC	s
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	3	2	1	1	2	2	1	2	3	3	1
2	3	3	2	2	3	2	1	1	2	2	1	2	3	3	1
3	3	3	2	2	3	2	1	1	2	2	1	2	3	3	1
4	3	3	2	2	3	2	2	1	3	2	1	3	3	3	1
5	3	3	2	2	3	3	2	1	3	3	2	2	3	3	1
6	3	2	1	1	3	3	2	2	3	3	2	2	3	3	2
Overall Correlation	3	3	2	2	3	3	2	2	3	3	2	3	3	3	2
Recommende	d by	Во	ard	of S	08-04-2024										

2nd ACM

Date

25-05-2024

Approved

23CS611	INTERNET PROGRAMMING	L	T	P	C
		3	0	2	4

- To understand different Internet Technologies.
- To learn java-specific web services architecture
- To construct a basic website using HTML and Cascading Style Sheets.
- To build dynamic web page with validation using Java Script objects and by applying different event handling mechanisms.
- To develop server side programs using Servlets and JSP.

UNIT I WEBSITE BASICS, HTML 5, CSS 3, WEB 2.0

Web Essentials: Clients, Servers and Communication – The Internet – Basic Internet protocols – World wide web – HTTP Request Message – HTTP Response Message – Web Clients – Web Servers – HTML5 – Tables – Lists – Image – HTML5 control elements – Semantic elements – Drag and Drop – Audio – Video controls – CSS3 – Inline, embedded and external style sheets – Rule cascading – Inheritance – Backgrounds – Border Images – Colors – Shadows – Text – Transformations – Transitions – Animations.

UNIT II | CLIENT SIDE PROGRAMMING

Java Script: An introduction to JavaScript-JavaScript DOM Model-Date and Objects,-Regular Expressions- Exception Handling-Validation-Built-in objects-Event Handling- DHTML with JavaScript- JSON introduction – Syntax – Function Files – Http Request – SQL.

UNIT III SERVER SIDE PROGRAMMING 9

Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session Handling- Understanding Cookies-Installing and Configuring Apache Tomcat Web Server- Database Connectivity: JDBC perspectives, JDBC program example – JSP: Understanding Java Server Pages-JSP Standard Tag Library (JSTL)-Creating HTML forms by embedding JSP code.

UNIT IV PHP and XML

9

An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions- Form Validation- Regular Expressions – File handling – Cookies – Connecting to Database. XML: Basic XML- Document Type Definition- XML Schema DOM and Presenting XML, XML Parsers and Validation, XSL and XSLT Transformation, News Feed (RSS and ATOM).

UNIT V INTRODUCTION TO AJAX and WEB SERVICES

9

AJAX: Ajax Client Server Architecture-XML Http Request Object-Call Back Methods; Web Services: Introduction- Java web services Basics - Creating, Publishing, Testing and Describing a Web services (WSDL)-Consuming a web service, Database Driven web service from an application -SOAP.

TOTAL: 45 PERIODS

PRACTICALS:

- 1. Create a web page with the following using HTML (A) to embed a map in a web page (B) To fix the hot spots in that map (C) Show all the related Information when the hot spots are clicked.
- 2. Create a web page with the following. a. Cascading style sheets. b. Embedded style sheets. c. Inline style sheets. Use our college information for the web pages
- **2.** Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.
- **3.** Write programs in Java using Servlets: (A) To invoke servlets from HTML forms (B) Session tracking using hidden form fields and Session tracking for a hit count.
- **4.** Write programs in Java to create three-tier applications using servlets for conducting online examination for displaying student mark list. Assume that student information is available in a database which has been stored in a database server.

- 5. Install TOMCAT web server. Convert the static web pages of programs into dynamic web pages using servlets (or JSP) and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.
- **6.** Redo the previous task using JSP by converting the static web pages into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database.
- 7. Create and save an XML document at the server, which contains 10 users Information. Write a Program, which takes user Id as an input and returns the User details by taking the user information from the XML document.
- **8.** i. Validate the form using PHP regular expression. ii. Store the form data into database using PHP.
- 9. Write a web service for finding what people think by asking 500 people's opinion for any consumer product.

TOTAL:30 PERIODS

	TOTAL 30 FERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Construct a basic website using HTML and Cascading Style
	Sheets.
CO2:	Build dynamic web page with validation using Java Script
	objects and by applying different event handling
	mechanisms.
CO3:	Develop server side programs using Servlets and JSP.
CO4:	Construct simple web pages in PHP and to represent data in
	XML format.
CO5:	Develop an XML schemas, parsers and XSL
CO6:	Make use of AJAX and web services to develop interactive
	web applications

 Deitel and Deitel and Nieto, "Internet and World Wide Website", Prentice Hall, 5th Edition, 2011 REFERENCES: Stephen Wynkoop and John Burke "Running a Pert Website", QUE, 2nd Edition, 1999. Chris Bates, "Web Programming – Building Intra Applications", 3rd Edition Wiley Publications, 2009. Jeffrey C and Jackson, "Web Technologies A Computations" 	ect													
REFERENCES: 1 Stephen Wynkoop and John Burke "Running a Period Website", QUE, 2nd Edition,1999. 2 Chris Bates, "Web Programming – Building Intra Applications", 3rd Edition Wiley Publications, 2009.	net													
 Stephen Wynkoop and John Burke "Running a Peri Website", QUE, 2nd Edition,1999. Chris Bates, "Web Programming – Building Intra Applications", 3rd Edition Wiley Publications, 2009. 	net													
Website", QUE, 2nd Edition,1999. Chris Bates, "Web Programming – Building Intra Applications", 3rd Edition Wiley Publications, 2009.	net													
2 Chris Bates, "Web Programming – Building Intra Applications", 3rd Edition Wiley Publications, 2009.														
Applications", 3rd Edition Wiley Publications, 2009.														
	ter													
3 Jeffrey C and Jackson, "Web Technologies A Compu	ter													
Jeffrey C and Jackson, "Web Technologies A Computer														
Science Perspective", Pearson Education, 2011.														
4 Gopalan N.P. and Akilandeswari J., "Web Technolog	Gopalan N.P. and Akilandeswari J., "Web Technology",													
Prentice Hall of India, 2011.														
UttamK.Roy, "Web Technologies", Oxford University Press,														
2011. WER DREAM														
COs POs PSO)s													
1 2 3 4 5 6 7 8 9 10 11 12 1 2	3													
1 3 2 1 1 2 1 1 1 1 1 3 2	1													
2 3 2 1 1 2 1 1 1 1 1 3 2														
3 3 2 1 1 2 1 1 1 1 1 3 2														
4 3 2 1 1 2 1 1 1 1 1 3 2	-													
5 3 2 1 1 2 1 1 1 1 1 3 2														
6 3 2 1 1 2 1 1 1 1 1 3 2	1													
Overall 3 2 1 1 2 - 1 1 1 1 1 3 2	1													
Correlation														
Recommended by Board of Studies 08-04-2024 Approved 2nd ACM Date 25-05-	2024													

23CB421	OPERATING SYSTEMS AND	L	T	P	C
	SECUTIRY LABORATORY	0	0	4	2

- To understand the basics of UNIX command and shell programming.
- To implement various CPU scheduling algorithms.
- To implement Deadlock Avoidance and Deadlock Detection Algorithms.
- To implement Page Replacement Algorithms.
- To implement various memory allocation methods.
- To apply various access control mechanism.
- To evaluate vulnerability in computer systems.

LIST OF EXPERIMENTS:

- 1. Illustration of UNIX commands and Shell Programming.
- 2. Implementation of various CPU scheduling algorithms using C program.
- 3. Illustrate the inter process communication strategy.
- 4. Implementation of mutual exclusion by semaphore.
- Implement dead lock avoidance and detection using C program.
- 6. C programs to implement threading.
- 7. Implementation of paging technique using C program.
- 8. C programs to implement the memory allocation methods.
- 9. C programs to implement the various page replacement algorithms.
- 10. C programs for the implementation of various access control mechanism.
- 11. Demonstrate SQL injection attack and its counter measures.
- 12. Implementation of Malware detection.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Implement Shell commands

CO2:	Implen	Implement Deadlock avoidance, Detection Algorithms. Implement CPU Scheduling Algorithm and Page														
CO3:	Implen	nen	t (CPU	J	Sch	ıedı	ılin	g	Alg	gorit	hm	ar	nd	Pa	ge
	replace	me	nt a	lgo	rith	ms.										
CO4:	Implen	nen	t I	ntei	r-Pr	oce	SS	Co	mm	uni	cati	on	and	n	nutu	ıal
	exclusi	on l	oy S	Sem	aph	ore	٠.									
CO5:	Implen	nen	t acc	cess	COI	ntro	ol te	chn	iqu	es.						
CO6:	Implement and demonstrate SQL injection and Malware															
	detection.															
COs POS PSO													s			
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	3	3	2	1	1	2	2	-	1	3	3	-
	2	3	3	3	3	3	2	1	1	2	2	-	1	3	3	-
	3	3	3	3	3	3	2	1	1	2	2	-	1	3	3	-
	4	3	3	3	3	3	2	1	1	2	2	-	1	3	3	-
	5 00W	3	3	3	3	3	2	1	1	2	2	1	1	3	3	-
И	6	3	3	3	3	3	2	1	1	2	2		1	3	3	ï-
1	Overall 3 3 3 3 3 3								2	3	3		1	3	3	J
- 1	100	d b-	, Rc	and	of C	4,1,4	ioc	U6	04.2	024						
Recommended by Board of Studies Approved									s 08-04-2024 2nd ACM Date 25-05-2							024
	3/N E	- 44-	UVC	·u		10	11		110	-14I	11.0	Date	1.11.0	20-	00-2	ULT

MEET LATED TO ANNA UNIVERSITY | AUTOMOMOLIC

23CB422	CYBER SECURITY LABORATORY	L	T	P	C
		0	0	4	2

- Understand and Apply Penetration Testing Techniques.
- Learn the Fundamentals of Social Engineering.
- Perform Wireless Network Attacks and Countermeasures.
- Conduct Information Gathering and Reconnaissance.
- Understand and Configure Network Defense Systems.

LIST OF EXPERIMENTS:

- 1. Simulate a cyber-attack on a system using tools like Metasploit to exploit a vulnerability and perform post-exploitation tasks (e.g., privilege escalation).
- Use the OWASP ZAP (Zed Attack Proxy) to find vulnerabilities like Cross-Site Request Forgery (CSRF) or SQL Injection in a web application.
- 3. Create simulated phishing emails and social engineering attacks using Kali Linux or social engineering tools (e.g., Social-Engineer Toolkit).
- 4. Use tools like Aircrack-ng to perform attacks on wireless networks, such as WEP cracking or WPA/WPA2 password cracking.
- 5. Use tools like whois and the Harvester to gather information about domains, email addresses, and IP addresses.
- 6. Perform DNS zone transfers and use tools like dig to gather DNS-related information. Similarly, perform email server enumeration using tools like nslookup or smtp-user-enum.
- 7. Use Netcraft and other tools like nmap to extract detailed information about websites, their technologies, and hosting environments.
- 8. Use Nmap to perform various port scanning techniques (TCP Connect, SYN Scan, Stealth Scan, etc.) to identify open ports on a target machine.

- 9. Perform vulnerability scanning using Nessus or OpenVAS to identify security holes in a network.
- 10. Execute a ping sweep using tools like fping to discover active hosts on a network and perform SYN Stealth scans using Nmap.
- 11. Install and configure Snort as an Intrusion Detection System (IDS) on a test network and monitor network traffic for suspicious activity.
- 12. Set up a honeypot (using tools like Honeyd or Suricata) to capture and analyze attacker activity.
- 13. Analyze firewall and IDS logs using tools like Splunk or ELK stack to detect unusual patterns or intrusion attempts.
- 14. Set up different types of firewalls (packet-filtering, stateful inspection, proxy, etc.) on Linux (iptables) or Windows (Windows Firewall) to control traffic based on rules.
- 15. Set up and configure a Unified Threat Management (UTM) system or IPS, such as Suricata or Snort, to prevent network attacks.
- 16. Simulate various attack vectors (DoS, port scanning, malware) and test how firewalls and IPS systems respond to block or mitigate these attacks.

	TOTAL: 45 PERIODS
COU	RSE OUTCOMES: AFFILIATED TO ANNA UNIVERSITY I AUTONOMOUS
	After completion of the course, the students will be able to:
CO1:	Examine the Vulnerability Assessment and Exploitation.
CO2:	Analyse and simulate social Engineering Attacks.
CO3:	Deduct the wireless Network Security.
CO4:	Construct Comprehensive Information Gathering and
	Network Reconnaissance.
CO5:	Examine IDS/IPS and Honeypot Technologies.
CO6:	Test and configure Firewalls and UTM Systems.

Cos						F	Os						I	PSOs		
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2	2	3	2	1	1	2	2	1	2	3	3	1	
2	3	3	2	2	3	2	2	2	2	2	1	2	2	3	2	
3	3	3	3	3	3	1	1	1	2	2	2	2	2	3	1	
4	3	3	3	3	3	2	2	2	3	3	1	2	3	3	2	
5	3	3	2	2	3	3	2	1	3	2	2	2	3	3	1	
6	3	3	3	3	3	3	1	2	3	3	2	2	3	3	2	
Overall	3	3	3	3	3	3	2	2	3	3	2	2	3	3	2	
Correlation	,	,	,	5	3	5		_	3	3			3	3	_	
Recommende	Recommended by Board of Studies										08-04-2024					
Α		2nd ACM Date 25-0					-05-2024									

23ES	491	APTITUDE AND LOGICAL	L	T	P	C
		REASONING -1	0	0	2	1
COU	RSE OB	JECTIVES:				
•		rove the problem solving and logical t	hink	ing	abil	ity
	of the s	tudents.				
•	To acqu	ıaint student with frequently asked qı	ıestic	ns a	and	
		s in quantitative aptitude and logical 1	easo	nin	g.	
UNI						4
Num	ibers, LC	M, HCF, Averages, Ratio & Proportion	on, N	lixt	ures	; &
Alleg	gation.					
UNI						4
Perce	entages, [Time and work, Pipes and Cistern, cod	ling a	ınd		
	ding.					
UNI						4
		Pistance, Train, Boats and Streams, And	alogy	·.		
UNI						4
Data	Interpre	tation (BAR,PIE,LINE), Seating arrang	emer	ıt.	4	
UNI	/ Accessor / / /	- 3				4
		st and Compound Interest, Profit loss	and I	Disc	our	ıt,
Partr	nership.					
- 1	18	TOTAL	_: 2 0]	PER	RIO	DS
COU		TCOMES:				0
		mpletion of the course, the students w				
CO1:	-	e and solve complex problems, and	fost	er	criti	cal
		g and logical reasoning skills.				
CO2:		undamental mathematical problems,		l er	nhai	nce
		mputational skills and numerical abili				
CO3 :		strategies for tackling a variety of				
		courage the use of multiple approx	aches	to	so	lve
	•	ns efficiently.				
CO4:		e and solve different data analysis pro				me
00-		ance, and interpret data analysis for a			_	
CO5:		information from graphs, and solve q				
		nematical operations such as ratios, pro	port	ions	s, ba	iS1C
001)	and statistical estimation.		-		
CO6:	-	uestions in a fraction of a minute	using	g sh	ort	cut
	method	S				

TEX	ГВООК:										
1	Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.										
2	Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand										
	Publishing.										
REFI	REFERENCES:										

1 Agarwal, R.S. "A Modern Approach to Verbal & Non-Verbal Reasoning." 2nd ed., S. Chand Publishing

reason	8			,		71111		0.0		<u> </u>					
Cos						F	Os						I	PSC	s
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	-	-	2	1	1	2	1	2	3	1	-	3
2	2	3	3	1	1	2	-	1	3	2	2	3	2	1	3
3	3	3	3	-	-	2	-	1	2	2	2	3	2	ı	3
4	2	3	2	3	1	2	1	2	3	3	2	3	1	2	3
5	3	2	2	-	1	3	-	2	2	3	3	3	3	1	3
6	3	3	3	3	2	3	1	3	3	2	3	3	3	1	3
Overall	ER !	5	No.			1								4	
Correlation	3	3	3	1	1	3	1	2	3	3	3	3	2	1	3
Recommended by Board of Studies 08-04-2024															
A	Appı	rove	d				2 nd ACM Date 25-05					05-2	024		

SEMESTER -V

	<u> </u>										
23RE501	RESEARCH METHODOLOGY L T P										
	AND INTELLECTUAL PROPERTY	2	0	0	2						
	RIGHTS										
COURSE	OBJECTIVES:										
• To	provide an overview on selection of resear	rch p	orol	olen	n						
	sed on the Literature review										
	enhance knowledge on the Data collection			naly	sis						
	outline the importance of ethical principle	s to	be								
	lowed in Research work and IPR				6						
UNIT I INTRODUCTION TO RESEARCH											
FORMULATION											
Meaning	of research problem, Sources of resear	ch	pro	ble	m,						
Criteria- g	ood research problem, and selecting a resea	ırch	pro	ble	m,						
Scope an	d objectives of research problem. D	efin	ing	aı	nd						
formulatin	g the research problem - Necessity of	defi	nin	g t	he						
problem -	I <mark>mporta</mark> nce of literature review in defining	gap	rob	lem	ı						
UNIT II LITERATURE REVIEW											
Literature	review - Primary and secondary source	es -	rev	iev	vs,						
treatise, m	onographs-patents - web as a source - s	searc	chir	ıg t	he						
web - Cri	tical literature review - Identifying gap	ar	eas	fro	m						
literature 1	review - Development of working hypothe	sis									
UNIT III DATA ANALYSIS											
Execution	of the research - Data Processing and Analy	sis	stra	tegi	ies						
- Data Ar	nalysis with Statistical Packages - Genera	aliza	tio	n ai	nd						
Interpretat	tion										
UNIT IV REPORT, THESIS PAPER, AND RESEARCH											
PROPASAL WRITING											
Structure a	and components of scientific reports - Typ	es o	f re	por	t –						
Technical:	reports and thesis - Significance - Differer	ıt ste	eps	in t	he						
	n – Layout, structure and Language of typ										
Illustration	ns and tables - Bibliography, types of	ref	ere	ncir	ıg,						

citations- index and footnotes, how to write report- Paper Developing,- Plagiarism- Research Proposal- Format of research proposal- a presentation - assessment by a review committee UNIT V INTELLECTUAL PROPERTY AND PATENT 6 **RIGHTS** Ethical principles- Plagiarism, Nature of Intellectual Property -Patents, Designs, Trade and Copyright- patent search, Process of Patenting and Development: technological research, innovation, patenting, and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of Patent Rights - Scope of Patent Rights, Geographical Indications TOTAL: 30 PERIODS **COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Analyze the literature to identify the research gap in the given area of research. CO2: Identify and formulate the research Problem CO3: Analyze and synthesize the data using research methods and knowledge to provide scientific interpretation and conclusion. CO4: Prepare research reports and proposals by properly synthesizing, arranging the research documents to provide comprehensive technical and scientific report CO5: Conduct patent database search in various countries for the research problem identified. CO6: Apply ethical principles in research and reporting to promote healthy scientific practice TEXT BOOKS: Garg, B.L., Karadia, R., Agarwal, F., and Agarwal, U.K. "An Introduction to Research Methodology." RBSA Publishers, 2002. Kothari, C.R. "Research Methodology: Methods and

pages.

Techniques." 2nd Edition, New Age International, 1990. 418

REFI	ERENCE	ES:														
1	Sinha, S.C., and Dhiman, A.K. "Research Methodology." 2															
	Volumes, Ess Ess Publications, 2002.															
2	Trochim, W.M.K. "Research Methods: The Concise															
	Knowledge Base." Atomic Dog Publishing, 2005. 270 pages.															
3	Wadehra, B.L. "Law Relating to Patents, Trade Marks,															
	Copyrights, Designs and Geographical Indications."															
	Universal Law Publishing, 2000.															
4	Day, R.	A. '	'Но	w t	o W	rite	an	d Pı	ubli	sh a	a Sci	enti	fic P	ape	r."	
	Cambridge University Press, 1992.															
5	Fink, A												ews:	Fro	om	
	the Internet to Paper." Sage Publications, 2009.															
6	Leedy, P.D., and Ormrod, J.E. "Practical Research: Planning															
	and Design." Prentice Hall, 2004.															
7	Satarkar, S.V. "Intellectual Property Rights and Copyright."															
	ESS Pu	blic	atio	ns,	200	0.		A		4			_			
	COs	E	JRE.	1			-41	Os	1			4	M		PSO	
	N. W	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	6	1	1	2	<u>~</u>	1	3	2	1
	2	3	2	1	1	1	-	-	1	1	2	1	1	3	2	1
	3	3	2	1	1	1	-	- 1	1	1	2	-	1	3	2	1
	4 CVINE	3	2	1	1	1	711	Ē	1	1	2	1	1	3	2	1
	5	3	2	1	1	1	LIA	11/11	1	1	2	2117	1	3	2	1
	6	2	2	1	1	1	-	-	1	1	2	-	1	3	2	1
O	verall	•	•	1	_	_				1	•		_	•	•	1
Corı	elation	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
Reco	mmende	d by	у Во	ard	of S	Stud	lies				13-	-11-2	024			
	A	ppı	rove	d				3rd	AC	CM		Date	9	30-	11-2	2024

23CB501 CRYPTOGRAPHY AND L T P										
25CD301	STEGANOGRAPHY	3	0	0	3					
COURSE OF	OURSE OBJECTIVES:									
	learn to analyze the security of in-built									
cryptosystems.										
To know the fundamental mathematical concepts										
	ted to security.	-	L							
	develop cryptographic algorithms for ir	nfor	mat	ion						
	arity.									
• To 0	comprehend the various types of data is	nteg	rity	an	d					
aut	hentication schemes.									
To understand cyber-crimes and cyber security.										
UNIT I IN	TRODUCTION TO SECURITY				9					
Computer Sec	curity Concepts - The OSI Security A	rchi	tect	ure	_					
1177	ks – Security Services and mechanisms	-		900						
10.72	rity - Classical encryption techniques:									
techniques,	Transposition techniques, Stegan	ogra	aph	y	-					
Foundations	of modern cryptography: Perfect	sec	curi	ty	-					
70M FV / 100mm	heory – Product Cryptosystem – Crypt	anal	ysis	GV						
UNIT II SYMMETRIC CIPHERS 9										
Number theory - Algebraic Structures - Modular Arithmetic -										
Euclid's algorithm - Congruence and matrices - Group, Rings,										
Fields, Finite Fields SYMMETRIC KEY CIPHERS: SDES - Block										
Ciphers - DES, strength of DES - Differential and linear										
cryptanalysis – Block cipher design principles – Block cipher mode										
-	- Evaluation criteria for AES - Ps	eud	orai	ndo	m					
Number Generators – RC4 – Key distribution										
UNIT III AS	SYMMETRIC CRYPTOGRAPHY				9					
MATHEMAT	ICS OF ASYMMETRIC KEY CRYPT	ГОG	RA	PH	<u>Y:</u>					
Primes -Partia	ality Testing – Factorization -Euler's toti	ent	fun	ctic	n,					
Fermat's and	Euler's Theorem - Chinese Remainde	r Tł	neor	em	_					
Exponentiatio	n and logarithm ASYMMETRIC KE	Y C	IPF	IER	S:					

RSA cryptosystem – Key distribution – Key management –Diffie Hellman key exchange – Elliptic curve arithmetic – Elliptic curve cryptography.

UNIT IV INTEGRITY AND AUTHENTICATION ALGORITHMS

9

Authentication requirement - Authentication function - MAC - Hash function - Security of hashfunction: HMAC, CMAC - SHA - Digital signature and authentication protocols - DSS - Schnorr Digital Signature Scheme - ElGamal cryptosystem - Entity Authentication: Biometrics, Passwords, Challenge Response protocols - Authentication applications - Kerberos MUTUAL TRUST - Distribution of public keys - X.509 Certificates.

UNIT V | STEGANOGRAPHY

(

Introduction to Steganography-Types of Steganography, cryptography-Difference between and Steganography Steganography Methods, Detection Security and Steganography-Steganography Images-Techniques in Steganography Algorithms and Tools.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Describe fundamentals of networks security, security architecture threats and vulnerabilities.
- CO2: Outline the different cryptographic operations of symmetric cryptographic algorithm.
- CO3: Apply the different cryptographic operations of public key cryptography.
- CO4: Build the various Authentication schemes to simulate different applications.
- **CO5:** Construct various signature scheme using Digital signature standard.
- **CO6:** Explain the various Steganography features.

TEX	T BOOK	S:														
1	William Stallings, "Cryptography and Network Security -															
	Principles and Practice", Seventh Edition, Pearson															
	Education, 2017.															
2	Nina God bole, SunitBelapure, "Cyber Security:															
	Understanding Cybercrimes, Computer Forensics and Legal															
	Perspectives", First Edition, Wiley India, 2011.															
REF	REFERENCES:															
1																
	"Cryptography and Network Security", 3rd Edition, Tata Mc															
	Grew Hill, 2015.															
2	Charles				C	Shar	i I	Pfle	eoe	r.	Iona	thar	ı N	larc	711li	es.
				_					_					_	-	
	"Security in Computing", Fifth Edition, Prentice Hall, New Delhi, 2015.															
	Wo	ER L	000				I	Os						I	PSC	s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 /	2	1			-					_			2	-	_
	2	2	1	7			_	-					1	2		-
	3	3	2	1	1	1	_	-	1	_	_	_	_	3	1	1
	4 9/		2	1	1	1	111	HC	1	- (3)-	Te		ViO	3	1	1
	5	3	1000	1	1	AFF	LIAT	DT) AN	NA.U	NIVER	SITY	AUTO	2	ADU	1
	6	2	1	-	-		_	_	_	_		_	let <u>z</u> ultu		-	-
		2	1	-	-	1	-	-	1	-	-	-	-	2	1	1
	verall	3	2	1	1	1			1	_		_	_	3	1	1
Cor	relation															

3rd ACM

13-11-2024

Date

30-11-2024

Recommended by Board of Studies

Approved

23CB511	VULNERABILITY ASSESSMENT	L	T	P	С
	AND PENETRATION TESTING	3	0	2	4

- To understand the ethics of hacking and the importance of ethical hacking, as well as develop knowledge and skills in vulnerability assessment and penetration testing.
- To comprehend and analyze various types of attacks in cybersecurity, Gain proficiency in using Metasploit for penetration testing.
- To develop management and reporting skills for penetration test. Explore and exploit vulnerabilities in operating systems.
- To gain knowledge of web application security vulnerabilities and acquire skills in vulnerability analysis.
- To develop skills in malware analysis and client-side browser exploits.

INTRODUCTION TO VULNERABILITY	9
ASSESSMENT AND PENETRATION	iΥ
TESTING AFFILIATED TO ANNA UNIVERSITY I AUTONOM	005
	ASSESSMENT AND PENETRATION

Information Gathering Techniques - Active, Passive - Cyber Kill Chain - Understand adversaries' (TTP) Tactics, Techniques and Procedure in security, Vulnerability Assessment and Penetration Testing (VA/PT). Tools: Social Engineering Attacks - Physical Penetration Attacks - Insider Attacks - Knowledge base MITRE ATT&CK Enterprise / Mobile / ICS - Sources of Information Gathering - Approaches and Tools

UNIT II METASPLOIT FRAMWORK 12

Metasploit Framework Modules - Auxiliary - Exploit - Payloads - Post - Penetration Testing with Metasploit's Meterpreter, Automating and Scripting Metasploit, HTTP + HTTPS - MySQL-PostgreSQL- SSH - WinRM - MSSQL-LDAP - Active Directory -

Going Further with Metasploit. Fake Authentication – Bypassing Firewalls – Evading Intruder Detection System

UNIT III MANAGING A PENETRATION TEST

8

Categories & Phases of Penetration Testing & Reports - Planning a penetration test, structuring a penetration test, execution of a penetration test, information sharing during a penetration test, reporting the results of a Penetration Test. Basic Linux Exploits: Stack Operations, Buffer Overflows, Local Buffer Overflow Exploits, Exploit Development Process. Windows Exploits: Compiling and Debugging Windows Programs, Writing Windows Exploits, Understanding Structured Exception Handling (SEH), Understanding Windows Memory Protections, Bypassing Windows Memory Protections.

UNIT IV WEB APPLICATION SECURITY VULNERABILITIES

O

Gaining Access - Escalation- Post Exploitation Server Side Attacks - Vulnerability Compliances using OWASP ZAP - Top web application security vulnerabilities, Injection vulnerabilities, cross-Site scripting vulnerabilities, OWASP Top Ten. Vulnerability Analysis: Passive Analysis, Source Code Analysis, Binary Analysis.

UNIT V | CLIENT-SIDE BROWSER EXPLOITS

8

Client-side vulnerabilities, Internet explorer security concepts, history of client- side exploits and latest trends, finding new browser-based vulnerabilities heap spray to exploit, protecting from client-side exploit. Malware Analysis: Collecting Malware and Initial Analysis: Malware, Latest Trends in Honeynet Technology, Catching Malware: Setting the Trap, Initial Analysis of Malware.

TOTAL: 45 PERIODS

PRACTICALS:

- 1. Monitoring Network Traffic using Wireshark.
- 2. Host & Services discovery Open Ports and Services using Nmap Zenmap OpenVAS.
- 3. Internal Penetration Testing
 - a) Mapping
 - b) Scanning
 - c) Gaining access through CVE's
 - d) Sniffing POP3/FTP/Telnet Passwords
 - e) ARP Poisoning
 - f) DNS Poisoning
- 4. External Penetration Testing
 - a) Evaluating external infrastructure
 - b) Creating topological map identifying IP address of target
 - c) Lookup domain registry for IP information
 - d) Examining use of IPV6 at remote location
- 5. Vulnerability scanning with Nessus / Nikto
- 6. Web application assessment with Burp suite Community Edition HTTPs Repeater, Decoder, Sequencer, and Comparer.
- Experiments on Metasploit Framework SQL Injection, XSS, CSRF
- 8. Set up of Kali Linux in a Virtual machine and setup with DNS info and collection of local networks
- Use password guessing tools to guess a password LOphtcrack, pwdump3, KerbCrack, John The Ripper, Brutus.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Evaluate the ethical considerations and legal implications in conducting ethical hacking activities using appropriate tools.
- CO2: Analyze and defend against social engineering, physical penetration, and insider attacks using automating penetration testing processes.

- CO3: Compare and report penetration tests effectively and develop and execute Linux and Windows exploits, bypassing memory protections.
- CO4: Analyze and mitigate web application security vulnerabilities and Conduct vulnerability analysis.
- CO5: Apply secure coding techniques and best practices across various stages of the software development lifecycle.
- **CO6:** Evaluate and protect against client-side browser exploits.

TEXT BOOKS:

- 1 Stuttard, Dafydd, and Marcus Pinto. "The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws." 2nd Edition, Wiley, 2011.
- 2 Kennedy, David, Jim O'Gorman, Devon Kearns, and MatiAharoni. "Metasploit: The Penetration Tester's Guide." No Starch Press, 2011.

REFERENCES:

- 1 Wylie, Phillip L., and Kim Crawley. "The PentesterBluePrint: Starting a Career as an Ethical Hacker." 2020, Wiley, United States.
- Tiller, James S. "The Ethical Hack: A Framework for Business Value Penetration Testing." Auerbach Publications, CRC Press
- 3 Harper, Allen, Stephen Sims, and Michael Baucom. "Gray Hat Hacking: The Ethical Hacker's Handbook." 3rd Edition, Tata McGraw-Hill.
- Zaid, Sabih. "Learn Ethical Hacking from Scratch: Your Stepping Stone to Penetration Testing." 2018, Packt Publishing Ltd, United Kingdom.
- 5 Atef, Mohamed. "Kali Linux for Ethical Hacking: Penetration Testing and Vulnerability Assessment for Network Security." 1st Edition, 2024, BPB Publications, India. ISBN: 978-93-55517-043.

	Approved 3rd ACM Date 30-11-2024															
Recommended by Board of Studies 08-11-2024																
	Overall orrelation 3 3 2 2 3 3 2 3 3 2 3															
	6	3	3	3	3	3	3	1	3	1	2	1	2	3	3	3
1	5	3	2	1	1	3	2	1	3	3	3	3	3	3	3	3
Í	4	3	3	2	2	2	2	2	2	2	2	1	2	3	2	2
X.	3	3	3	2	2	3	2	1	1	3	3	2	3	3	3	1
	2 000	3	3	2	2	3	2	2	2	2	2	1	2	3	3	2
	1	3	3	3	3	1	3	1	3	2	2	1	2	3	1	3
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		. , ,						Os	P	٠, /					87 · P SC)s
	Knowledge Base of Adversary Tactics and Techniques Based on Real-World Observations." https://attack.mitre.org/.															
,	MITRE. "MITRE ATT&CK: A Globally-Accessible Knowledge Base of Adversary Tactics and Techniques Based															
9	·															
	Edition, Wiley Publications.															
0	Blueprint: Starting a Career as an Ethical Hacker." 1st															
8	Introduction to Hacking." 1st Edition, No Starch Press. Wylie, Phillip L., and Kim Crawley. "The Pen Tester															
7	Weidm				_							_			ds-	Οn
_	Flaws."	-			-						Tr			т .	1 .	
	Hacker							•	_	ınd	Ex	ploi	ting	Se	ecur	ity
6	Stuttard		•										-			

23CB521	CRYPTOGRAPHY AND	L	T	P	C
	STEGANOGRAPHY	0	0	4	2
	LABORATORY				

- To understand and implement classical Cryptography Techniques
- To apply Transposition Techniques for Encryption.
- To master Modern Cryptographic Algorithms
- To explore Cryptographic Protocols and Security Mechanisms.

PRACTICALS

- 1. Write a program to implement the following cipher techniques to perform encryption and decryption
 - a) Caesar Cipher
 - b) Playfair Cipher
 - c) Hill Cipher
- 2. Write a program to implement the following transposition techniques
 - a) Rail fence technique -Row major transformation
 - b) Rail fence technique Column major transformation
- 3. Write a program to implement DES algorithm
- 4. Write a program to implement AES algorithm
- 5. Write a program to implement RSA Encryption algorithm
- 6. Write a code simulating ARP / RARP protocols.
- 7. Write a code simulating ARP / RARP protocols.
- 8. Write a program to implement the Diffie-Hellman Key Exchange mechanism. Consider one of the parties as Alice and the other party as bob.
- 9. Write a program to calculate the message digest of a text using the SHA-1 algorithm
- 10. Write a program to implement digital signature standard.
- 11. Hiding Data in Text using Whitespace-based Steganography.

TOTAL: 45 PERIODS

COU	RSE OU															
	After co	mp	leti	on (of th	ne c	our	se, 1	the	stu	dent	s wi	ll be	abl	e to):
CO1:	Apply 6	encr	ypt	ion	and	d de	ecry	ptic	on a	lgo	rithr	ns s	uch	as C	Caes	sar
	Cipher,	Pla	ıyfa	ir (Cipl	ner,	and	Н£	ill (Cip	her,	and	der	non	stra	ate
	the ability to secure information through classical encryption															
	techniques.															
CO2:	Build transposition cipher techniques (Rail Fence) using															
	row-major and column-major transformations to explore															
	basic cryptographic methods for secure communication.															
CO3:	O3: Develop programs to implement modern symmetric															
	encryption algorithms.															
CO4:	#: Make use of the RSA encryption algorithm.															
							, .		`	_						
	Construct network security protocols. Analyse modern cryptographic mechanisms such as Diffie-															
	Hellma						_	- 400								
	Signatu		-	POL		_					_		-		_	
3	transmi									0	r J			- 11		
	- V			7	7.			Os		-			-	I	PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 CIVE	3	2	1	1	2	1	Ēζ	1	2	1	2	3	3	2	1
	2	3	2	1	1	1	1	0.10	1	2	NIYEH	2	3	3	1	1
	3	3	2	1	1	3	1	_	2	2	2	3	3	3	3	2
	4	3	2	1	1	3	1	_	3	2	2	2	3	3	3	3
	5	3	2	1	1	2	2	1	2	2	2	2	3	3	2	2
				_				_								
	6	3	3	2	2	3	2	-	3	3	2	3	3	3	3	3
	Overall 3 3 2 2 3 2									3	2	3	3	3	3	2
	Correlation															
Recommended by Board of Studies					ies						1 24	024				
Approved					310	AC	IVI		Date	:	30-11-2024					

23CB522	SUMMER INTERNSHIP	L	T	P	C
		0	0	3	2

- To provide students with practical exposure to the realworld cybersecurity industry environment by working with organizations or research labs on current cybersecurity challenges.
- To offer students hands-on experience with industrystandard cybersecurity tools and techniques such as Wireshark, Metasploit, and EnCase for ethical hacking, malware analysis, and network security.
- To develop students' abilities to analyze and solve complex cybersecurity issues, including risk management, threat detection, and mitigation, by applying theoretical concepts to practical scenarios.
- To enable students to design and implement security measures, tools, and solutions that address the real-world challenges faced by businesses or research organizations in cybersecurity.
- To cultivate ethical responsibility and professionalism in students when working with sensitive data and systems, ensuring compliance with cybersecurity laws, policies, and standards.

COURSE DESCRIPTION:

This **Summer Internship** provides students with exposure to real-world cybersecurity tasks in industry or research settings. Students will enhance their technical expertise by working with industry-standard tools, analyzing and solving security problems, and gaining experience in designing, implementing, and evaluating cybersecurity solutions. Emphasis is placed on ethical practices, professionalism, and effective communication, ensuring students are equipped to handle cybersecurity challenges in both business and societal contexts. This internship will also prepare students to work collaboratively in teams, manage projects, and continue learning throughout their careers.

Weekly Pl	an
Week 1	Orientation and Introduction to Cybersecurity
	Practices
Week 2	Hands-on Activities and Practical Exposure
Week 3	Specialized Cybersecurity Domains
Week 4	Cybersecurity Governance and Reporting
TINIAI DI	DODE 4 PRECENTATION

FINAL REPORT & PRESENTATION

• Report (60%)

- A comprehensive report that documents:
- Daily/weekly activities and tasks.
- Tools and techniques used.
- Key learnings and challenges encountered.
- Final assessment of the organization's security posture.
- Future recommendations for improving cybersecurity.

Presentation (20%)

- o A 15-20 minute presentation to summarize the work done, findings, and lessons learned.
- The presentation should cover practical demonstrations (if possible) of cybersecurity tools or methodologies used during the internship.

• Supervisor Feedback (20%)

 Feedback from the internship supervisor based on the intern's performance, initiative, technical skills, and professionalism.

Additional Guidelines:

- **Weekly Reporting**: Students must submit weekly progress reports to the course coordinator or faculty mentor to ensure consistent monitoring of internship progress.
- **Supervisor Meeting**: Regular interaction with the internship supervisor to discuss progress, challenges, and solutions.
- **Ethical Conduct**: Students are expected to maintain the highest ethical standards in all aspects of their internship, ensuring confidentiality and integrity.

TOTAL: 4 WEEKS

COU	RSE OU	JTC	ON	ИES	5 :											
	After co					ne co	ours	se, t	he s	stuc	dent	s wi	11 be	abl	e to):
CO1:	Demonstrate proficiency in cybersecurity tools such as Wireshark, Metasploit, EnCase, and other industry-standard tools used for ethical hacking, penetration testing, and cyber forensics.															
CO2:	vulnerabilities in systems and networks, proposing solutions to safeguard organizational assets.															
	Design cybersecurity strategies that align with the business and societal needs, incorporating secure coding, risk management, and compliance with security standards.															
	: Implement penetration testing and malware analysis methodologies to assess and improve the security of information systems.															
CO5:	Apply ensurir guideli cyber i	ng nes ncic	adl in lent	nere ha ts.	ence ndli	to ng	la sen	ıws, siti	, re	egu data	latic	ns, d re	and espo	l ε ndi	thi	cal to
	effectiv demon securit	ely stra	to l	botl g I	n tec orof	chni essi	cal ona	and lisn	l no n a	n-te ind	echn	ical	stak	ehc	lde	rs,
	COs					ALL	P	Os	2 JAIN	1104-67	WYER	2111	av.	I	PSC	s
•	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
															3	
	1	3	2	2	2	3	2	1	3	2	3	2	3	3	3	2
	2	3	3	2	3	3	2	1 2	3	2	3	3	3	3	3	2
	2 3	3	3	2	3	3 3 3	2 3 3	1 2 2	3 3 3	2 3 3	3 2	3	3 3	3 3 3	3 3 3	2 3 3
	2 3 4	3 3 3	3 3	2 3 3	3 3	3 3 3 3	2 3 3 3	1 2 2 2	3 3 3 3	2 3 3 3	3 2 3	3 3	3 3 3	3 3 3	3 3 3 3	2 3 3 3
	2 3 4 5	3 3 3 2	3 3 3 3	2 3 3 2	3 3 3 2	3 3 3 3 3	2 3 3 3 3	1 2 2 2 3	3 3 3 3	2 3 3 3 3	3 2 3 2	3 3 3	3 3 3 3	3 3 3 3 3	3 3 3 3 3	2 3 3 3 3
	2 3 4 5 6	3 3 3	3 3	2 3 3	3 3	3 3 3 3	2 3 3 3	1 2 2 2	3 3 3 3	2 3 3 3	3 2 3	3 3	3 3 3	3 3 3	3 3 3 3	2 3 3 3
Corr	2 3 4 5 6 verall	3 3 2 3 3	3 3 3 2 3	2 3 3 2 2 3	3 3 3 2 2 3	3 3 3 3 2 2	2 3 3 3 3 3	1 2 2 2 3	3 3 3 3	2 3 3 3 3	3 2 3 2 3 3	3 3 3 3 3	3 3 3 3 3 3	3 3 3 3 3	3 3 3 3 3	2 3 3 3 3
Corr	2 3 4 5 6 verall relation	3 3 2 3 3	3 3 3 2 3 y Bo	2 3 3 2 2 3	3 3 3 2 2 3	3 3 3 3 2 2	2 3 3 3 3 3	1 2 2 2 3 2 2	3 3 3 3 3	2 3 3 3 3 3	3 2 3 2 3 3	3 3 3 3	3 3 3 3 3 3	3 3 3 3 3 3	3 3 3 3 2	2 3 3 3 3 3

23CB523	MINI PROJECT	L	T	P	C
		0	0	3	2

- Encourage students to apply foundational theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork and effective communication.
- Train students in basic research methodology, technical documentation, and presentation techniques to articulate project outcomes clearly.
- Enhance students' ability to systematically design, analyze, and evaluate simple prototypes or models.
- Prepare students for real-world engineering challenges and lay the foundation for multidisciplinary teamwork and problem-solving in advanced projects.

COURSE DESCRIPTION:

This course serves as an introductory platform for students to apply the foundational knowledge acquired from their core and interdisciplinary subjects in a practical setting. This course enables students to work on small-scale, department-relevant projects that focus on problem identification, basic design, and preliminary prototype development. With limited prior expertise, students will explore the process of translating theoretical concepts into tangible solutions, fostering creativity, teamwork, and critical thinking. The course emphasizes hands-on learning, communication, and project documentation, laying a strong foundation for advanced projects and professional challenges in later semesters.

PROJECT OUTLINE:

Week 1	Course Orientation and Topic Selection
Week 2	Problem Definition and Objective Setting

Week 3	Literature Review and Research
Week 4	First Review and Feedback
Week 5	Problem Refinement and Research Gap Identification
Week 6	Conceptual Design and Initial Approach
Week 7	Methodology and Project Planning
Week 8	Second Review and Project Evaluation
Week 9	Design Refinement and Testing
Week 10	Resource Identification and Budget Estimation
Week 11	Report Writing and Presentation Preparation
Week 12	Third Review Presentation and Submission of Thesis
	7017

EVALUATION:

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The project should focus on topics from first three or four semester (whichever is applicable) subjects / industry demand topics, or futuristic technologies. It is recommended for Faculty of Aeronautical Engineering, Civil Engineering, and Mechanical Engineering students, the project should demonstrate an understanding of first principles of engineering.
- Similarly for students of Faculty of Computer Science Engineering, the project may involve programming using Python or C language. For Faculty of Electronics and Communication Engineering, the student project shall

- incorporate appropriate techniques and systems relevant to the field. For the students of Faculty of Fashion Technology, the project based on material innovations, or technology in fashion is recommended.
- The evaluation will focus on how well the project is structured, including clarity and logical flow in both oral presentations and written texts.
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability, innovation, and SDG-aligned goals.
- The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content.

COU	RSE OUTCOMES:
4	After completion of the course, the students will be able to:
CO1:	Apply basic engineering principles to solve simple problems.
CO2:	Choose relevant sources to understand the current knowledge and identify areas to improve.
CO3:	Utilise basic tools and techniques to test simple solutions.
CO4:	Interpret the impact of engineering solutions on society and the environment.
CO5:	Combine in teams to plan and complete projects within given constraints.
CO6:	Develop comprehensive technical reports and deliver structured presentations to effectively convey project outcomes.

COs						P	Os						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
2	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
3	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
4	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
5	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
6	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
Overall	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
Correlation	3		1	1	1	1	1	3	_	2	2	1	3	1	3
Recommende	ended by Board of Studies 13-11-2024														
	Approved 3rd ACM Date 3										30-	11-2	2024		

23ES	591	APTITUDE AND LOGICAL	L	T	P	C
		REASONING -2	0	0	2	1
COU	RSE OF	BJECTIVES:	ı			
•	To im	prove the problem solving and logi	cal	thin	king	ζ.
		of the students.				
•	To acq	uaint the student with frequently aske	d pa	tter	ns ir	ı
	quanti	tative aptitude and logical reasor	ning	du	ring	5
		s examinations and campus interviews	S			
UNI	ГΙ					4
Prob	ability, I	Permutation & Combination, Algebra,	Prob	olem	s or	1
ages						
UNI	ГІІ					4
Mens	suration	, Logarithms, inequalities and modulu	s, Sy	llog	ism	
UNI	ΓIII					4
Dire	ctions, 1	ogical sequence words, number ser	ies,	Ana	alyt	ical
Reas	oning	ATOREAL .			4	34
UNI	ΓΙ	31,0		1		4
Blood	d relatio	n, Clock and Calendar, Picture puzzles	3 \			
UNI			3	9		4
Data	sufficie	ncy, cube and cuboids, odd man out				
	OINE	TOTAL	L: 20	PE	RIO	DS
COU	RSE OU	JTCOMES: AFFILIATED TO ANNA UNIVERSITY	AU	TONO	MOU	5
		empletion of the course, the students w		e ab	le to):
CO1:		concepts of probability, permutation, a	ınd			
		ation to solve real-world problems.				
CO2:		lgebraic problems and age-related pro	blen	ns us	sing	
		approaches and techniques.				
CO3:		e and solve problems in mensuration,	loga	rith	ms,	
		equalities.				
CO4:	-	et and solve problems related to direct	ions	, log	gical	
005	_	ce, and number series.				
CO5:		y and solve problems in logical reasoni	_	uch	as	
601		sm, blood relations, clock and calendar				
CO6:		y and solve problems in logical reason		uch	as	
	syllogis	sm, blood relations, clock and calendar	:			

TEX	TEXT BOOK:															
1	Smith,	Joh	n. ".	AP	ГІРЕ	EDL	4. " <i>2</i>	2nd	ed.	, W	iley	Pub	olish	ers,	202	20.
2	Agarw	al, I	R.S.	"Q1	uant	titat	ive	Ap	titu	de.'	2nc	l ed.	, S. (Cha	nd	
	Publish	Publishing.														
REFI	ERENCE	ES:														
1	Agarw													lon-	-	
	Verbal	Verbal Reasoning." 2nd ed., S. Chand Publishing.														
	COs		POs PSC)s	
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	3	2	2	2	1	3	1	2	3	2	2
	2	3	2	2	2	3	2	3	2	1	2	1	2	3	2	3
	3	3	3	2	2	2	2	2	2	1	3	1	2	3	3	2
	4	2	3	2	1	2	3	1	2	3	3	2	3	2	2	3
	5	2	3	3	2	2	2	2	3	2	2	2	3	3	3	3
	6	3	3	2	2	3	2	3	3	2	2	1	2	3	3	2
	verall	3	3	3	2	3	3	3	3	2	3	2	3	3	3	3

Correlation

Recommended by Board of Studies

Approved

3rd ACM

13-11-2024

Date

30-11-2024

SEMESTER -VI

	SEMESTER -VI						
23CB601	ENGINEERING SECURE	L	T	P	C		
	SOFTWARE SYSTEMS	3	0	0	3		
COURSE O	BJECTIVES:						
• To l	elp students to know the importance	and	ne	ed f	for		
software security.							
 To help students to know about various attacks. 							
• To n	nake students learn about secure softwar	e de	sign	n.			
• To	familiarize with the risk managemen	nt i	n s	secu	ıre		
softv	vare development.						
• To 1	nderstand the working of tools related	d to	sof	twa	ıre		
secu	3						
UNIT I N	EED OF SOFTWARE SECURITY				9		
Software as	surance and Software security - Threat	s to	sof	ftwa	are		
2000	ources of software insecurity - Benefits						
100000 11	urity – Properties of secure software – Ir						
	perties of software.						
	ECURE SOFTWARE DESIGN AND				10		
	RCHITECTURE LLEGE OF TECH	ALLT	awa	Karsu			
Requiremen	ts engineering for secure software - SQL	JAR	Εp	roce	ess		
model - Re	quirements elicitation and prioritization	n -	· Se	cur	ity		
architecture	- Software security practices for Arcl	hited	ctur	e a	nd		
Design: A	chitectural Risk Analysis – Softw	are	se	cur	ity		
knowledge	for Architecture and Design: Securit	y F	rin	cipl	es,		
,	delines, and Attack Patterns.						
UNIT III S	ECURITY RISK MANAGEMENT				9		
Risk management life cycle – Risk profiling – Risk exposure factors							
- Risk evaluation and mitigation - Risk assessment techniques -							
Threat and	rulnerability management - Security risk	c rev	riew	7S.			
UNIT IV S	ECURE CODING AND TESTING				9		
				- 1			

Code analysis - Coding practices - Software security testing -

Security testing considerations throughout the SDLC – Security failures – Examples of functional and attacker perspectives for security analysis – System complexity drivers and security – Deep technical problem complexity – Security controls and services.

UNIT V | SECURE PROJECT MANAGEMENT

9

Governance and security – Adopting an enterprise software security framework – Security and project management – Maturity of practice.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Identify the need for software security.
- CO2: Apply security principles in software development.
- CO3: Explain the extent of risks in software systems.
- CO4: Demonstrate the concepts of secure coding and security testing.
- CO5: Identify the various aspects of security analysis and services.
- CO6: Make use of the procedure of adopting secure project management.

TEXT BOOKS:

- Julia H. Allen, Sean Barnum, Robert J. Ellison, Gary McGraw, Nancy R. Mead, "Software Security Engineering", Addison-Wesley, 1st Edition, United States, 2008 (Unit - 1, 2, 4 & 5).
- Evan Wheeler, "Security Risk Management: Building an Information Security Risk Management Program from the Ground Up", Syngress, Illustrated Edition, United States, 2011 (Unit 3).

REFERENCES:

1 Chris Wysopal, Lucas Nelson, Dino Dai Zovi, Elfriede Dustin, "The Art of Software Security Testing: Identifying Software Security Flaws", Addison-Wesley Professional, 1st Edition, India, 2006.

2	Jason Grembi, "Developing Secure Software", Cengage															
	Learnir	Learning, 1st Edition, India, 2009.														
3	Lee Allen, "Advanced Penetration Testing for Highly-															
	Secure	d Er	nvir	onr	nen	ıts: ˈ	The	U1	tim	ate	Secu	ırity	Gui	ide	(Op	en
	Source:		Cor	nm	uni	ty	E	xpe	rier	ice	D	istill	led)'	,	Pa	ckt
	Publish	iing	, Ki	ndl	e E	diti	on,	Ind	ia, 2	2012	2.					
4	Bryan 9	Sull	ivaı	n, V	⁷ inc	ent	Liu	1, "	Wel	o A	ppli	catio	n S	ecu	rity,	. A
	Beginn	er's	Gι	ıide	e",	Osł	orr	ne /	′ M	[cG1	raw	Hil	l, 1s	t E	ditio	on,
	United	Sta	tes,	201	12.											
						POs]	PSC)s
\ \ \	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	3	1	3	3	2	2	2	3	2	3
	2	3	2	1	1	3	2	1	3	3	2	2	3	3	3	3
	3	2	1	-	-	2	2	1	3	3	2	2	3	2	2	3
	4 00	2	12c	75	-	3	2	1	3	3	3	2	3	2	3	3
	5	3	2	1	\1	3	3	2	3	3	2	2	3	3	3	3
	6	3	2	1	1	2	3	2	3	3	3	3	3	3	2	3
1	verall relation 3 2 1 1 3 3 2 3 3 3 3 3 3 3 3 3							3								
Recommended by Board of Studies							lioe	13-11-2024								
IXCCO	mmemae	<u>u 0</u>	DU	ara	OI C	muc	iics				10	-11-2	.024			

23CE611	ENVIRONMENTAL SCIENCE	L	T	P	C
	AND ENGINEERING	3	0	1	4

- To provide basic knowledge on environment impact assessment
- To create an awareness on the pollutants in the environment
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products
- To develop simple climate models and evaluate climate changes using models

UNIT I INTRODUCTION TO ENVIRONMENT IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework

UNIT II MOVEMENT OF POLLUTANTS IN 9 ENVIRONMENT

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

UNIT III ECOLOGICAL RESTORATION 9

Wastewater treatment: anaerobic, aerobic process, methanogenesis, treatment schemes for waste water: dairy, distillery, tannery, sugar, antibiotic industries; solid waste treatment: sources and management (composting, vermiculture

and metha	ane production, landfill. hazardous waste treatment)	
UNIT IV	ECOLOGICALLY SAFE PRODUCTS AND	9
	PROCESSES	
Biofertiliza	l ers, microbial insecticides and pesticides, bio-contro	ol of
	hogen, Integrated pest management; developmen	
	erant plants, biofuel; mining and metal biotechnology	
	transformation	0,
UNIT V	CLIMATE CHANGE MODELS	9
Construct	ing a climate model – climate system modeling – clin	nate
	n and drift – Evaluation of climate model simulation	
regional (RCM) - global (GCM) - Global average response	e to
	-climate change observed to date	
	TOTAL: 60 PERIO	ODS
LIST OF I	EXPERIMENTS	>
1. VI	Determination of Bio fuel parameters such as flash po	oint
a	i <mark>nd fire p</mark> oint.	
2. I	Determination of density of biofuels.	
3. I	Determination of BOD/COD in water.	
	Simulating the RCM and GCM model for different	
9	geographic conditions. A ED TO ANNA UNIVERSITY AUTONOMO	
	Measurement of Pollutant in environment by Gaussi	an
F	Plume model.	
COURSE	OUTCOMES:	
After	r completion of the course, the students will be able	to:
CO1: Expl	ain the importance of the process of Environme	ntal
impa	act assessment and its types.	
CO2: Illus	trate the chemical processes and pollutant chemistry	7
CO3: Iden	tify the methods to solve environmental problems	
CO4: App	ly the knowledge to develop ecofriendly products.	
	struct the various simple climate models for simulat	
CO6: App	ly the climate model simulation to monitor clim	nate
chan	age	

TEX	Т ВООК	S:														
1	David	.E	N	eeli	n	"Cl	ima	ite	Ch	ang	ge a	and	Mo	ode	lling	g",
	Cambri	dge	Ur	ive	rsit	y Pı	ess	, Ca	alifo	rni	a 201	12.				
2	Evans,	G	i.G.	8	Į.	Fur	lon	g,	J.	2	010.	E	nvir	onn	nen	tal
	Biotech	Biotechnology: Theory and Application (2nd edition). Wiley-														
	Blackwo	ell I	Pub	lica	tion	ıs.										
3	Pani, B	. 20	007.	Te	xtb	ook	of	Er	vir	onn	nent	al C	hem	nistı	y.	IK
	internat															
4							,	•	•		S.R					
	Enviror		nta	l Ir	npa	ct	Ass	ess	mer	nt,	2014	,IK	Inte	rna	tior	nal
	Pvt Ltd															
REF	ERENCE															
1	Carson	`														
2	Encyclopaedia of Environmental Issues by Craig W. Allin &															
	Probe. Probe															
3	Encyclopaedia of Environmental studies by William															
3	ACCEPT A POPULATION OF THE POP	_	ara	U		LIIV	1101	шие	ziita	11 :	stuu	ies	Dy	VV	11116	ш
	Ashwoi	rth.	1	A		P		A		A						1111
4	Ashwoi Climate	rth.	ang	ge a	nd	Clir	nat	e M	ode	eling	g- Ki	indle	e Ed:	itio	n.	
	Ashwor Climate Enviror	rth. Ch	ang nta	ge a	nd Fri	Clir end	nate ly I	e M	ode	eling	g- Ki	indle	e Ed:	itio	n.	
4	Ashwoi Climate	rth. Ch	ang nta	ge a	nd Fri	Clir end	nate ly I	e M Proc	ode luct	eling	g- Ki	indle	e Ed:	itio: Ebe:	n. rhai	nd
5	Ashwor Climate Enviror	cth. Ch nme Rein	ang nta er <i>I</i>	ge a lly- And	nd Friderl,	Clir end 200	natelly I	e M Proc	ode	eling de	g- Ki velo	indle pme	e Ed	itio Ebe:	n. rhai	nd Os
5	Ashword Climate Enviror Abile, R	cth. Chame Rein	ang enta er <i>E</i>	ge a	nd Fri	Clir end	nate ly F 5 I 6	e M Proc POs	ode luct	eling	g- Ki	indle	e Ed:	ition Eber I	n. rhai	nd
5	Ashword Climate Enviror Abile , R	cth. Chame Rein 1	enta er A	ge a lly- And 3	nd Friderl,	Clir end 200	nate 1y I 5 I 6	e M Proc POs 7	ode luct	eling de	g- Ki velo	indle pme	e Ed: ent -l 12	ition Eber I 1	n. rhar PSC 2	nd Os
5	Ashword Climate Enviror Abile , F	rth. Chame Rein 1 2	enta er / 2 1 2	ge a lly- And 3 -	nd Friderl,	Clir end 200 5 -	nate ly I 5 I 6 2 3	e M Processor 7	ode luct	eling de 9 -	g- Ki velo	pme 11 -	12 -	Eber 1 1 2 3	n. rhar 2	nd 0s 3 -
5	Ashword Climate Enviror Abile , R	th. Chame	er A	3 - 1	nd Friderl,	Clir end 200	mate 1	e M Proc 7 7 1 2 2	ode luct	eling de	g- Ki velo	indle pme	12 - 1	Eber 1 1 2 3	n. rhar PSC 2	nd Os
5	Ashword Climate Enviror Abile, For COs 1 2 3 4	tth. Chamee Rein 1 2 3 3 3	angenta er A 2 1 2 2 2	3 - 1 1 1	nd Friderl, 4 - 1 1	Clir end 200 5 -	mate 5	POs 7 1 2 2 2 2	ode luct	eling de 9 -	g- Ki velo	pme 11 -	12 - 1 1	I 1 2 3 3 3 3	n. rhar 2	nd 0s 3 -
5	Ashword Climate Enviror Abile , R	1 2 3 3 3 3 3	aangenta er A 2 1 2 2 2	3 - 1 1 1 1	nd (Friderl, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Clir 2000 5 - -	mate ly I 5 5 1 6 2 3 3 3 3 3	e M Processor 7 1 2 2 2	8	9	10	11	12 - 1 1 1	Eber I 1 2 3 3 3	n. PSC 2	nd 9s
5	Ashword Climate Enviror Abile, For COs 1 2 3 4 5 6	tth. Chamee Rein 1 2 3 3 3	angenta er A 2 1 2 2 2	3 - 1 1 1	nd Friderl, 4 - 1 1	Clir end 200 5 -	mate 5	POs 7 1 2 2 2 2	ode luct	eling de 9 -	g- Ki velo	pme 11 -	12 - 1 1	I 1 2 3 3 3 3	n. rhar 2	nd 0s - -
4 5 O Cor	Ashword Climate Enviror Abile, For COs 1 2 3 4 5 6 verall relation	1 2 3 3 3 3 3 3 3	2 1 2 2 2 2 2	3 - 1 1 1 1 1 1 1	1 1 1 1 1 1	Clir 200 5	mate ly I 5 5 1 6 2 3 3 3 3 3 3 3 3	Processor 7 1 2 2 2 2 2 2 2 2	8	9	10	11	12 - 1 1 1	Eber I 1 2 3 3 3	n. PSC 2	nd 9s
4 5 O Cor	Ashword Climate Enviror Abile, Record 1 2 3 4 5 6 verall relation mmended	1 2 3 3 3 3 3 3 4 by	2 1 2 2 2 2 2	3 - 1 1 1 1 1 1 arrd	1 1 1 1 1 1	Clir 200 5	mate ly I 5 5 1 6 2 3 3 3 3 3 3 3 3	POs 7 1 2 2 2 2 2 07-	8	9	10	11	12 - 1 1 1 1	I 1 2 3 3 3 3 3 3 3 3	n. rhan PSC 2	nd 9s

23CB611	MALWARE ANALYSIS	L	T	P	C
		3	0	2	4

- To introduce the fundamentals of malware, types and its effects.
- To enable to identify and analyse various malware types by static analysis.
- To enable to identify and analyse various malware types by dynamic analysis.
- To deal with detection, analysis, understanding, controlling, and eradication of malware.

UNIT I	INTRODUCTION TO MALWARE AND BASIC	9
	ANALYSIS	

Definition of Malware, Types of Malware (Viruses, Worms, Trojans, Ransomware, Spyware, Rootkits), Malware Propagation Mechanisms.

Goals of Malware Analysis, Malware Analysis Techniques, Basic Static analysis Techniques and tools, Malware analysis in Virtual Machines, Basic dynamic analysis and tools.

UNIT II STATIC MALWARE ANALYSIS 12

IDA PRO: Loading an Executable, The IDA Pro Interface, using Cross References, Analyzing Functions, Using Graphing options, Enhancing Disassembly, Extending IDA with Plug ins.

Analysing Malicious Windows programs: Windows API, Windows Registry, Networking APIs, Following Running Malware, Kernel Vs User mode.

UNIT III DYNAMIC MALWARE ANALYSIS 8

Live malware analysis, Dead malware analysis, Analyzing traces of malware, system calls, API calls, registries, network activities. Anti-dynamic analysis techniques, VM detection techniques, Evasion techniques, Malware Sandbox, Monitoring with Process Monitor, Packet Sniffing with Wireshark, Kernel vs. User-Mode Debugging, OllyDbg, Breakpoints, Tracing, Exception Handling, Patching

UNIT IV MALWARE FUNCTIONALITY

8

Downloaders and Launchers, Backdoors, Credential Stealers, Persistence Mechanisms, Handles, Mutexes, Privilege Escalation, Covert malware launching- Launchers, Process Injection, Process Replacement, Hook Injection, Detours, APC injection

UNIT V | ANDROID MALWARE ANALYSIS

8

Android Malware Analysis: Android architecture, App development cycle, APKTool, APKInspector, Dex2Jar, JD-GUI, Static and Dynamic Analysis, Case studies.

TOTAL: 45 PERIODS

PRACTICALS:

- **1.** Experimentation on Initial Infection Vectors and Malware Discovery.
- **2.** Implementation on Sandboxing Malware and Gathering Information From Runtime Analysis.
- 3. Implementation on Portable Executable (PE32) File Format.
- **4.** Implementation on Executable Metadata and Executable Packers.
- **5.** Experimentation on Malware Self Defense, Compression, and Obfuscation Techniques.
- **6.** Experimentation on Malware behaviour analysis.
- **7.** Experimentation on analyzing Malicious Microsoft Office and Adobe PDF Documents.
- 8. Experimentation on Mobile malware analysis.
- 9. Experimentation on Packing and Unpacking of malware.
- **10.** Experimentation on Rootkit AntiForensics and Covert Channels.
- **11.** Experimentation on Modern Rootkit Analysis.
- **12.** Experimentation on Malware traffic analysis.
- **13.** Implementation of real time applications for the following malware analysis
 - a. Static analysis of malwares
 - **b.** Dynamic analysis of malwares.
 - **c.** Classification of malwares based on their behaviour.
 - d. Usage of tools to classify malware

- **e.** Advanced malware analysis
- **f.** Android malware analysis
- **g.** Applying antivirus tools in various applications
- h. Malware report documentation

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Identify and classify different types of malwares.
- CO2: Apply basic static analysis techniques to analyze malware.
- CO3: Make use of tools like Process Monitor and Wireshark to perform dynamic malware analysis.
- CO4: Analyze the functionality of malware, including persistence mechanisms and privilege escalation.
- CO5: Evaluate Android malware analysis using both static and dynamic analysis techniques.
- CO6: Identify network-based attacks by comprehensive malware traffic analysis.

TEXT BOOKS:

- 1 Michael Sikorski and Andrew Honig, "Practical Malware Analysis" by No Starch Press, 2012, ISBN: 9781593272906
- Bill Blunden, "The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the System", Second Edition, Jones & Bartlett Publishers, 2009.

REFERENCES:

- 1 Jamie Butler and Greg Hoglund, "Rootkits: Subverting the Windows Kernel" by 2005, Addison-Wesley Professional.
- Bruce Dang, Alexandre Gazet, Elias Bachaalany, SébastienJosse, "Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools, and Obfuscation", 2014.
- Wictor Marak, "Windows Malware Analysis Essentials" Packt Publishing, O'Reilly, 2015.
- 4 Ken Dunham, Shane Hartman, Manu Quintans, Jose Andre Morales, Tim Strazzere, "Android Malware and Analysis", CRC Press, Taylor & Francis Group, 2015.

5	Victor 1	Maı	arak , 'Windows Malware Analysis Essentials",															
	Packt P	ubli	lishing, 2015.															
COs			POs												PSOs			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	3	2	1	1	3	1	2	1	2	2	1	2	3	3	1		
	2	3	2	1	1	3	1	1	1	2	3	2	3	3	3	1		
	3	3	2	1	1	3	2	2	1	2	2	2	3	3	3	1		
	4	3	2	1	1	3	1	2	1	3	2	2	3	3	3	1		
	5	3	3	2	2	3	1	1	2	3	3	3	2	3	3	2		
	6	3	2	1	1	3	1	2	2	3	3	3	3	3	3	2		
O	verall	3	3	2	2	3	2	2	2	3	3	3	3	3	3	2		
Corı	relation))	۷	۷	3	۷	۷	۷	3	7)	3	3	3			
Reco	Recommended by Board of Studies									13-11-2024								
Approved								3rd ACM Date 30-11-2						2024				

23CB621	PROJECT WORK PHASE-1	L	T	P	C
		0	0	4	2

COURSE DESCRIPTION:

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

COURSE OBJECTIVES:

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

PROJECT OUTLINE:

Week 1	Orientation and course overview. Formation of project
	teams and approval of topics by HoD.
Week 2	Initial meeting with supervisors. Define problem
	statement and objectives
Week 3	Literature review: Research methodologies and topic-
	specific studies.
Week 4	Zeroth Review.

Week 5	Refinement of literature review and identification of
	research gaps.
Week 6	Identification of Base Paper.
Week 7	First Review.
Week 8	Conceptual design discussions and brainstorming
	solutions.
Week 9	Narrowing done on the exact work.
Week 10	Completion of first stage of the Project.
Week 11	Development of detailed conceptual design and
	methodology.
Week 12	Incorporation of feedback and refinement of design
	and methodology.
Week 13	Second Review.
Week 14	Compilation of Phase 1 results, report writing, and
45	presentation preparation.
Week 15	Final Viva Voce Presentations.
Individual	meetings will be set up on a need's basis in conjunction

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is required to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDG-aligned goals.

Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written communication, ensuring effective delivery of technical content.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- solutions **CO1:** Develop feasible by analyzing complex engineering problems using foundational knowledge, mathematics, and science.
- CO2: Survey literatures to identify gaps, define research questions, and propose designs and methods for solving engineering problems.
- CO3: Make use of modern tools to check the feasibility of the solutions effectively.
- CO4: Evaluate societal and environmental impacts of solutions while incorporating sustainability and ethical practices.
- CO5: Combine in teams to plan, manage, and lead projects within professional and economic constraints.
- CO6: Formulate technical reports, deliver presentations, and engage in lifelong learning to adapt to new technologies.

CO- VAE	RR	ALL			CC	Ľ	POs	JĒ.	OF	TE	CH	NO	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3	
5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Overall	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3	
Correlation	3	_	_	_	1	4	_	3	•	3	3	3	3	1	3	
Recommended by Board of Studies							13-11-2024									
A						2rd A CM Data 20 11 /						11 1	0024			

Approved 3rd ACM Date 30-11-2024

23CB622	TECHNICAL TRAINING	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

COURSE OBJECTIVES:

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

COURSE OUTCOMES:

A	fter completion of the course, the students will be able to:
CO1:	Identify specific domain from the enrolled branch and to
	get training preferable in computer-oriented platform.
CO2:	Survey and apprehend the learning modules in the
	training program and to become expert in the specific
	domain.

CO3:	Apply theoretical learning in the practical environment
	and enhance the skillset of learner.
CO4:	Estimate the learning using available data.
CO5:	Defend a presentation about the learning done in the
	specified skillset.
CO6:	Construct a technical report about the training.

GUIDELINES:

- More than one training program may be given depending on availability and interest of the students. One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

EVALUATION PATTERN:

Training Coordinator:

50 marks (Training Manual - 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall

approve the entries in the Training Manual during the weekly meeting with the student), Attendance – 10,).

Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

							-	Trai	iniı	ng d	urati	on	- 30	Но	urs		
COs	POs													PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	1	1	1	2	1	-	-	1	§ •	3	3	1	-		
2	3	3	2	1		2	1	-	1	•	1	3	3	1	-		
3	3	3	3	3	3	•	N	1	1	2		3	3	3	1		
4	3	3	3	2	2	-	-	1	-	3	-	3	3	2	- 1		
5 0///5	3	3	3	2	(1(2	Ŀ	2	Θ	2	CH)	2	3	(1)	2		
6	3	3	3	3	2	2	(P)	2	4	3/	BSH Y	3	3	2	2		
Overall	3	3	3	3	2	2	1	2		3		3	3	2	2		
Correlation	3	•	3	3			1		-	•	1	3	•	4	2		
Recommended	l by	во Во	ard	of S	tud	ies				08	-11-2	024			·		
A	ppr	ove	d				3rd ACM Date 30-11-2							2024			

23CB623	TECHNICAL SEMINAR - 1	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very

specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical

	content,	OV	eral	1 aı	ıali	tv	tem	ınla	tes	fo11	OWE	d a	dea	1120	V O	f
	referenc			-	aum	cy,	CII	Piu	ics	1011	.0 ** C	.а, а	acq	uuc	y 0.	L
	reference	es e	ιτ.).	•							TO	ГАТ	- 20	DET	110	DC
	TOTAL: 20 PERIODS															
COU	COURSE OUTCOMES: After completion of the course, the students will be able to:															
	After co	mp	leti	on (of tl	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to):
CO1:	I: Identify academic documents from the literature which are															
	related to her/his areas of interest.															
CO2:	2: Survey and apprehend an academic document from the															
	literature which is related to her/ his areas of interest.															
CO3:	Compile a presentation about an academic document.															
	1: Estimate the Contents using available literature.															
	Defend a presentation about an academic document.															
	CO6: Construct a technical report.															
	0011011					TOP		POs						Ī	PSO	S
(Cos	-1	2	3	4	5	6	7 8 9 10 11 12						1	2	3
	T NOW	Like	1313		_		- 3		- 4			9	4	_	Þ	
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
1	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
1	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
3)	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	- 2
	5 CM	3	3	2	1	1	1	1	2	2	2	2	2	3	(1)	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	410	2
Ov	erall				_	_	_	_								
Corr	elation	3	3	2	1	1	1	1	2	3	3	2	2	3	2	2
Reco	Recommended by Board of Studies										13-	11-2	024			

3rd ACM

Date

Approved

30-11-2024

SEMESTER - VII

23CE	3701	TECHNICAL COMPREHENSION	L	T	P	C
			2	0	0	2
PUR	POSE:					
To	provide	e a complete review of the topics co	vere	ed i	n t	he
pr	evious	semesters, to ensure that a co	mpı	ehe	nsi	ve
ur	nderstand	ling of the subjects is achieved. The st	uder	nt w	rill '	be
te	sted as	per the guidelines given by na	atior	nal	lev	æl
ex	aminatio	ns like GATE, TANCET etc. It will also	help	stu	der	ıts
to	face job	interviews and competitive examinatio	ns.			
COU	RSE OU	TCOMES:				
	After co	mpletion of the course, the students wi	ll be	abl	e to):
CO1:	Analyse	the phenomena involved in the concer	ned	pro	ble	m
	and solv	e them.	á			
CO2:	Apply p	rinciples to new and unique circumsta	nces		~	
CO3:	Estimate	e concepts and principles of concerned	brar	nch	of	
	engin <mark>e</mark> e:	ring.				
CO4:	Distingu	aish between facts and opinion in the en	ngin	eeri	ng	-
	field.	COLLEGE OF TECH	NO	10	G)	
CO5:	Deduct	cause-and-effect relationships of any re	latio	onsł	nip.	5
CO6:	_	t data from charts and graphs and judg	ge th	e		
	relevano	ee of information.				
GUI	DELINES	6:				
•	The I	Department shall form an Internal	As	sess	sme	nt
	Comm	ittee for the Comprehension with	h A	Acad	den	nic
	coordi	nator for that class as the Comprehensi	on I	nstı	uct	or
	and Cl	ass coordinator as member.				
•	Instruc	ctor shall provide required input to t	heir	stu	der	ıts

Periodic tests can be conducted to assess students.

regarding the overview of all topics covered in the previous

semesters.

COs						F	Os						I	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	3	2	1	-	2	1	-	-	-	-	1	3	-	-		
2	3	2	1	1	-	1	1	ı	ı	•	ı	1	3	-	-		
3	3	3	3	3	3	-	-	3	-	3	-	3	3	3	3		
4	3	2	1	1	2	-	-	1	-	3	-	3	3	2	1		
5	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2		
6	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2		
Overall	3	3	3	3	3	2	1	2		3		3	3	3	2		
Correlation	3	•	3	3	3		1	4		3	1	•	•	3			
Recommende	d by	у Во	ard	of S	Stud	lies				13-11-2024							
A	Appı	rove	d	•	•		3rc	AC	CM		Date	?	30-	11-2	2024		

23CB711	CYBER FORENSICS	L	T	P	C
		3	0	2	4

- To understand the fundamentals of cyber forensics and its role in investigating cyber crimes.
- To gain knowledge of different types of cybercrimes and their investigation techniques.
- To acquire skills in handling, preserving, and analyzing digital evidence.
- To understand the legal and ethical issues surrounding cyber forensics and digital investigations.
- To familiarize with various digital forensics tools and techniques for data recovery and evidence analysis.

8

UNIT I INTRODUCTION TO CYBER FORENSICS

Overview of Cyber Forensics: Definition, Scope, History and Evolution of Cyber Forensics - Cyber Forensics in Crime Investigation - Role of Cyber Forensics Experts

Cyber Crimes: Types of Cyber Crimes (Hacking, Data Breaches, Fraud, etc.) - Techniques Used by Cyber Criminals - Legal Aspects of Cybercrime - Cyber Forensics Tools Overview

UNIT II CYBER FORENSICS INVESTIGATIONS AND 9 EVIDENCE COLLECTION

Cybercrime Investigation Process: Phases of a Cybercrime Investigation -Evidence Handling and Preservation - Seizure, Documentation, and Chain of Custody. Digital Evidence: Types of Digital Evidence (Data, Metadata, Logs) - Evidence Collection from Different Devices (PCs, Smartphones, Cloud Storage) - Tools for Evidence Collection (FTK Imager, EnCase) - Ethical Issues in Evidence Collection

UNIT III DATA RECOVERY AND ANALYSIS 9

Data Recovery Techniques: Disk and File Recovery - Recovery of Deleted Data (File Carving) - Recovering Encrypted and Damaged

Data.

Forensic Analysis: Forensic Analysis of Hard Drives and Storage Media - Analyzing Volatile Memory (RAM) - Using Forensic Software (Autopsy, X1 Search) - Forensic Analysis of Mobile Devices.

UNIT IV LEGAL ASPECTS OF CYBER FORENSICS

Cyber Laws and Regulations: Indian IT Act 2000 and Amendments - Global Cybercrime Laws and Regulations (GDPR, HIPAA, etc.) - Laws Governing Digital Evidence

Legal Procedures in Cyber Forensics: Chain of Custody and Admissibility of Digital Evidence -Testifying in Court as a Cyber Forensics Expert - Digital Evidence in Criminal Cases

UNIT V TOOLS AND TECHNIQUES IN CYBER FORENSICS 12

Digital Forensics Tools: Open-Source Tools: Autopsy, FTK Imager, The Sleuth Kit - Commercial Tools: EnCase, X1, AccessData Forensic Toolkit

Network Forensics: Capturing and Analyzing Network Traffic (Wireshark, tcpdump) - Investigating Network Attacks (DDoS, MITM, DNS Spoofing)

Cloud Forensics: Forensics in the Cloud - Investigating Cloud Storage and Data Breaches.

TOTAL: 45 PERIODS

7

PRACTICALS:

- 1. Demonstrate how to set up and use FTK Imager and Autopsy in a simulated environment.
- 2. Collect digital evidence from a hard drive using FTK Imager and document the process.
- 3. Use dd and FTK Imager to create forensic images of storage devices.
- 4. Use forensic tools to recover deleted files from NTFS file systems.
- 5. Investigate the impact and potential sources of the data

- breach using EnCase's features
- 6. Use Wireshark to capture and analyze live network traffic.
- 7. Perform forensic analysis on a USB or external storage device to recover deleted files.
- 8. Extract data from an Android device using forensic tools and identify key evidence for investigation.
- 9. Investigate and analyze cloud-based evidence for signs of data manipulation or breaches.
- 10. Extract and analyze email headers and metadata to trace the origin and authenticity of an email.
- 11. Use Splunk to analyze logs from different sources (web servers, firewalls, etc.).
- 12. Evaluate the legal significance of the forensic evidence and report findings and create a comprehensive forensic report suitable for presentation in court.

TOTAL: 30 PERIODS:

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the concepts of cyber forensics, cybercrimes, and explain the various techniques used in cyber investigations.
- CO2: Categorize different types of cybercrimes such as hacking, data breaches, and online frauds.
- CO3: Analyze digital evidence and use forensics tools to recover, preserve, and examine data from different digital devices.
- **CO4:** Apply appropriate procedures for evidence handling, including seizure, chain of custody, and documentation.
- CO5: Identify the legal aspects of cyber forensics, including laws governing cybercrimes, evidence handling, and privacy issues.
- CO6: Make use of the industry-standard cyber forensics tools for data recovery, analysis, and reporting.

TEXT BOOKS:

1 Nelson, Bill, Amelia Phillips, and Christopher Steuart.

	#C.:1-	1 -	C		.1	T7 -				1 т.		1:1	•	. // [- (1-	
	"Guide							SICS	an	a ir	ives	tigai	nons	3. 5	otn	ea.
	Cengag				_						т	1	D (•	1
2	Brock, 1		-			_						_				
	Unders								ce :	tror	n th	e w	arra	int	to 1	the
DEE	Courtro		ı." S	yng	gres	ss, 2	.013	٠.								
	ERENCE			1		1.0		1 D				//D		1.3	. 1	•1
1	Mahalik, Heather, and Satish Bommisetty. "Practical Mobile Forensics." 3rd ed. Packt Publishing, 2021.															
	Marcella, Albert Jr., and Frederick C. Shreves. "Cyber															
2																
	,															
	Investigations." 2nd ed. Pearson, 2013. FC-Council Computer Forensics: Investigating Network															
3	EC-Council. Computer Forensics: Investigating Network															
	Intrusions and Cybercrime. 4th ed. Pearson, 2019. Holt Thomas I and Adam M Bossler Cybercrime and															
4	Holt, Thomas J., and Adam M. Bossler. Cybercrime and Digital Forensics: An Introduction Routledge 2015															
	Digital Forensics: An Introduction. Routledge, 2015. Sammons, John, The Basics of Digital Forensics: The Primer.															
5	Sammons, John. The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics. Syngress. 2012															
	for Getting Started in Digital Forensics. Syngress, 2012. Davidoff, Sharri, and Jonathan Ham, Naturals Forensics:															
6	Davidoff, Sherri, and Jonathan Ham. Network Forensics: Tracking Hackers Through Cyberspace. Addison-Wesley,															
				kers	5 T.	hro	ugh	ı C	ybe	rsp	ace.	Ad	diso	n-₩	/esl	ey,
	2009.	1576.53				2012	1120				BILVE	SILV	INC	1190	70	
7	Meissne															
	Examin					_										aw
	Enforce	me	nt a	nd	Firs	st R				. 2n	d ec	l. W	iley,			
(COs	1	_		4			POs	_	0	10	11	10		PSC	
	1	2	1	3 1	4	5	6	7	2	9 1	10 2	11 2	12 3	2	2	2
	2	3	2	1	1	1	<u> </u>	_	2	1	2	1	3	3	1	2
	3	3	2	1	1	1	-	_	1	2	1	1	3	3	1	1
	4	3	2	2	1	1	-	-	2	2	1	2	1	3	1	2
	5 3 2 1 1 2 -								2	2	1	2	3	3	2	2
	6 3 3 2 2 1 ·								2	2	1	1	1	3	1	2
	Overall 3 2 2 1 1 -								2	2	2	2	2	3	1	2
	relation mmended	l bu	Ro	ard	of S	Stud	ies				13	-11-2	2024			
Keco					01 0	ruu	103	3rd	AC	M		Date		30-	11-2	2024
	Approved									-						

23CB721	PROJECT WORK PHASE-2	L	T	P	C
		0	0	4	3

COURSE DESCRIPTION:

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through fabrication, simulation, or experimental validation. Students will refine their designs, validate test problems, and commission setups for final testing. This phase emphasizes hands-on application, calibration, and demonstration of results, culminating in a final presentation and report submission.

COURSE OBJECTIVES:

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

PROJECT OUTLINE:

Week 1	Review of Phase 1 outcomes and refinement of proposed methodology.
Week 2	Material procurement/ software setup for simulation, and initiation of fabrication/simulation work.
Week 3	Intermediate fabrication/simulation work and initial testing or calibration, troubleshooting challenges.

Week 4	Second Review.
Week 5	Validation of test problem or refinement of prototype/simulation
Week 6	Optimisation of the test setup or solution trials, Data curation / uncertainty analysis
Week 7	Final testing of setup or simulation outcomes, Validation of Data .
Week 8	Third Review
Week 9	Demonstration of the solution with high level of data accuracy and precision.
Week 10	Compilation of Phase 2 results, report writing, and presentation preparation.
Week 11	Preparing or publishing of research article/ Filing or Grant of Patent
Week 12	Final Viva Voce Presentations.

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.

Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply appropriate methodologies to implement solutions for complex engineering problems identified in phase -1 using hardware / software or both systems.
- CO2: Develop existing functional prototypes or simulations models by integrating theoretical and practical knowledge.
- **CO3:** Evaluate solutions ensuring compliance with design specifications.
- **CO4:** Appraise the performance of solutions by refining designs or improving algorithms for enhanced outcomes.
- CO5: Collaborate effectively with team members to plan, manage, and execute engineering projects adhering to ethical principles and professional standards.
- CO6: Prepare technical reports, impactful presentations that communicate solutions effectively.

COs		1	67	7	ce	ar I	POs	TF.	OF	TE	CH	NO	d	PSC	s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3
5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
Overall Correlation	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
Recommended	ies	13-11-2024													

Approved 3rd ACM Date 30-11-2024

23CB722	TECHNICAL SEMINAR - 2	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar 2' is intended to be continuation of Technical Seminar 1. It enables a B.E./B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10).

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

COVERST OVERSON (FG																
COURSE OUTCOMES: After completion of the course, the students will be able to:																
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	s wi	ll be	abl	le to):
CO1:	Identify	aca	ade	mic	do	cun	nen	ts fr	om	the	lite	ratu	re w	hicl	h ar	e
	related	to h	er/	his	are	as c	of in	iter	est.							
CO2:	Survey	and	lap	pre	hen	d a	n ac	cade	emi	c do	ocun	nent	fror	n th	ie	
	literatui	e w	hic	h is	rel	ate	d to	he	r/ h	is a	reas	of i	nter	est.		
CO3:	Compile a presentation about an academic document.															
	Estimate the Contents using available literature.															
-	Defend a presentation about an academic document.															
	6: Construct a technical report.															
POs													Ī	PSO)s	
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	_					_	<u> </u>		_						
		3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
7	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	Overall 3 3 2 1 1 1 1 2 3 3 2 2 3 2 2												2			
Recor	nmende	l by	Во	ard	of S	tud	ies	в продыма и 13-11-2024 промощь								
	Approved								3rd ACM Date 30-11-2024						2024	

SEMESTER-VIII

23CB821	CAPSTONE PROJECT	L	T	P	C
		0	0	20	10

COURSE DESCRIPTION:

Prerequisites:

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

COURSE OBJECTIVES:

The Capstone Project should demonstrate the depth and extent of knowledge of students

During this course, students will

- Investigate and evaluate prominent literature connected to vour CP.
- Present a clearly articulated investigative framework, while situating projects within established academic

- practices and/ or ideas.
- Develop and create practical resources (either computational or experimental) for the concerned area of interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

DROUGH ON THE PROCEEDINGS												
PROJECT	OUTLINE:											
Week 1	Identification problem.											
Week 2	Literature review.											
Week 3	Preliminary work.											
Week 4	First review.											
Week 5	Completion of first stage of the Project methodology.											
Week 6	Development.											
Week 7	Testing & Validation.											
Week 8	Second review.											
Week 9	Repeatability.											
Week 10	Report correction and Documentation											
Week 11	Third review-Submission of paper for conference/journal											
Week 12	Thesis Correction and Submission											
Individual	meetings will be set up on a need's basis in conjunction											
with develo	oping work											

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Take p					_	_	_			-			and	fir	nd						
	solution	ns b	y fo	orm	ula	ting	pro	ope	r m	eth	odo	logy	•									
CO2:	Plan res	seaı	ch	me	thoo	dolo	gy	to t	ack	le a	spe	cific	pro	bleı	m.							
CO3:	Construct extensive study on particular research projects.																					
CO4:	Develop experimental and computational studies on innovative research projects.																					
	innovat	ive	res	ear	ch p	oroje	ects	•														
CO5:	Estimate incremental study on existing research projects.																					
CO6:	Take part in real life engineering challenges and propose appropriate solutions.																					
	Os						P	Os]	PSOs							
	.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3						
	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3						
	2	3	2	3	3	2	3	2	3	2	3	2	3	3	2	3						
1	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3						
	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2						
\	5	2	3	3	3	3	3	3	3	3	3	3	3	2	3	_3						
	6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2						
	erall elation	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3						
Recor	nmende	d by	Во	ard	of S	Stud	ies	13-11-2024														
	Approved							3rc	AC	\mathbf{M}		Date	•	30-	-11-2	2024						

VERTICAL 1 - CYBER SECURITY AND DATA PRIVACY

23CB031	ETHICAL HACKING	L	T	P	C								
		2	0	2	3								
COURSE OB	JECTIVES:												
	lerstand the basics of computer based vu												
-	plore different foot printing, reconna	issa	ance	e ai	nd								
	ng methods.												
To exp method	pose the enumeration and vulnerabi ds.	lity	an	aly	sis								
• To un	derstand hacking options available i	n V	Web	aı	nd								
wireless applications.													
 To exp 	lore the options for network protection.												
-	ctice tools to perform ethical hacking t	o ex	xpos	se t	he								
	abilities.												
UNIT I IN	TRODUCTION				6								
Ethical Hack	ing Overview - Role of Security and	Pe	net	rati	on								
Testers Pen	e <mark>trati</mark> on-Testing Methodologies- Laws (of tl	he I	Land	d -								
Overview of	TCP/IP- The Application Layer - The	ne [Гrar	ıspo	ort								
Layer - The	Internet Layer - IP Addressing N	Jetv	vorl	c a	nd								
	ttacks - Malware - Protecting Again												
	uder Attacks - Addressing Physical Secu			MOU	5								
UNIT II FO	OT PRINTING, RECONNAISSANCE	AN	1D		6								
SC	ANNING NETWORKS												
Footprinting	Concepts - Footprinting through Sea	rch	En	gin	es,								
Web Service	es, Social Networking Sites, Websi	te,	En	nail	-								
Competitive	Intelligence - Footprinting thro	ugł	1	Soc	ial								
Engineering -	- Footprinting Tools - Network Scannin	g C	onc	ept	s -								
Port-Scanning	g Tools - Scanning Techniques - Scan	ning	з Ве	eyoı	nd								
IDS and Firev	vall												
UNIT III EN	UMERATION AND VULNERABILIT	Y			6								
AN	NALYSIS												
Enumeration	Concepts - NetBIOS Enumeration - SN	VM.	P, L	DA	P,								

NTP, SMTP and DNS Enumeration - Vulnerability Assessment Concepts - Desktop and Server OS Vulnerabilities - Windows OS Vulnerabilities - Tools for Identifying Vulnerabilities in Windows-Linux OS Vulnerabilities - Vulnerabilities of Embedded OS.

UNIT IV SYSTEM HACKING

6

Hacking Web Servers - Web Application Components-Vulnerabilities - Tools for Web Attackers and Security Testers Hacking Wireless Networks - Components of a Wireless Network - Wardriving- Wireless Hacking - Tools of the Trade.

UNIT V NETWORK PROTECTION SYSTEMS

6

Access Control Lists - Cisco Adaptive Security Appliance Firewall

- Configuration and Risk Analysis Tools for Firewalls and Routers
- Intrusion Detection and Prevention Systems Network- Based and Host-Based IDSs and IPSs Web Filtering Security Incident Response Teams Honeypots.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- Install Kali or Backtrack Linux / Metasploitable/ Windows XP
- 2. Practice the basics of reconnaissance.
- 3. Using FOCA / SearchDiggity tools, extract metadata and expanding the target list.
- 4. Aggregates information from public databases using online free tools like Paterva's Maltego.
- 5. Information gathering using tools like Robtex
- 6. Scan the target using tools like Nessus
- 7. View and capture network traffic using Wireshark.
- 8. Automate dig for vulnerabilities and match exploits using Armitage
 - FOCA: http://www.informatica64.com/foca.aspx.
 - Nessus: http://www.tenable.com/products/nessus.
 - Wireshark: http://www.wireshark.org.
 - Armitage: http://www.fastandeasyhacking.com.
 - Kali or Backtrack Linux, Metasploitable, Windows XP

TOTAL: 30 PERIODS

COURSE OUTCOMES:																
COU									11	-1.	. 1 1		11 1	1. 1	1 - 1 -	_
001	After c		-													
	Explair vulner	abi	ilitie	s.											bas	
CO2:	Make	use	e of	the	tool	s fo	r fo	oot	prir	ntin	g, re	conr	naiss	sano	e aı	nd
	scanni	ng	met	hod	s.											
CO3:	Experi			vith	the	enu	me	rati	on a	anc	l vuli	neral	bilit	y ar	alys	sis
	metho															
CO4:	Explai			ıack	ing	opt	ion	s av	zaila	abl	e in '	Web	anc	l w	irele	ess
	applica															
	Analyze and choose the options for network protection. Make use of tools to perform ethical backing to expose the															
CO6:	Make use of tools to perform ethical hacking to expose the															
	vulnerabilities.															
TEX	KT BOOKS: Simpson, Michael T., Kent Backman, and James E. Corley.															
1																
	"Hands-On Ethical Hacking and Network Defense." Course															
	Technology, Delmar Cengage Learning, 2010.															
2	Engebretson, Patrick. "The Basics of Hacking and															
	Penetration Testing." SYNGRESS, Elsevier, 2013.															
REF	FERENCES:															
1	Stuttar	d,	Daf	ydd	, an	d M	laro	cus	Pin	to.	"The	Wel	b Ap	opli	catio	on
	Hacke			andl	oook	: I	∃in	din	g a	ınd	Ex	ploit	ing	Se	curi	ty
	Flaws.										JNIVE				7 1 1 1 1 1 1	
2	Seitz,]								n: l	Pyt	hon	Prog	gram	ımi	ng f	or
	Hacke	rs a	and	Pen	teste	ers.'									200	
	COs		_	_		_		Os	_						SO	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	-	2	1	1	2	2	1	-
	2	3	2	1	1	2	-	-	-	3	2	2	2	3	2	-
	3	3	2	1	1	2	-	-	-	1	1	1	3	3	2	-
	4	2	1	-	-	3	-	-	-	3	2	1	2	2	3	-
	5	3	3	2	2	3	-	-	-	3	1	1	1	3	3	-
	6	3	2	1	1	2	-	-	-	2	1	1	2	3	2	-
	erall	3	2	1	1	3	_	_	_	3	2	2	2	3	3	_
Corr	elation			_	_						_		_	Ü	J	

23CB032	DIGITAL AND MOBILE	L	T	P	C
	FORENSICS	2	0	2	3
COLIDGE OBL	FOTIME				
COURSE OBJ					
	erstand basic digital forensics and tech	_	es.		
	erstand digital crime and investigation				
	erstand how to be prepared for dig	gital	foi	ens	sic
readine					
	erstand and use forensics tools for iOS				
	erstand and use forensics tools for And			vice	es.
UNIT I IN	FRODUCTION TO DIGITAL FOREN	ISIC	CS		6
Forensic Scien	nce – Digital Forensics – Digital Evi	den	ce -	- T	he
	ics Process - Introduction - The Identif				
-	on Phase - The Examination Phase -				
	resentation Phase	A			
	GITAL CRIME AND INVESTIGATION	ON			6
105.	- Substantive Criminal Law - General				
	vestigation Methods for Collecting Dig			den	ce
7 / / / / / / / / / / / / / / / / / / /	l Cooperation to Collect Digital Eviden			G)	
UNIT III DIO	GITAL FORENSIC READINESS			40U	6
Introduction	- Law Enforcement versus Enterp	orise	e D	igi	tal
Forensic Read	liness - Rationale for Digital Forensic	Rea	adir	ess	_
Frameworks,	Standards and Methodologies - Enter	pris	еΣ	igit	tal
Forensic Read	iness - Challenges in Digital Forensics				
UNIT IV IOS	5 FORENSICS				6
Mobile Hardy	vare and Operating Systems - iOS Fur	ndar	nen	tals	
	File System - Hardware - iPhone Se				
O	ocedures and Processes - Tools - Oxyg		-		
- MobilEdit -		J			
	IDROID FORENSICS				6
Android basic	cs - Key Codes - ADB - Rooting An	droi	d -	Во	ot

Process - File Systems - Security - Tools - Android Forensics - Forensic Procedures - ADB - Android Only Tools - Dual Use Tools - Oxygen Forensics - MobilEdit - Android App Decompiling

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Installation of Sleuth Kit on Linux. List all data blocks.

 Analyze allocated as well as unallocated blocks of a disk image.
- 2. Data extraction from call logs using Sleuth Kit.
- 3. Data extraction from SMS and contacts using Sleuth Kit.
- 4. Install Mobile Verification Toolkit or MVT and decrypt encrypted iOS backups.
- 5. Process and parse records from the iOS system.
- 6. Extract installed applications from Android devices.
- 7. Extract diagnostic information from Android devices through the adb protocol.
- 8. Generate a unified chronological timeline of extracted records.

	TOTAL:30 PERIODS
COU	RSE OUTCOMES: APPLIATED TO ANNA UNIVERSITY AUTONOMOUS
	After completion of the course, the students will be able to:
CO1:	Explain the concepts of digital forensics.
CO2:	Analyze digital crimes and conduct investigations.
CO3:	Analyze variours forensic investigations readiness.
CO4:	Evaluate and extract digital evidence from iOS devices.
CO5:	Evaluate and extract digital evidence from Android devices.
CO6:	Utilize various forensic tools.
TEX	Γ BOOKS:
1	Andre Arnes, "Digital Forensics", Wiley, 2018.
2	Chuck Easttom, "An In-depth Guide to Mobile Device
	Forensics", First Edition, CRC Press, 2022.

REFERENCES:

1 Seitz, Justin. "Black Hat Python: Python Programming for Hackers and Pentesters." 2014.

COs		POs										I	PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	2	1	-	-	1	-	-	-	1	1	3	3	2	1	-		
2	3	3	2	2	3	-	-	-	2	2	1	2	3	3	-		
3	3	3	2	2	1	-	-	-	3	2	1	1	3	1	-		
4	3	3	3	3	3	-	-	-	1	3	3	2	3	3	-		
5	3	3	3	3	2	-	-	-	2	3	2	3	3	2	-		
6	3	2	1	1	2	-	-	-	2	2	2	2	3	2	-		
Overall Correlation	3	3	2	2	2	-	-	-	2	3	2	3	3	2	-		

23CB033	SOCIAL NETWORK SECURITY	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To develop semantic web related simple applications.
- To explain Privacy and Security issues in Social Networking.
- To explain the data extraction and mining of social networks.
- To discuss the prediction of human behavior in social communities.
- To describe the Access Control, Privacy and Security management of social networks.

UNIT I FUNDAMENTALS OF SOCIAL NETWORKING 6

Introduction to Semantic Web, Limitations of current Web, Development of Semantic Web, Emergence of the Social Web, Social Network analysis, Development of Social Network Analysis, Key concepts and measures in network analysis, Historical overview of privacy and security, Major paradigms, for understanding privacy and security

UNIT II SECURITY ISSUES IN SOCIAL NETWORKS 6

The evolution of privacy and security concerns with networked technologies, Contextual influences on privacy attitudes and behaviors, Anonymity in a networked world

UNIT III EXTRACTION AND MINING IN SOCIAL NETWORKING DATA 6

Extracting evolution of Web Community from a Series of Web Archive, Detecting communities in social networks, Definition of community, Evaluating communities, Methods for community detection and mining, Applications of community mining algorithms, Tools for detecting communities social network infrastructures and communities, Big data and Privacy.

UNIT IV PREDICTING HUMAN BEHAVIOR AND 6 PRIVACY ISSUES Understanding and predicting human behavior for social

Understanding and predicting human behavior for social communities, User data Management, Inference and Distribution, Enabling new human experiences, Reality mining, Context, Awareness, Privacy in online social networks, Trust in online environment, Neo4j: Nodes, Relationships, Properties

UNIT V ACCESS CONTROL, PRIVACY AND IDENTITY MANAGEMENT 6

Understand the access control requirements for Social Network, Enforcing Access Control Strategies, Authentication and Authorization, Roles-based Access Control, Host, storage and network access control options, Firewalls, Authentication, and Authorization in Social Network, Identity & Access Management, Single Sign-on, Identity Federation, Identity providers and service consumers, The role of Identity provisioning.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Design own social media application
- 2. Create a Network model using Neo4j
- 3. Read and write Data from Graph Database
- 4. Find "Friend of Friends" using Neo4j
- 5. Implement secure search in social media
- 6. Create a simple Security & Privacy detector

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Evaluate semantic web related simple applications.
- CO2: Solve Privacy and Security issues in Social Networking.
- CO3: Explain the data extraction and mining of social networks.
- CO4: Identify the prediction of human behavior in social communities.
- **CO5:** Develop the applications of social networks.
- **CO6:** Analyse various access control strategies.

TEX	T BOOK	S:														
1	Peter Mika, "Social Networks and the Semantic Web, First															
	Edition, Springer 2007.															
2	BorkoF						c of	f So	ocia	1 N	etw	ork	Tecl	nno	logi	ies
	and Ap														O	
REF	ERENCE	S:														
1	David	Eas	sley	, Jo	n	Kle	inb	erg,	. "1	Vet	worl	s, (Crov	vds	, a	nd
	Markets				_			•	_ ,				Wo	rld	, Fi	rst
	Edition				_											
2	Baton, J											rnir	ıg N	eo4	j 3.:	x:"
	Second															
3	Easley 1	D. I	Klei	nbe	rg	J., "	Net	two	rks	, Cr	owc	ls, a	nd N	Mar	kets	s –
	Reasoni						ıly	Coı	nne	ctec	l Wo	orlď	', Ca	amt	orid	ge
4	Univers Jackson						′C ~ :	ni a 1	2==	<u>а г</u>	laca	am:	, NI.	-t	0 rd c	o"
4	1 -									u E	COH	J11110	. 1NE	ειW	OTK	٠,
5	Princeton University Press, 2008. GuandongXu, Yanchun Zhang and Lin Li, "Web Mining and															
	Social Networking –Techniques and applications", First															
	Edition, Springer, 2011.															
6	Dion Goh and Schubert Foo, "Social information Retrieval															
	Systems															
	Searchi			_					_							
7	Max Ch															
	"Collab															
	Technic	-		or	Im	pro	ved	lυ	ser	Mo	delir	ιg",	IG	I (Glob	oal
	Snippet															
8	John G.										d St€	efan	Dec	ker,	, "T	he
	Social S	em	anti	c W	/ebl	, Sp		_		09.				_	200	
	COs POs PSOs															
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 1 1 3 1 1 1 2 2 2 2 3 3						3	3							
							3	3	3							
	3	2	1	1	1	2	3	1	1	2	3	2	3	2	2	1
	4	3	2	1	1	2	1	2	2	2	2	2	3	3	2	2
	5								3	3	1					
	6	3	3	2	2	3	3	2	3	2	2	3	3	3	3	3
О	verall	3	2	1	1	2	2	2	2	3	3	3	2	3	2	2
Cor	relation	3	2	1	1	3	2	2	2	3	3	3	3	3	3	2

23CB034	SECURITY IN COMPUTING	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To understand security design principles.
- To learn secure programming techniques.
- To know the standard algorithms used to provide confidentiality, integrity and authenticity in web application.
- To understand the security requirements in operating systems.
- To learn about the emerging security applications.

UNIT I SECURITY DESIGN PRINCIPLES 6

Security Goals - Secure System Design - Understanding Threats - Designing in Security - Convenience and Security - Security in Software Requirements - Security by Obscurity - Secure Design Principles - Defense in Depth - Diversity in Defense - Securing the Weakest Link - Failsafe Stance.

UNIT II SECURE PROGRAMMING TECHNIQUES 6

Worms and Other Malware – Buffer Overflows – Client State Manipulation – SQL Injection Password Security – Cross Domain Security in Web Applications – Attack Patterns – Preventing XSRF – Preventing XSSI - Preventing XSS.

UNIT III | WEB APPLICATIONS SECURITY 6

Introduction - Security Testing - Security Incident Response Planning - Microsoft Security Development Lifecycle (SDL) -OWASP Comprehensive Lightweight Application Security Process (CLASP) - The Software Assurance Maturity Model (SAMM).

UNIT IV SECURITY IN OPERATING SYSTEMS 6

Introduction - Security in the Design of OS - Rootkit- Windows Security - Windows Protection System - Windows Authorization Windows Security Analysis - Windows Vulnerabilities - Address Space Layout Randomizations.

UNIT V EMERGING TOPICS IN SECURITY

6

Internet of Things- Medical Devices - Mobile Phones- Security in the Internet of Things-Economics-Making a Business Case - Quantifying Security -Current Research and Future Directions- Electronic Voting Fair Election - Critical Issues - Cyber Warfare - Examples of Cyber Warfare

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Implement the SQL injection attack.
- 2. Implement the Buffer Overflow attack
- 3. Implement Cross Site Scripting and Prevent XSS.
- 4. Understanding Malwares working and detection
- 5. Implement Hacking windows Windows login password.
- 6. Implement Hacking windows Accessing restricted drives.
- 7. Install wire shark and explore the various protocols
 - a) Analyze the difference between HTTP vs HTTPS.
 - b) Analyze the various security mechanisms embedded with different protocols.
- 8. Identify the vulnerabilities using OWASP ZAP tool
- 9. Installation of rootkits and study about the variety of options

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain fundamental security goals and principles in system design.
- CO2: Identify and mitigate risks from malware, including worms and buffer overflows.
- CO3: Develop skills in conducting security audits and managing vulnerabilities in web applications.
- CO4: Apply best practices for password security and cross-domain security in web applications.

CO5: Develop a secure operating s
--

CO6: Analyze case studies and examples of cyber warfare to understand its impact and strategies.

TEXT BOOKS:

- 1 Charles P. Pfleeger, Shari Lawrence P fleeger and Jonathan Margulies, "Security in Computing", Fifth Edition, Pearson Education, 2015.
- William Stallings, "Cryptography and Network Security: Principles and Practices", Sixth Edition, Pearson Education, 2014.

REFERENCES:

- Neil Daswani, Christoph Kern, and Anita Kesavan, "Foundations of Security: What Every Programmer Needs to Know", Frist Edition, A press, 2007.
- Bruce Schneier, "Applied Cryptography Protocols, Algorithms and Source Code in C", Second Edition, John Wiley and Sons Inc., 2006.
- Matt Bishop, "Computer Security: Art and Science", First Edition, Addison Wesley, 2002.
- 4 Georgia Weidman, "Penetration Testing: A Hands-on Introduction to Hacking", 2nd edition, 2014.
- N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Kari Kostianen, Elena Reshetova, Ahmad-Reza Sadeghi, "Mobile Platform Security", First Edition, Morgan and Claypool Publishers Series, 2014.

COs						Ι	POs						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	-	-	1	2	2	1	2	-	-
2	3	2	1	1	-	-	-	-	-	2	2	-	3	-	-
3	3	2	1	1	2	-	1	-	1	-	1	2	3	2	-
4	3	2	1	1	2	-	1	-	-	2	2	1	3	2	-
5	3	2	1	1	2	-	1	-	2	2	2	1	3	2	-
6	3	3	2	2	3	-	1	-	2	-	2	2	3	3	-
Overall Correlation	3	2	1	1	2	-	-	-	1	2	2	2	3	2	-

23CB035	APPLIED CRYPTOGRAPHY	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To understand the fundamental principles and concepts of cryptography.
- To learn the basics of number theory and its applications in cryptographic algorithms.
- To explore the structure and security of symmetric key encryption
- To understand the workings and security of stream ciphers and their real- world applications.
- To study the principles of public key cryptography, including key exchange and digital signatures.
- To analyse cryptographic hash functions, message authentication codes (MACs), and cryptographic applications.

UNIT I INTRODUCTION TO CRYPTOGRAPHY AND 6 NUMBER THEORY BASICS

Overview of Cryptography - Basic Concepts-Plaintext and Ciphertext, Encryption and Decryption - Cryptographic Protocols Modular Arithmetic-Basics and Properties - Modular Exponentiation - Prime Numbers - Properties and Distribution - Prime Testing Algorithms, Greatest Common Divisor (GCD)-Euclidean Algorithm, Extended Euclidean Algorithm - Chinese Remainder Theorem-Statement and Proof - Applications in Cryptography.

UNIT II SYMMETRIC KEY CRYPTOGRAPHY 6

Block Ciphers-DES (Data Encryption Standard)Structure - Operation, and Security Analysis - AES (Advanced Encryption Standard) - Structure - Key Expansion, and Security Analysis - Modes of Operation - Electronic Codebook (ECB) - Cipher Block Chaining (CBC) - Output Feedback (OFB) - Cipher Feedback (CFB) - Counter (CTR) - Double and Triple Encryption- Techniques and Their Security Implications.

UNIT III | STREAM CIPHERS

6

Encryption and Decryption with Stream Ciphers-Basic Principles and Applications - Shift-Register Based Stream Ciphers-Linear Feedback Shift Registers (LFSRs) - Nonlinear Feedback Shift Registers (NLFSRs) - Currently Used Stream Ciphers- Examples and Applications (e.g., RC4, Salsa20, ChaCha)

UNIT IV PUBLIC KEY CRYPTOGRAPHY

6

RSA Algorithm - Key GeneratioN - Encryption , Decryption, and Security - ElGamal Encryption - Algorithm - Security and Applications, Diffie- Hellman Key Exchange - Protocol - Security and Applications. Elliptic Curve Cryptography (ECC) - Basics - Key Exchange and Digital Signatures. Practical Digital Signatures-Digital Signature Algorithm (DSA) - RSA Digital Signatures - Elliptic Curve Digital Signature Algorithm (ECDSA)

UNIT V HASH FUNCTIONS, MACS, AND CRYPTOGRAPHIC APPLICATIONS

6

Hash Functions - Properties - One-way, Collision Resistant, Preimage Resistant, Examples: MD5, SHA-1, SHA-256, SHA-3, Message Authentication Codes (MAC)-HMAC (Hash-based Message Authentication Code), CMAC (Cipher-based Message Authentication Code), Side Channel Analysis-Power Analysis Techniques, Timing Analysis Techniques, Cryptographic Applications.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Install and configure cryptographic libraries such as OpenSSL or PyCryptodome.
- 2. Implement modular arithmetic and the Euclidean algorithm for GCD
- 3. Encrypt and decrypt messages using DES and AES
- 4. Implement and analyze ECB, CBC, OFB, CFB, CTR, and GCM modes of operation

- 5. Encrypt and decrypt messages using a stream cipher like RC4.
- 6. Generate RSA key pairs and implement RSA encryption, decryption, and digital signatures
- 7. Perform the Diffie-Hellman key exchange to establish a shared secret.
- 8. Implement point addition and scalar multiplication on elliptic curves, and ECDSA
- 9. Compute hash values using MD5 and SHA-256, and implement HMAC for message authentication
- 10. Measure execution time of cryptographic operations and analyze timing variations for side channel analysis

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the core principles of cryptography and the distinction between symmetric and asymmetric encryption.
- CO2: Apply number theory concepts such as modular arithmetic and the Chinese remainder theorem in cryptographic algorithms.
- CO3: Apply symmetric encryption techniques like DES and AES and their different modes of operation.)
- CO4: Construct stream ciphers using shift registers and evaluate their security for practical applications.
- CO5: Demonstrate proficiency in public key cryptosystems such as RSA, ElGamal, and Elliptic Curve Cryptography for secure communication.
- CO6: Analyze cryptographic hash functions and MACs for secure message authentication and analyze cryptographic applications for vulnerabilities.

TEXT BOOKS:

1 Stallings, William. "Cryptography and Network Security: Principles and Practice". 7th edition., Pearson, 2016.

2 Schneier, Bruce. "Applied Cryptography: Protocols, Algorithms, and Source Code in C". 2nd edition., Wiley, 1996.

REFERENCES:

- Paar, Christof, and Jan Pelzl. "Understanding Cryptography:
 A Textbook for Students and Practitioners". 2nd ed.,
 Springer, 2010.
- 2 Menezes, Alfred J., Paul C. van Oorschot, and Scott A. Vanstone. "Handbook of Applied Cryptography". CRC Press, 1997.

COs						I	POs	1					I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
2	3	2	1	1	1	-	Y	Ē	1	1	-	- 5	3	1	-
3 POW	3	2	1	1	-	-2	9	- /	1	1	1	6	3	4	-
4	3	2	1	1	1		-	-0	1	1	-	-	3	1	r-
5	2	1	/ -	1	P	-	9	-1		. 8	~	1	2		-
6	3	3	2	2	1	-	_	_	1	1	-	-	3	1	-
Overall Correlation	3	2	ì	1	40) El	E	SΕ	d F	15	СН	ΝO	3	4)	-

23CB036	PRIVACY PRESERVING IN DATA	L	T	P	C
	MINING	2	0	2	4
COURSE OBJ	ECTIVES:				
• To und	erstand the concepts of privacy pre-	serv	ing	Da	ita
Mining	models and algorithms.				
• To und	derstand the concepts of Data An	ony	miz	zatio	on
Method	ls and its Measures.				
• To eva	lluate and appraise the solution of	lesię	gned	d f	or
Multipl	icative Perturbation.				
• To form	nulate, Design and Implement the	solu	tion	s f	or
Utility-	based Privacy Preserving Data.				
UNIT I IN	TRODUCTION				6
Introduction -	- Privacy-Preserving Data Mining Algo	orith	ms	- T	he
Randomizatio	n Method - Group Based Anon	ymi	zati	on	-
Distributed Pr	rivacy-Preserving Data Mining.				
UNIT II IN	TERFACE CONTROL METHODS				6
Interface Con	trol Methods Introduction - A Clas	ssific	catio	on	of
Microdata Pro	otection Methods - Perturbative Maskii	ng N	1eth	nod	s -
NonPerturbat	ive Masking Methods -Synthetic	Ν	1icr	oda	ıta
Generation -T	Trading off Information Loss and Disclo	osur	e Ri	sk.	
UNIT III MI	EASURES AND METHODS				6
Measure of	Anonymity Data Anonymization M	letho	ods		A
	of Methods - Statistical Measure of A				
Probabilistic N	Measure of Anonymity - Computationa	al M	eası	ure	of
	reconstruction Methods for Rand				
A malication of	Dandamization				

Application of Randomization.

UNIT IV METRICS EVALUATION 6

Multiplicative Perturbation - Definition of Multiplicative Perturbation - Transformation Invariant Data Mining Models -Privacy Evaluation for Multiplicative Perturbation - Attack Resilient Multiplicative Perturbation - Metrics for Quantifying

Privacy Level - Metrics for Quantifying Hiding Failure - Metrics
for Quantifying Data Quality.

UNIT V PRIVACY PRESERVING METHODS

6

Utility-Based Privacy-Preserving Data Types of Utility-Based Privacy Preserving Methods - Utility-Based Anonymization Using Local Recording - The Utility-Based Privacy Preserving Methods in Classification Problems - Anonymization Merginal: Injection Utility into Anonymization Data Sets.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Identify frequent itemsets and generate association rules from transactional data.
- 2. Reduce the dimensionality of the data while preserving as much variance as possible. Principal Component Analysis (PCA)
- 3. Predict a continuous variable based on one or more predictor variables.(Linear Regression)
- 4. Classify data points based on the majority class of their nearest neighbors. (K-NN)
- 5. Build a model that predicts the value of a target variable based on several input variables. (Decision Tree)
- **6.** Partition the data into k clusters where each data point belongs to the cluster with the nearest mean.(K-Means)

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the various datamining algorithms.
- CO2: Demonstrate various interface control methods available in mining.
- CO3: Choose the various Measurements and methods in Datamining.

CO4:	Apply the concepts to calculate various metrics.															
CO5:	Classify the preserving methods of datamining.															
CO6:	Explain about the Anonymization dataset and its uses.															
TEX	EXT BOOKS:															
1	Aggarwal, Charu C., and S. Yu, editors. "Privacy-Preserving															
	Data Mining: Models and Algorithms". Springer, 2008.															
2	Aggarwal, Charu C. "Data Mining: The Textbook". 1st ed.,															
	Springer, 2015.															
REFI	REFERENCES:															
1	Han, Jiawei, and Micheline Kamber. "Data Mining: Concepts															
	and Techniques". 3rd ed., Elsevier, 2012.															
2	Vaidya, Jaideep, Michael Zhu, and Christopher W. Clifton.															
	"Privac	y-P	rese	rvi	ng I	Data	a M	inir	ıg".	Spi	ringe	er, 20	006.			
	COs					_	I	POs					5	I	PSC	s
,	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
8	1%	2	1	2	\ -	-	4	-	-	1	-	-	-	2	-	ř-
Í	2	2	1	/-	1	1	->	3	1	1	1	-	1-7	2	1	1
	3	3	2	1	1	1	-	_	1	1	1	_	-	3	1	1
	4	3	2	1	1	1	-		1	1	1	e in	1	3	1	1
	5 VIVE	3	3	2	2	1		Ek	1	1	1	UH	NU	3	1	1
	6	2	1	-	-	-	0.001	130.10	5.6 <u>1</u> 11	-	-	2117	1	3	-	-
	verall	3	2	2	2	1	-	-	1	1	1	-	1	3	1	1
Correlation			_	_	_	-			_						-	1

23CB037	INFORMATION SECURITY	L	T	P	С					
	PRINCIPLES	2	0	2	3					
COURSE OBJECTIVES:										
To understand basics of Information Security.										
 To understand basics of information Security. To know the legal, ethical, and professional issues in 										
Information Security.										
To know the aspects of risk management.										
 To beco 	me aware of various standards in this	area								
To know	w the technological aspects of Informat	ion S	Sect	arit	y.					
	TRODUCTION				6					
History, what	is Information Security, Critical Char	acte	rist	ics	of					
Information,	NSTISSC Security Model, Compor	nent	s c	of a	an					
Information	System, Securing the Components	s, E	Bala	nci	ng					
Security and	Access, Introduction- SDLC-SDLC Me	etho	dol	ogie	es-					
Requirements	Requirements -System Design-Implementation-Testing-									
Deployment-N	Maintenance and support			4	_					
UNIT II SECURITY INVESTIGATION 6										
Need for Security, Business Needs, Threats, Attacks, Legal, Ethical										
	nal Issues - An Overview of Comput	-								
	ol Matrix, Policy-Security policies, Co			-						
705-77-Y-79-00	rity policies and Hybrid policies.									
UNIT III SECURITY ANALYSIS 6										
Risk Managen	nent: Identifying and Assessing Risk, A	sses	sin	g aı	nd					
_	Risk - Systems: Access Control			_						
	low and Confinement Problem.				,					
	GICAL DESIGN				6					
	Security, Information Security Policy, S	tand	ard	s aı	nd					
Practices, ISO 17799/BS 7799, NIST Models, VISA International										
Security Model, Design of Security Architecture, Planning for										
Continuity.	er, besign of became included	1 1011		8 -	01					
J	YSICAL DESIGN			-	6					
	hnology, IDS, Scanning and Ana	lvei	s ⁻	Γοο						
Cryptography, Access Control Devices, Physical Security, Security										
and Personnel										
and reisonner										

PRACTICAL EXERCISES:

- 1. Create a virtual machine (VM) environment to simulate an information system. Identify and secure key components such as hardware, software, and network infrastructure. (Use VMware, VirtualBox).
- 2. Develop a simple security feature (e.g., authentication) using an agile SDLC methodology. Use project management tools to simulate the planning, design, and testing phases with integrated security features. (Use JIRA, Trello)
- 3. Create and apply security policies such as confidentiality, integrity, and availability for a small organization. Define access controls and security mechanisms.
- 4. Set up an LDAP server and implement an access control matrix. Configure permissions and test access control enforcement within an organization. (VMware, VirtualBox, Apache Directory Studio)
- 5. Capture and analyze packets on a network to detect suspicious activity. Use Wireshark's filtering tools to identify unauthorized data transmission and possible vulnerabilities.
- 6. Use RiskWatch to assess the risk in a sample IT system. Identify potential vulnerabilities, threats, and perform a risk assessment.
- 7. Use OpenSSL to generate cryptographic keys and encrypt/decrypt messages. Use GPG to implement file and email encryption techniques.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Interpret the basics of information security.

CO2: Illustrate the legal, ethical, and professional issues in

	• •				•,											
002	information security.															
	Identify the aspects of risk management.															
	Build various standards in the Information Security System.															
CO5:	Explain security policies and protocols to implement such															
001	policies.															
	: Analyze and implement Security Techniques.															
TEXT	CT BOOKS:															
1	Michael E Whitman and Herbert J Mattord, "Principles															
	of Information Security," Vikas Publishing House, New															
	Delhi, 2003.															
2	Stamp,					atio	on S	ecu	rity	r: P1	rinci	ples	and	Pra	acti	ce.
DEEL	3rd ed.,		ley,	, 20	18.											
	FERENCES:															
1	Charles P. Pfleeger, "Security in Computing" Pearson															
	Education 5th Edition.															
2	Micki Krause, Harold F. Tipton, "Handbook of															
	Information Security Management," Vol 1-3 CRC Press															
_	LLC, 20		71	Α.	1	C	Α,	1	-\			T/		/T T	1 •	
3	Stuart I										orge	Kui	tz,	На	icki	ng
4	Exposed," Tata McGrawHill, 2003. Matt Bishop, "Computer Security Art and Science,"															
4	Pearsor	, ,	-0			прс	ner	36	2Cui	пу	AI	CH.	No	SCI	ence	₹,
5	Certifie		The second			S	reto:	me	Soc	urit	37 Dr	ofoc	cion	<u>1</u>	State	dv
3	Guide l					-					-					-
	6th Edit												ilaci		·	11,
			., <i>-</i> ,	20,		10 11		POs		<u>uri</u>		<u></u>		I	PSC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	_	_	1	1	_	1	1	1	_	2	2	1	1
	2	2	1	_	_	1	3	_	3	1	1	1	2	2	1	3
	3	3	2	1	1	2	1	1	1	2	2	1	3	3	2	1
4		3	2	1	1	1	2	1	2	1	1	-	2	3	1	2
5		2	1	-	-	3	2	2	1	2	2	3	3	2	3	1
6		3	3	2	2	2	2	2	3	2	1	2	2	3	2	3
O	verall	3	2	1	1	2	2	1	2	2	2	2	3	3	2	2
Correlation		5		1	1	_		1	_	_	_	_	,	5	_	_

23CB038	INTRUSION DETECTION,		T	P	C
	PREVENTION AND KEY	2	0	2	3
	MANAGEMENT TECHNIQUES				

COURSE OBJECTIVES:

- To understand the core concepts and mechanisms involved in intrusion detection and prevention.
- To learn about the key management techniques essential for maintaining secure communication.
- To analyse various architectures of intrusion detection systems and key management schemes.
- To explore practical applications, tools, and techniques for intrusion detection and prevention.
- To understand the role of risk quantification and Return on Investment (ROI) in security decisions.
- To examine the legal, organizational, and standardization aspects of intrusion detection and prevention systems.

UNIT I INTRODUCTION

6

Understanding Intrusion Detection – Intrusion detection and prevention basics – IDS and IPS analysis schemes, Attacks, Detection approaches –Misuse detection – anamoly detection – specification-based detection – hybrid detection Theoretical Foundations of Detection: Taxonomy of anomaly detection system – fuzzy logic – Bayes theory – Artificial Neural networks – Support vector machine – Evolutionary computation – Association rules – Clustering

UNIT II ARCHITECTURE AND IMPLEMENTATION

6

System Architectures-Centralized - Distributed - Cooperative Intrusion Detection - Tiered architecture.

UNIT III KEY MANAGEMENT TECHNIQUES

6

Key Management in Security- Importance, Types of keys: symmetric and asymmetric. Key lifecycle: generation, distribution, storage, usage, and destruction. Key Management Protocols- Diffie-Hellman Key Exchange, Public Key Infrastructure (PKI), Key Distribution Centers (KDCs).Risk

Quantification and ROI- Threat Briefing, Quantifying risk, Return on Investment (ROI)

UNIT IV | APPLICATIONS AND TOOLS

6

Tool Selection and Acquisition Process - Bro Intrusion Detection - Prelude Intrusion Detection - Cisco Security IDS - Snorts Intrusion Detection - NFR security

UNIT V LEGAL ISSUES AND ORGANIZATIONS STANDARDS

6

Law Enforcement / Criminal Prosecutions – Standard of Due Care – Evidentiary Issues, Organizations and Standardizations.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES:

- 1. Configure and run open-source Snort and write Snort signatures.
- 2. Configure and run open-source Zeek to provide a hybrid traffic analysis framework.
- 3. Understand TCP/IP component layers to identify normal and abnormal traffic.
- 4. Use open-source traffic analysis tools to identify signs of an intrusion.
- 5. Comprehend the need to employ network forensics to investigate traffic to identify a possible intrusion.
- 6. Use Wireshark to carve out suspicious file attachments.
- 7. Write tcpdump filters to selectively examine a particular traffic trait.
- 8. Craft and analyze packets using Scapy.
- 9. Use the open-source network flow tool SiLK to find network behavior anomalies.
- 10. Use your knowledge of network architecture and hardware to customize placement of IDS sensors and sniff traffic off the wire.

TOTAL: 30 PERIODS

COURSE OUTCOMES:	
A (1 1 - (1 (1	-1-1 - (- :
After completion of the course, the students will be	
CO1: Explain the fundamentals of intrusion detection, pr	evention
techniques, and key management principles.	
CO2: Analyse and implement architectures for intrusion of	
systems, including centralized, distributed, and coo	operative
systems.	
CO3: Develop key management schemes such as symme	etric and
asymmetric key management, key distribution p	rotocols,
and lifecycle management.	
CO4: Apply various intrusion detection tools, including	ng Snort,
Zeek, and other open- source IDS systems for traffic	analysis
and anomaly detection.	
CO5: Analyze and apply legal standards related to i	intrusion
detection and prevention, including issues re	lated to
evidence and due care.	
CO6: Measure the security risks and quantify the Re	eturn on
Investment (ROI) in terms of implementing	security
measures and tools.	_
TEXT BOOKS:	LOGY
1 Ali A. Ghorbani, Wei Lu, "Network Intrusion Detec	ction and
Prevention: Concepts and Techniques", Springer, 2	010.
2 Carl Enrolf, Eugene Schultz, Jim Mellander, "I	
detection and Prevention", McGraw Hill, 2004.	
REFERENCES:	
1 Paul E. Proctor, "The Practical Intrusion I	Detection
Handbook ", Prentice Hall, 2001.	
2 Ankit Fadia and Mnu Zacharia, "Intrusiion Alert	t", Vikas
Publishing house Pvt., Ltd, 2007.	
3 Earl Carter, Jonathan Hogue, "Intrusion Pr	evention
Fundamentals", Pearson Education, 2006.	

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	1	-	1	1	1	1	2	2	1	1	
2	3	3	2	2	1	3	-	3	1	1	1	2	3	1	3	
3	3	2	1	1	2	1	1	1	2	2	1	3	3	2	1	
4	3	2	1	1	1	2	1	2	1	1	-	2	3	1	2	
5	3	3	2	2	3	2	2	1	2	2	3	3	3	3	1	
6	3	3	3	3	2	2	2	3	2	1	2	2	3	2	3	
Overall Correlation	3	3	2	2	2	2	1	2	2	2	2	3	3	2	2	

VERTICAL 2 -CYBER SECURITY APPLICATIONS AND ETHICS

23CB039	MACHINE LEARNING SECURITY	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To introduce the fundamental concepts of machine learning (ML) and its applications in real-world systems.
- To understand the vulnerabilities in AI models and explore various security concerns related to machine learning.
- To investigate common attacks on machine learning models, such as adversarial attacks, data poisoning, and model inversion.
- To explore defense mechanisms for safeguarding machine learning models against potential threats.
- To provide hands-on experience with tools and techniques for securing AI models and data used in ML-based systems.

UNIT I	INTRODUCTION TO MACHINE LEARNING	6
	AND SECURITY	

Overview of machine learning techniques: Supervised, unsupervised, and reinforcement learning -Applications of machine learning: Natural language processing (NLP), computer vision, autonomous systems - Overview of AI model deployment and integration into real-world systems - Introduction to machine learning security - the importance of safeguarding models - Security concerns and challenges in deploying machine learning models.

UNIT II	VULNERABILITIES IN MACHINE LEARNING	6
	MODELS	

Threats to machine learning models: Data leakage, model inversion, and overfitting - Common attacks on machine learning systems: Evasion attacks, poisoning attacks, and membership inference-Exploiting vulnerabilities in training datasets: Data poisoning attacks and their impact on model performance -

Adversarial examples - their role in machine learning model insecurity.

UNIT III | ADVERSARIAL ATTACKS AND DEFENSES

6

Adversarial attacks: Definition, types (white-box, black-box), and techniques - Algorithms for generating adversarial examples: Fast Gradient Sign Method (FGSM), DeepFool, and others - Impact of adversarial attacks on model accuracy and robustness - Defensive techniques for adversarial attacks: Adversarial training, input preprocessing, and detection mechanisms - Exploring the tradeoffs between model accuracy and robustness.

UNIT IV | SECURING MACHINE LEARNING MODELS

6

Techniques for model security: Model watermarking, model verification, and secure model sharing -Differential privacy in machine learning: Ensuring data privacy and security during training -Model robustness: Regularization techniques, noise injection, and dropout -Secure data handling: Securing the training data pipeline and maintaining the integrity of model input - Ethical implications of securing AI models

UNIT V CASE STUDIES AND PRACTICAL APPLICATIONS

U

Real-world case studies of attacks on machine learning systems - Defense strategies used in industry and academia to secure AI models - Exploring tools for detecting adversarial examples and mitigating attacks - Best practices for securing machine learning models in production environments -Future challenges and research directions.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Implement a simple machine learning model (e.g., a decision tree or neural network) and evaluate its vulnerability to adversarial attacks.
- 2. Explore data poisoning attacks by manipulating training

- datasets and assessing the impact on model performance.
- 3. Generate adversarial examples using the Fast Gradient Sign Method (FGSM) and evaluate the model's robustness.
- 4. Implement adversarial training to defend against adversarial attacks and measure its effectiveness.
- 5. Apply different model robustness techniques (e.g., dropout, L2 regularization) to increase model stability.
- 6. Implement a defense strategy against data poisoning by identifying and filtering out harmful data points in the training set.
- 7. Perform model inversion attacks to extract private information from a machine learning model.
- 8. Implement differential privacy techniques to ensure privacy while training machine learning models on sensitive data.
- 9. Use a tool to detect adversarial inputs and test its ability to filter out adversarial examples.
- **10.** Explore model watermarking techniques to detect unauthorized use of a trained machine learning model.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basics of machine learning algorithms and their applications in various domains.
- CO2: Identify security vulnerabilities in machine learning models and datasets.
- CO3: Analyze common attacks on machine learning systems, including adversarial attacks and data poisoning.
- CO4: Develop defensive strategies to protect machine learning models from attacks and malicious interference.
- CO5: Evaluate and apply techniques such as adversarial training, model robustness, and secure data handling.

CO6:	Make use of tools to detect, mitigate, and recover from security breaches in machine learning systems.															
	security	br	eacl	nes	in r	nac	hin	e le	arni	ing	syst	ems	•			
TEX	Г ВООК	S:														
1	Moham	me	d, <i>I</i>	\nis	sh. '	"Ma	achi	ine	Lea	rniı	ng S	ecur	ity I	Prin	cipl	les
	and Pra	ctic	es"	. 1s	t ed	itio	n. V	Vil€	ey, 2	2020).					
2	Goodfe	llov	ν,	Ian	, a	nd	N	icol	as	Paj	pern	ot.	"Ac	lvei	sar	ial
	Machine Learning". 1st edition. MIT Press, 2018.															
3	Ng, An	Ng, Andrew. "Machine Learning Yearning". 1st edition.														
	DeepLearning.AI, 2018.															
4	Goodfe	Goodfellow, Ian, Yoshua Bengio, and Aaron Courville.														
	"Deep Learning". 1st ed. MIT Press, 2016.															
REFI		ERENCES:														
1	Wu, Sh	Wu, Shuang, and Heng Yin. "Security and Privacy in														
	Machine Learning". 1st edition. Springer, 2021.															
2	Russell, Stuart, and Peter Norvig. "Artificial Intelligence: A															
	Moderr	ւ Aյ	opro	oacl	n.",	4th	ed	itio	n. P	ear	son,	2020).	10	- 111	ľ.
3	Murphy	y,]	Kev	in	P.	"M	lach	ine	Le	earr	ning:	A	Pro	bab	oilis	tic
1	Perspec	tive	e.",	1st	edi	tion	ı. M	ITI	Pres	ss, 2	012.		_		Total Control	
4	Stamp,	Ma	ark.	"I)eej	o L	ear	nin	g S	ecu	rity:	Ch	alleı	nge	s aı	nd
	Solution	ıs",	1st	ed	itio	n. C	CRC	Pre	ess,	202	0.	CH	NU	LU	GI	
5	Kumari	, A1	nan	ya.	"Pr	acti	cal	Ma	chir	ne L	earr	ning	Secu	ırity	y". [lst
	edition.	Αŗ	res	s, 2	021											
	COs						I	POs			1	1	1	I	PSO	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	2	1	1	2	2	1	2	2	2	2
	2	3	2	1	1	2	3	1	3	3	2	2	3	3	3	3
	3	3 3 2 2 3 2 2 3 3 2 2 3 3 3 3 3 3 3 3														
	4	3	2	1	1	3	3	1	3	3	3	2	3	3	3	3
	5	3	3	3	3	3	3	1	3	3	2	2	3	3	3	3
	6	3	2	1	1	3	3	2	3	3	3	2	3	3	3	3
	verall	3	3	2	2	3	3	2	3	3	3	2	3	3	3	3
Cor	relation			_	_			-				_				

23CB040	SECURITY IN IoT	L	T	P	C
		2	0	2	3

- To assess IoT security risks.
- To implement appropriate security mechanisms.
- Get familiar with Security protocols.
- Explore cloud/edge infrastructures.
- To keep up with emerging security trends in the IoT domain.

UNIT I	INTRODUCTION TO IoT AND SECURITY	6
	CHALLENGES	

Overview of IoT -Definition, architecture, and components of IoT - IoT applications and domains (smart homes, healthcare, industrial IoT, etc.)-Security Challenges in IoT -Security vs. Privacy in IoT- Unique security challenges (limited resources, heterogeneity, scalability) -IoT Attack Surface and Threats- Attack vectors and types (DoS, physical attacks, side-channel attacks)

UNIT II IoT DEVICE SECURITY 6

Device Authentication and Identity Management -Secure boot and firmware integrity- Lightweight authentication protocols -Secure Storage and Key Management :-Key generation, distribution, and storage challenges- Public key infrastructure (PKI) in IoT- Access Control Mechanisms- Access control models (role-based, attribute-based).

UNIT III NETWORK SECURITY IN IoT 6

IoT Communication Protocols and Security Protocols: MQTT, CoAP, and HTTP(S)- Security features and vulnerabilities in each protocol -Encryption and Data Protection Lightweight encryption algorithms:-End-to-end encryption for resource-constrained devices-Intrusion Detection and Prevention in IoT Networks:-IDS/IPS for IoT networks, Challenges in implementing IDS/IPS on IoT devices.

UNIT IV | CLOUD AND EDGE SECURITY FOR IoT

6

IoT Cloud Security- Data storage and processing in the cloud-Cloud-specific security risks and mitigation (data breaches, DDoS) -Edge and Fog Computing Security:- Distributed security models for edge/fog, Data offloading and security policies at the edge -IoT Data Privacy and Regulatory Compliance:- GDPR, HIPAA, and other regulatory standards, Privacy-preserving techniques and anonymization.

UNIT V EMERGING TRENDS IN IoT SECURITY

6

Blockchain and Decentralized Security for IoT:-Blockchain for secure IoT transactions, Benefits and limitations of blockchain in IoT-Artificial Intelligence and Machine Learning for IoT Security:-AI/ML for anomaly detection, Behavioral analysis and automated threat response.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Set up a basic IoT network using Arduino.
- 2. Use a network scanner like Nmap to scan and identify IoT devices on a network
- 3. Use MQTT with username/password authentication to establish secure communication between devices.
- 4. Implement role-based access control (RBAC) on an IoT device using simple code.
- 5. Implement and secure MQTT communication with TLS on an IoT network.
- 6. Use Wireshark or Snort to capture and analyze traffic from IoT devices.
- 7. Use AWS IoT or Google Cloud IoT Core to store and manage IoT data.
- **8.** Use a blockchain platform (e.g., Ethereum) to create a simple decentralized application (DApp) for tracking device access and transactions.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the unique security challenges associated with IoT devices and networks.
- CO2: Identify vulnerabilities in IoT architectures and understand potential threats to IoT systems.
- CO3: Develop secure authentication, authorization, and encryption techniques.
- CO4: Apply security protocols for IoT communication, including secure handling of data at the network and application levels.
- CO5: Analyze security policies for IoT cloud and edge infrastructures, addressing privacy concerns and regulatory compliance.
- CO6: Apply emerging technologies such as blockchain and machine learning for advanced IoT security.

TEXT BOOKS:

- Hu, Fei. "Internet of Things Security: Principles and Practice." 1st Edition, CRC Press, 2017. ISBN: 978-1498739542.
- **2** Gupta, Brij B., and Ankur Gupta. "IoT Security Issues." 1st Edition, CRC Press, 2021. ISBN: 978-1032084897.

REFERENCES:

- Woungang, Isaac, Sherali Zeadally, and N. Meghanathan. "IoT Security: Advances in Authentication." 1st Edition, Springer, 2020. ISBN: 978-3030467839.
- Hu, Fei. "Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations." 1st Edition, CRC Press, 2018. ISBN: 978-1498723190.

COs						I	POs						I	PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-		-	ı	-	-	ı	-	2	ı	-
2	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
3	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
4	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
5	3	3	2	2	1	-	-	1	-	1	-	-	3	1	1
6	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
Overall Correlation	3	2	1	1	1	ı	-	1	-	1	ı	1	3	2	1

23CB041	MOBILE AND WIRELESS	L	T	P	C
	SECURITY	2	0	2	3

- To familiarize with the issues and technologies involved in designing a wireless and mobile system that is robust against various attacks
- To Gain knowledge and understanding of the various ways in which wireless networks can be attacked and tradeoffs in protecting networks.
- To understand the broad knowledge of the state-of-the-art and open problems in wireless and mobile security.
- To explore the various security issues involved in cloud computing.
- To explore the various security issues related to GPRS and 3G.

UNIT I FOUNDATIONS OF MOBILE 6 COMMUNICATION

Security Issues in Mobile Communication: Mobile Communication History, Security - Wired Vs Wireless, Security Issues in Wireless and Mobile Communications, Security Requirements in Wireless and Mobile Communications, Security for Mobile Applications, Advantages and Disadvantages of Application - level Security.

UNIT II MOBILE SECURITY 6

Security of Device, Network, and Server Levels: Mobile Devices Security Requirements, Mobile Wireless network level Security, Server Level Security. Application Level Security in Wireless Networks: Application of WLANs, Wireless Threats, Some Vulnerabilities and Attach Methods over WLANs, Security for 1G Wi-Fi Applications, Security for 2G Wi-Fi Applications, Recent Security Schemes for Wi-Fi Applications.

UNIT III	SECURING WIRELESS NETWORKS	6
Application	on Level Security in Cellular Networks: Generation	s of

Cellular Networks, Security Issues and attacks in cellular networks, GSM Security for applications, GPRS Security for applications, UMTS security for applications, 3G security for applications, Some of Security and authentication Solutions.

UNIT IV | ADHOC NETWORK SECURITY

6

Application Level Security in MANETs: MANETs, Some applications of MANETs, MANET Features, Security Challenges in MANETs, Security Attacks on MANETs, External Threats for MANET applications, Internal threats for MANET Applications, Some of the Security Solutions. Ubiquitous Computing, Need for Novel Security Schemes for UC, Security Challenges for UC, and Security Attacks on UC networks, Some of the security solutions for UC.

UNIT V | SECURITY IN ANDROID

6

Data Center Operations - Security challenge, implement "Five Principal Characteristics of Cloud Computing, Data center Security Recommendations Encryption for Confidentiality and Integrity, Encrypting data at rest, Key Management Lifecycle, Cloud Encryption Standards.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

- 1. Study of different wireless network components and features of any one of the Mobile Security Apps.
- 2. Study of the features of firewall in providing network security and to set Firewall Security in windows.
- 3. Steps to ensure Security of any one web browser (Mozilla Firefox/Google Chrome)
- 4. Study of different types of vulnerabilities for hacking a websites / Web Applications.
- 5. Analysis the Security Vulnerabilities of E-commerce services.
- 6. Analysis the security vulnerabilities of E-Mail Application
- 7. Study of different wireless network components and features of any one of the Mobile Security Apps.

											TO'	ΤΔΙ	L:30	PFI	NIO	DS
COL	JRSE OU	TC	ΟN	1ES	•						10	1 / 11	1.00		110	<u>D</u>
	After co					ne c	011r	se.	the	stu	dent	s wi	11 be	abl	e to):
CO1:	Infer kr	_														
	and its			_												
CO2:									_						uni	ter
		Apply proactive and defensive measures to counter potential threats, attacks and intrusions.														
CO3:	-	Explain about the security framework of android.														
CO4:	Build se	ecui	red	wii	ele	ss a	nd	mo	bile	ne	twor	ks t	hat o	opti	mis	sm
		Build secured wireless and mobile networks that optimism accessibility whilst minimizing vulnerability to security														
	risks.	risks.														
CO5:	Analyse the different types of vulnerability feature of															
	Mobile.															
	6: Make use of the tools for security applications in Android.															
-	T BOOKS:															
1		Pallapa Venkataram, Satish Babu: "Wireless and Mobile Network Security", 1st Edition, Tata McGraw Hill,2010.														
2	Frank A															
DEE	Pervasi		Con	npu	tınş	5,	Lst I	Edit	10n	, Ta	ita N	lcGr	aw	Hıll	200)5.
	ERENCE Basadall		NT:	-1 ₋ -	1.	Dage		C	T al.	1.00	. "1	Λ7:	1000	Ca		1
1	Randall															
	Models Hill, 20			its a	ma	301	um	JHS	1 1	St E	ann	Лι,	Iala	IVIC	Gla	1 VV
2	Bruce P			nd	Boh	Fla	eck.	. "8	:02	11 9	ec111	itv"	1c	t Fo	litic	m
_	SPD O'					, 110	CK	. 0	02.	110	ccui	ity	, 13	t Lt	ıııı	л,
3	James					ide	to	· V	Vire	less	N _i	etwo	ork	Sec	uri	tv.
	Springe															_
	Protoco									-						
								POs	_						SO	
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	ı	-	1	3	3	2	1	2	1	1
	2	3	2	1	1	2	-	-	1	1	2	2	2	3	2	1
	3	2	1	-	ı	2	-	-	-	2	3	1	2	2	2	-
	4	3	2	1	1	1	-	-	1	3	2	1	3	3	1	1
	5	3	3	2	2	1	-	_	1	2	1	1	1	3	1	1
	6	3	2	1	1	1	-	-	1	2	1	1	1	3	1	1
	verall	3	2	1	1	2	_	_	1	3	2	2	2	3	2	1
Cor	relation														_	

23CB042	CYBER PHYSICAL SYSTEM	L	T	P	C
	SECURITY	2	0	2	3

- To understand the concepts of Cyber Physical Systems (CPS) and their role in modern technologies.
- To identify the security challenges specific to CPS, including vulnerabilities and threats.
- To explore the application of cryptographic and security techniques in the protection of CPS.
- To analyze the various attack vectors and countermeasures for securing CPS.
- To design and implement secure solutions for CPS applications.

UNIT I INTRODUCTION TO CYBER PHYSICAL 6 SYSTEMS

Overview of Cyber Physical Systems (CPS) - Architectural Components of CPS - Applications of CPS in Industry (IoT, Smart Grids, Autonomous Vehicles, etc.) - Challenges in CPS Design and Development - Introduction to Security Concerns in CPS.

UNIT II	SECURITY RISKS AND VULNERABILITIES IN	6
	CPS	

Understanding Vulnerabilities in CPS Environments - Types of Attacks on CPS: Network Attacks, Physical Attacks, and Data Attacks - Threat Models for CPS - Security Requirements for CPS - Case Studies of Attacks on CPS (e.g., Stuxnet)

UNIT III | CRYPTOGRAPHIC METHODS AND | 6 | SECURITY PROTOCOLS

Cryptographic Methods for CPS Security - Public Key Infrastructure (PKI) - Authentication Protocols - Data Integrity and Confidentiality in CPS - Security Protocols for Wireless Networks and IoT Devices.

UNIT IV COUNTERMEASURES AND SECURITY IN 6 **CPS NETWORKS** Designing Secure CPS Networks - Intrusion Detection Systems (IDS) for CPS - Anomaly Detection and Behavior Analysis -Mitigation Strategies for CPS Vulnerabilities - Security in CPS Communication Protocols UNIT V DESIGNING SECURE CPS APPLICATIONS 6 Security in the Design and Implementation of CPS - Risk Assessment and Risk Management in CPS - Evaluation of Security Measures in CPS Applications - Securing Industrial Control Systems (ICS). **TOTAL: 30 PERIODS** PRACTICAL EXERCISES: 1. Model and simulate CPS using MATLAB/simulink 2. Perform simple Threat Modeling for CPS 3. Demonstrate Encryption and Decryption Techniques in CPS using Cryptographic Algorithms. 4. Perform the simulation of Cyber Attacks on CPS Networks Demonstrate the application of Intrusion Detection Systems in CPS 6. Perform Vulnerability Assessment in IoT-based CPS 7. Implement Secure Communication Protocols for CPS 8. Implement Authentication Mechanisms **CPS Applications TOTAL:30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain the architecture and components of Cyber Physical Systems (CPS).

CO2: Identify security risks, vulnerabilities, and threats in CPS

CO3: Apply cryptographic techniques and security protocols to

environments.

secure CPS applications.

CO4:	Utilize the security of CPS networks and propose
	countermeasures to mitigate vulnerabilities.
CO5:	Examine the effectiveness for secure systems for CPS.
CO6:	Analyze the impact of cyber-attacks on physical systems and
	suggest methods for threat detection and response.
TEX	T BOOKS:
1	Mayer, Robert. "Cyber-Physical Systems: Security and
	Privacy Issues." 1st Edition, Wiley, 2020.
2	Liu, Shuang, and Daniele Rizzo. "Designing Secure Cyber-
	Physical Systems." 1st Edition, Springer, 2021.
REFI	ERENCES:
1	Sutton, Michael, and Nicole D. Smith. "Advanced Cyber-
	Physical Security: Emerging Threats and Mitigation
	Strategies." 1st Edition, Elsevier, 2022.
2	Wang, Yi, et al. "Cyber-Physical Systems Security:
X	Fundamentals, Threats, and Countermeasures." 1st Edition,
Í	CRC Press, 2020.
3	Bertino, E., Sandhu, R., and Sandhu, D. "Cyber-Physical
*	System Security: Threats and Countermeasures." 1st Edition,
	CRC Press, 2021.
4	He, Haibo, and Xiang Liu. "Security in Cyber-Physical
	Systems: Techniques, Tools, and Applications." 1st Edition,
	Springer, 2019.
5	Borenstein, J., Herlihy, M., and Korzun, D. "Cyber-Physical
	Systems: A Security and Privacy Perspective." 1st Edition,
	Elsevier, 2020.
6	Zhou, W., and Li, F. "Cyber Security for Smart Cities and
	Cyber-Physical Systems." 1st Edition, Wiley, 2019.
7	Hassan, R., and Bhattacharya, S. "Principles of Cyber-
	Physical Systems Security." 1st Edition, Wiley, 2021.

Cos						I	POs						I	PSO	s
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	1	1	1	2	1	2	0	1	2	1	2
2	3	2	1	1	1	1	0	2	1	1	1	2	3	1	2
3	3	2	1	1	3	2	1	3	2	2	1	3	3	3	3
4	3	2	1	1	2	1	1	2	2	1	1	3	3	2	2
5	3	3	2	2	3	2	1	1	2	2	3	3	3	3	1
6	3	3	2	2	2	2	0	2	1	2	1	2	3	2	2
Overall															
Correlation	3	3	2	2	2	2	1	2	2	2	2	3	3	2	2

23CB043	SECURITY IN CLOUD	L	T	P	C
	COMPUTING	2	0	2	3

- To understand cloud computing architecture and the shared responsibility model in security.
- To explore various security challenges specific to cloud environments.
- To learn techniques for securing data, applications, and networks in cloud platforms.
- To examine compliance, identity management, and access control for cloud security.
- To analyse incident response, risk management, and disaster recovery strategies in cloud computing.

UNIT I INTRODUCTION TO CLOUD SECURITY 6 FUNDAMENTALS

Overview of Cloud Computing: Cloud models (public, private, hybrid), and service models (IaaS, PaaS, SaaS). Security Challenges in Cloud: Multi-tenancy, data privacy, data location, data breaches, and insider threats. Shared Responsibility Model: Division of security responsibilities between cloud providers and customers. Cloud Security Architectures: Security architecture for AWS, Azure, and Google Cloud.

UNIT II DATA SECURITY IN CLOUD 6

Data Security and Privacy: Data lifecycle, data classification, data protection mechanisms. **Encryption Techniques**: Symmetric and asymmetric encryption, key management. **Data Loss Prevention (DLP)**: Strategies to prevent data leakage. **Secure Data Storage**: Techniques and tools for secure storage in cloud environments.

UNIT III	APPLICATION AND NETWORK SECURITY IN	6
	CLOUD	

Application Security: Secure software development for cloud applications, secure APIs. **Network Security in Cloud**: Firewalls,

Intrusion Detection Systems (IDS), and Virtual Private Clouds (VPCs). **Web Application Security**: Cloud-based web security, protecting against threats such as SQL injection and XSS. **Cloud Security Tools**: Introduction to cloud-native security tools and third-party solutions

UNIT IV COMPLIANCE, IDENTITY, AND ACCESS MANAGEMENT

Compliance in Cloud: Standards like GDPR, HIPAA, and ISO/IEC 27017. Identity and Access Management (IAM): Role-based access control (RBAC), Single Sign-On (SSO), and Multi-Factor Authentication (MFA). Access Control Models: Role-based and attribute-based access control for cloud resources. Identity Federation: Integrating cloud identity with enterprise identity solutions.

UNIT V INCIDENT RESPONSE, RISK MANAGEMENT, 6 AND DISASTER RECOVERY

Incident Response in Cloud: Planning, monitoring, and responding to security incidents. Risk Management: Identifying, assessing, and mitigating risks in cloud environments. Disaster Recovery: Backup strategies, recovery models, and testing disaster recovery plans. Cloud Security Standards: Overview of standards and frameworks like CSA, NIST, and ENISA

TOTAL: 30 PERIODS

6

PRACTICAL EXERCISES:

- 1. Case study on shared responsibility models across major cloud providers.
- 2. Hands-on activity to review cloud infrastructure and identify potential security gaps.
- 3. Implementing encryption for data stored in the cloud.
- 4. Configuring and testing Data Loss Prevention (DLP) policies on a cloud platform.
- 5. Configuring firewalls and VPCs in a cloud environment.
- 6. Conducting a vulnerability assessment on a cloud-hosted

- web application.
- 7. Setting up IAM policies and roles for cloud resources.
- 8. Configuring SSO and MFA in a cloud environment.
- 9. Developing an incident response plan for a cloud infrastructure.
- 10. Configuring backup and disaster recovery settings in a cloud service.

TOTAL:30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Identify and describe the security challenges unique to cloud computing and evaluate the shared responsibility model.
- CO2: Apply techniques for data security, including encryption and secure data storage, in cloud environments.
- CO3: Examine various methods for ensuring application and network security in cloud services.
- CO4: Make use of the tools for compliance requirements, access control, and identity management systems for cloud security.
- CO5: Develop strategies for incident response and risk management specific to cloud infrastructures.
- **CO6:** Evaluate cloud security standards and implement disaster recovery strategies for cloud environments.

TEXT BOOKS:

- Mather, Tim, Subra Kumaraswamy, and Shahed Latif.
 "Cloud Security and Privacy: An Enterprise Perspective on
 Risks and Compliance." 1st Edition, O'Reilly Media, 2009.
- Winkler, Vic (J.R.). "Securing the Cloud: Cloud Computer Security Techniques and Tactics." 1st Edition, Syngress, 2011

REFI	ERENCE	S:														
1	Samani	, Ra	aj, Ji	im	Rea	vis	, an	d B	riai	n H	ona	n. "C	CSA	Gu	ide	to
	Cloud	Cloud Computing: Implementing Cloud Privacy and														
	Security	Security." 1st Edition, Syngress, 2015.														
2	Kumar,	Saı	ural	oh.	"Clo	oud	Co	mp	utir	ng: Ì	Insig	hts	into	Ne	w-E	īra
	Infrastr	ucti	ure.	" 1s	t E	ditio	on,	Wil	ey l	ndi	a, 20)11.				
3	Winkle	r, J.	R. (Vic). "5	Secu	ırin	g tl	ne C	Clou	ıd: C	lou	d Co	omp	outi	ng
	Security	Τ	ech	niq	ues	an	ıd T	Γact	ics.	" 1	st E	ditio	on, S	Syn	gre	ss,
	2011.															
4	Krutz,	Ron	ald	L.,	and	1 R	usse	ell I	Dear	n V	ines	. "C1	oud	Sec	curi	ty:
	Krutz, Ronald L., and Russell Dean Vines. "Cloud Security: A Comprehensive Guide to Secure Cloud Computing." 1st															
	Edition, Wiley, 2010												mpu	ւաւ	ς	LST
		•				uia	e to	se.	cure	2 C.	ioua	C01	mpu	ונווון	g. ₋	LST
	Edition	•				uia		POs					mpu ——		es. PSC	
		•				5				9	10	11	12			
•	Edition	, W:	iley	, 20	10		I	POs						I	PSC	s
	Edition COs	, W:	iley 2	, 20	10	5	1 6	POs		9	10			I 1	PSC 2	s
	Edition COs 1	, W	iley 2 1	3	10 4 -	5 2	6 1	POs	8	9	10			1 3	2 2)s 3
	Edition COs 1 2	1 2 3	2 1 2	3 - 1	10 4 - 1	5 2 3	6 1	POs	8	9	10			1 3 3	2 2 3)s 3 -
	Edition COs 1 2 3	, W: 1 2 3 3	2 1 2 3	3 - 1 2	10 4 - 1 2	5 2 3 3	6 1 -	POs 7	8	9	10			1 3 3 3	2 2 3 3	3 - -
	Edition COs 1 2 3 4	1 2 3 3	2 1 2 3 2	3 - 1 2	10 4 - 1 2	5 2 3 3	6 1 - 1 2	POs 7 1	8 - - 1	9	10	11		1 3 3 3 2	2 2 3 3	3 - - - 1
	Edition COs 1 2 3 4 5	1 2 3 3 3	2 1 2 3 2	3 - 1 2 1	10 4 - 1 2 1	5 2 3 3 3	1 6 1 - 1 2	POs 7 1 1	8 - - 1 1	9 2	10	11 - - - 1		3 3 3 2 3	2 2 3 3 2 2	s - - - 1

		1		
23CB044 ETHICAL PRACTICES IN OPEN	L	T	P	C
SOURCE INTELLIGENCE	3	0	0	3
COURSE OBJECTIVES:				
<u>.</u>	nd	Eth	ical	
Considerations.				
 To learn the Legal Framework for OSINT. 				
 To learn to implement OSINT Tools and 	Tech	nniq	ues	
Responsibly.				
 To assess the Impact of OSINT on Personal an 	d Co	rpo	rate	
Privacy.				
 To promote Ethical Decision-Making in OSIN 	T Pr	acti	ces.	
UNIT I INTRODUCTION TO OPEN SOURCE				9
INTELLIGENCE (OSINT)				
Definition and scope of OSINT - The role	of O	SIN	IT	in
cybersecurity, investigations, and intelligence gath				
and legal frameworks governing OSINT - Overvi	_	200		riv .
tools and techniques	CW	<i>,</i> 1 C		1
UNIT II LEGAL AND ETHICAL IMPLICATION	JS IN	J		9
OCINIT			_	10
VEER REAL				
Data privacy laws: GDPR, CCPA, and other globa	_			
Ethical guidelines for OSINT practitioners - Case s				
breaches in OSINT use - Legal challenges and respo	nsib	le C	SIN	JΤ
practices				
UNIT III OSINT TOOLS AND TECHNIQUES				9
Popular OSINT tools: Maltego, Shodan, Google	Dorl	ζS,	etc.	_
Techniques for gathering information from public				aı
Techniques for gathering information from public media, websites, forums, etc Hands-on use of O		toc	ls f	
media, websites, forums, etc Hands-on use of O	SINT			or
	SINT			or
media, websites, forums, etc Hands-on use of Ogathering, analyzing, and verifying data - Threat ana	SINT			or

OSINT for cybersecurity investigations - Using OSINT to uncover

vulnerabilities and threats - Security assessments and audits using OSINT - Real-world case studies on using OSINT for criminal investigations

UNIT V ETHICAL DECISION-MAKING IN OSINT

9

Ethical dilemmas in OSINT collection and analysis - Balancing security and privacy in OSINT practices - Decision-making frameworks in ethical OSINT use - Strategies for mitigating the risks of unethical OSINT practices

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the core principles of OSINT, including its tools, techniques, and ethical implications.
- CO2: Identify and analyze the ethical and legal challenges associated with the collection and use of open-source intelligence.
- CO3: Apply OSINT tools in a lawful and ethical manner to gather and process publicly available information.
- **CO4:** Demonstrate awareness of the impact of OSINT on personal privacy and corporate security.
- CO5: Develop strategies for mitigating the risks associated with unethical OSINT practices.
- CO6: Apply the ethical implications of using OSINT for security, investigations, and intelligence purposes.

TEXT BOOKS:

- Omand, David, Gill, Peter, and Fairbairn, Tim. Principles of Cyber Intelligence: A Practical Guide to Open Source Intelligence (OSINT). London: Springer, 2020.
- Albanese, Salvatore. Open Source Intelligence Techniques: Resources for Searching and Analyzing Online Information.
 7th ed. New York: CreateSpace Independent Publishing Platform, 2020.

REF	ERENCE	S:														
1	Miller,	Ro	obe:	rt,	an	d	Sw	een	ey,	N	Iark	. C)pen	S	Soui	ce
	Intellige	ence	e ar	nd t	he (Cyl	ers	ecu	rity	Th	reat	Lan	dsca	ape.	. Ne	ew
	York: Wiley, 2021.															
2	Zettelmeyer, Stefan, and Becerra, Carlos. OSINT															
	Investigations: The Guide to Using Open Source Intelligence															
	for Secu	for Security and Investigative Purposes. London: Routledge,														
	2022.															
3	Buchan	an,	Erio	c, ar	nd I	Row	lan	d, k	(evi	in. 🛚	The I	Esse	ntial	Gu	ide	to
	OSINT:	Fre	om	Da	ta	I	riv	acy	La	ws	to E	thic	al D	iler	nm	as.
	New Yo	ork:	Els	evi	er, 2			,								
4	Lanza, l							and	109	SIN	T: U	sino	Ope	en S	Sou	ce
	Intellige											_	-			
	ed. Bost			-				-		C	,		0			
	Wa	ER L	RE					POs		4				I	PSC	s
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1.4	2	1	À	1	2	3	2	3	2	2	2	2	2	2	3
	2	3	2	1	1	2	3	2	3	2	2	2	2	3	2	3
	3	3	2	1	1	3	2	3	2	3	3	2	3	3	3	2
	4 C/NE	2	1		_	2	3	2	3	2	2	2	3	2	2	3
	5	3	2	1	1	2	2	3	3	3	3	2	3	3	2	3
	6	3	2	1	1	2	3	2	3	3	3	2	3	2	2	3
0	verall		_	_							_		_			
	relation	3	2	1	1	3	3	3	3	3	3	2	3	3	3	3

23CB045	CYBER CRIMES AND	L	T	P	C
	INVESTIGATION PROCEDURES	3	0	0	3

- To understand the Fundamentals of Cybercrime.
- To familiarize with Legal and Ethical Standards in Cybercrime Investigations.
- To equip Students with Digital Evidence Collection Skills.
- To enhance Understanding of Network and Mobile Device Forensics,
- To address Emerging Cybercrime Threats and Investigation Techniques.

UNIT I INTRODUCTION TO CYBER CRIME

Ç

Introduction to Cyber Crime – History and Evolution– Categories of Cyber Crime– The Role of Social Engineering in Cyber Crime– Impact of Cyber Crime on Society– Cyber criminals and their Motivations– Legal Frameworks and Cyber Crime Laws– Cyber Crime Investigation and Forensic Techniques– Emerging Trends and Future Directions in Cyber Crime

UNIT II CYBER CRIME INVESTIGATION FUNDAMENTALS

9

Cyber Crime and Digital Forensics - Ethical Frameworks - Cyber Crime Investigation Methodology - Digital Evidence Collection and Preservation - Network Forensics and Log Analysis - Malware Analysis and Reverse Engineering - Incident Response and Incident Management - Investigating Cyber Crimes in Cloud and Virtual Environments - Future Challenges in Cybercrime Investigation

UNIT III DIGITAL EVIDENCE COLLECTION AND ANALYSIS

9

Introduction to Digital Evidence - Legal Considerations - Tools and Techniques - Preservation and Chain of Custody - Forensic Imaging and Data Duplication - File System Analysis and Data

Recovery - Network Forensics and Traffic Analysis - Mo	bile
Device Forensics - Data Analysis and Reporting	
LINIT IV CVRED CDIME INVESTIGATION	ο

UNIT IV CYBER CRIME INVESTIGATION PROCEDURES AND PRACTICES

Incident Response and Initial Assessment – Evidence Identification and Collection Techniques – Chain of Custody and Evidence Preservation – Forensic Analysis and Examination Techniques – Reporting and Documentation of Findings – Collaboration with Law Enforcement and Legal Teams – Future-Proofing Cyber Investigation Practices.

UNIT V FUTURE CHALLENGES IN CYBERCRIME 9 INVESTIGATION 9

Cyber Crime in Artificial Intelligence (AI) and Machine Learning (ML) Systems – Crypto currency and Block chain Forensics – Investigating Cybercrimes on the Dark Web – IOT and Smart Device Forensics – Cloud Forensics and Virtual Environments – Cyber security in Critical Infrastructure and Industrial Control Systems (ICS) – Social Media and Cyber Harassment Investigations – Quantum Computing and Its Impact on Cyber security – Policy and Regulatory Developments in Cybercrime

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain Cyber Crime and the impact of cybercrime on society.
- CO2: Explain Cyber Crime investigation fundamentals.
- CO3: Summarize digital evidence collection analysis.
- CO4: Identify Cyber Crime investigation procedures and practises.
- **CO5:** Explain challenges in cybercrime investigation.
- **CO6:** Identify future trends in cybercrime investigation.

1																
TEX	г воок	S:														
1	James, J	osh	iua	I., a	nd I	Frai	nk E	3rei	ting	ger.	"Dig	ital	Fore	nsi	cs a	nd
	Cyber C	Crin	ne:]	Prir	ncip	les	anc	l Pr	acti	ce."	1st	Edit	ion,	201	9.	
2	Sammons, John. "The Basics of Digital Forensics: The Primer															
	for Getting Started in Digital Forensics." 1st Edition, 2015.															
REFI	ERENCES:															
1	Akhgar, Babak, Andrew Staniforth, and Francesca Bosco.															
	"Cyber Crime and Cyber Terrorism Investigator's															
	Handbo	ook	." 1s	st E	diti	on,	201	4.								
2	Hayes,	Da	rrer	ı R.	"P	ract	tical	l G	uide	e to	Co	mpu	ıter	For	ens	ics
	Investig	gatio	ons	." 1s	st E	diti	on,	201	4.			-				
3	Holt, Th	nom	nas	J., A	daı	m N	1. B	ossl	er,	and	Kat	hryr	n C. S	Seig	frie	ed-
	Spellar.											•	rens	_		Αn
	Introdu	ctic	n."	1st	Edi	itio	n, 20	017		Ü						
	WOO OF	er i	RE	1			I	POs					1	1	PSC)s
9	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
3	1	2	1	À	1	2	2	A	2	1	1	-	1	2	2	2
	2	2	1	Æ	7-	2	2	7	2	1	1	_	3	2	2	2
	3	2	1	-	/-	2	2	-	2	1	1	-	2	2	2	2
	4 GIVE	3	2	1	1	2	2	Ēί	2	1	1	CH	2	3	2	2
	5	2	1	_	_	3	3	10.11	3	1	1	5111	2	2	3	3
	6	3	2	1	1	3	3	_	3	1	1		2	3	3	3
O	verall															
_	relation	3	2	1	1	3	3	-	3	1	1	-	2	3	3	3

23CB046	BEHAVIORAL ETHICS IN THE	L	T	P	C
	DIGITAL REALM	3	0	0	3
COURSE OBJ	ECTIVES:				
To under	erstand the Fundamentals of Behaviou	ral E	thic	cs ir	n a
Digital	Context.				
• To unde	erstand Ethical Dilemmas in Emerging	Tec	hno	log	ies.
• To unde	erstand the Ethical Implications of Digi	ital I	Plat	forr	ns
and Soc	ial Media.				
• To unde	erstand Digital Privacy, Security, and I	Lega	1		
Framew	vorks.				
• To unde	erstand of Ethical Challenges in Techno	olog	y.		
UNIT I IN	TRODUCTION TO BEHAVIORAL E	THI	CS		9
IN	THE DIGITAL ERA				
Overview of	Behavioural Ethics - Digital Trans	forn	nati	on	&
	cations - Psychology of Ethical Deci-				
/ BIRDE 1/	Ethics- Digital Identity and Privacy.				
UNIT II ET	HICAL CHALLENGES IN EMERGIN	IG			9
TE	CHNOLOGIES				
AI and Machi	ne Learning - Autonomous Systems -	Ri	σD	ata	& _T
	- Blockchain and Cryptocurrency		IN OF		of
	Decision Making	_	20111	CO	01
	HICAL DILEMMAS IN DIGITAL				9
	ATFORMS				
C : 1 M 1:				<u> </u>	_
	Ethics - Cyberbullying and Harass				
	and User Consent - Influencer Culture	e and	1 Et	hics	s -
	Content Moderation			1	_
UNIT IV DI	GITAL PRIVACY AND SECURITY				9
Privacy in the	Digital Age - Data Protection Laws	and	Etl	nics	-
Cyber security	y Ethics - Digital Footprint and Cons	sent	- D	igit	tal
Divide and Ad	ccess to Technology				

UNI	TV THE FUTURE OF BEHAVIORAL ETHICS IN A	9
	DIGITAL SOCIETY	
Ethic	ral Implications of Digital Futures – Ethical Frameworks	for
Tech	nology Designers - Corporate Social Responsibility in Tec	ch -
Educ	ration and Awareness - Global Perspectives on Digital Eth	ics
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able t	o:
CO1:	Explain key concepts and ethical principles related to dig	ital
	technologies.	
CO2:	Illustrate major ethical dilemmas in digital platform	ms,
	privacy, and emerging technologies.	
CO3:	Summarize the impact of digital technologies on ethic	ical
	decision-making and behaviour.	>
CO4:	Identify the ethical implications of data collecti	on,
į.	surveillance, and algorithmic biases.	
CO5:	Apply ethical principles for digital ethical dilemmas in c studies.	ase
CO6:	Explain ethical frameworks to assess solutions to priva	acv
	and cybersecurity challenges in digital environments.	
TEX	T BOOKS:	
1	Agle, Bradley D., David A. Jones, Michael W. Johnson, a	and
	Adolfo Villafiorita. "Behavioral Ethics in Organizations."	1st
	Edition, CRC Press, 2014.	
2	Quinn, Michael J. "Ethics for the Information Age."	8th
	Edition, Pearson, 2022.	
REFI	ERENCES:	
1	Kroes, Peter, and Anthonie Meijers. "The Ethics	of
	Technology: A Geometrical Approach to the Philosophy	
	Technology." 1st Edition, Springer, 2015. ISBN 9	78-
	9401773921.	

2	Howard	d, D	on,	an	d A	liso	n C	. E.	S. T	. H	arve	y. "I	Digit	al I	Ethi	cs:
	Researc	h a	nd	Pra	ctic	e."	1st	Edi	itioı	n, R	outl	edg	e, 20)19.	ISE	BN
	978-036	733	267	5.												
3	Zuboff,	Sho	osha	ana	. "T	he A	Age	of	Sur	veil	lanc	e Ca	pita	lisn	n: T	he
	Fight fo	ra!	Hu	maı	n Fu	ıtur	e at	the	Νe	ew I	ron	tier	of Po	owe	r." í	lst
	Edition	, Pu	blic	Af	fairs	s, 20	019.	ISE	3N 9	978-	1610)395	694.			
4	Coecke	lber	gh,	M	ark.	. "A	AI E	Ethi	cs."	1st	Ed	itior	ı, M	IT	Pre	ss,
	2020. IS	BN	978	3-02	625	386	54.									
5	O'Rour	ke,	Kev	vin	H.	"Etl	hics	in	the	Ag	e of	Tec	hno	logy	7." 1	lst
	Edition	, (Oxfo	ord	U	Jniv	ers	ity	Pr	ess,	, 20)22.	ISI	BN	97	78-
	0190916							J								
	0190916							POs						I	PSC	s
				3	4	5		,		9	10	11	12	1 1	PSC 2)s 3
(0190916	835). 		4	<u> </u>	I	POs	.							
	0190916 COs	5835 1	2		4	5	1 6	POs 7	8	9			12	1	2	3
	0190916 COs	1 2	2 1		4	5	6 2	POs 7 -	8 2	9			12 2	1 2	2	2
	0190916 COs 1 2	1 2 2	2 1	3 -	4 - - 1	5	6 2 2	POs 7	8 2 2	9			12 2 2	1 2 2	2	3 2 2
	0190916 COs 1 2 3	1 2 2 2	2 1 1	3 -	-	5	6 2 2 2	POs 7	8 2 2 2	9			12 2 2 2	1 2 2 2	2	3 2 2 2
	0190916 COs 1 2 3 4	1 2 2 2 3	1 1 1 2	3 1	- - - 1	5	1 6 2 2 2 2 2 2	POs 7	8 2 2 2 2	9			12 2 2 2 2	1 2 2 2 3	2	3 2 2 2 2
	0190916 COs 1 2 3 4 5	1 2 2 2 3	1 1 1 2 2	3 - - 1 1	- - - 1	5	1 6 2 2 2 2 2 2	POs 7	8 2 2 2 2	9		11 -	12 2 2 2 2 2	1 2 2 2 3 3	2	3 2 2 2 2 2

VERTICAL 3 - COMPUTER SCIENCE

23CB047	SOFTWARE ENGINEERING	L	T	P	C
	PRINCIPLES	3	0	0	3

COURSE OBJECTIVES:

- Understand the fundamentals of software engineering, including life cycle models, project management, and software quality assurance.
- Learn and apply various software design methodologies to develop robust, scalable, and maintainable software systems
- Develop skills in software testing and validation to ensure software quality and functionality.
- Gain hands-on experience with modern tools and techniques for effective software development, such as version control, debugging, and profiling tools.
- Understand real-world problems and propose software solutions with a focus on meeting functional and nonfunctional requirements while maintaining ethical and professional standards.

UNIT I	INTRODUCTION TO SOFTWARE	_ 9
10	ENGINEERING	Y
	THE PARTY OF THE P	744-5

Introduction to Software Engineering: Definition and significance , Software crisis and the need ,Phases in the software lifecycle, Relationship between software engineering and other engineering disciplines Software Development Life Cycle (SDLC) Models: Waterfall model, Iterative and incremental models, V-Model - Spiral model - Agile methodologies (Scrum, Extreme Programming) Software Process Models: Characteristics and comparisons of process models - Tailoring software process models to project needs - Software Quality Assurance: Principles of software quality -Software metrics and models for estimation - Quality control vs quality assurance.

UNIT II	SOFTWARE DESIGN AND ARCHITECTURE	9
Principles	of Software Design: Design process and princip	oles

(abstraction, modularity, hierarchy) - Cohesion and coupling in design Software Design Methodologies: Structured design - Object-Oriented Design (OOD) and UML diagrams - Data-flow diagrams (DFD) and Entity-relationship diagrams (ERD) Design Patterns: Introduction to design patterns and types (Creational, Structural, Behavioral) - Common patterns: Singleton, Factory, Observer, Adapter, etc. Software Architecture: Architectural styles and patterns (client-server, layered architecture, microservices).

UNIT III | SOFTWARE TESTING AND QUALITY ASSURANCE

9

Software Testing Fundamentals: Importance, Phases of testing, Levels of testing Testing Strategies and Techniques: Black-box testing and white-box testing – Regression testing, performance testing, and stress testing Defect Management and Bug Tracking Defect life cycle - Bug tracking tools (Jira, Bugzilla) - Reporting and managing software defects Software Quality Assurance (SQA): Techniques for ensuring software quality-- Metrics for quality evaluation (defect density, test coverage, reliability) -Continuous improvement processes (CMMI, Six Sigma)

UNIT IV | SOFTWARE PROJECT MANAGEMENT

9

Software Project Management Fundamentals: Overview, Defining project goals, scope, and deliverables, Stakeholder management Estimation and Planning: Estimation techniques- Function point analysis, use case points, Project scheduling - Gantt charts, PERT diagrams, Critical Path Method (CPM) Risk Management: Identifying and managing risks in software projects, Risk mitigation strategies, Risk management tools Configuration Management and Version Control: Version control systems (Git, Subversion) - Branching, merging, and pull requests -Continuous Integration/Continuous Delivery (CI/CD) pipelines.

UNIT V ADVANCED SOFTWARE ENGINEERING 9 TOPICS 9

Software Maintenance and Re-engineering: Types of software maintenance - Software re-engineering and reverse engineering -Legacy systems and their management Security in Software Engineering: Secure Software Development Lifecycle (SSDLC) -Principles of secure coding -Security testing and vulnerability management Software Deployment and Continuous Integration (CI): Software deployment models (cloud-based, on-premises) -Continuous integration tools (Jenkins, Travis CI, CircleCI) -Deployment strategies: Blue-Green, Canary releases, rolling deployments Ethical Issues in Software Engineering: Ethical development -Professional considerations in software responsibilities of a software engineer -Legal and societal implications of software (e.g., data privacy, intellectual property)

TOTAL: 45 PERIODS

RSE OUTCOMES:
After completion of the course, the students will be able to:
Demonstrate a clear understanding of software engineering
principles, methodologies, and life cycle models.
Apply software design patterns and architectural principles
to create scalable and maintainable software systems.
Develop and implement effective software testing strategies
to ensure software reliability and quality.
Solve the software projects effectively by applying project
management tools and techniques.
Apply the industry-standard tools for version control,
debugging, and software maintenance.
Analyze ethical and professional issues in software
engineering and make decisions that align with industry
standards.

		_														
TEX	Г ВООК	S:														
1	Somme	rvil	le,	Ian	l. "	Soft	wa	re	Eng	gine	erin	g."	10th	Ec	ditic	n,
	Addiso															
2	Pressma	an,	Rog	ger	S. "	Sof	twa	re l	Eng	ine	ering	g: A	Prac	ctiti	one	r's
	Approa		" 8t]	h Eo	ditio	on, i	Mc(Gra	w-I	Hill,	200	5.				
REF	ERENCE	S:														
1	Boehm,	В	arry	y I	N.	"So	oftw	are	E	ngi	neer	ing	Eco	ono	mic	s."
	Prentice	e - H	all,	198	1.											
2	Brooks,	Fre	ede	rick	Р.	"Th	ıe N	/Iytl	hica	1 N	[an-]	Mon	th: I	Essa	iys	on
	Softwar	e	Eng	gine	erir	ıg."	A	nni	ver	sary	7 E	ditic	n,	Ado	disc	n-
	Wesley															
3	Larmar															٩n
	Introdu														n a	nd
	the Uni															
4	Beizer,								g T	ech	niqu	ıes."	2nc	l Ec	ditic	n,
	Van No					_							-	-		
5	IEEE. "						- 400		- 40	e Eı	ngin	eerii	ng -	Sof	twa	re
	Life Cy									1			4 17	1		ľ.
6	Schach,											g: P	rinc	iple	s a	nd
	Practice		_										1		The same	
7	McCon															
	of Soft	war	e C	Con	stru	ıctio	n."	2n	id I	Edit	ion,	Mi	cros	oft	Pre	ss,
	2004.	11011	-			AFF	LIAT			NA U	NIVER	SITY	AUT	ONE	MOU	Ç.
١ ,	COs		•	•				POs	,	•				I	PSC	s
·	205	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	1	1	3	2	2	2	3	2	2	3
	2	3	2	1	1	3	2	1	3	2	1	3	2	3	3	3
	3	3	2	1	1	3	2	2	3	3	1	2	3	3	3	3
	4	3	2	1	1	3	3	2	3	3	2	3	3	3	3	3
	5	3	2	1	1	3	3	2	3	3	3	3	2	3	3	3
	6	3	3	2	2	2	3	2	3	2	3	2	3	3	2	3
	verall	3	2	1	1	3	3	2	3	3	2	3	3	3	3	3
Cor	relation		_	1	-			_			_					

23CB048	COMPUTATIONAL THEORY	L	T	P	C
		3	0	0	3

- Understand the foundational principles of computation, including automata theory, formal languages, and computational complexity.
- Learn and design various computational models, such as finite automata, pushdown automata, and Turing machines, and understand their capabilities and limitations.
- Examine the concepts of decidability, computability, and complexity to evaluate the solvability of computational problems.
- Explore the relationships between different classes of languages and automata, including regular languages, context-free languages, and recursively enumerable languages.
- Understand formal methods in problem-solving and algorithm design, understanding how theory informs practical computational tasks.

UNIT I INTRODUCTION TO AUTOMATA THEORY 9

Basic Concepts of Computation - Definition of Automata, Formal Language, and Grammars - Classification of Languages (Regular, Context-Free, Recursive, etc.) -Chomsky Hierarchy of Languages Deterministic Finite Automata (DFA) - Formal Definition of DFA - Language Acceptance by DFA - Properties and Minimization of DFA Non-Deterministic Finite Automata (NFA) -Definition and Conversion of NFA to DFA -Equivalence of NFA and DFA

UNIT II	REGULAR LANGUAGES AND REGULAR	9
	EXPRESSIONS	

Regular Expressions - Definition and Construction of Regular Expressions -Equivalence of Regular Expressions and Finite Automata - Operations on Regular Expressions (Union,

Concatenation, Kleene Star) Regular Languages - Closure Properties of Regular Languages -Pumping Lemma for Regular Languages -Applications of Regular Languages -Lexical analysis and string matching algorithms

UNIT III | CONTEXT-FREE LANGUAGES AND | PUSHDOWN AUTOMATA

9

Context-Free Grammars (CFG) - Definition and Derivations - Chomsky Normal Form and Greibach Normal Form - Parsing of Context-Free Languages (LL, LR Parsing) Pushdown Automata (PDA) - Definition of PDA - Equivalence of CFGs and PDAs - PDA and Language Acceptance Pumping Lemma for Context-Free Languages - Pumping Lemma and its applications to Context-Free Languages

UNIT IV TURING MACHINES AND COMPUTABILITY

9

Turing Machines (TM) - Formal Definition - Variations of Turing Machines (Multi-Tape, Non-Deterministic Turing Machines)-Church-Turing Thesis and its implications Decidability and Computability-Decidable vs. Undecidable Problems -Halting Problem and its implications Reducibility and Undecidability - Rice's Theorem and its applications - Examples of Undecidable Problems

UNIT V COMPUTATIONAL COMPLEXITY

9

Complexity Classes - P, NP, NP-Complete, NP-Hard Classes and their relationship - Cook-Levin Theorem and NP-Completeness Time and Space Complexity - Big-O, Big- Ω , and Big- Θ Notations - Space Complexity and PSPACE Complexity of Some Problems - Examples of NP-Complete Problems (e.g., Traveling Salesman Problem, SAT) - Approximation Algorithms and Heuristics

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Demonstrate the fundamental concepts of automata theory

	and formal languages, including the classification of
	languages and automata.
CO2:	Analyze and Design the deterministic and non-deterministic
	finite automata, and apply regular expressions to model
	languages.
CO3:	Apply pushdown automata to model context-free languages
	and grammars.
CO4:	Illustrate the turing machines and their significance in
	computability and decidability.
CO5:	Analyze the complexity of computational problems, using
	the classes P, NP, and NP-Complete, and apply these
	concepts to real-world problems.
CO6:	Apply formal methods and the theory of computation to
	solve practical problems related to language recognition,
	parsing, and problem-solving in the field of cybersecurity
TEX	T BOOKS:
1	Sipser, Michael. "Introduction to the Theory of
	Computation." 3rd Edition, Cengage Learning, 2012.
2	Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman.
	"Introduction to Automata Theory, Languages, and
	Computation." 3rd Edition, Addison-Wesley, 2006.
	ERENCES:
1	Kozen, Dexter. "Automata and Computability." Springer,
	1997.
2	Ullman, Jeffrey D. "Introduction to Automata Theory,
	Formal Languages, and Computation." 1st Edition,
	Addison-Wesley, 1989.
3	Arora, Sanjeev, and Boaz Barak. "Computability and
	Complexity Theory." 2nd Edition, Springer, 2009.
4	Goldrei, David. "Propositional and Predicate Calculus: A
	Model of Argument." Routledge, 1996.
5	Linz, Peter. "An Introduction to Formal Languages and
	Automata." 6th Edition, Jones & Bartlett Learning, 2011.

6	Papadimitriou, Christos H. "Computational Complexity."
	Addison-Wesley, 1994.

7	Lewis, Harry R., and Christos H. Papadimitriou. "Elements
	of the Theory of Computation." 2nd Edition, Prentice Hall,
	2002.

COs	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	1	-	1	2	2	2	1	3	2	1	2
2	3	3	2	2	1	2	1	2	2	1	2	3	3	1	2
3	3	2	1	1	1	2	1	2	3	1	2	3	3	1	2
4	2	1	-	-	1	2	1	2	3	2	2	3	2	1	2
5	3	3	2	2	2	3	2	3	3	2	3	3	3	2	3
6	3	2	1	1	2	3	2	3	3	2	3	3	3	2	3
Overall Correlation	3	2	1	1	2	2	2	3	3	2	3	3	3	2	3
400		The state of	180			- 41	10	- 10		1	277	1000		1	

COLLEGE OF TECHNOLOGY

23CB049		DESIGN OF COMPILERS	L	T	P	C
			3	0	0	3
COURSEC	BJ	ECTIVES:				
• To u	nde	erstand the principles and components	inv	olve	ed i	n
the c	lesi	gn and implementation of compilers.				
 To ex 	kplo	ore the various phases of a compiler, in	nclu	ding	5	
lexic	al a	nalysis, syntax analysis, semantic anal	ysis	,		
optin	niz	ation, and code generation.				
• To le	arr	the design and implementation techn	ique	s fo	r	
lexic	al a	nalyzers, parsers, and syntax-directed	trar	ısla	tior	l.
• To d	eve	lop skills in optimizing code for better	per	forr	nar	ıce,
cons	ide	ring both space and time complexities.				
 To g 	ain	practical experience in building a simp	ple c	om	pile	r
usin	g st	andard tools and techniques.				
UNIT I	IN	FRODUCTION TO COMPILERS				9
Definition	anc	l role of a compiler -Phases of a con	npile	r: 1	exic	al
analysis, s	ynt	ax analysis, semantic analysis, optin	nizat	ion	, aı	nd
code gener	atio	on -Compiler construction tools and	tech	nniq	ues	; -
Introduction	n t	o lexical analysis and finite automata	-Ove	ervi	ew	of
		essing systems	AUTO	NO!	40U	
UNIT II	LEX	XICAL ANALYSIS				9
Role and fu	ınc	tion of a lexical analyzer - Regular exp	oress	sion	s aı	nd
		ra -Design and construction of a lexic				
		is tools (e.g., Lex) - Error handling in le		-		
	•	NTAX ANALYSIS				9
Role and fo	ınc	tion of a syntax analyzer - Context-fr	ee g	ran	nma	rs
		ees -Parsing techniques: LL, LR, and S	_			
		d bottom-up parsing strategies -Parsir				
_		ools (e.g., Yacc)	-			
UNIT IV	SEI	MANTIC ANALYSIS AND SYNTAX				9
	DII	RECTED TRANSLATION				

Role of semantic analysis in compiler design - Symbol tables, type checking, and scope management - Syntax-directed translation and intermediate representations - Abstract syntax trees (ASTs) - Type systems and type inference.

UNIT V | CODE GENERATION AND OPTIMIZATION

9

Code generation techniques: target machine, instruction selection, and register allocation -Intermediate code generation (e.g., Three-address code) -Optimization techniques: loop optimization, inlining, constant folding, and dead code elimination - Code generation tools and techniques -Overview of modern compiler construction and advanced topics in compiler optimization

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain about front end and back end phases of compilation process and passes of compiler
- CO2: Construct a lexical analyzer for a sample language using LEX tool
- **CO3:** Develop a Parser using different parsing algorithms.
- CO4: Construct Syntax Directed Translation Scheme (SDT) for semantic rules and apply intermediate code generation algorithm to generate code sequence
- CO5: Explain run time environment and issues in code generation
- **CO6:** Apply the Code Optimization Techniques to improve the performance of the code.

TEXT BOOKS:

- Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. "Compilers: Principles, Techniques, and Tools." 2nd ed. Boston: Addison-Wesley, 2006.
- 2 Sebesta, Robert W. "Programming Languages: Concepts and Constructs". 2nd ed. Boston: Addison-Wesley, 1996.

REF	ERENCE	S:														
1	Ullman	, Je	ffre	уΓ). "]	Eler	nen	ts c	of C	om	pile	· De	sign	." 1	st e	ed.
	Cambri	dge	e, M	A:	Car	nbr	idge	e Uı	nive	ersi	ty Pı	ess,	1999	9.		
2	Dragon	, Je	ffre	y D	. "(Com	pile	ers:	Pri	ncij	oles	and	Prac	ctice	2", î	lst
	ed. Bost	ton	Ac	ldis	on-	We	sley	, 19	978.							
3	Knuth,	Do	nal	d E	Ξ. "	The	• A	rt c	of C	Com	pute	er P	rogr	am	mir	ıg:
	Volume	1	, F	unc	lam	ent	al	Alg	orit	hm	ıs."	3rd	ed.	В	osto	n:
	Addiso	n-V	Vesl	ey,	199	7.										
4	Muchni	ick,	Ste	eph	en	S. '	"Ac	lvaı	nce	d C	Comp	oiler	De	sigı	n a	nd
	Implem	ent	atio	n "	, Sa	n F	ran	cisc	o: N	/lor	gan	Kau	fmaı	nn,	199	7.
5	Appel,									-		-				
	C/Java	/M	L",	2n	d e	d. (Can	nbri	dge	e: C	Camb	oride	ge U	niv	ers	ity
	Press, 2															
6	Fischer,							- 455		- 4				raft	ing	a
	Compil		7000	PROL		-	_	207	- 40				-		V	
7	Louden						- T	100		-				_	es a	nd
	Practice	e." 1	st e	ed. I	Bost	ton:				-Cu	mm	ings	, 199			
	COs		10	7/	1			Os							SC	
	100	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 VE	2	1	-	-	-	-	ED II	1	2	NIVER	SHY	3	2	-	1
	2	3	2	1	1	3	-	-	2	3	NIVER	SHY	2	3	3	
		_		_	_	_	_		_		-		_	_	_	2
	3	3	2	1	1	3	1	-	1	3	1	1	2	3	3	1
	3	3	2	1	1	3	1	-	2	3	1	1	2	3	3	1 2
	3 4 5	3 3 2	2 2 1	1	1	3	-	-	2	3 2	1	1	2	3	3	1 2 1
	3 4 5 6	3	2	_	_		1 - - 1		2	3			2	3		1 2
	3 4 5	3 3 2	2 2 1	1	1	3	-	-	2	3 2	1	1	2	3	3	1 2 1

23CB050	OBJECT ORIENTED ANALYSIS	L	T	P	C
	AND DESIGN	3	0	0	3

- To introduce the fundamental concepts of object-oriented analysis and design (OOAD) and how they are used to model and design software systems.
- To understand the principles of object-oriented programming, including inheritance, polymorphism, encapsulation, and abstraction, and how they influence system design.
- To learn the methodologies for modeling and representing real-world entities using class diagrams, interaction diagrams, and state diagrams.
- To understand and apply the Unified Modeling Language (UML) for software system design and specification.
- To enhance problem-solving skills by designing objectoriented solutions for real-world applications and analyzing the effectiveness of the design.

UNIT I INTRODUCTION TO OBJECT-ORIENTED 9 ANALYSIS AND DESIGN

Overview of Object-Oriented Paradigm -Characteristics of object-oriented systems: Encapsulation, Inheritance, Polymorphism, Abstraction -Benefits and challenges of OOAD -Comparison between structured analysis and object-oriented analysis Object-Oriented Analysis vs. Design -Overview of analysis and design process -Phases in object-oriented software development: Requirements gathering, analysis, design, and implementation.

UNIT II	OBJECT-ORIENTED DESIGN PRINCIPLES	9
	AND MODELS	

Key Object-Oriented Design Principles: SOLID principles - Single responsibility, Open/Closed, Liskov substitution, Interface segregation, Dependency inversion, Coupling, Cohesion, and

Encapsulation -Introduction to UML (Unified Modeling Language): Use case diagrams, Class diagrams, Object diagrams, Sequence and Collaboration diagrams, Activity and State diagrams.

UNIT III OBJECT-ORIENTED ANALYSIS USING UML

9

Requirements Gathering and Use Case Analysis:Use Case diagrams and actors, Identifying system requirements and functionality using use cases -Domain Model and Class Modeling: Class diagrams: Classes, attributes, methods, and associations, Relationship types: Generalization, Aggregation, Composition, and Association, Object Modeling: Object Interaction and behavior modeling using interaction diagrams -Communication and Sequence Diagrams for object interactions.

UNIT IV DESIGN PATTERNS AND PRINCIPLES

9

Introduction to Design Patterns: Overview and types of design patterns: Creational, Structural, Behavioral - Example patterns: Singleton, Factory, Observer, Strategy, Composite -Object-Oriented Design Principles and Best Practices: Design for maintainability, flexibility, and scalability - Refactoring and improving designs -Avoiding common design mistakes Applying Design Patterns in Real-World Systems: Case studies of applying design patterns.

UNIT V OBJECT-ORIENTED DESIGN AND IMPLEMENTATION

9

From Design to Implementation: Translating UML diagrams into code (class structure, inheritance, polymorphism) - Object creation and management -Software Quality and Testing in Object-Oriented Design: Unit testing in OO systems -Mocking, Stubbing, TDD (Test-Driven Development) -Refactoring and code reviews Performance considerations in OO design: Optimization techniques and trade-offs in OO systems -Managing system complexity and ensuring reusability.

	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the key principles of object-oriented analysis and
	design, including abstraction, encapsulation, inheritance,
	and polymorphism.
CO2:	Develop and model systems using UML diagrams,
	including use case diagrams, class diagrams, sequence
	diagrams, and activity diagrams.
CO3:	Apply object-oriented analysis of real-world problems and
	translate them into object-oriented models.
CO4:	Make use of object-oriented programming languages and
	frameworks to implement object-oriented designs using.
CO5:	Apply design patterns to improve the flexibility, scalability,
	and maintainability of object-oriented systems.
CO6:	Examine and refactor object-oriented designs for better
	performance, maintainability, and reuse.
TEX	T BOOKS:
1	Booch, Grady, James Rumbaugh, and Ivar Jacobson. "The
	Unified Modeling Language User Guide". 2nd ed. Boston:
	Addison-Wesley, 2005.
2	Jacobson, Ivar, Grady Booch, and James Rumbaugh.
	"Object-Oriented Software Engineering: A Use Case Driven
	Approach", Boston: Addison-Wesley, 1999.
REFI	ERENCES:
1	Pressman, Roger S. "Software Engineering: A Practitioner's
	Approach", 8th ed. New York: McGraw-Hill, 2005.
2	Gamma, Erich, Richard Helm, Ralph Johnson, and John
	Vlissides. "Design Patterns: Elements of Reusable Object-
	Oriented Software", Boston: Addison-Wesley, 1994.
3	McDonald, R. J. "Object-Oriented Analysis and Design with
	Applications", 2nd ed. Reading, MA: Addison-Wesley, 1997.

4	Coad,	Peter,	and	Edward	Yourdon.	"Object-Oriented
	Design	ı: Object	-Orie	nted Mode	ling and De	esign", Englewood
	Cliffs,	NJ: Prer	ntice H	Iall, 1991.		

- Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen. "Object-Oriented Modeling and Design", Englewood Cliffs, NJ: Prentice Hall, 1991.
- 6 Larman, Craig. "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2004.
- Fowler, Martin. "UML Distilled: A Brief Guide to the Standard Object Modeling Language", 3rd ed. Boston: Addison-Wesley, 2003.

COs	ER L	RE	A.			I	POs		4			10	I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	y-	1	2	1	1	2	2	2	1	3	2	2	2
2	3	2	1	1	2	1	1	2	3	2	2	3	3	2	2
3	3	2	1	1	2	1	1	2	3	2	2	3	3	2	2
4 ONE	3	2	1	1	3	2	2	3	3	3	3	3	3	3	3
5	3	2	1	1	3	2	2	3	3	3	3	3	3	3	3
6	3	3	2	2	3	2	1	3	3	3	3	3	3	3	3
Overall Correlation	3	2	1	1	3	2	2	3	3	3	3	3	3	3	3

23CB051	SOFTWARE TESTING	L	T	P	C
	PRINCIPLES	3	0	0	3
COURSE	OBJECTIVES:				
• To in	ntroduce the fundamental concepts and I	orino	cipl	es c	of
softv	vare testing.				
• To]	provide hands-on knowledge of various	us s	oft	war	e
testi	ng techniques and methodologies.				
• To 1	nelp students develop skills to design e	ffect	tive	tes	st
case	s and identify software defects.				
• To €	nsure students understand the lifecycle	of s	oft	war	e
testi	ng and quality assurance.				
• To €	enable students to integrate testing in t	he s	oft	war	e
deve	elopment life cycle (SDLC) and Agile meth	nodo	log	ies.	
UNIT I	INTRODUCTION TO SOFTWARE TES	TIN	G		9
Overview	of Software Testing - Importance and	l Be	nef	its	of
Software T	<mark>esting -</mark> Software Development Life Cycle	e (SI	DLC	c) aı	nd
Testing Lif	<mark>e Cycle -</mark> Role of Testing in Quality Assura	nce -	-Ty	pes	of
Testing (M	anual vs Automated)				
UNIT II	TESTING METHODOLOGIES AND	NO	LO	G)	9
	TECHNIQUES AFFILIATED TO ANNA UNIVERSITY			40U	
Black-box	Testing, White-box Testing, and Grey-b	ox	Tes	ting	; -
Equivalend	e Class Partitioning and Boundary Valu	ıe A	nal	ysis	s -
Explorator	y Testing -Regression Testing -Acceptance	e Tes	sting	3	
UNIT III	TEST DESIGN AND TOOLS				9
Test Case	Design Techniques - Test Data Pre-	para	tion	ı-Te	est
Execution	and Result Evaluation - Introduction to	Αι	ıtor	nat	ed
Testing To	ools (e.g., Selenium, QTP) -Performanc	e a	nd	Lo	ad
Testing.					
UNIT IV	SOFTWARE TESTING TYPES AND				9
	STRATEGIES				

Unit Testing, Integration Testing, System Testing - Smoke Testing,

Sanit	y Testing -User Acceptance Testing (UAT) -Alpha and Beta
	ng -Test Planning and Test Strategy
UNI	0 0
	CONCEPTS
Risk-	Based Testing - Test Automation Frameworks -Continuous
Integ	gration (CI) and Continuous Testing - Security Testing and
Vuln	erability Assessment -Ethics in Software Testing and
Profe	essionalism
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain and apply fundamental software testing concepts
	and principles.
CO2:	Develop effective test cases using various testing techniques
	and tools.
CO3:	Examine software quality using manual and automated
	testing methods.
CO4:	Identify and report software defects and provide detailed
	test reports.
CO5:	Illustrate the integration of testing within SDLC and Agile
	frameworks.
CO6:	Apply ethical behaviour and professionalism in the practice
	of software testing.
TEXT	T BOOKS:
1	Beizer, Boris. "Software Testing Techniques". 2nd ed. New
	York: Van Nostrand Reinhold, 1990.
2	Kaner, Cem, Jack Falk, and Hung Q. Nguyen. "Testing
	Computer Software". 2nd ed. New York: Wiley, 1999.
	ERENCES:
1	Pressman, Roger S. "Software Engineering: A Practitioner's
	Approach". 9th ed. New York: McGraw-Hill, 2014.

2	Ammar	ın,	Pau	ıl, a	nd	Jeff	Of	futt	i. "	Intı	odu	ctio	n to	Sof	twa	ire
	Testing	.",	2nd	l ed	. Ca	mb	rid	ge:	Car	nbr	idge	Uni	vers	sity	Pre	ss,
	2016.															
3	Jorgens	en,	Pa	ul	C.	" (Soft	waı	e '	Tes	ting:	A	Cr	afts	ma	n's
	Approa	ch.	" , 4	ŀth €	ed.	Вос	a Ra	atoı	n, F	L: C	CRC	Pres	s, 20)13.		
4	Sebesta	, Ri	icha	ırd	W.	" P	rog	ran	ımi	ng	Lang	guag	ges:	Cor	ncej	ots
	and Co	nstr	uct	s. "	, 3r	d ec	1. B	osto	n: A	Add	lisor	ı-We	esley	, 20	000.	
5	Somme	rvil	le, l	lan.	" S	oftv	vare	e Er	ngin	eer	ing.′	″, 10	th e	1. B	osto	n:
	Addiso	n-W	Vesl	ey,	201	5.										
6	Myers,	Gle	enfo	rd	J. "	The	Aı	t o	f Sc	oftw	are	Test	ting	', 31	rd e	ed.
	Hoboke	en, I	NJ:	Wil	ey,	201	1.									
7	Black, I	Rex.	″N	1an	agii	ng 1	the	Tes	ting	g Pr	oces	ss: P	racti	ical	Too	ols
	and Te	chr	niqu	ıes	for	M	ana	gin	g I	Har	dwa	re a	nd	Sof	twa	are
	Testing	", 3	rd e	ed. l	Nev	v Y	ork:	W	iley	, 20	09.		5			
	COSPOW	eR L	REA	A.			I	POs	1	4			10	I	PSC	s
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	/-	1	3	2	1	2	1	1	2	2	2	3	2
	2	3	2	1	1	3	3	1	2	2	2	2	2	3	3	2
1	3	3	3	2	2	3	2	1	3	2	1	2	2	3	3	3
	4 SINE	3	2	1	1	3	1	2	2	1	2	2	3	3	3	2
	5	2	1	-	-	3	3	1	3	2	2	2	1	2	3	3
	6	3	2	1	1	1	1	2	1	3	3	2	3	3	1	1
0	verall	3	2	1	1	3	2	2	3	2	2	2	3	3	3	3
Cor	relation	3	~	1	1	3	_	_	3	~	_	_	3	3	3	3

23CB052	DATAWAREHOUSING	L	T	P	C
		3	0	0	3
COURSE OBJ	ECTIVES:				
To intro	oduce the fundamental concepts and arc	chite	ectu	ıre	of
	arehousing.				
*	ride hands-on experience in designing, naging Data Warehouses.	dev	elo	pin	g,
	erstand various Data Modeling techniq	ues	us	ed	in
	arehousing.				
	relop skills in Extract, Transform, les and data integration.	Load	d (ET	L)
	plore various tools and technologie enting Data Warehouses in a business o				or
	TRODUCTION TO DATA WAREHOU			_	9
Definition of	Data Warehousing -Components	of	a	Da	ıta
- 117711 -	ata Source, ETL, Data Warehouse, Data	400			
Warehouse A	rchitecture - Types of Data Warehouses	s - C	DL <i>F</i>	ΛP ·	vs
OLTP Syst <mark>ems</mark>					
UNIT II DA	TA WAREHOUSE DESIGN				9
Data Wareho	use Design Steps - Star Schema and	l Sr	OW	fla	ke
~ C 4- 2-4 (2)	t Tables and Dimension Tables - Dat				
	signing for Performance	.u 11	100	CIII	-6
-	TRACT, TRANSFORM, LOAD (ETL)				9
	OCESS				
Introduction to	o ETL ETL Architecture and Tools - Dat	ta Ex	xtra	ctio	on
Techniques -I	Data Transformation Rules and Techni	que	s -	Da	ıta
Loading Strate	egies	_			
UNIT IV DA	TA MINING AND OLAP TECHNOL	OG	IES		9
Introduction	to OLAP (Online Analytical Processin	ng)	- ()LA	ŀΡ
Cube Design -	- Data Mining in Data Warehousing - I	Data	M	iniı	ng
					-
Techniques fo	or Pattern Recognition -Applications of	: OI	LAF	ar ar	nd

UNIT V DATA WAREHOUSING TOOLS AND CASE 9 **STUDIES** Popular Data Warehousing Tools: Informatica, Microsoft SQL Server, Oracle Data Warehouse - Case Studies in Data Warehousing -Real-time Applications of Data Warehouses in Industries - Issues and Challenges in Data Warehousing. TOTAL: 45 PERIODS **COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the concept of Data Warehousing and its components. CO2: Develop Data Warehouses using appropriate schemas and data models. CO3: Apply ETL processes to extract, transform, and load data effectively. CO4: Apply OLAP and Data Mining techniques in Data Warehousing. CO5: Make use of popular tools and technologies to develop and manage Data Warehouses. CO6: Apply Data Warehousing concepts to solve real-world business and technological problems. **TEXT BOOKS:** Inmon, William H. "Building the Data Warehouse". 4th ed. 1 Wiley, 2005. Kimball, Ralph, and Margy Ross. "The Data Warehouse 2 Toolkit: The Definitive Guide to Dimensional Modeling". 3rd ed. Wiley, 2013. REFERENCES: Agrawal, Rajeev, and Sunita Gupta. "Data Warehousing and 1 Methodologies, Mining: Concepts, Tools, and Applications." 1st ed. Idea Group Publishing, 2005. Thuraisingham, Bhavani. "Data Mining: Techniques and Applications for Cyber Security". CRC Press, 2021.

	1																					
3	Golfare	lli,	M.	, aı	nd	S.	Riz	zi.	"D	ata	Wa	reho	use	D	esig	n:						
	Modern	ı Pr	inci	ple	s an	d N	leth	odo	olog	gies'	". M	cGra	w-F	Hill,	200)9.						
4	Sarda,	Nir	aj. '	'Da	ta V	Var	eho	usi	ng i	in t	he A	ige (of Bi	g I)ata	ı".						
	Elsevie	r, 20	014.																			
5	Linsted	t, I	Dan,	and	d M	lich	ael	Ols	chiı	nke	e. "T	he I)ata	Va	ult:	A						
	Method	lolo	ogy	for l	Ente	erpr	ise	Dat	аМ	lode	eling	z". 1s	st ed	. M	org	an						
	Kaufma	ann	, 20	15.																		
6	Dutt, B	. "]	Data	a W	are	hou	ısin	g a	nd	OL	AP"	. 1st	ed.	Pro	enti	ce						
	Hall, 20							_														
7	Sanders	S,	Wil	William H. "Database Systems: A Practical																		
										-	Sanders, William H. "Database Systems: A Practical											
	11000	Approach to Design, Implementation, and Management".																				
				5th ed. Pearson, 2017.																		
	5th ed.				_			POs		.1011	, an	a M	anaş		PSC							
					_					9	, an	11	12									
	5th ed.	Pea	rso	n, 2	017.		I	POs	ī					I	PSC	s						
	5th ed.	Pea	arson 2	n, 2	017.	5	1 6	POs	8	9	10		12	I 1	PSC 2)s 3						
	5th ed. COs	Pea 1 2	2 1	3	017. 4	5	6 1	POs 7 1	8	9	10 1		12 2	1 2	2 1)s 3 1						
	5th ed. COs 1 2	Pea 1 2 3	2 1 2	3 - 1	017. 4 - 1	5 1 1	6 1 2	POs 7 1 1	8 1 2	9	10 1 1		12 2 3	1 1 2 3	2 1 1	3 1 2						
	5th ed. COs 1 2 3	Pea 1 2 3	2 1 2 2	3 - 1	017. 4 - 1 1	5 1 1	1 6 1 2 1	POs 7 1 1 1	8 1 2 2	9	10 1 1 1		12 2 3 2	1 2 3	2 1 1	3 1 2 2						
	5th ed. COs 1 2 3 4	Pea 1 2 3 3	2 1 2 2 2	3 - 1 1	017. 4 - 1 1	5 1 1 1	1 6 1 2 1 2 2	POs 7 1 1 1 1	8 1 2 2 2	9	10 1 1 1 1		12 2 3 2 3	1 1 2 3 3	2 1 1 1	9s 3 1 2 2 2						
	5th ed. COs 1 2 3 4 5	Pea 1 2 3 3 3	2 1 2 2 2 2	3 - 1 1 1	017. 4 - 1 1 1	5 1 1 1 -	1 6 1 2 1 2 2	POs 7 1 1 1 1 2	8 1 2 2 2 2	9	10 1 1 1 1 1	11 - - -	12 2 3 2 3 3	1 2 3 3 3	2 1 1 1 -	3 1 2 2 2						

23CB053	FUNDAMENTALS OF	L	T	P	C
	DISTRIBUTED COMPUTING	3	0	0	3

- To introduce the fundamental concepts and models of distributed computing.
- To provide a comprehensive understanding of the architecture, components, and protocols in distributed systems.
- To explore the various challenges faced in the design, implementation, and management of distributed systems.
- To equip students with hands-on experience in the design and development of distributed applications.
- To analyze security, fault tolerance, and scalability issues in distributed systems.

UNIT I INTRODUCTION TO DISTRIBUTED 9 COMPUTING

Definition and Characteristics of Distributed Systems - Types of Distributed Systems: Client-Server, Peer-to-Peer, Cloud Computing - Key Concepts: Transparency, Scalability, Fault Tolerance, Concurrency - Communication in Distributed Systems: RPC, RMI, Message Passing - Examples of Distributed Systems: Cloud, P2P, Distributed Databases

UNIT II DISTRIBUTED SYSTEM ARCHITECTURE 9

Layered Architecture of Distributed Systems - Communication Protocols: TCP/IP, HTTP, and Message Queuing - Distributed Objects and Remote Method Invocation (RMI) - Distributed File Systems (DFS): NFS, AFS - Middleware and Services in Distributed Systems

UNIT III | SYNCHRONIZATION AND COORDINATION | 9

Clock Synchronization: Logical and Physical Clocks - Global State and Snapshots - Mutual Exclusion Algorithms - Coordination and Consistency Models: Locks, Barriers, and Consensus Algorithms - Distributed Deadlock Detection and Recovery

UNIT IV | FAULT TOLERANCE AND SCALABILITY Fault Tolerance in Distributed Systems - Replication Techniques: Primary-Backup, Quorum-Based Replication - Reliability Models and Recovery Algorithms - Scalability Challenges in Distributed Systems - Load Balancing Techniques in Distributed Systems UNIT V DISTRIBUTED SYSTEMS SECURITY AND **CASE STUDIES** in Distributed Security **Issues** Systems: Authentication, Authorization, Confidentiality - Cryptographic Protocols for Secure Communication in Distributed Systems - Case Studies in Distributed Computing: Google File System, Hadoop, Cloud Computing, and Blockchain - Future Trends in Distributed Computing - Ethical Issues in Distributed Systems and Cyber Security. WER DA **TOTAL: 45 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain fundamental concepts, the models. characteristics of distributed computing systems. CO2: Summarize distributed architectures and protocols for communication. CO3: Illustrate and analyze synchronization, coordination, and mutual exclusion techniques. CO4: Experiment with fault tolerance mechanisms and scalability challenges in distributed systems. CO5: Apply security techniques and strategies to confidentiality, integrity, and availability in distributed systems. CO6: Develop real-world distributed applications and analyze case studies of successful distributed systems. TEXT BOOKS: Andrew S., 1 Tanenbaum, and Maarten "Distributed Systems: Principles and Paradigms". 2nd ed. Pearson, 2007.

2	Coulouris, George, Jean Dollimore, Tim Kindberg, and
	Gordon Blair. "Distributed Systems: Concepts and Design".
	5th ed. Addison-Wesley, 2011.

REFERENCES:

- 1 Andrews, Gregory R. Foundations of Multithreaded, "Parallel, and Distributed Programming". 1st ed. Addison-Wesley, 2000.
- 2 Stallings, William. "Distributed Operating Systems and Algorithm Analysis". 3rd ed. Pearson, 2014.
- 3 van Renesse, Robbert, and Peter R. Pietzuch. "Distributed Systems: Concepts and Design". 1st ed. Springer, 2003.
- 4 Hennessy, John L., and David A. Patterson. "Computer Architecture: A Quantitative Approach." 5th ed. Morgan Kaufmann, 2011.
- 5 Kurose, James F., and Keith W. Ross. "Computer Networking: A Top-Down Approach." 7th ed. Pearson, 2016.
- 6 Birman, Kenneth P." Building Secure and Reliable Systems: Best Practices for Designing, Implementing, and Maintaining Systems." O'Reilly, 2021.
- 7 Milojicic, Dejan, and Felix Oppedijk. " Cloud Computing: Principles and Paradigms". Wiley, 2011.

COs						I	POs						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	3	1	2	1	2	2	1	2	2	3	1
2	2	1	-	-	3	1	1	1	2	3	2	3	2	3	1
3	2	1	-	-	3	2	2	1	2	2	2	3	2	3	1
4	3	2	1	1	3	1	2	1	3	2	2	3	3	3	1
5	3	2	1	1	3	1	1	2	3	3	3	2	3	3	2
6	3	2	1	1	3	1	2	2	3	3	3	3	3	3	2
Overall Correlation	3	2	1	1	3	2	2	2	3	3	3	3	3	3	2

23CB054	PRINCIPLES OF HUMAN		T	P	C
	COMPUTER INTERACTION	3	0	0	3

- To introduce the fundamental concepts and principles of Human-Computer Interaction (HCI).
- To understand the impact of user-centered design and usability in interface development.
- To explore different input/output devices and techniques for effective human-computer interaction.
- To equip students with the ability to evaluate and apply usability testing and design principles.
- To develop skills in designing user interfaces for a variety of applications, with an emphasis on accessibility and inclusivity

UNIT I INTRODUCTION TO HUMAN-COMPUTER INTERACTION

Definition and Scope of HCI - Interdisciplinary Nature of HCI: Computer Science, Psychology, Design - Evolution of HCI: From Command-Line to Graphical User Interfaces (GUIs) - Importance of User-Centered Design (UCD) - Human Capabilities and Limitations

UNIT II	DESIGNING INTERFACE AND USER	9
	EXPERIENCE	
1		1

Principles of User Interface Design: Affordance, Mapping, Feedback, Constraints - Interaction Styles: Command-Line, Menu-Based, Graphical, Voice-Based - User Interface Design Process: Requirement Analysis, Prototyping, and Iteration - Visual Design Elements: Typography, Color, Layout, Icons -Interaction Design Patterns and Best Practices

UNIT III	INPUT/OUTPUT DEVICES AND	9
	TECHNIQUES	

Types of Input Devices: Keyboard, Mouse, Touchscreen, Gesture-

Based Interfaces -Types of Output Devices: Displays, Audio Output, Haptic Feedback - Emerging Input/Output Techniques: Eye Tracking, Brain-Computer Interfaces, Augmented Reality (AR) - Interaction with Mobile Devices, Wearables, and Virtual Reality (VR) - Multimodal Interaction and Adaptive Systems

UNIT IV USABILITY AND EVALUATION METHODS

9

Usability Testing: Types of Usability Tests, Heuristic Evaluation, Think-Aloud Protocol - User Feedback: Surveys, Interviews, and Focus Groups - Cognitive Walkthroughs - Performance Metrics: Task Success Rate, Time on Task, User Satisfaction - Accessibility Guidelines and Universal Design Principles

UNIT V ADVANCED TOPICS AND CURRENT TRENDS IN HCI

9

HCI in Mobile and Web Applications - Affective Computing and Emotion Recognition in HCI - Assistive Technology and Accessibility for Differently-Abled Users - Social, Ethical, and Privacy Issues in HCI - Future Trends in HCI: AI, Ubiquitous Computing, HCI in Healthcare, and Smart Environments

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basic concepts and principles of Human-Computer Interaction.
- CO2: Demonstrate knowledge of user-centered design and its impact on usability and user experience.
- CO3: Apply appropriate design principles for developing effective user interfaces across multiple platforms.
- **CO4:** Examine the usability and accessibility of existing systems and suggest improvements.
- CO5: Develop an understanding of emerging input/output techniques and their applications in HCI.
- CO6: Analyze and address ethical, social, and privacy concerns in the development of interactive systems.

TEX	Г ВООК	S:														
1	Dix, Ala	an,	Jan	et F	inla	ıy, (Gre	gor	y A	bov	vd, a	nd I	Russ	sell	Bea	le.
	"Huma	n-C	Com	put	er I	nte	ract	ion	<i>"</i> ,3	rd e	ed. P	ears	on, Z	2004	4.	
2	Shneide	erm	an,	Beı	n, a	nd	Cat	her	ine	Pla	isan	t. "I	Desig	gnir	ng t	he
	User Ir												an-C	Com	ıput	ter
	Interaction ". 5th ed. Addison-Wesley, 2010.															
REFI	ERENCE															
1	Norman, Donald A. "The Design of Everyday Things ".															
	Revised			_												
2	Galitz,															
	_	Design: An Introduction to GUI Design Principles and														
	Technic															
3	Lazar, J				_					_						
	"Resear			etho	ods	in	Ηı	uma	an-C	Con	nput	er I	nter	acti	on	",
	Wiley, 2															
4	Preece, Jenny, Helen Sharp, and Yvonne Rogers. "Interaction Design: Beyond Human-Computer Interaction															
							ono	d H	um	an-	Com	put	er Ir	iter	acti	on
	". 4th e						file.		1	Y				-		ď.
5	Winogr			ry.	"B1	ring	ging	De	esig	n to	Sof	twa	re ",	Ado	disc	n-
	Wesley			Ÿ.				A								
6	Hartson															
	and Gu							ıg a	Qι	ıali	ty U	ser	Expe	erie	nce	<i>"</i> '
	Morgar								o An	NA U	NAVI-	SILLA	AUT	JNO	MOU	
7	Hewett												an-C	om	ipui	ter
	Interact	10n	,	lst €	ea. <i>1</i>	Aac				ley,	1992	<u> </u>		_	200	
(COs	1	_	_	4	_		POs		_	10	11	10		PSO	
	1	2	1	3	4	5	6	2	8 1	9	10 2	11 1	12 2	2	2	3 1
	1	2	1	-	-	3	1	1	1	2		2		2	3	1
	3	3	2	- 1	- 1	3	2	2	1	2	2	2	3	3	3	1
		3	3	2	2	3	1	2	1	3	2	2	3	3	3	1
	5	3	2	1	1	3	1	1	2	3	3	3	2	3	3	2
	6	3	3	2	2	3	1	2	2	3	3	3	3	3	3	2
	U	3	3	_		3	1			3	3	3	3	3	3	

 Overall

Correlation

VERTICAL 4: FULL STACK DEVELOPMENT

23CS031	JAVA FULL STACK	L	T	P	C
	DEVELOPMENT	2	0	2	3

COURSE OBJECTIVES:

- To understand and familiarize with JavaScript and NodeJS environments.
- To learn about NoSQL database and basics of MongoDB.
- To acquire knowledge of the ReactJS frontend.
- To acquire knowledge of the ExpressJS backend.
- To acquire knowledge of how to develop and create real time web applications.

UNIT I INTRODUCTION TO JAVA SCRIPT

Introduction to JavaScript- Brief history of NodeJS and its alternatives- Installing and setting up NodeJS environment - Introduction to NPM package manager and registry - Introduction to callbacks and events -File system access and handling streams-Introduction to common utility modules (OS, Path).

UNIT II INTRODUCTION TO NOSQL DATABASE 6 WITH MONGODB

Introduction to NoSQL -Benefits and disadvantages of NoSQL databases -Introduction to MongoDB - Installing and setting up MongoDB environment -Data model design (Embedded and Normalized) -Database manipulation (Create, Drop, Create and Drop Collections) -Document manipulation (Insert, Delete, Update, Query (Limit, Sort, Aggregation)) -Projection Introduction and setting up Mongoose ORM -Handling models and queries with Mongoose.

UNIT III FRONTEND DEVELOPMENT WITH REACT JS 6

Introduction to ReactJS -Installation and creating a basic React application -Introduction to JSX- Components and props- State and lifecycle -Events and effects -Conditional rendering - Introduction to HTTP requests and fetch -Making HTTP GET and POST requests- Handling data from API.

UNIT IV BACKEND DEVELOPMENT WITH EXPRESS 6 IS

Introduction to ExpressJS- Separating the tasks of frontend and backend -Installing and setting up ExpressJS environment-Introduction to APIs -Routing and URL building -Error handling-Project directory structuring - Handling form data and request data -Handling and serving files -Authentication using session keys- Handling request of multiple methods and their placement (GET, POST, DELETE, PATCH) -Documenting an API.

UNIT V CREATING A FULL STACK WEB APPLICATION 6

React page with input fields -Extracting and validating data from input field(s)- Making a HTTP request with data from input field(s) Using Mongoose with an ExpressJS application -Inserting document with data from HTTP request -Writing, handling URL query parameters and using its values to write queries with Mongoose -Displaying data returned from backend- Handling errors in API requests.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Develop a Life Line A Health Assistance Web Application
- 2. Develop Employee Timesheet Management System
- 3. Build Paytm clone Page
- 4. Build Portfolio page
- 5. Creating a simple College website using HTML, CSS, and JS.
- 6. Develop a Hospital Management System
- 7. Develop an Online Banking Application

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Explain concepts of JavaScript and its environment.

CO2: Apply NoSQL databases and develop deeper into it using MongoDB and performing basic database operations in it.

CO3:	Apply	Apply the concepts of JSX and ReactJS to display and manipulate data in a webpage and to make basic HTTP														
	manipu	ılate	e da	ata	in	a w	zeb _l	oag	e a	nd	to n	nake	bas	sic	HT	ГΡ
	request	s ar	nd h	anc	lle	ther	n.									
CO4:	Compa	re t	he	role	es o	f fr	ont	end	an	d b	acke	end,	and	to	wo	rk
	with Ex	pre	ssJS	5.												
CO5:	Develo	Develop complete API and interact with it from the ReactJS														
	frontend.															
CO6:	Develop and create real time web applications.															
TEX	BOOKS:															
1	Herbert Schildt, "Java: The Complete Reference", 11 th															
	Edition, McGraw Hill Education, New Delhi, 2019															
2		Bradshaw, Shannon., Brazil, Eoin., Chodorow, MongoDB:														
		The Definitive Guide: United States: O'Reilly Media, 2019.														
3		Herbert Schildt, "Introducing JavaFX 8 Programming", 1 st														
4	Edition, McGraw Hill Education, New Delhi, 2015. Chris Northwood, 'The Full Stack Developer: Your Essential															
-	Guide to the Everyday Skills" APress; 1st ed. Edition (20)															
3	November 2018).															
REFI	ERENCE		1	y/	1			4							The same	
1	'Expect	ed (of a	Mo	ode	rn I	Full	Sta	ıck	We	b De	evelo	per	', A	pre	ss;
	1st edit					100)LI	n bar b	of his	7// 1	TE	CH	NO	LO	G)	
2	Cay S.									ında	ame	ntals	s", V	olu/	me	1,
	11th Ed															
3	Nichola									sio	nal	Jav	a f	or	W	eb
	Applica	11101	ns ,	, VV1	rox	Pre		2014 POs						т	PSO) c
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	3	4	3			1		10		1	2	3	1
	2			1	1		-	-	<u> </u>	-	-	-				
	3	3	2	1	1	1 2	-	-	1	-	-	-	2	3	2	1
	4	3	2	1	1	2	-	-	1	-	-	-	1	2	2	1
	5	3	2	1	1	2	-	-	1	_	-	-	1	3	2	1
	6	3	2	1	1	2	-	-	1	_	_	-	1	3	2	1
O	verall	,		1	1		_	_	1				1	,		1
	relation	3	3	1	1	2	-	-	1	-	-	-	2	3	2	1
		1	1	1						1		i .		i	i	

23CS032	MOBILE APP DEVELOPMENT	L	T	P	C
		2	0	2	3
COURSE	OBJECTIVES:				
• To	understand the need and characteristics	s of	me	obil	e
app	lications				
• To	design the right user interface for mobile a	pplic	atio	ons	
 To 	understand the design issues in the deve	elop	mei	nt c	of
mo	oile applications				
	understand the development procedure	for	mo	obil	e
	lications forms				
	develop mobile applications using variou	ıs to	ols	an	d
	form				_
UNIT I	INTRODUCTION TO ANDROID OS				6
Android:	An Open Platform for Mobile Development	- Int	rod	1101	nσ
	Handset Alliance- Introducing the l				_
	2012:41/0		_		
	k- Developing for Android-Developing fo				
	d Devices- Android Development Tools-In			0	ne
	on Manifest File -The Android Application	7000	•	le.	J.
UNIT II	BUILDING USER INTERFACE AND IN	ITEN	ΙT		6
1 1	CREATIONS			GY	
Fundamo	l ntal Android UI Design- Android Us				
	8				
	ntals- Introducing Layouts- The Andr			_	-
	Introducing Intents- Creating Intent				
	Receivers- Using Internet Services-Co	onne	ctir	ng	to
	op Engine.				
UNIT III	DATABASES AND CONTENT PROVII	DER	S		6
Introducti	on on SQLite-Working with SQLite Databa	ses-	Cre	eati	ng
Content	Providers Native Android Content	P	rov	ide	rs-
Introducii	ng Services -Using Background Threads- U	sing	Al	arn	ns-
	and Using Menus and Action Bar Action Ite	_	-		
	LOCATION-BASED SERVICES AND				6
	WIRELESS SERVICES				•

Using Location-Based Services-Using the Emulator with Location-

Based Services-Selecting a Location Provider- Finding Your Current Location- Using Bluetooth-Managing Network and Internet Connectivity- Managing Wi-Fi.

UNIT V TELEPHONY AND SMS, PUBLISHING APPLICATIONS

6

Using Telephony - Introducing SMS and MMS - Distributing Applications-Introducing the Google Play - Getting Started with Google Play-Publishing Applications.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Develop an application that uses GUI components, Font and Colours
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Write an application that draws basic graphical primitives on the screen.
- 4. Develop an application that makes use of databases
- 5. Develop an application that makes use of Notification Manager
- 6. Implement an application that uses Multi-threading
- 7. Develop a native application that uses GPS location information
- 8. Implement an application that writes data to the SD card
- 9. Implement an application that creates an alert upon receiving a message
- 10. Write a mobile application that makes use of RSS feed

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Develop an application using Android development environment

CO2:	Develo	o m	obi	le a	pp]	lica	tion	de	evel	opn	nent	frai	new	ork	s a	nd
	tools	-								-						
CO3:	Build	a	mo	bile	a	ppl	icat	ion	tl	nat	ma	ınag	es	Dat	taba	ise
	operatio	ons														
CO4:	Develo	o lo	cati	on	bas	ed s	serv	ices	s an	d w	virel	ess e	nvir	oni	nen	ıts
CO5:	Develop Telephony Applications for introducing SMS and															
	MMS															
CO6:	Develop applications based on Android OS															
TEX	T BOOKS: Lauren Darcey and Shane Conder, "Android Wireless															
1				,												
	Applica	itio	n I)ev	elop	ome	ent"	, P	ear	son	Ed	ucat	ion,	2n	d e	ed.
	(2011)															
	FERENCES:															
1	Reto Meier, "Professional Android 4 Application															
	Development", Wiley, First Edition, 2012															
	Zigurd Mednieks, Laird Dornin, G. Blake Mike, Masumi															
2								10.					1000	- 01		
2	Nakam							10.					1000	- 01		
	Nakam 2012.	ura	, "P	rog	ran	nmi	ng .	And	droi	id",	O'R	eilly	7, 2n	dEo	ditio	on,
3	Nakam 2012. Alasdai	ura,	, "P Alla	rog	ran	nmi	ng .	And	droi	id",	O'R	eilly	7, 2n	dEo	ditio	on,
	Nakam 2012.	ura,	, "P Alla	rog	ran	nmi	ng l	And Pro	droi grai	id",	O'R	eilly	7, 2n	dEo	ditio Fi	rst
3	Nakam 2012. Alasdai	ura, r A	, "P Alla 10.	rog n,	ran "iP	hor	ng l	And Pro	gra	mm	O'R	eilly	7, 2n O'Rei	dEd	litio Fi	rst S
3	Nakam 2012. Alasdai Edition	ura, r A , 20	, "P Alla 10. 2	n,	ran "iP	hor 5	ng l	And Pro	gra:	id",	O'R	eilly	7, 2n 7'Rei 12	lly,	Fi PSC 2	rst Os 3
3	Nakam 2012. Alasdai Edition COs	ura, 20	, "P Alla 10. 2 2	7rog	ran "iP 4 1	hor 5 2	ng l	And Pro	gran	mm 9 -	O'R	eilly , C	7, 2n 7'Rei 12 1	lly,	Fi PSC 2	rst s 1
3	Nakam 2012. Alasdai Edition COs	r A , 20 1 3	, "P Alla 10. 2 2 2	7rog n, 3 1 1	"iP 4 1 1	hor 5 2 2	ng . ne] 6 - 1	Pro POs 7 -	gran	mm 9 - 1	O'R ing' 10	11 1	7, 2n 7 Rei 12 1	Ily, I 1 3 3	Fi PSC 2 2 2	rst 0s 1 1
3	Nakam 2012. Alasdai Edition COs 1 2 3	r A , 200 1 3 3	, "PAlla 110.	7rog 3 1 1 1	"iP 4 1 1	5 2 2 2	ng . I 6 - 1 1	And Pro 7 - -	gra: 8 1 1 1	mm 9 -	O'R 10 - 1	11 1 1	7, 2n 7'Rei 12 1 1	Illy, I 1 3 3 3 3 3	Fi PSC 2 2 2 2	on, rst 0s 1 1 1
3	Nakam 2012. Alasdai Edition COs 1 2 3 4	r A , 20 1 3 3 3	, "P Alla 110. 2 2 2 2 2	3 1 1 1	"iP 4 1 1 1	5 2 2 2 2	ng . ne] 6 - 1	And Pro POs 7 - -	gran 8 1 1 1 1 1 1	9 - 1 1 -	O'R ing' 10	11 1 1 1	7, 2n 'Rei 12 1 1 1	Illy, I 1 3 3 3 3 3 3	Fi 2 2 2 2 2 2	rst 3 1 1 1
3	Nakam 2012. Alasdai Edition COs 1 2 3 4 5	ura, 20 1 3 3 3 3	"PAlla 110.	3 1 1 1 1	"iP 4 1 1 1 1	5 2 2 2 2	I 6 - 1 1 1	And Pro 7 - -	gran 8 1 1 1 1 1 1 1 1	9 - 1 1	O'R 10 - 1	11 1 1 -	7, 2n O'Rei 12 1 1 1 1	Illy, I 1 3 3 3 3 3 3 3 3	Fi PSC 2 2 2 2 2 2 2	on, rst 3 1 1 1 1
3	Nakam 2012. Alasdai Edition COs 1 2 3 4	r A , 20 1 3 3 3	, "P Alla 110. 2 2 2 2 2	3 1 1 1	"iP 4 1 1 1	5 2 2 2 2	ng . I 6 - 1 1	And Pro Pro	gran 8 1 1 1 1 1 1	9 - 1 1 -	O'R 10 - 1	11 1 1 1	7, 2n 'Rei 12 1 1 1	Illy, I 1 3 3 3 3 3 3	Fi 2 2 2 2 2 2	rst 3 1 1 1

23CS033	UI AND UX DESIGN	L	T	P	C
		2	0	2	3

- To provide a sound knowledge in UI & UX.
- To understand the need for UI and UX.
- To understand the various Research Methods used in Design.
- To explore the various Tools used in UI & UX.
- To create a wireframe and prototype.

UNIT I FOUNDATIONS OF DESIGN

6

UI vs. UX Design - Core Stages of Design Thinking - Divergent and Convergent Thinking - Brainstorming and Game storming - Observational Empathy.

UNIT II FOUNDATIONS OF UI DESIGN 6

Visual and UI Principles - UI Elements and Patterns - Interaction Behaviors and Principles - Branding - Style Guides.

UNIT III FOUNDATIONS OF UX DESIGN 6

Introduction to User Experience - Why You Should Care about User Experience - Understanding User Experience - Defining the UX Design Process and its Methodology - Research in User Experience Design - Tools and Method used for Research - User Needs and its Goals - Know about Business Goals.

UNIT IV WIREFRAMING, PROTOTYPING AND TESTING 6

Sketching Principles - Sketching Red Routes - Responsive Design - Wireframing - Creating Wireflows - Building a Prototype - Building High-Fidelity Mockups - Designing Efficiently with Tools- Interaction Patterns - Conducting Usability Tests - Other Evaluative User Research Methods - Synthesizing Test Findings - Prototype Iteration.

UNIT V RESEARCH, DESIGNING, IDEATING, & 6 INFORMATION ARCHITECTURE

Identifying and Writing Problem Statements - Identifying Appropriate Research Methods - Creating Personas - Solution Ideation - Creating User Stories - Creating Scenarios - Flow Diagrams - Flow Mapping - Information Architecture.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Designing a Responsive layout for an societal application
- 2. Exploring various UI Interaction Patterns
- 3. Developing an interface with proper UI Style Guides
- 4. Developing Wireflow diagram for application using open source software
- 5. Exploring various open source collaborative interface Platform
- 6. Hands on Design Thinking Process for a new product
- 7. Brainstorming feature for proposed product
- 8. Defining the Look and Feel of the new Project
- 9. Create a Sample Pattern Library for that product (Mood board, Fonts, Colors based on UI principles)
- 10. Identify a customer problem to solve.
- 11. Conduct end-to-end user research User research, creating personas, Ideation Process (User stories, Scenarios), Flow diagrams, Flow Mapping.
- 12. Sketch, design with popular tool and build a prototype and perform usability testing and Identify improvements.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build UI for user Applications.
- CO2: Apply UX design in any product or application.
- **CO3:** Apply UX Skills in product development.

CO4:	Apply	Ske	tchi	ng	prir	ncip	les.									
CO5:	Develo	рV	Vire	fran	ne a	ınd	Wi	refl	ows	S.						
CO6:	Develo	p P	roto	otyp	e T	esti	ng 1	for 1	Hig	h-F	ideli	ty N	lock	ups	3.	
TEX	TEXT BOOKS:															
1	Joel M	Joel Marsh, "UX for Beginners", O'Reilly, 2022 Edition														
2	Jon Ya	Jon Yablonski, "Laws of UX using Psychology to Design														
	Better	Better Product & Services" O'Reilly,2020.														
REFI	ERENCE	S:														
1	Jenifer	Tic	lwe	11, (Chai	rles	Bre	we	r, A	ynı	ne V	alen	cia,			
	"Desig	nin	g Ir	iter	face	e" 3	rd I	Edi	tion	, O	'Reil	ly 20	020.			
2	Steve S	Steve Schoger, Adam Wathan "Refactoring UI", 2018.														
3	Steve I	Steve Krug, "Don't Make Me Think, Revisited: A														
	Comm	Commonsense Approach to Web & Mobile", Third Edition,														
	2015 WER DREA															
4	Jenifer	Tic	lwe	11, C	Chai	rles	Bre	we	r, aı	nd A	Aynı	ne V	alen	cia,		
	"Desig	nin	g Ir	iter	face	es: P	atte	erns	s foi	Ef	fecti	ve Ir	ntera	ctic	n	J.
4	Design	ı" C	Re:	illy	Me	dia	,202	20.		_						
5	https:/	/w	ww	nn.	gro	up.	con	n/a	rtic	les,	TE	CH	NO	LO	G)	7
6	https:/	/w	ww	int	tera	ctio	n-d	lesi	gn.c	org	/lite	ratui	re.	ONO	MOU	5
							I	POs						I	PSC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	1	3	3	2	1	3	1	1
	2	3	2	1	1	2	-	-	1	1	2	2	2	3	2	1
	3	3	2	1	1	2	-	-	-	2	3	1	2	3	2	1
	4	3	2	1	1	1	-	-	1	3	2	1	3	3	1	1
	5	3	2	1	1	1	-	-	1	2	1	1	1	3	1	1
	6	3	2	1	1	1	-	-	1	2	1	1	1	3	1	1
	verall	3	2	1	1	2	_	_	1	3	2	2	2	3	2	1
Corr	elation															

23CS034	MERN STACK WEB	L	T	P	C
	DEVELOPMENT	2	0	2	3

- To understand MERN stack architecture
- To enrich the knowledge of different JavaScript libraries and frameworks
- To understand how Javascript libraries can be used in front end and backend process
- To understand NoSQL databases
- To build web applications using MERN Stack

UNIT I	INTRODUCTION TO MERN STACK	6

MERN Stack Overview, Modular Architecture, MERN support for modular architecture- Component-Based Frontend Development-Modular Server-Side Development - Separation of Concerns-Dependency Management- Testing and Deployment, Benefits/Features of Using Modular Architecture in MERN App.

UNIT II JAVA SCRIPT AND ECMA SCRIPT 6

JavaScript Fundamentals, Grammar and types, Control flow and error handling, Loops, Function, Objects, Arrays, Promises,ES6 Let and const, Template literals, Arrow Function, Default parameter, Async Await.

UNIT III BACKEND DEVELOPMENT USING Node.js AND Express.js with MONGO DB

Node.js overview, Node.js - basics and setup, Node.js console, Node.js command utilities, Node.js modules, concepts, Node.js events, database access ,Node.js with Express.js, Express.js Request/Response, Express.js Get, Express.js Post, Express.js Routing, Express.js Cookies, Express.js File Upload, Middleware, Express.js Scaffolding, Template, Migration of data into MongoDB, MongoDB with Node.js, Services offered by MongoDB.

UNIT IV FRONTEND DEVELOPMENT with ReactJS

6

Introduction to React: Components, Props, and State, JSX Syntax, Functional Components vs. Class Components; Advanced React Concepts: React Hooks: useState, useEffect, useContext. Component Lifecycle and State Management, Forms and Controlled Components, React Router and Single Page Applications (SPA): Setting up React Router for Navigation, Building a Single Page Application with Multiple Routes.

UNIT V | CREATING A WEB APPLICATION USING | MERN STACK

6

Integrating Frontend and Backend, State Management with Redux, Deployment of Apps, Authentication and Security, WebSocket and Real-Time Applications, Performance Optimization.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Create a simple calculator application using React.js
- 2. Create a simple login form using React.js
- 3. Write a node.js program to replace strings using Regular expression.
- 4. Create http server interacting with client using Node.js
- 5. Perform CRUD operations using MongoDB
- 6. Build migration of data using MongoDB
- 7. Create a REST backend API Using Express
- 8. Build an web application using React, Node, Express and MongoDB.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Apply the basic components of MERN stack architecture.

CO2: Apply the basic fundamentals of javascript and ECMA Script.

- CO3: Build robust server-side applications with Node.js and Express.js.
- CO4: Build and interacting with MongoDB databases.
- CO5: Construct dynamic and responsive user interfaces using React.js.
- **CO6:** Develop a full stack application using MERN stack.

TEXT BOOKS:

- Nabendu Biswas ,"Ultimate Full-Stack Web Development with MERN: Design, Build, Test and Deploy Production-Grade Web Applications with MongoDB, Express, React and NodeJS", Orange Education ,2023
- 2 Herbert Schildt, "The Complete Reference-Java", Tata Mcgraw- Hill Edition, Eighth Edition, 2014.

REFERENCES:

- Adam Freeman," Mastering Node.js Web Development: Go on a comprehensive journey from the fundamentals to advanced web development with Node.js", Packt Publishing, 2024.
- Greg Lim ," Beginning MERN Stack: Build and Deploy a Full Stack MongoDB, Express, React, Node.js App", Kindle Edition, 2021.
- 3 Shama Hogue," Full-Stack React Projects: Learn MERN stack development by building modern web apps using MongoDB, Express, React, and Node.js", second edition, Packt Publishing 2020.

COs						I	POs						PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	-	1	-	-	1	2	3	-	1
2	3	2	1	1	-	-	-	1	-	-	1	2	3	-	1
3	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1
4	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1
5	3	2	1	1	3	ı	ı	1	ı	-	1	2	3	3	1
6	3	2	1	1	3	ı	ı	1	ı	-	1	2	3	3	1
Overall Correlation	3	2	1	1	3	-	-	1	-	-	1	2	3	3	1

23CB055	SECURE CODING PRACTICES	L	T	P	C		
	FOR FULL STACK	2	0	2	3		
	DEVELOPMENT						
COURSE OPICTIVES.							

- To gain an understanding of core security principles such as secure development practices, cryptography, and the OWASP Top 10 vulnerabilities, with a focus on securing applications.
- To learn how to assess risk profiles, utilize threat modeling tools
- To learn to apply security verification standards t.o ensure that security is integrated into the design and development stages of mobile and web applications.
- To become proficient in using security frameworks, performing secure code verification, and utilizing tools.
- To gain hands-on experience in identifying and addressing security flaws.

UNIT I	INTRODUCTION TO SECURE CODING	6
	PRACTICES	

Security fundamentals - Secure development and integration - Principles of security Principles of cryptography - OWASP Top 10 - Full Stack Development using MEAN Stack.

UNIT II SECURITY REQUIREMENTS AND SECURITY 6 DESIGN

Risk profile - Open CRE - Security RAT - Application Security Verification Standard - Mobile Application Security - Security Knowledge Framework - Design Threat modeling - pytm, Threat Dragon, Cornucopia - Threat Modeling toolkit Web application checklist - Mobile application checklist.

UNIT III	SECURITY IMPLEMENTATION AND	6
	VERIFICATION	

Top 10 Proactive Controls - Dependencies Check Track - Secure Libraries - Web Security Testing Guide - Application Security Verification Standard - Tools SAST & DAST - Frameworks secure

Code Box - Vulnerability management Defect Dojo.							
UNIT IV	VULNERABLE APPLICATIONS AND	6					
	SOFTWARE ASSURANCE MATURITY						
	MODEL						
ĺ							

Juice Shop - WebGoat - PyGoat - Security Shepherd - Secure Coding Dojo - Security Knowledge Framework - SamuraiWTF - OWASP Top 10 project - Mobile Top 10 - API Top 10 - SAMM.

UNIT V SECURITY OPERATIONS AND METRICS

6

DevSecOps Guideline - Coraza and ModSecurity Web Application Firewall - Security gap analysis - Bug Logging Tool - Implementation Do's and Don'ts in Container security, Secure coding, Cryptographic practices, Application spoofing, Exception and error handling, File management & Memory management.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES: - LIST OF EXPERIMENTS

- 1. Identify and mitigate OWASP Top 10 vulnerabilities in a sample web application.
- 2. Use Threat Dragon to model threats and identify potential security risks in a web application.
- 3. Perform dependency tracking and identify insecure libraries in a web application using tools like npm audit and Snyk.
- 4. Perform static application security testing (SAST) and dynamic application security testing (DAST) on a web application.
- 5. Identify and exploit vulnerabilities in the deliberately insecure Juice Shop application and apply remediation techniques.
- 6. Perform a security gap analysis of a web application using the Security Knowledge Framework.
- 7. Integrate security into a CI/CD pipeline and implement secure containerization practices using tools like Jenkins, Docker, and ModSecurity.

TOTAL: 30 PERIODS

COL	RSE OU	TC	ON	1FS												
-	After co					ne c	011r	se t	the	stii	lent	s wi	11 he	ahl	e to).
CO1·	Develo	_									acrit		11 00	u.		··
	Identify	•									do 1	uein	or et	tatio	. 21	nd
CO2.	dynami				J111 t	.y 1	111 (30u	icc	CO	ac	usiii	8 31	ali	. a	iiu
CO3:		Make use of popular threat modeling tools such as PyTM,														
		Threat Dragon.														
CO4:	Examine Software Security Maturity.															
CO5:	Analyz	e se	cur	e co	odir	ng t	ech	niqı	ues	anc	l bes	st pr	actio	ces	acro	oss
	various		_													
CO6:	Apply					era	bili	ty 1	usir	ng I	ME <i>A</i>	N S	Stacl	k ii	ı F	ull
	Stack D		lop	me	nt.											
	ГВООК												.1 1.			
1	"OWAS															
_		Web Applications and Web Services." Release version 4.1.5.														
2		Howard, Michael, and David LeBlanc. "Writing Secure Code", 2nd ed., Microsoft Press, 2004.														
REFI	ERENCE		ı eu	., IV	HCI	0501	111	1655	, 20	04.				-		
1	Graff, N		k G	aı	nd i	Ker	net	h R	. va	n V	Vvk.	"Se	cure	. Co	odir	າອ:
- /	Princip														1000	-0.
2	Thomp	son	, I	I.,	an	d s	Scot	tt (Ğ.	Ch	ase.	"T	'he	Sof	twa	are
	Vulnera															
3	Secure		_	,									le. C	per	ı W	eb
	Applica	atio	n Se	cur	ity	Pro		<u> </u>		SP)	, 202	22.		1		
(COs		_	_	_	_		POs		_	40	44	40		SC	
	1	3	2	3 1	4 1	<u>5</u>	6	7	8	9 1	10 2	<u>11</u>	12 1	3	2	3
	2	3	2	1	1	-	-	-	-	<u> </u>	2	2	-	3	-	1
	3	3	2	1	1	2	-	_	-	1	_	1	2	3	2	1
	4	3	3	2	2	2	-	_	_	-	2	2	1	3	2	1
	5	3	3	2	2	2	_	-	_	2	2	2	1	3	2	1
	6	3	2	1	1	3	-	-	-	2	-	2	2	3	3	1
	verall	3	3	2	2	2				1	2	2	2	3	2	1
Cor	elation)	3				_	_	_	1	_			3		1

23CB056	DEVSECOPS: INTEGRATING	L	T	P	C
	SECURITY INTO DEVELOPMENT	2	0	2	3

- To understand the principles and practices of DevSecOps
- To explore how to secure CI/CD pipelines by identifying potential threats, implementing secure configurations, and automating security tasks.
- To gain hands-on experience in applying secure coding practices following OWASP guidelines.
- To learn to monitor applications in real time, detect security threats using tools like ELK Stack and SIEM systems.

UNIT I	INTRODUCTION TO DEVSECOPS AND	6
	SECURE SOFTWARE DEVELOPMENT	c
	LIFECYCLE	>
100		

Overview of DevSecOps: Introduction, importance, and evolution from DevOps to DevSecOps. Secure Software Development Lifecycle (SDLC): Key phases, including planning, development, testing, deployment, and monitoring with security focus. DevSecOps Principles: Automation, collaboration, shift-left security, and CI/CD integration. Cultural and Organizational Aspects: Building a security-focused culture, roles, and responsibilities.

UNIT II	SECURITY INTEGRATION INTO CI/CD	6
	PIPELINE	

CI/CD Basics: Continuous Integration and Continuous Deployment in DevSecOps. Securing CI/CD Pipelines: Threats in CI/CD, secure configurations, and environment isolation. Automation for Security: Automating security tasks such as code review, scanning, and vulnerability assessments. Security Tools for CI/CD: Introduction to tools like Jenkins, GitLab CI, Azure DevOps with security plugins and features.

UNIT III SECURE CODING PRACTICES AND AUTOMATED TESTING FOR SECURITY

6

6

Secure Coding Standards: OWASP guidelines, avoiding common vulnerabilities (e.g., SQL injection, XSS). Code Review and Analysis: Static Application Security Testing (SAST), Dynamic Application Security Testing (DAST). Automated Security Testing: Integration of security testing in development workflows. Tools for Secure Coding: Familiarity with tools like SonarQube, Veracode, and Checkmarx.

UNIT IV | CONTINUOUS SECURITY MONITORING | AND INCIDENT RESPONSE

Security Monitoring in DevSecOps: Real-time monitoring and logging in DevSecOps. Threat Detection: Utilizing Intrusion Detection Systems (IDS) and Security Information and Event Management (SIEM). Incident Response: Principles of incident response, playbooks, and post-incident reviews. Monitoring Tools: ELK Stack, Splunk, and cloud-native monitoring solutions (AWS CloudWatch, Azure Monitor).

UNIT V VULNERABILITY MANAGEMENT, 6 AUDITING, AND COMPLIANCE IN DEVSECOPS

Vulnerability Management: Identification, assessment, and remediation strategies. Security Auditing: Regular audits, security assessments, and risk management in DevSecOps. Compliance and Regulatory Requirements: Overview of standards like ISO 27001, GDPR, and HIPAA in DevSecOps. Policy Implementation: Role-based access control, network segmentation, and container security policies.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

1. Case studies on traditional DevOps vs. DevSecOps.

- 2. Role-play exercise to define security responsibilities in a DevSecOps team.
- 3. Setting up a secure CI/CD pipeline with a basic project.
- 4. Implementing automated security scans (e.g., static code analysis) in the pipeline.
- 5. Hands-on secure coding tasks following OWASP guidelines.
- Configuring SAST/DAST tools for automated testing in a sample project.
- 7. Setting up a basic monitoring dashboard using ELK Stack.
- 8. Simulating a security incident and conducting a mock response.
- 9. Conducting a vulnerability scan on a sample application and generating a report.
- 10. Applying a security policy (e.g., RBAC) in a containerized environment.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Identify and describe the core principles of DevSecOps and the importance of integrating security within the DevOps lifecycle.
- CO2: Apply security requirements to various phases of the CI/CD pipeline and explain the secure software development lifecycle (SDLC) stages.
- CO3: Make use of automated testing tools to detect and mitigate vulnerabilities in code and demonstrate proficiency in secure coding practices.
- CO4: Identify and respond to potential security threats in real time.
- CO5: Apply vulnerability management techniques and conduct security audits to ensure secure deployment and maintenance within CI/CD workflows.

CO6: Examine compliance requirements and implement security policies that align with industry standards and regulatory frameworks.

TEXT BOOKS:

- Hsu, Tony Hsiang-Chih. "Hands-On Security in DevOps: Ensure Continuous Security, Deployment, and Delivery with DevSecOps." Packt Publishing, 2018.
- Kim, Gene, Patrick Debois, John Willis, and Jez Humble.

 "The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in Technology Organizations." IT Revolution Press, 2016.

REFERENCES:

- Akula, Madhu, and Akash Mahajan. "Security Automation with Ansible 2: Leverage Ansible 2 to Automate Security Tasks." Packt Publishing, 2017.
- 2 Sullivan, Bryan, and Vincent Liu. "Web Application Security: A Beginner's Guide." McGraw-Hill Education, 2011.
- 3 Kim, Gene, Kevin Behr, and George Spafford. "The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win." IT Revolution Press, 2013.

COs						I	POs						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	2	-	2	-	-	-	2	3	-	2	
2	3	2	1	1	1	-	-	-	-	-	-	2	3	-	-	
3	3	2	1	1	3	-	-	2	3	-	-	ı	3	3	2	
4	3	2	1	1	3	-	2	-	-	-	-	ı	3	3	-	
5	3	2	1	1	-	-	-	-	3	-	2	3	3	-	-	
6	3	3	2	2	1	3	3	-	-	3	3	3	3	-	-	
Overall Correlation	3	3	2	2	1	1	1	1	1	1	1	2	3	1	1	

23CB057	CLOUD SECURITY	L	T	P	C
	ARCHITECTURE FOR FULL	2	0	2	3
	STACK SOLUTIONS				

COURSE OBJECTIVES:

- Understand the foundational concepts of cloud computing and security architecture for cloud-based fullstack solutions.
- Know various security challenges specific to cloud environments, including multi-tenant architecture, data privacy, and compliance.
- Identify key security technologies used to protect cloud resources and applications, including identity and access management, encryption, and secure APIs.
- Design secure cloud architectures and integrate security measures at different layers (network, application, data) for full-stack solutions.
- Implement and evaluate security practices for cloudbased systems using industry-standard tools and techniques to ensure scalability, availability, and confidentiality.

UNIT I INTRODUCTION TO CLOUD SECURITY

Overview of cloud computing models: IaaS, PaaS, SaaS, and deployment models: Public, Private, Hybrid. Cloud service providers and their security features (AWS, Azure, GCP, etc.). Security considerations in cloud computing: Multi-tenancy, virtualization, and shared responsibility models

Introduction to Cloud Security Architecture Frameworks (CSA CCM, NIST, etc.) Basic principles of security: Confidentiality, Integrity, Availability (CIA Triad)

UNIT II CLOUD SECURITY RISKS AND THREATS

Cloud-specific threats and vulnerabilities: Data breaches, denial of service, account hijacking, insecure APIs - Security risks in cloud storage and data management - Cloud network security risks:

Virtual networks, firewall management, and intrusion detection/prevention - Compliance standards in the cloud: GDPR, HIPAA, SOC2, ISO 27001 - Case studies of security breaches in cloud environments.

UNIT III | IDENTITY AND ACCESS MANAGEMENT IN | 6 | THE CLOUD

IAM fundamentals: Authentication, authorization, and accounting (AAA)-Identity and access management tools: AWS IAM, Azure Active Directory, Google Identity -Single sign-on (SSO), Multi-factor authentication (MFA) -Role-based access control (RBAC) and attribute-based access control (ABAC) - Securing API access and OAuth 2.0 for cloud-based applications Federated identity management and security concerns.

UNIT IV SECURING CLOUD INFRASTRUCTURE AND 6 DATA 6

Data encryption: At rest, in transit, and in use - Virtual machine security and container security in cloud environments - Securing cloud APIs and microservices architecture - Cloud firewalls and security groups: Network security in cloud environments - Cloudnative security tools: AWS Shield, Azure Security Center, Google Security Command Center - Disaster recovery and business continuity in cloud environments.

UNIT V CLOUD SECURITY ARCHITECTURE FOR FULL 6 STACK SOLUTIONS

Designing secure full-stack applications: Frontend, Backend, and Database security - Cloud-native application architectures: Containers, microservices, and serverless computing - Best practices for securing cloud-native applications and infrastructure - Integrating security at different layers of the stack (network, application, data) - Monitoring and logging security events: CloudWatch, Azure Monitor, Google Stackdriver - Security as code: Infrastructure as Code (IaC) and automated security testing.

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Set up a basic cloud infrastructure (AWS/GCP/Azure) with a focus on IAM configuration and securing the cloud environment.
- 2. Implement multi-factor authentication (MFA) and role-based access control (RBAC) on cloud resources.
- Explore and configure cloud storage security options: data encryption, access controls, and permissions in AWS S3 or Azure Blob Storage.
- 4. Secure API endpoints using OAuth 2.0 and OpenID Connect for authentication and authorization in a cloud-based application.
- 5. Implement a cloud-based firewall and security groups to restrict traffic between virtual machines and services.
- 6. Deploy a secure containerized application (e.g., Docker) on a cloud platform and analyze container security features.
- Set up cloud monitoring and logging with AWS CloudWatch, Azure Monitor, or GCP Stackdriver to detect security events.
- 8. Configure a cloud-based intrusion detection/prevention system (IDS/IPS) for detecting network anomalies in a cloud environment.
- 9. Implement a disaster recovery plan in a cloud environment, including data backup and failover mechanisms.
- 10. Perform a vulnerability assessment and penetration testing (pen testing) on a cloud application and recommend mitigation strategies.

TOTAL: 30 PERIODS

COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the key concepts of cloud computing, including
	service models (IaaS, PaaS, SaaS) and deployment models
	(public, private, hybrid).
CO2:	Identify and analyze security threats, vulnerabilities, and
	risks in cloud environments and design secure cloud
	architectures for full-stack applications.
CO3:	Experiment with security controls, including encryption,
	authentication, authorization, and access management, in
	cloud systems.
CO4:	Apply network security practices to secure cloud
	infrastructures, including secure APIs, firewalls, and
	security groups.
CO5:	Develop and implement disaster recovery, incident
8	response, and compliance measures in cloud systems to
Î	ensure business continuity.
CO6:	Evaluate and mitigate security threats in cloud-native
Ÿ	applications, including containers and microservices.
TEX	T BOOKS:
1	Mather, Tim, Subra Kumaraswamy, and Shahed Latif,
	"Cloud Security and Privacy: An Enterprise Perspective on
	Risks and Compliance", 1st ed. O'Reilly Media, 2009.
2	Krutz, Ronald L., and Russell Dean Vines, "Cloud Security:
	A Comprehensive Guide to Secure Cloud Computing",
	Wiley, 2010.
3	Buyya, Rajkumar, and R. Thamarai Selvi," Cloud
	Computing Security Issues and Challenges: A Surve",
	Springer, 2013.
4	Fowler, David P, "Cloud-Native Security: A Comprehensive
	Guide to Securing Modern Applications and Data in the
	Cloud", Apress, 2020.

REFI	ERENCE	S:														
1	Erl, Tho	oma	as, '	'Clo	oud	Co	mp	utii	ng:	Coı	ncep	ts, 7	Tech	nol	ogy	&
	Archite	ctu	re",	Pre	enti	ce F	Hall	, 20	13.							
2	Kavis, I	Mic	hae	1 J, '	"Ar	chi	tect	ing	the	Clo	oud:	Des	ign	Dec	isio	ns
	for Cloud Computing Service Models (SaaS, PaaS, and															
	IaaS)", Wiley, 2014.															
3	Scott, Stuart,"AWS Certified Security - Specialty Exam															
	Guide: The Complete Reference for the AWS Certified															
	Security Specialty Exam", Packt Publishing, 2020.															
4	Demopoulos, Ted, "Cloud Security For Dummies", Wiley,															
	2015.															
5	K., Manish S, "Cybersecurity for the Cloud: Protecting															
	Cloud (Con	npu	ting	z", (CRO	C Pı	ess	, 20	20.						
	COs					_		POs						I	PSC)s
Ì	LOS POW	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 //	2	1	(2)	\ <u>-</u>	3	2	1	1	2	2	1	1	2	3	1
	2	3	2	,1	1	1	2	1	1	2	2	1	1	3	1	1
	3	3	2	1	1	3	3	1	3	3	3	2	3	3	3	3
	4	3	2	1	1	3	3	1	3	3	3	3	3	3	3	3
	5 SINE	3	2	1	1	3	3	2	3	3	2	2	3	3	3	3
	6	3	3	2	2	3	3	2	3	3	3	2	3	3	3	3
O	verall	3	2	1	1	3	3	2	3	3	3	2	3	3	3	3
Cor	relation		_	1	1			_			,	_	,			9

23CS038	PYTHON FULL STACK	L	T	P	C
	DEVELOPMENT WITH MACHINE	2	0	2	3
	LEARNING				

COURSE OBJECTIVES:

- To learn foundational backend development concepts using Python's Flask for API development
- To integrate advanced backend features to ensure secure, efficient, and scalable APIs.
- To build and train machine learning models using Scikit-Learn, focusing on data preprocessing, model evaluation, and tuning
- To integrate machine learning models within backend APIs to enable real-time predictions
- To deploy machine learning applications on Render with CI/CD pipelines and monitoring for production stability

UNIT I PYTHON FOR BACKEND DEVELOPMENT 6

Backend Fundamentals and REST API Concepts – RESTful architecture, HTTP methods (GET, POST, PUT, DELETE), resource-based endpoint design, best practices for REST API design; **Flask Essentials** – Setting up Flask, routing and request handling, working with JSON, custom error handling; **Building CRUD APIs:** Implementing create, read, update, and delete operations using Flask-Introduction to database interactions using SQLite or in-memory data handling for testing.

UNIT II	ADVANCED BACKEND TECHNIQUES	6

API Security and Authentication – JWT authentication, Flask-JWT-Extended, role based access control;

Data Processing and Serialization - Handling large datasets in FLASK, using JSON and XML data serialization formats;

Implementing Caching and Redis- Introduction to Redis, Flask-

Redis integration, managing cache expiry and invalidation.

UNIT III | MACHINE LEARNING FUNDAMENTALS

6

Types of Machine Learning – Supervised, unsupervised, and reinforcement learning, Supervised Learning Models; Data Preprocessing and Feature Engineering– Data cleaning techniques, Scaling and Normalization, Feature Selection and Engineering; Building Machine Learning Models – Linear regression and decision trees, Random Forest and SVM; Model Evaluation and Optimization – Metrics for evaluation, cross-validation techniques, hyperparameter tuning.

UNIT IV MACHINE LEARNING MODEL INTEGRATION

6

Exposing ML Models through APIs - Creating prediction endpoints in Flask, Formatting input data for predictions and handling JSON requests; **Data Processing for Model Inference** - Data Formatting and Validation , Batch Processing for Efficiency: **Optimizing and Scaling Model Serving-** Techniques for faster inference, asynchronous processing for handling large volumes of requests; **Monitoring and Logging Predictions** - Logging incoming prediction requests and analyzing data distribution, Health Checks and Error Tracking.

UNIT V DEPLOYMENT AND PRODUCTION READINESS

6

Render Deployment Essentials – Setting up a Render account and deploying Flask applications, Environment Configuration; Preparing ML Models for Deployment – Packaging models and dependencies for production, Creating Docker containers for scalable deployments; CI/CD with GitHub Actions – Setting up GitHub Actions for automated builds and deployments,

Monitoring and Logging for Production APIs- Real-time Logging, Error Handling and Alerting.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Basic CRUD API Creation: Develop a CRUD API for managing a library of books with operations for adding, viewing, editing, and deleting records.
- 2. Implementing JWT Authentication: Set up JWT authentication to secure the library API.
- 3. Using Redis Caching: Add Redis caching to cache frequently accessed endpoints, such as the "View All Books" endpoint
- 4. Data Cleaning and Feature Engineering: Clean a housing dataset and create engineered features to improve predictive performance.
- Model Building and Evaluation: Train a classification model using a dataset, evaluating it with accuracy and F1 score metrics.
- 6. Model Prediction API: Develop a Flask API to serve predictions from a trained ML model.
- 7. Prediction Logging: Set up basic logging to track incoming requests and analyze prediction patterns.
- Deploying Flask API on Render: Deploy a Flask-based API on Render, including environment configuration and monitoring setup.
- CI/CD Setup with GitHub Actions: Automate deployment of the API with CI/CD, ensuring consistent updates on each code commit

Mini Projects

1. Book Recommendation API: Build an API using Flask that

- provides book recommendations based on genre and author. Integrate data validation to ensure API requests have the required fields.
- User Profile API with JWT and Redis: Create a Flask API
 where users can view and update their profiles. Implement
 JWT-based authentication and use Redis to cache user data
 for improved performance.
- 3. Movie Rating Predictor: Develop a regression model to predict user ratings for movies based on genre, director, and other features. Tune the model using cross-validation to optimize accuracy.
- 4. Spam Detection API: Develop an API using a pre-trained spam detection model to classify messages. Implement logging to track prediction accuracy over time.
- Sentiment Analysis API with CI/CD on Render: Develop and deploy a sentiment analysis API, set up CI/CD on Render to automate redeployment, and implement monitoring.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Design and implement RESTful APIs using Python and Flask framework.
- CO2: Apply authentication, authorization, and caching mechanisms to secure and optimize backend applications.
- CO3: Preprocess data and build machine learning models using Scikit-Learn for regression and classification tasks.
- CO4: Integrate trained machine learning models into Flask APIs for real-time prediction and analysis.
- CO5: Monitor and log backend systems to ensure robustness and performance in API services.

LCO6:	Deploy	_r f	ull-	stac	k r	nac	hin	Deploy full-stack machine learning applications using Render and GitHub Actions with CI/CD practices														
	1 ,										_					O						
TEX	Г Г ВООК									,	1											
1	Miguel		rinl	erg	. Fl	lask	W	/eb	De	vel	opm	ent.	2nd	l E	litic	m.						
	O'Reill			_			•		20	. 01	°P	C110,				, 11,						
2	Aurélie	_					-On	M	ach:	ine	Lea	rnin	o wi	ith !	Scik	it-						
_												•	_									
3	Learn, Keras, and TensorFlow, 2nd Edition, O'Reilly, 2019. Sebastian Raschka, Python Machine Learning, 3rd Edition,																					
	Packt Publishing, 2019.																					
REEL	ERENCES:																					
1	·																					
2	Mark Bates, Programming Flask, Pragmatic Bookshelf, 2022. Jason Brownlee, Machine Learning, Mastery, With Scikit-																					
	Jason Brownlee, Machine Learning Mastery With Scikit-																					
	Learn, 2021. GitHub Docs: https://docs.github.com/																					
3		-				10000		<u> </u>	97	_												
4	Flask D			17, 230					- 1	-		om/	M		4							
	Render Docs: https://render.com/docs																					
5	Render	Do	ocs:	http	os:/	/ Ie.	iiac	er.co	om/	'do	CS		1 3									
	7.5	Do	ocs:	http	os:/	/ Te.	27 V	POs	om/	do	CS		-	I	SO	s						
	Render	1	2	nttp	4	5	27 V		om/	do 9	10	11	12	I 1	PSO 2	3						
	7.5	A		M		Ÿ	F	Os	1	D		11	12									
	COs	1	2	M		Ÿ	F	Os	1	D		11 <u>C</u> H	12 - 1	1								
	COs	1 2	2	3	4	5	6	Os	8	D	10	11 CH		1 2	2	3						
	COs 1 2	1 2 3	2 1 2	3 - 1	4 - 1	5 - 1	6 -	POs 7 - -	8 - 1	D	10 - 1	11	νįο	1 2 3	2 - 1	3 - 1						
	1 2 3	1 2 3	2 1 2 2	3 - 1 1	4 - 1 1	5 - 1	6 -	POs 7 - -	8 - 1	D	10 - 1	11	νįο	1 2 3	2 - 1	3 - 1						
	COs 1 2 3 4	1 2 3 3	2 1 2 2 2	3 - 1 1 1	4 - 1 1	5 - 1	6 -	POs 7 - -	8 - 1	D	10 - 1	11	νįο	1 2 3 3	2 - 1	3 - 1						
	COs 1 2 3 4 5	1 2 3 3 3	2 1 2 2 2 2	3 - 1 1 1 1	4 - 1 1 1	5 - 1 1 -	6 -	POs 7 - -	8 - 1 1 - -	D	10 - 1 1 -	11	1 1	1 2 3 3 3 3	2 - 1 1 -	3 - 1 1 -						

VERTICAL 5: EMERGING TECHNOLOGIES

23CS040	AR/VR TECHNOLOGY	L	T	P	C
		2	0	2	3

COURSE OBJECTIVES:

- To impart the fundamental aspects and principles of AR/VR technologies.
- To learn about the VR modeling techniques in detail.
- To gain knowledge about various applications of AR/VR.
- To know the basics of AR.
- To learn about the game engines involved in the development of AR/VR based applications.

UNIT I INTRODUCTION 7

Introduction to virtual reality and augmented reality – Definition – Introduction to trajectories and hybrid space – Three I's of VR – VR Vs 3D computer graphics – Benefits of VR – Components of VR system – Introduction to AR – AR technologies – Input devices – 3D position trackers – Types of trackers – Navigation and manipulation interfaces – Gesture interfaces – Types of gesture input devices – Output devices – Graphics display – Human visual system – Personal graphics displays – Large volume displays – Sound displays – Human auditory system.

UNIT II VR MODELING 6

Modeling - Geometric modeling - Virtual object shape - Object visual appearance - Kinematics modeling - Transformation matrices - Object position - Transformation invariants - Object hierarchies - Viewing the 3D world - Physical modeling - Collision detection - Surface deformation - Force computation - Force smoothing and mapping - Behavior modeling - Model management.

1		
UNIT III	APPLICATIONS	6

Human factors in VR – VR health and safety issues – VR and society – Medical applications of VR – VR in education, arts, and

entertainment – Military VR applications – Emerging applications of VR – VR applications in manufacturing – Applications of VR in robotics – Information visualization – VR in business.

UNIT IV | AUGMENTED REALITY

6

5

Introduction to augmented reality – Computer vision for AR – Interaction – Modeling and annotation – Navigation – Wearable devices.

UNIT V AR/VR SOFTWARE TOOLS AND GAME ENGINE

Joint Fundamentals of Unity – Introduction to Vuforia – Basics of Unreal – Overview of Blender – Basics of Pygame.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Study of tools like Unity, Maya, 3DS Max, AR toolkit, Vuforia and Blender.
- 2. Use the primitive objects and apply various projection types by handling camera.
- 3. Download objects from asset store and apply various lighting and shading effects.
- 4. Model 3D objects using various modeling techniques and apply textures over them.
- 5. Create 3D realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
- 6. Add audio and text special effects to the developed application.
- 7. Develop AR enabled applications with interactivity like Elearning environment, virtual walkthroughs, and visualization of historic places.
- 8. Develop AR enabled simple applications like DNA structure visualization and human anatomy visualization.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Summarize the basic concepts of AR and VR.

TCO2:	2: Identify different gesture interfaces used in AR/VR. 3: Apply the concepts of VR modeling.																											
	Identify										dor	nair	ıs.															
	Develo																											
CO6:	Analyz	e th	e d	iffe	ren	t ty	pes	of	gar	ne (engi	nes.																
TEX	Г ВООК	S:																										
1	John V	inc	e, '	'Int	rod	uct	ion	to	Vi	irtu	al F	Reali	ity",	Sp	orin	ger												
	Londor	ı, 1s	st E	diti	on,	Inc	dia,	201	11. ((Un	its 1	, 2 &	£ 3)															
2	Dieter 9																											
	Princip	les	& F	rac	tice	e", <i>E</i>	Add	liso	n V	Ves	ley,	1st l	Editi	ion	Ind	dia,												
	2016. (U	Jnit	: 1, :	3 &	4)																							
REF	EFERENCES: Charles Palmer, John Williamson, "Virtual Reality"																											
1																												
	Blueprints: Create compelling VR experiences for mobile",																											
	Packt Publishing, 1st Edition, India, 2018.																											
2	William R. Sherman, Alan B. Craig, "Understanding																											
	Virtual Reality - Interface, Application, and Design",																											
	Morgan Kaufmann Publishers, 2nd Edition, New Delhi,																											
	2018. Justin Plowman, "3D Game Design with Unreal Engine 4																											
3										_																		
1	and Ble	end	er",	, Pa	icki	Ρι	ıbli	shi	ng,	1st	Ed	itior	1, N	ew	De	lhi,												
	2016.			8		CC.	ш	E	3Ε,	OF	TE	CH	NO.	LO	G)													
4	Jonatha																											
							-							vu	ior	Reality for Developers: Build practical augmented reality applications with Unity, ARCore, ARKit and Vuforia",												
	Packt Publishing, 1st Edition, New Delhi, 2017.														ıa ,													
	POs PSOs																											
	COs						I	POs			10	11	12			s												
		1	2	3	4	5	6		8	9	10	11	12	1	2													
	1	1 2	2	3	4	5 2	I	POs		9 2	2	1	2	1 2	2 2	s												
	1 2	1 2 3	2 1 2	3 - 1	4 - 1	5 2 2	6 -	POs 7 - -	8 -	9 2 2	2	1	2	1 2 3	2 2 2	9s 3 -												
	1	1 2 3 3	2 1 2 2	3	4	5 2	6	POs	8	9 2	2	1	2 2 3	1 2 3 3	2 2 2 3	s												
	1 2 3	1 2 3	2 1 2	3 - 1 1	4 - 1 1	5 2 2 3	6 -	POs 7 - -	8 - - 1	9 2 2 3	2 2 2	1 1 2	2	1 2 3	2 2 2	9s 3 -												
	1 2 3 4	1 2 3 3	2 1 2 2 2	3 - 1 1	4 - 1 1	5 2 2 3 3	6 - - 1	POs 7 - - 1	8 - - 1 -	9 2 2 3 2	2 2 2 2	1 1 2 3	2 2 3 3	1 2 3 3 3	2 2 2 3 3	9s - - 1												
	1 2 3 4 5	1 2 3 3 3	2 1 2 2 2 2	3 - 1 1 1 1	4 - 1 1 1 1	5 2 2 3 3	1 6 1 - 1	7 - - 1 -	8 - - 1 - 1	9 2 2 3 2 3	2 2 2 2 3	1 1 2 3 3	2 2 3 3	1 2 3 3 3 3	2 2 2 3 3 3	9s - - 1 -												

23AD043	INTELLIGENT ROBOTS	L	T	P	C
		3	0	0	3
COURSE OBJ	ECTIVES:				
• To int	roduce the fundamental concepts and	com	por	ent	S
of inte	elligent robotic systems				
• To ex	plore various algorithms for perception	n, p	lanı	ning),
and co	ontrol in robots				
• To u	nderstand the integration of AI tec	chni	que	s i	n
roboti	cs for developing intelligent behaviors	,			
• To an	alyze the design and development of a	auto	non	nou	s
robots	s for real-world applications				
• To ev	valuate the ethical and societal imp	licat	tion	s	of
intelli	gent robots				
UNIT I IN	TRODUCTION TO INTELLIGEN	TV			9
RC	OBOTS				
Overview of	Robotics and Intelligent Robots-	Hist	ory	aı	nd
Evolution of R	Robotics - Components of Robotic Syste	ems:	Sei	nso	rs,
Actuators, and	d Controllers - Kinematics and Dynam	ics (of R	obo	ots
- Introduction	to Robotic Operating Systems (ROS).			G)	
UNIT II PE	RCEPTION IN ROBOTICS	AUTO	NON	40U	9
Sensing and	Perception: Camera, Lidar, and Son	ar S	Sens	sors	3 -

Sensing and Perception: Camera, Lidar, and Sonar Sensors - Computer Vision for Robotics: Object Detection, Recognition, and Tracking - SLAM (Simultaneous Localization and Mapping) - Sensor Fusion Techniques - Machine Learning for Perception in Robots.

UNIT III PLANNING AND NAVIGATION 9

Motion Planning: Kinematic and Dynamic Constraints - Navigation in Unstructured Environments - Obstacle Avoidance and Reactive Planning - Multi-Robot Coordination and Swarm Robotics.

UNIT IV CONTROL AND LEARNING IN **ROBOTS** Classical Control: PID Controllers, State-Space Models -Reinforcement Learning for Robotics Adaptive Control and .om Demonstration - Human-Robot Interaction and Shared Control UNIT V APPLICATIONS AND ETHICAL 9 CONSIDERATIONS Case Studies of Intelligent Robots: Industrial, Healthcare, and Service Robots - Ethical and Societal Implications of Intelligent Robots - Safety and Reliability in Autonomous Robots -Standards and Regulations for Intelligent Robots - Future Trends in Robotics: AI-driven Robotics, Human-Robot Collaboration. **TOTAL: 45 PERIODS** COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Demonstrate the architecture, components, and basic functioning of Intelligent robotic systems. CO2: Utilize perception algorithms sensor technologies for object detection and environmental mapping in robots. CO3: Apply path planning and navigation algorithms for autonomous robot movement in various environments. CO4: Develop control strategies and integrate advanced techniques such as reinforcement learning for robotic behavior and decision-making. CO5: Analyze case studies and understand the applications of intelligent robots across different domains, including industrial, healthcare, and service sectors. CO6: Outline the ethical, societal, and safety considerations related to the deployment and operation of intelligent robots.

TEV	ΓΕΧΤ BOOKS:															
1	John J.		.:~	″т.	2+40	4	ati a	t	o D	o la	Higg	. 1/	a a b a	i-		- d
1																
	Control									<i>,</i> ,						
2	Sebastia								_	,						
	"Probal		st1C	Kol	ooti	CS"	In	e IV	111	Pre	ss, I	st E	Laiti	on ((200	15)
	(Unit II)	·														
3	Patrick Lin, Ryan Jenkins, and Keith Abney, "Robot Ethics 2.0: From Autonomous Cars to Artificial Intelligence"															
	C															
	Oxford University Press 2nd Edition (2017) (Unit V)															
REF	FERENCES:															
1	Aaron Martinez and Enrique Fernández, "Learning ROS															
	for Robotics Programming", 2nd Edition, Packt Publishing,															
	2015.															
2	Roland Siegwart, Illah Reza Nourbakhsh, and Davide															
	Scaramuzza, "Introduction to Autonomous Mobile															
5	Robots'	, 2ı	nd I	Edit	ion	, M	IT I	Pres	ss, 2	2011	l.			1		ř.
3	B. K.	Gh	osh	, "	Rol	ooti	cs:	Fu	ında	ame	enta	l C	once	epts	aı	nd
	Analysi	s",	Ox	forc	l U	niv	ersi	ty I	res	s, 2	006.				1	
	CO	><	45	50			I	POs						I	PSC	s
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	AFE	1	0.19	2	NA.U	1	51 <u>1</u> Y	1	2	won	2
	2	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3
	3	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3
	4	3	2	1	1	1	2	-	3	-	1	-	-	3	1	3
	5	3	3	2	2	-	3	3	3	3	3	3	-	3	-	3
	6	2	1	-	-	-	3	3	3	3	2	3	-	2	-	3
O	verall	2	2	2	2	1	2	1	2	1	•	1	1	2	1	2
Cor	relation	3	3	2	2	1	3	1	3	1	2	1	1	3	1	3

23CS041	GAME DEVELOPMENT L T I												
		2	0	2	3								
COURSE OBJ	ECTIVES:												
• To kn	ow the basics of 2D and 3D graphi	cs f	or	gan	ne								
develo	pment.												
• To kno	w the stages of game development.												
• To und	lerstand the basics of a game engine.												
• To sur	vey the gaming development environn	nent	and	d to	ol								
kits.													
• To lear	n and develop simple games using Un	ity											
UNIT I 3D	GRAPHICS FOR GAME DESIGN				6								
Introduction (Genres of games, Basics of 2D and 3D	ore	nhi	ce f	or								
	Game components - 2D and 3D Trans.	0											
O	•												
Projections - Color models - Illumination and Shader models - Animation - Controller based animation.													
	AME DESIGN PRINCIPLES				6								
V A V													
Character dev	velopment, Storyboard development	for g	gam	ing	5 –								
- NOV / 7380	n – Script narration, Game bala				pr								
	rinciples of level design - Proposals -	- W1	ritir	ng f	or								
	n, Production and Post-production.	MULL	r Ne Cy	au u									
UNIT III GA	AME ENGINE DESIGN				6								
Rendering co	ncept – Software rendering – Hardwa	re re	end	erii	ng								
_	ting algorithms - Algorithms for ga				_								
_	ection – Game logic – Game AI – Path		_										
	ERVIEW OF GAMING PLATFORMS				6								
FR	AMEWORKS												
Pygame game development - Unity - Unity scripts - Mobile													
gaming, Game studio, Unity single player and multi-player games													
UNIT V GA	ME DEVELOPMENT USING UNITY	(6								
EN	GINE												
Exporting asse	ets from 3D software - Different types	of c	am	era	in								

Unity - Character navigation - Third person camera movement - Creating enemy characters runtime - Animation control in Unity - Graphic user interface in Unity - Assigning properties and methods for player

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Installation of a game engine, e.g., Unity, Unreal Engine.
- 2. Character design, sprites, movement, and character control.
- 3. Level design: design of the world in the form of tiles along with interactive and collectible objects.
- 4. Design of interaction between the player and the world, optionally using the physics engine.
- 5. Developing a 2D interactive using Unity.
- 6. Design of menus and user interaction in mobile platforms.
- 7. Developing a 3D game using Unreal.
- 8. Developing a multiplayer game using Unity.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply the basic concepts of 2D graphics.
- CO2: Apply the fundamentals of 3D graphics.
- CO3: Design games based on the principles.
- **CO4:** Make use game engines effectively.
- CO5: Analyse gaming environments and frameworks.
- **CO6:** Develop a simple game in Unity.

TEXT BOOKS:

- Patrick Felicia, "Unity from Zero to Proficiency (Proficient):
 A step-by-step guide to creating your first 3D Role-Playing
 Game", LPF Publishing, 1st Edition, New Delhi, 2019.
- **2** Ernest Adams, "Fundamentals of Game Design", Pearson Education India, 3rd Edition, India, 2015.

REFI	EFERENCES:															
1	Franz L	anz	ing	er,	"3D	Ga	me	De	velo	pm	ent	with	ı Un	ity"	, CI	RC
	Press, 1	st e	diti	on,	Ne	wΙ	Delh	i, 2	022							
2	Franz L	anz	ing	er,	"2D) Ga	me	De	velo	pn	nent	with	ı Un	ity"	, CI	RC
	Press, 1	st E	diti	ion,	Ne	w I	Dell	i, 2	020	١.						
3	Adam	Kra	ma	rze	wsk	ci, l	Enn	io	De	Nu	ıcci,	"Pr	actio	cal	Gaı	ne
	Design:	Design: A modern and comprehensive guide to video game														
	design"	design", Packt Publishing Limited, 2nd Edition, New Delhi,														
	2023.															
4	Rachel	Rachel Cordone, "Unreal Engine 4 Game Development														
	Quick S	Quick Start Guide", Packt Publishing Limited, 1st Edition,														
	New Delhi, 2019.															
	COs						I	Os						I	PSC	s
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1,000	3	2	1	1	2	-2	9	1	3	1	2	3	3	2	1
34	2	3	2	1	1	2	620	-	1	3	1	2	3	3	2	1
Î	3	3	2	1	1	2	4	A	1	2	2	3	2	3	2	1
1	4	3	2	1	1	1	-		1	1	1	1	1	3	1	1
Ŷ	5	3	2	1	1	1	-	-	1	2	2	1	1	3	1	1
	6 SINE	3	2	1	1	1) LI	.E(1	1	3	2	1	3	1	1
_	verall relation	3	2	1	1	2	LIAT	ED T	1 1	2	2	2	2	3	2	1

23CS042	IoT BASED SMART SYSTEMS	L	Т	P	
23C5042	101 BASED SMART STSTEMS	2	0	2	<u>C</u>
COURSE OBJ	FCTIVES:		U		
	amiliar with IoT fundamentals.				
	v about essential wireless technologies	for	ΙоΤ		
	rstand about cloud infrastructure for l		101	•	
	rstand IoT Design Methodologies.	101.			
	experience about Smart Systems for Ic	т			
	RODUCTION TO THE INTERNET				6
	INGS	Or			U
Introduction to	o IoT- Elements of an IoT- Techno	logy	dr	iveı	rs-
Business driv	vers- Typical IoT applications-	Trer	ıds	ar	nd
implications.					
UNIT II WII	RELESS TECHNOLOGIES FOR THE	Tol E			6
Sensors and s	ensor nodes - Sensing devices- Sens	sor :	mod	dule	es,
nodes and syst	ems- Network connectivity and protoc	cols-	Wi	rele	SS
sensor network	ks -Protocols - RFID , NFC, Zigbee, GS	M, (GPR	S.	6.11
UNIT III TH	E CLOUD FOR IOT	NO	LO	GY	6
The Topology	of the Cloud - Cloud-to-Device C	onne	ecti	vity	-
Device Ingres	ss/Egress - Data Normalization a	ind	Pro	otoc	ol
Translation- In	frastructure – APIs.				
UNIT IV IoT	DESIGN METHODOLOGY				6
IoT systems	management - IoT Design Me	thod	olo	gy	_
•	Integration and Application Developm				no
IDE – Program					
	SMART SYSTEMS				6
Smart Home	Automation -Smart Lighting -Smart	Apr	liar	nces	
	ction - Smoke/Gas Detectors - Smart				
	ement - Smart Agriculture - Future				
enabled IoT.	Ü				
	TOTAL:	30 P	ERI	OL	S

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Introduction to Arduino platform and programming
- 2. Interfacing Arduino with LED Blinking
- 3. Interfacing Arduino with LED Blinking with Push Button.
- 4. Build a simple smart home system
- 5. Interfacing Arduino with sound sensor.
- 6. Implement basic security using encryption in MQTT
- 7. Interfacing Arduino with Soil Moisture Sensor.
- 8. Build up automated irrigation monitoring

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply various concepts of the IoT and their technologies.
- CO2: Develop the IoT application using wireless technologies.
- CO3: Apply cloud integration for IoT.
- **CO4:** Develop applications using Arduino IDE.
- CO5: Develop Smart systems and IoT for Intrusion Detection.
- CO6: Develop Smart systems and AI-enabled IoT.

TEXT BOOKS:

- Misra, Sudip, Anandarup Mukherjee, and Arijit Roy,"Introduction to IoT", Cambridge University Press, 2021.
- 2 Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.

REFERENCES:

- Milan Milenkovic,"Internet of Things: Concepts and System Design" Springer 2020.
- **2** J. Biron and J. Follett, "Foundational Elements of an IoT Solution", O'Reilly Media, 2016.
- 3 Keysight Technologies, "The Internet of Things: Enabling Technologies and Solutions for Design and Test", Application Note, 2016.

4	Charles	Ве	Bell, "Beginning Sensor Networks with Arduino													
	and Ras	spb	berry Pi", Apress, 2013													
	COs		POs													s
`	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1		-	-	-	-	-	-	3	1	-
	2	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
	3	3	2	1	1	1	-	-	1	-	1	-	1	3	1	1
	4	3	2	1	1	1	-	-	-	-	-	-	-	3	1	-
	5	3	2	1	1	1	-	-	1	-	1	-	-	3	1	1
	6	3	2 1 1 1 1 - 1										1	3	1	1
	verall	3	2 1 1 1 1 - 1 - 1										1	3	1	1
Cor	relation		_			_										

Γ	,				
23CB058	CRYPTO CURRENCY	L	T	P	C
		2	0	2	3
COURSE OBJ	ECTIVES:				
• To u	nderstand the fundamental co	once	pts		of
	urrency, blockchain, and decentralized				
*	plore the technologies behind cryp				
	ng cryptography, consensus algor	rithr	ns,	aı	nd
	ain architectures.				
	alyze the risks and challenges asso		ed	Wi	th
, , , , , , , , , , , , , , , , , , ,	urrencies and blockchain technologies.				
	estigate the economic and legal im				
systems	urrencies, including their impact on glo	opai	11116	anc.	lai
5	elop practical skills in implementin	σ at	nd .	11011	nσ
	urrency technologies, including wallet				
, , , , , , , , , , , , , , , , , , ,	art contracts.	, es		8	,
	TRODUCTION	W		V	6
					ř.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C <mark>ryp</mark> tocurrency - Blockchain Technolo	05			•
0.000	d Functionality - Evolution of Crypton				
1	yptocurrencies: Bitcoin, Ethereum, I				
	vantages and Challenges of Cryptocurr				
UNIT II CR	YPTOGRAPHIC FOUNDATIONS O	FUTC	NO)	400	6
CR	YPTOCURRENCY				
Basics of Crur	otography: Symmetric and Asymmetric	Enc	141717	tio	
	ns and Public Key Infrastructure (P	,		_	
· ·	d Certificates - Elliptic Curve Cryptogr	apn	y (E	CC	.) -
	yptocurrencies				
	ONSENSUS ALGORITHMS AND				6
BL	OCKCHAIN PROTOCOLS				
Proof of Work	(PoW) vs Proof of Stake (PoS) - Deleg	ated	Pro	oof	of
	- Practical Byzantine Fault Tolerar				
, ,	Ethereum and Smart Contracts		•	,	
Conscisus II	. Edicicum and omait Condacts	DI	OCK	C110	.A.L

Protocols and Governance.

UNIT IV CRYPTOCURRENCY ECONOMICS AND 6 MARKETS

The Role of Cryptocurrencies in Modern Financial Systems - Cryptocurrency Markets: Exchanges, Trading, and Volatility - Cryptocurrency Mining and Proof of Work - Initial Coin Offerings (ICO) and Tokenomics - Economic Impacts and Challenges of Cryptocurrencies

UNIT V LEGAL, REGULATORY, AND SECURITY 6 ISSUES 6

Legal Frameworks for Cryptocurrencies Globally - Anti-Money Laundering (AML) and Know Your Customer (KYC) - Security Issues in Cryptocurrency Transactions and Wallets - Regulatory Challenges: Taxation and Compliance - The Future of Cryptocurrencies in Legal and Economic Systems

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Setting up a Cryptocurrency Wallet (Bitcoin, Ethereum)
- 2. Sending and Receiving Cryptocurrencies
- 3. Understanding and Using Blockchain Explorers
- 4. Cryptocurrency Mining: Setting Up a Mining Rig (Bitcoin, Ethereum)
- 5. Exploring Cryptocurrency Exchanges (Buying, Selling, and Trading)
- 6. Using and Interacting with Ethereum Smart Contracts
- 7. Analyzing the Bitcoin Blockchain Using Tools (e.g., Blockchair, Blockchain.info)
- 8. Setting up a Private Blockchain using Ethereum or Hyperledger
- 9. Simulating an ICO: Token Creation and Launch

10	. Security Testing of Cryptocurrency Transactions and
	Smart Contracts
	TOTAL: 30 PERIODS
COL	RSE OUTCOMES:
COU	After completion of the course, the students will be able to:
CO1.	-
COI.	Explain the core concepts of cryptocurrency, blockchain, and decentralized networks.
CO2	Analyze the underlying technologies and protocols that
CO2.	enable cryptocurrencies, including cryptographic
	algorithms and consensus mechanisms
CO3·	Examine the risks, vulnerabilities, and challenges of using
CO3.	cryptocurrencies in real-world scenarios.
CO4·	Apply the economic, legal, and regulatory implications of
CO 1.	cryptocurrencies and blockchain technologies.
CO5:	Make use of cryptocurrency tools such as wallets, exchanges,
	and smart contracts.
CO6:	Analyze the future of cryptocurrency and blockchain in
1	emerging markets, financial systems, and industries.
TEX	T BOOKS:
1	Nakamoto, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash
	System. Bitcoin.org, 2008.
2	Mougayar, William. The Business Blockchain: Promise,
	Practice, and the 4th Industrial Revolution. Wiley, 2016.
REFI	ERENCES:
1	Buterin, Vitalik. Ethereum," A Next-Generation Smart
	Contract and Decentralized Application Platform"
	Ethereum Foundation, 2013.
2	Crosby, Michael, et al.," Blockchain Technology: Beyond
	Bitcoin" Applied Innovation Review, 2016.
3	Narayanan, Arvind, et al." Bitcoin and Cryptocurrency
	Technologies" Princeton University Press, 2016.
4	Zohar, Aviv," Bitcoin and Cryptocurrencies" MIT Press,
	2018.

5	Gans, Jo	osh	ua S	5.,"	The	e Blo	ock	cha	in a	nd	the l	New	Arc	chite	ectu	ıre	
	of Trust	t."N	⁄IΙΤ	Pre	ss,	2019	9.										
6	Tapscot	tt, I	Don	, ar	nd .	Ale:	х Та	aps	cott	. Bl	lock	haiı	n Re	evol	utio	n:	
	How	the]	Гесŀ	nno	logy	У	Beł	nind	l]	Bitco	oin	and	d	Oth	ner	
	Cryptoo	Cryptocurrencies is Changing the World. Penguin, 2016.															
7	Antono	Antonopoulos, Andreas M. Mastering Bitcoin: Unlocking															
	Digital	Digital Cryptocurrencies. O'Reilly Media, 2017.															
	POs													PSOs			
'	COs											12	1	2	3		
	1	2	1	-	-	2	2	1	2	2	2	1	3	2	2	2	
	2	3	3	2	2	3	2	2	3	2	2	2	3	3	3	3	
	3	3	3	2	2	3	2	2	3	3	3	2	2	3	3	3	
	4	3	2	1	1	2	1	1	2	2	2	3	3	3	2	2	
	5	3	2	1	1	3	2	2	3	2	3	2	3	3	3	3	
	6 LOW	3 3 2 2 3 2 3 3 3 3 3 3 3 3															
O	verall	erall 3 3 2 2 3 2 2 3 3 3 3 3 3 3 3 3															
Cor	relation	elation 3 3 2 2 3 2 2 3 3 3									3	3	9				

COLLEGE OF TECHNOLOGY

23CB059	QUANTUM CRYPTOGRAPHY	L	T	P	С
		2	0	2	3

COURSE OBJECTIVES:

- To understand the fundamental principles of quantum mechanics and their application to cryptography, including quantum states, superposition, and entanglement.
- To explore quantum key distribution (QKD) protocols, such as BB84 and E91, and understand how these protocols ensure secure communication.
- To enable the students to analyze the impact of quantum algorithms (e.g., Shor's and Grover's) on the security of classical cryptosystems.
- To enable the students to evaluate the potential applications of quantum cryptography in real-world cybersecurity systems and secure communication channels.
- To understand the challenges and opportunities posed by quantum computing to current encryption methods and the development of quantum-resistant cryptographic techniques.

UNIT I INTRODUCTION TO QUANTUM 6 CRYPTOGRAPHY

Introduction to Quantum Mechanics: Qubits, Superposition, Entanglement - Classical Cryptography vs. Quantum Cryptography - Overview of Quantum Computing and its impact on cybersecurity - Basics of Quantum Information Theory and Quantum States

UNIT II QUANTUM KEY DISTRIBUTION (QKD) 6

Principles of Quantum Key Distribution (QKD) - BB84 Protocol: Mechanism, Security, and Use Cases - E91 Protocol: Quantum Entanglement and its Role in Security - Security Analysis of QKD Protocols and Practical Considerations

UNIT III QUANTUM ALGORITHMS AND CRYPTOGRAPHY

6

Shor's Algorithm: Factoring and its Implications for RSA - Grover's Algorithm: Quantum Search and its Impact on Symmetric Key Cryptography - Quantum Digital Signatures - Introduction to Post-Quantum Cryptography

UNIT IV QUANTUM COMMUNICATION AND SECURITY

6

Quantum Communication Channels: How they differ from classical channels - Quantum Teleportation and Quantum Secure Direct Communication (QSDC) - Quantum Networks and their Role in Secure Communication - Practical Implementations and Challenges of Quantum Cryptography

UNIT V REAL-WORLD APPLICATIONS AND FUTURE 6 CHALLENGES

Practical applications of Quantum Cryptography in cybersecurity (e.g., Quantum Key Distribution in the cloud, secure government communications) - Quantum-resistant algorithms and emerging cryptographic protocols -The future of quantum-safe encryption and cybersecurity -Ethical and legal challenges

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Simulating Quantum Key Distribution (BB84 Protocol) using a quantum programming framework like Qiskit.
- 2. Implementing Quantum Entanglement and QKD protocols (BB84/E91) on a quantum simulator.
- 3. Using Qiskit to implement and test basic quantum algorithms (Grover's and Shor's)
- 4. Exploring Quantum Digital Signatures and their cryptographic applications.
- 5. Practical demonstration of Quantum Communication Channels.

- 6. Experimenting with Quantum Secure Communication protocols (Quantum Direct Communication)
- 7. Analysis of the impact of quantum algorithms on RSA and AES encryption.
- 8. Setting up a Quantum Cryptography experiment on a real quantum computing platform (e.g., IBM Q Experience or similar).

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Demonstrate a deep understanding of quantum mechanics and its relevance to cryptographic systems, including quantum states, superposition, and entanglement.
- CO2: Apply quantum key distribution protocols such as BB84 and E91 and assess their security properties.
- CO3: Apply quantum algorithms (e.g., Shor's and Grover's) and analyze their impact on existing cryptographic methods.
- CO4: Analyze the role of quantum communication technologies in secure communications, focusing on quantum teleportation and quantum direct communication.
- CO5: Identify and analyze the challenges and solutions for quantum-safe encryption, preparing for the quantum computing era.
- CO6: Apply quantum cryptography techniques in practical settings, considering real-world implementation issues and security concerns.

TEXT BOOKS:

- Nielsen, Michael A., and Isaac L. Chuang. Quantum Computation and Quantum Information. 10th Anniversary ed. Cambridge: Cambridge University Press, 2011.
- Bennett, Charles H., and Gilles Brassard. "Quantum Cryptography: Public Key Distribution and Coin Tossing."
 In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984.

BEE	RENCE	<u>ح</u> .														
	EFERENCES: 1 Gisin, Nicolas, and Rob Thew. Quantum Communication,															
1																
	Quantu				togi				nd .:		uant			etro	olog	gy.
2	Cambri Lo, Ho														· oar	1110
_	Quantu			_					-		u K brid				orid	
	Univers						ano	11.	C	am	biia	ge.	C	1111L	ли	ge
3							thm	oc f	or	O11	antu	m (¬om	nut	atio	·n·
		Shor, Peter W. "Algorithms for Quantum Computation: Discrete Logarithms and Factoring." Proceedings of the 35th														
		Discrete Logarithms and Factoring." Proceedings of the 35th Annual Symposium on Foundations of Computer Science														
		(1994).														
4	Arute, Frank, et al. "Quantum Supremacy Using a															
	Programmable Superconducting Processor." Nature 574															
	(2019): 505-510.															
5	Bennett	Bennett, Charles H., and Stephen Wiesner. "Communication														
	via One	via One- and Two-Particle Operators on Einstein-Podolsky-														
	Rosen	Rosen States." Physical Review Letters 69, no. 20 (1992):														
	2881-28	84.	1	6										-		ř.
6	Bennett	Bennett, Charles H., and Stephen Wiesner. "Communication														
	via One															
	Rosen		es."	Pł	ıysi	cal	Re	viev	N L	ette	ers 6	9, r	10. 2	20 (199	2):
	2881-28		1	8/	7	cc	MI.	EZ	7.5	ΩE	TE	CH	NO	LO	G)	p.
7	Mayers															
	Distilla	tion	. Ca	amk	orid	ge:				e U	nive	rsity	Pre			
	Cos					1		POs				1			PSC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	2	1	1	2	2	1	2	2	3	2	2
	2	3	2	1	1	2	2	2	1	1	1	2	2	3	2	1
	3	3	2	1	1	2	1	2	2	3	2	3	3	3	2	2
	4	4 3 3 2 2 3 1 1 2 2 2 3 2 3 2														
	5	3	2	1	1	2	1	1	2	3	3	2	3	3	2	2
	6	3	2	1	1	3	2	3	2	2	3	2	3	3	3	2
	verall 3 2 1 1 3 2 2 2 3 2 3 3 3 3															
Cor	relation		_	•	1		_	_	_		_	,		J		_

23CB060	DEEP LEARNING TECHNIQUES	L	T	P	C						
		2	0	2	3						
COURSE O	BJECTIVES:										
• To ur	nderstand the fundamental concepts of	deej	o le	arn	ing						
and n	eural networks.										
 To exp 	plore advanced deep learning techniques	s.									
• To de	velop proficiency in designing, training, a	and e	eval	uat	ting						
deep	learning models.										
• To im	plement deep learning models using fra	amev	vor	ks a	and						
under	estand the computational comp	lexit	ies	i	and						
optim	ization methods used in deep learning.										
• To le	arn to apply deep learning to real-wo	rld	pro	ble	ms,						
partic	ularly in fields like image recogn	itior	١,	spe	ech						
recognition, and cybersecurity applications.											
UNIT I INTRODUCTION TO DEEP LEARNING AND 6											
N	IEURAL NETWORKS				ř.						
Introduction	to Artificial Neural Networks (ANN	Is) a	nd	th	eir						
	in machine learning - Overview of Per										
	Perceptrons (MLPs) - Activation function										
100//37	- Cost functions and Backpropagation										
	ep networks and understanding converg										
0	CONVOLUTIONAL NEURAL NETWO				6						
(0	CNNS)										
Г 1 (1 (0 1 1 1 1 1 1 1 1										
	als of Convolutional Neural Networks -										
, ,	ling layers, and fully connected lay										
	s: LeNet, AlexNet, VGG, and ResNet - A										
	age recognition and classification - Trar	ısrer	iea	rnı	ng						
	ined CNN models.	N T N T	C)								
UNII III K	ECURRENT NEURAL NETWORKS (R	VIVIX	5)		6						

Introduction to RNNs and sequence data - Backpropagation through time (BPTT) and vanishing gradient problem -Long

AND LSTM

Short-Term Memory (LSTM) networks and their advantages over traditional RNNs - Applications of RNNs and LSTMs in speech recognition and natural language processing - Introduction to attention mechanisms and transformers.

UNIT IV GENERATIVE MODELS

6

Overview of generative models in deep learning - Generative Adversarial Networks (GANs): Architecture and working principle -Variational Autoencoders (VAEs) -Applications of GANs in image generation, art, and data augmentation - Challenges in training GANs and regularization techniques.

UNIT V DEEP LEARNING IN PRACTICE

6

Best practices in training deep learning models (data preprocessing, overfitting, dropout) - Optimization techniques: Gradient Descent, Adam, and Learning Rate Scheduling - Introduction to deep learning frameworks: TensorFlow and PyTorch - Ethical considerations and the impact of deep learning in cybersecurity (e.g., adversarial attacks) - Real-world applications of deep learning in cybersecurity, autonomous systems, and healthcare.

TOTAL: 30 PERIODS

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- 1. Implement a simple feedforward neural network using NumPy.
- 2. Build a multi-layer perceptron (MLP) with backpropagation in TensorFlow or PyTorch.
- 3. Implement a Convolutional Neural Network (CNN) for image classification on MNIST dataset.
- 4. Fine-tune a pre-trained CNN model (e.g., ResNet) for a custom image classification task.

- 5. Implement a Recurrent Neural Network (RNN) for timeseries prediction.
- 6. Use Long Short-Term Memory (LSTM) for sentiment analysis on text data.
- 7. Build and train a Generative Adversarial Network (GAN) for image generation.
- 8. Explore adversarial attacks on deep learning models in cybersecurity.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the fundamental principles of deep learning, including the architecture and training of neural networks.
- CO2: Develop and implement advanced deep learning models such as CNNs and RNNs for real-world applications.
- CO3: Examine deep learning models and apply techniques for improving performance, such as hyperparameter tuning, regularization, and transfer learning.
- CO4: Build deep learning solutions for complex tasks like image recognition, natural language processing, and time-series analysis.
- **CO5:** Experiment with deep learning frameworks like TensorFlow and PyTorch to implement and optimize neural networks.
- CO6: Identify ethical issues and challenges in deploying deep learning models in real-world systems, particularly in cybersecurity.

TEXT BOOKS:

- 1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep Learning", Cambridge: MIT Press, 2016.
- 2 Bishop, Christopher M. "Pattern Recognition and Machine Learning", New York: Springer, 2006.

REF	ERENCE	S:														
1	Raschka	a, S	Seba	istia	ın.	"Py	/thc	n l	Mac	hin	e Le	earn	ing"	, 31	d e	ed.
	Birming	gha	m: l	Pacl	kt P	ubl	ishi	ng,	201	9.						
2	Chollet	, Fr	anç	ois.	. "I)ee ₁	рL	ear	ning	z w	ith I	Pyth	non"	, 2r	nd e	ed.
	Shelter	Isla	nd:	Ma	nni	ing	Pul	olica	atio	ns,	2021					
3	1Ng, A	ndr	ew.	. Ma	ach	ine	Lea	rni	ng `	Yea	rnin	g. S	elf-p	ubl	ishe	ed,
	2018. [C	nli	ne]	Av	aila	ble	at:	http	os:/	/w	ww.	mly	earn	ing	.org	7
4	Karpatl	ıy,	Α	nd	rej.	"	CS2	2311	ղ:	Co	nvo	lutio	nal	N	Jeu	ral
	Networ	ks	for	V	isua	al I	Reco	ogn	itio	n."	Star	nfor	d U	niv	ersi	ty,
	2017. [C	nli	ne]	Av	aila	ble	at:	http	o://	cs2	31n.	stan	ford	l.ed	u/	•
5		017. [Online] Available at: http://cs231n.stanford.edu/ Deng, Li, and Dong Yu. "Deep Learning for Speech														
	Recogn	Recognition." IEEE Signal Processing Magazine 29, no. 6														
	(2012): 2	(2012): 25–35. Hastie, Trevor, Robert Tibshirani, and Jerome Friedman.														
6	Hastie,	Tre	evo	r, F	Robe	ert	Tib	shii	ani	, aı	nd J	eron	ne F	rie	dma	an.
	"The I	"The Elements of Statistical Learning: Data Mining,														
	Inferen	Inference, and Prediction", 2nd ed. New York: Springer,														
	2009.									A						
7	Yegnan	ara	yan	a, l	В. "	Art	tific	ial	Net	ıral	Ne	two	rks"	. 2r	nd e	ed.
	New De	elhi	:PI	ΗL	ear	nin	g, 2	018								
	CO	RR	EAU	de		CC	ΣLj	POs	σĒ	OF	TE	CH	NO	LG	PSC	s
·	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-		2	1	1	2	2	1	2	2	2	2	2
	2	3	2	1	1	2	2	3	2	2	2	3	3	3	2	2
	3	3	3	2	2	3	1	2	2	3	2	3	3	3	3	2
	4	3	2	1	1	2	2	3	3	2	3	2	2	3	2	3
	5	3	2	1	1	2	3	2	2	3	3	2	3	3	2	2
	6	3	2	1	1	3	2	3	2	3	2	3	3	3	3	2
О	verall															
Cor	relation	3	2	1	1	3	2	3	3	3	3	3	3	3	3	3

23CB061	BIG DATA ANALYTICS AND	L	T	P	C
	SECURITY	2	0	2	3

COURSE OBJECTIVES:

- To understand the core concepts of big data including its characteristics, tools, technologies, and challenges associated with processing and storing large datasets.
- To explore and implement distributed computing systems such as Hadoop and Apache Spark to process and analyze big data.
- To develop expertise in data processing and data mining techniques, enabling effective handling of structured, unstructured, and semi-structured data.
- To learn to apply machine learning algorithms and statistical models on large datasets for data analysis and predictive analytics.
- To learn to assess security, privacy, and ethical issues related to big data processing, focusing on its impact on cybersecurity and business decision-making.

UNIT I INTRODUCTION TO BIG DATA 6

Definition of Big Data and its characteristics (Volume, Variety, Velocity, Veracity, Value) - Introduction to Big Data Technologies - Overview of Big Data Analytics: Applications and Challenges - Hadoop Ecosystem Overview (HDFS, MapReduce) - Tools for Big Data Processing: Hadoop, Spark, and NoSQL Databases

UNIT II DATA STORAGE AND PROCESSING WITH HADOOP

Hadoop Distributed File System (HDFS): Architecture and Functionality - Understanding MapReduce for Large-Scale Data Processing - Introduction to Hive and Pig for data warehousing and querying - Setting up Hadoop Cluster and Running MapReduce Jobs - Integrating Hadoop with other tools (e.g., Sqoop, Flume, Oozie)

UNIT III BIG DATA PROCESSING WITH APACHE SPARK

Introduction to Apache Spark: RDDs, DataFrames, and Datasets - Spark SQL, Spark Streaming, and MLlib for Machine Learning - Comparison of Hadoop MapReduce and Spark - Real-time Data Processing with Spark Streaming - Case Study: Using Spark for Big Data Analytics in Cybersecurity

UNIT IV NOSQL DATABASES AND DATA MINING

Overview of NoSQL Databases: Key-Value, Document, Column, and Graph Databases - Working with HBase, Cassandra, and MongoDB - Data Modeling with NoSQL Databases - Data Mining Techniques for Big Data Analytics - Application of Data Mining in Cybersecurity (e.g., anomaly detection)

UNIT V SECURITY, PRIVACY, AND ETHICAL ISSUES 6 IN BIG DATA ANALYTICS

Data Privacy Challenges in Big Data Analytics - Security Measures for Big Data Systems: Encryption, Authentication, Access Control - Ethical Implications: Data Bias, Data Ownership, and

Accountability - Case Studies on Security Issues in Big Data Systems (e.g., data breaches) - The Role of Big Data in Enhancing Cybersecurity

TOTAL: 30 PERIODS

6

6

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS

- Setting up a Hadoop Cluster and Running Simple MapReduce Jobs
- Using HDFS for Data Storage Uploading and Retrieving Files from HDFS)
- 3. Querying with Apache Hive Writing Queries to Analyze Large Datasets.

- 4. Data Processing with Apache Spark Implementing Spark RDDs and DataFrames.
- 5. Real-Time Data Processing with Spark Streaming.
- 6. NoSQL Database Implementation Hands-on with HBase or MongoDB.
- 7. Data Mining with Apache Mahout Implementing Classification Algorithms on Big Data.
- 8. Implementing Big Data Security Encryption and Access Control in Hadoop Ecosystem.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the core concepts of big data, including its characteristics, tools, and technologies used for storage, processing, and analysis.
- CO2: Make use of distributed computing frameworks like Hadoop and Apache Spark to process large-scale data efficiently.
- CO3: Construct and deploy NoSQL databases (e.g., MongoDB, Cassandra) for managing big data and implement efficient data models.
- CO4: Apply data mining and machine learning techniques on large datasets for pattern recognition, anomaly detection, and predictive analytics.
- CO5: Examine the security, privacy, and ethical issues in big data systems, with a focus on data protection mechanisms and regulatory frameworks.
- CO6: Analyze and interpret real-world big data applications, particularly in cybersecurity, business intelligence, and other societal contexts.

TEXT BOOKS:																
	1 Zikopoulos, Patrick, and Chris Eaton. Understanding Big															2:~
1	Data: Analytics for Enterprise Class Hadoop and Streaming															_
			-				-					-	nu s	ше	31111	ng
	Data. 2nd ed. New York: McGraw-Hill, 2011. Raj, P. R. Hadoop 2.x Administration Cookbook.															
2	Birmingham: Packt Publishing, 2015.															
DEEL	FERENCES:															
1	Vassilakis, Christos. Big Data Analytics with Spark: A															
	Hands-On Approach. Birmingham: Packt Publishing, 2017.															
2	Mohan, C. S. Big Data Analytics with R and Hadoop. New															
	York: Springer, 2015.															
3	White, Tom. Hadoop: The Definitive Guide. 4th ed.															
	Sebastopol: O'Reilly Media, 2015.															
4	Sharma, Sandeep. Big Data and Cloud Computing:															
	Architecture, Techniques, and Applications. New York:															
	Springer, 2016.															
5	Karmarkar, Uday, and S. M. P. Setia. Big Data Processing															
	with Apache Spark. New York: Wiley, 2017															
6	Chakrabarti, Aditya. Big Data: Concepts, Methodologies,															
	Tools, and Applications. Hershey, PA: IGI Global, 2016.															
7	Singh, M., and S. Soni. Big Data and Analytics f										or					
	Cybersecurity. Boca Raton: CRC Press, 2020.															
COs		_	_	POs							PSOs					
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		2	1	-	-	1	2	1	2	3	2	1	2	2	1	2
2		3	2	1	1	2	3	3	3	3	3	3	2	3	2	3
3		3	3	3	3	2	2	2	3	2	2	2	2	3	2	3
4		3	2	1	1	3	2	3	2	3	2	3	3	3	3	2
5		3	3	2	2	3	2	3	3	3	2	3	2	3	3	3
6		3	3	2	2	3	3	2	3	3	3	3	3	3	3	3
Overall		3	3	2	2	3	3	3	3	3	3	3	3	3	3	3
Correlation																