

REGULATIONS - 2023

CURRICULUM AND SYLLABI

(2023-2024)

B.E. AUTOMOBILE ENGINEERING

KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

VISION OF KCG

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

MISSION OF KCG

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

VISION OF AUTOMOBILE ENGINEERING

The Department of Automobile Engineering aims at achieving academic excellence in engineering, technology and research by providing unique educational experience which enables the students to cater to the needs of the society.

MISSION OF AUTOMOBILE

ENGINEERING

- Impart effectual teaching learning and training in automobile domain.
- Equip with State-of-the-art technology and equipment to manufacture automobile components.
- Encourage research relevant to automotive engineering technology for the advantage of the society.
- Inculcate engineering methods, knowledge and professional standards in automobile engineering.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The graduates will:

PEO 1	Excel in their career at engineering industry, research or entrepreneurship.							
PEO 2	Exhibit professionalism and team work in their chosen profession.							
PEO 3	Adapt to current trends, technologies and industrial scenarios by pursuing life-long learning.							
PEO 4	Design and develop solutions to meet the demand of the society with ethical and professional responsibility.							

PROGRAMME OUTCOMES (POs)

Engineering graduates will be able to:

PO 01	Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 03	Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 04	Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 05	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 09	Function effectively as an individual, and as a
	member or leader in diverse teams, and in
	multidisciplinary settings.
PO 10	Communicate effectively on complex engineering
	activities with the engineering community and with
	society at large, such as, being able to
	comprehend and write effective reports and design
	documentation, make effective presentations, and
	give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply
	these to one's own work, as a member and leader in
	a team, to manage projects and in
	multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and
	ability to engage in independent and life-long
	learning in the broadcast context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 01	Apply the concepts of design and development in automotive industry.
PSO 02	Model and simulate vehicle systems using modern tools.
PSO 03	Apply ethical principles in their career.

INDEX

Sl.No	Description	Page No.
1	Curriculum	1
2	I Semester Syllabus	16
3	II Semester Syllabus	44
4	III Semester Syllabus	76
5	IV Semester Syllabus	102
6	V Semester Syllabus	120
7	VI Semester Syllabus	137
8	VII Semester Syllabus	155
9	VIII Semester Syllabus	172
10	Vertical 1 : Electric Vehicle	175
11	Vertical 2 : Computational Design	198
12	Vertical 3 : Vehicle Research And Validation	22
13	Vertical 4 : Special Purpose Vehicles	244
14	Vertical 5 : Product And Process Development	268
14	Vertical 6 : Diverisified Courses Group	290

KCG COLLEGE OF TECHNOLOGY AUTONOMOUS

REGULATIONS 2023

BE-AUTOMOBILE ENGINEERING CHOICE BASED CREDIT SYSTEM CURRICULUM FOR SEMESTERS I TO VIII

SEMESTER-I

S1.	Course	Course Title	Category	Periods Per Week			Total Contact	Credits
No.	Code		caregory	L	T	P	Periods	
	23IP101	Induction Programme		-	1	ı	-	-
		T	HEORY					
1	23HS101	Essential Communication	HSMC	3	0	0	3	3
2	23MA101	Matrices and Calculus	BSC	3	0	0	3	3
3	23AD101	Programming in Python	ESC	3	0	0	3	3
4	23HS102	Heritage of Tamils	HSMC)1-	0	0	V0106	Y 1
	(GE	THEORY A	ND PRAC	TIC	AI	LS	AUTONOMO	วบร
5	23PH111	Engineering Physics	BSC	3	0	2	5	4
6	23CY111	Engineering Chemistry	BSC	3	0	2	5	4
		PRA	CTICALS					
7		Python Programming Laboratory	ESC	0	0	4	4	2
8	23HS121	Communication Skills Laboratory	HSMC	0	0	2	2	1
9	23HS122	General Clubs / Technical Clubs / NCC / NSS / Extension Activities	HSMC	0	0	2	2	1*
		TOTAL		16	0	12	28	21

SEMESTER -II

S1. No.	Course code	Course Title	Category	_	Per Tee	k	Total Contact Periods	Credits		
				L	T	P	remous			
	THEORY									
1	23HS201/ 23HS202	Professional English/ Foreign language	HSMC	3	0	0	3	3		
2	23MA203	Statistics and Numerical Methods	BSC	3	1	0	4	4		
3	23PH206	Material Science	BSC	3	0	0	3	3		
4	23ME201	Applied Mechanics	PCC	3	0	0	3	3		
5	23HS203	Tamils and Technology	HSMC	1	0	0	1	1		
	16	THEORY AND	PRACTI	CAI	LS					
		Basics Electrical and	10 4		1					
6	23EE281	Electronics	ESC	2	0	2	4	3		
	CANEE	Engineering	EGE O	- 1	E٤	H	NOLO	GY		
7	23ME211	Engineering AFFINAL Graphics	ESC	3	0	2	AUTONOM 5	4		
		PRACT	TICALS							
8	23ME221	Engineering Practices Laboratory	PCC	0	0	4	4	2		
9	23ME222	Applied Mechanics Laboratory	PCC	0	0	4	4	2		
10	23ES291	Soft Skills	EEC	0	0	2	2	1*		
		TOTAL		18	1	14	33	25		

SEMESTER-III

S1.	Course code Course Title Category		Category	wee		k	Total Contact Periods	Credits			
			L	T	P						
	THEORY										
1	23MA302	Transforms and Partial Differential Equations	BSC	3	1	0	4	4			
2	23AU301	Thermodynamics and Heat transfer	PCC	3	0	0	3	3			
3	23AU302	Automotive Engines	PCC	3	0	0	3	3			
4	23HS301	Universal Human Values and Ethics	HSMC	3	0		3	3			
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					0					
	CINEE	R REAL THEORY AND	PRACTI	CA	LS	H	NOLO	GY			
5	23ME311	Manufacturing Processes	PCC	3	0	2	5	4			
6	23AU311	Fuels and Lubricants	PCC	3	0	2	5	4			
		PRAC	ΓICALS								
7	23AU321	Computer Aided Design Laboratory	PCC	0	0	4	4	2			
8	23AU322	Automotive Engines Laboratory	PCC	0	0	4	4	2			
9	23ES391	Presentation Skills	EEC	0	0	2	2	1*			
		TOTAL		18	1	14	33	25			

SEMESTER-IV

S1. No.	Course code	Course Title	Category	Periods Per Week L T P		Total Contact Periods	Credits	
			THEORY	L	1	r	Terrous	
1	23MA401	Optimization Techniques	BSC	3	1	0	4	4
2	23AU401	Automotive Transmission	PCC	3	0	0	3	3
3	23AU402	Automotive Electrical and Electronics Engineering	PCC	3	0	0	3	3
4	OF THE OWNER	Department Elective1	DEC	3	0	0	3	3
5		Department Elective2	DEC	3	0	0	3	3
	1	THEORY	AND PRA	CTI	CAL	S	INOLO	CV
6	23CE412	Strength of Materials	PCC	3	0	2	r I AUSONO	1004
		P	RACTICA	LS				
7	23AU421	Automotive Electrical and Electronics Engineering Laboratory	PCC	0	0	4	4	2
8	23ES491	Aptitude and Logical Reasoning - 1	EEC	0	0	2	2	1*
9	23AU422/ 23AU423	Mini Project – 1/In - Plant Training	EEC	0	0	2	2	1
		TOTAL		18	1	10	29	23

SEMESTER-V

S1. No.	Course Code	Course Title	Category	VVEEK			Total Contact Periods	Credits
		THI	EORY					
1	23RE501	Research Methodology and Intellectual Property Rights	ESC	2	0	0	2	2
2	23AU501	Automotive Chassis	PCC	3	0	0	3	3
3		Department Elective 3	DEC	3	0	0	3	3
4	4MPOW	Department Elective 4	DEC	3	0	0	3	3
5		Open Elective - 1 (Emerging Technologies)	NEC	3	0	0	3	3
	WEE	THEORY ANI	D PRACTI	CA	LS	ITY	AUTONO	10US
6	23AU511	Introduction to Finite Element Analysis	PCC	3	0	2	5	4
		PRAC	TICALS					
7	23AU521	Automotive Components Laboratory	PCC	0	0	4	4	2
8	23AU522	Mini Project - 2	EEC	0	0	4	4	2
9	23ES591	Aptitude and Logical Reasoning-2	EEC	0	0	2	2	1*
		TOTAL		17	0	12	29	22

SEMESTER VI

S1. No.	Course Code	Course Title	Category	Periods Per Week L T P		k	Total Contact Periods	credits
		THI	EORY					
1		Department Elective 5	DEC	3	0	0	3	3
2		Department Elective 6	DEC	3	0	0	3	3
3		Open Elective-2 (Management /Safety Courses)	NEC	3	0	0	3	3
		THEORY ANI	O PRACTI	CA	LS			
4	23CE611	Environmental Science and Engineering	ESC	3	0	2	5	4
5	23AU611	Automotive Engine and Chassis Components Design	PCCE O	3	TO (N(5LO	G 4
6	23AU612	Two and Three- Wheelers	PCC	3	0	2	5	4
		PRAC	TICALS					
7	23AU621	Project Work - Phase 1	EEC	0	0	4	4	2
8	23AU622	Technical Training	EEC	0	0	2	2	1
9	23AU623	Technical Seminar- 1	ESC	0	0	2	2	1
		TOTAL		18	0	14	32	25

SEMESTER-VII

S1. No.	Course Code	Course Title	Category	Periods Per Week L T P		k	Total Contact Periods	Credits
		TH	EORY	L	1	Г		
1		Open Elective-3 (Management Courses)	NEC	3	0	0	3	3
2	23AU701	Intelligent vehicle Technology	PCC	3	0	0	3	3
3	23AU702	Comprehension	EEC	2	0	0	2	2
	•	THEORY ANI	D PRACT	ICA:	LS			
4	23AU711	Vehicle Maintenance	PCC	3	0	2	5	4
5	23AU712	Vehicle Dynamics	PCC	3	0	2	5	4
	16	PRAC	TICALS					11.
6	23AU721	Project Work - Phase 2	EEC	0	0	6	6	3
7	23AU722	Technical Seminar - 2	ESC	0	0	4	NQL0	G 2
	TOTAL					14	28	21

SEMESTER -VIII

Sl. No	Course code	Course Title	Category		Periods Per Week L T P		Total Contact Periods	Credits
		PRACTI	CALS					
1	23AU821/ 23AU822	Capstone Project / Internship cum project	EEC	0	0	20	20	10
	TOTAL					20	20	10

TOTALCREDITS: 172

DEPARTMENT ELECTIVE COURSES: VERTICALS

VERTICAL 1: ELECTRIC VEHICLES

S1. No.	Course Code	Course Title	Category]	rioc Per /eel		Total Contact periods	Credits
				L	T	P	perious	
1	23AU031	Electric vehicle, Drive and storage system	DEC	3	0	0	4	3
2	23AU032	Batteries and Management system	DEC	3	0	0	4	3
3	100	New Generation and Hybrid Vehicles	DEC	3	0	0	4	3
4	23 A I J 034	Automotive Power Electronics	DEC	3	0	0	4 INOLO	3
5	23AU035	Fuel cell Technologies	DEC	3	0	0	AU TONO!	3
6	23AU036	Sensors and Actuators	DEC	3	0	0	4	3
7	23AU037	Automotive Embedded Systems	DEC	3	0	0	4	3
8	23AU038	Automotive Electrical Systems and Drives	DEC	3	0	0	4	3

VERTICAL 2: COMPUTATIONAL DESIGN

Sl. No.	Course Code	Course Title	Category]	Periods Per Week		Total Contact periods	Credits
				L	T	P	perious	
1	23AU039	Computer Aided Design and Manufacturing	DEC	3	0	0	4	3
2	23AU040	Integrated Computational Materials Engineering	DEC	3	0	0	4	3
3	23AU041	Vehicle design data characteristics	DEC	3	0	0	4	3
4	1175	Computational and Visualization Theory	DEC	3	0	0	4	3
5	23AU043	Computer Integrated Manufacturing in Automotive Sector	DEC	3	O (0	NGLO	G 3
6	23AU044	CFD and Heat transfer	DEC	3	0	0	4	3
7	123 A U 045	Mechanics of Machines	DEC	3	0	0	4	3
8	23AU046	Machine Design	DEC	3	0	0	4	3

VERTICAL 3: VEHICLE RESEARCH AND VALIDATION

S1. No.	Course Code	Course Title	Category]	riod Per /eel		Total Contact	Credits
				L	T	P	Periods	
1	23AU047	Advanced Automotive Materials	DEC	3	0	0	4	3
2	23AU048	Automotive Functional Safety	DEC	3	0	0	4	3
3	23AU049	Combustion Thermodynamics and HeatTransfer	DEC	3	0	0	4	3
4	23AU050	Alternative Fuels and Energy Systems	DEC	3	0	0	4	3
5	23AU051	Automotive Instrumentation	DEC	3	0	0	4	3
6	23AU052	Testing and Measurement Systems	DEC	3	0	0	INOLO	3
7	23AU053	Vehicle Body Engineering	DEC	3	0	0	4	3
8	23AU054	IC Engine Process Modelling	DEC	3	0	0	4	3

VERTICAL 4: SPECIAL PURPOSE VEHICLES

S1. No.	Course Code	Course Title	Category	W	Per /eel	C	Total Contact Periods	Credits
				L	T	P		
1	23AU055	Agricultural Vehicles	DEC	3	0	0	4	3
2	23AU056	Defence Vehicles	DEC	3	0	0	4	3
3	23AU057	Construction Vehicles	DEC	3	0	0	4	3
4	23AU058	Marine Vehicles	DEC	3	0	0	4	3
5	23AU059	Space vehicles	DEC	3	0	0	4	3
6	23AU060	Gas Dynamics and Jet Propulsion	DEC	3	0	0	4	3
7	23AE069	Drone Technologies	DEC	3	0	0	4	3
8	23AU061	Autonomous and Connected Vehicles	DEC	3	0	0	4 INOLO	3

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

VERTICAL 5: PRODUCT AND PROCESS DEVELOPMENT

Sl. No.	Course code	Course Title	Category	Periods Per Week L T P		«	Total Contact periods	Credits
1	23AU062	Automotive Product Design	DEC	3	0	0	4	3
2	23AU063	Ergonomics in Automotive Design	DEC	3	0	0	4	3
3	23AU064	Automotive Control Systems	DEC	3	0	0	4	3
4	23ME031	Additive Manufacturing	DEC	3	0	0	4	3
5	23AU0 <mark>65</mark>	Automotive Aerodynamics	DEC	3	0	0	4	3
6	100/1729	New Product Development Process	DEC	3	- 0 /ER9	0		G 3
7	23AU067	Automotive Product Life Cycle Management	DEC	3	0	0	4	3
8	23AU068	Dynamics of Ground Vehicles	DEC	3	0	0	4	3

VERTICAL 6: DIVERISIFIED COURSES GROUP

S1. No.	Course Code	Course Title	Category	Periods Per Week		«	Total Contact Periods	
				L	T	P	Terrous	
1	23AU069	Hydraulics and Pneumatics	DEC	3	0	0	4	3
2	23AU070	Fundamentals of Nano science	DEC	3	0	0	4	3
3	23AU071	Road Vehicle Aerodynamics	DEC	3	0	0	4	3
4	23AU072	Lean Six Sigma	DEC	3	0	0	4	3
5	23AU073	Renewable Sources of Energy	DEC	3	0	0	4	3
6	23AU074	Vehicle Air – Conditioning	DEC	3	0	0	4	3
7	23AU075	Solar Energy Technology	DEC	3	0	0	AU 43NO	3
8		Digital Manufacturing of Automobiles	DEC	3	0	0	4	3

OPEN ELECTIVE - EMERGING TECHNOLOGIES

S1. No.	Course code	Course title	Category	Periods per week L T P		r k	Total contact periods	Credits
1	23OAD971	Artificial Intelligence and Machine Learning Fundamentals	OEC	3	0	0	3	3
2	23OAE971	Aviation Management	OEC	3	0	0	3	3
3	23OCE971	Remote Sensing Concepts	OEC	3	0	0	3	3
4	23OCS971	Augmented Reality and Virtual Reality	OEC	3	0	0	3	3
5	23OCS972	Data Science and fundamentals	OEC	3	0	0	3	3
6	23OEC971	IoT concepts and applications	OEC	3	0	0	(3_0	G\3
7	23OIT971	Blockchain Technology	OEC	3	0	0	3	3
8	23OMT971	Foundation of Robotics	OEC	3	0	0	3	3

OPEN ELECTIVE - MANAGEMENT COURSES

S1. No.	Course Code	Course Title	Category]	rio Pei Jee	•	Total Contact Periods	1
				L	T	P	remous	
1	23OMG971	Total Quality Management	OEC	3	0	0	3	3
2	23OMG972	Engineering Economics and Financial Accounting	OEC	3	0	0	3	3
3	23OMG973	Engineering Management and Law	OEC	3	0	0	3	3
4	23OMG974	Knowledge <mark>M</mark> anagement	OEC	3	0	0	3	3
5	23OMG975	Industrial Management	OEC	3	0	0	3	3
6	23OMG976	Entrepreneurship and Business Opportunities	OEC	3	0	0	о <u>го</u> зом(3
7	23OMG977	Modern Business Administration and Financing	OEC	3	0	0	3	3
8	23OMG978	Essentials of Management	OEC	3	0	0	3	3

OPEN ELECTIVE - SAFETY RELATED COURSES

S1. No.	Course Code	Course Title	o j week		Per Week			
1	23OAU981	Automotive Safety	OEC	3	0	0	3	3
2	23OCE981	Disaster Management	OEC	3	0	0	3	3
3	23OME981	Industrial Safety	OEC	3	0	0	3	3

SEMESTER-WISE CREDIT DISTRIBUTION

SEMESTER	HSMC	BSC	ESC	PCC	DEC	OEC	EEC	Total
Semester I	5	11	5					21
Semester II	4	7	7	7				25
Semester III	3	÷ 4	COL	18	057	ezen		25
Semester IV	R REAL	4	AFFILIA	12	6	ERSITY I	AUTONO	23
Semester V			2	9	6	3	2	22
Semester VI			5	8	6	3	3	25
Semester VII			2	11		3	5	21
Semester VIII							10	10
Total	12	26	21	65	18	9	21	172

SEMESTER -I

23IP101	INDUCTION PROGRAMME	L	T	P	С
		-	•	-	0

COURSE OBJECTIVES:

- This is a mandatory 2 weeks Programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established graduates well in the branch/department admission, have a holistic outlook, and have a desire to work for national needs and beyond. graduating student must have knowledge and skills in the area of his/her study. However, he/she must also understanding have broad of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character
- Hence, the purpose of this Programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and

understanding of the self, people around them, society at large, and nature

• Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

• Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

Value Based Communication

This module will focus on improving the communication skills of students

Lectures by Alumni

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

Familiarization to Dept/Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities

Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests / assessments during this Programme.

REFERENCES:

Guide to Induction program from AICTE

23HS101	ESSENTIAL	L	T	P	C
	COMMUNICATION	3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

UNIT I FORMATION OF SENTENCES

9

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing-framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development- Parts of Speech, Wh- Questions, yes or no indirect questions. questions, direct and Vocabulary development- prefixes- suffixes- articles - countable and uncountable nouns

UNIT II NARRATION AND DESCRIPTION

9

Reading – Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development – Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing – Write short narrative paragraphs, biographies of friends/relatives – writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures.

UNIT III | COMPARING AND CONTRASTING

9

Reading- short texts and long texts -understanding different

types of text structures, -coherence-jumbled sentences. Language development- degrees of comparison, concord- Vocabulary development – single word substitutes- discourse markers- use of reference words Writing - comparative and contrast paragraphs writing- topic sentence- main idea, free writing, compare and contrast using some suggested vocabulary and structures.

UNIT IV | SOCIAL MEDIA COMMUNICATION

9

Reading-Reading blogs, social media reviews, posts, comments, process description, Language development - relative clause, Vocabulary development- social media terms-words, abbreviations and acronyms Writing- -e-mail writing-conventions of personal email, descriptions for simple processes, critical online reviews, blog, website posts, commenting to posts.

UNIT V ESSAY WRITING

9

Reading- Close reading non-technical longer texts Language development - modal verbs, phrasal verbs- Vocabulary development - collocation. Writing- Writing short essays-brainstorming - developing an outline- identifying main and subordinate ideas.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize simple, level-appropriate texts of around 300 words recognizing main ideas and specific details.
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing.
- CO3: Use appropriate expressions to describe, compare and contrast people, things, situations etc., in writing.
- CO4: Establish the ability to communicate effectively through emails.
- CO5: Determine the language use appropriate for different social media platforms.

CO6:	Use ap	Use appropriate expressions for narrative descriptions														
	and pr	oce	ss c	lesc	rip	tior	ns.									
TEXT	ВООК	S:														
1	Susan	Pro	octo	r, Ja	ack	C.	Ric	har	ds,	Jon	atha	n H	ull.			
	Intercl	nan	ge l	Lev	el 2	2. C	am	bric	lge	Un	iver	sity	Pres	s ar	nd	
	Assess	sme	nt													
2	Susan	Pro	octo	r, Ja	ack	C.	Ric	har	ds,	Jon	atha	n H	ull.			
	Intercl	nan	ge l	Lev	el 3	8. C	am	bric	lge	Un	iver	sity	Pres	s ar	nd	
	Assess	Assessment														
REFE	RENCE	S:														
1	Dutt P.	Dutt P. Kiranmai and Rajeevan Geeta. Basic														
	Comm	uni	cati	ion	Ski	11s,	For	und	latio	on l	Book	s: 20)13			
2	Means	,L. 1	Гhс	ma	s aı	nd I	Elai	ine	Lar	nglo	ois. E	ngli	sh &	:		
	Comm	uni	cati	ion	for	Co	lleg	ges.	Ce	nga	ge L	.earr	ning	, U	SA:	
	2007	DRE					À	7	1			>	Ø.			
16	0/		10			1	K	POs P							SOs	
	Os	1	2	3	4	5	6	7	8	9	10	11	12	4		
		_					٩		O		-0		-	1	2	3
A	1	-	Ž	-	-	_	1	1	-	2	3	_	2	1 -	2	3
	1 2	-		-) -/	-	-	- 1	175	- -			-	1000	- -	2 -	3
	10	-		-) //	101	100	1	1	- E.C	2	3		2	.00	- -	3 - -
	2			-) -/ -	1	0	1	1	E KNIN	2	3		2	.00	- - -	3 - - -
	2 3 VEER		-	- - - -	1 2 2	01	1	1 - 1	E	2 2 2	3 3		2 2 2	.O(3 - - - -
	2 3 //EER 1	-	-	-) - - - -		0	1 1 1 -	1 - 1	E	2 2 2	3 3 3		2 2 2 2	- .00		3 - - - -
	2 3 4 5		-	- - - -		1000	1 - 1 - 1 1	1 - 1 - 1 1	E	2 2 2 - 3 3	3 3 3 3 3		2 2 2 2 2 2	.00		3 - - - -
Ov	2 3 VERT 4 5 6	-	-	-) - - - -		100	1 - 1 - 1	1 - 1 - 1	E	2 2 2 - 3	3 3 3 3	-	2 2 2 2 2	-	2 - - - - -	3
Ov	2 3 VERI 4 5 6 erall	- - - -	- - - - - Boa	- - - - -	- - - - -	- - - -	1 - 1 - 1 1	1 - 1 - 1 1	E	2 2 2 - 3 3	3 3 3 3 3	-	2 2 2 2 2 2			3 - - - -

23MA101	MATRICES AND CALCULUS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

UNIT IV INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques

of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V MULTIPLE INTEGRALS

9

Double integrals - Change of order of integration - Double integrals in polar coordinates - Area enclosed by plane curves - Triple integrals - Volume of solids - Change of variables in double and triple integrals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2: Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3: Find the derivative of functions of several variables
- **CO4:** Examine the application of partial derivatives
- CO5: Compute integrals by different techniques of Integration.
- CO6: Apply the concept of integration to compute multiple integrals.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

REFERENCES:

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016

3	Bali. N	J.,	Go	yal	.]	Bali. N., Goyal. M. and Watkins. C., —Advanced										
	Enginee	erin	g N	/Iatl	nen	nati	cs∥,	Fir	ew	all :	Med	ia (A	An i	mpri	int	of
	Lakshm	Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition,														
	2009.															
4	Naraya	Narayanan. S. and Manicavachagom Pillai.T. K.,														
	Calculus" Volume I and II, S. Viswanathan Publishers															
	Pvt. Ltd	Pvt. Ltd., Chennai, 2009.														
	60							POs PSO								s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	•	1	3	-	-
	2	3	2	1	1	-	-	-	ı	•	1	1	1	3	-	-
	3	3	2	1	1	-	-	-	ı	•	1	1	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	•	•	1	3	-	-
	5	3	2	1	1	-	-	_	1	N	1	1	1	3	1	-
	6 OWER	3	2	1	1	-	-1	1	-/	7		-	1	3	1	-
	#AW		1	186		11/			1	V.			W.			
37/88	verall relati <mark>o</mark> n	3	2	1	1	7	7	-	1	-	-	-	1	3	Ī	-

Approved

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

09-09-2023

1st ACM

23AD101	PROGRAMMING IN PYTHON	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To know the basics of Programming.
- To convert an algorithm into a Python program.
- To construct Python programs with control structures.
- To structure a Python Program as a set of functions.
- To use Python data structures-lists, tuples, dictionaries and files.

UNIT I COMPUTATIONAL THINKING

9

Introduction to Computing and Problem Solving: Fundamentals of Computing –Computing Devices – Identification of Computational Problems – Pseudo Code and Flowcharts – Instructions – Algorithms – Building Blocks of Algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion).

UNIT II INTRODUCTION TO PYTHON

9

Introduction to Python Programming: Python Interpreter and Interactive Mode– Variables and Identifiers – Arithmetic Operators – Values and Types – Statements, Reading Input, Print Output, Type Conversions, type () Function and Is Operator, Dynamic and Strongly Typed Language. Control Flow Statements: if, if...else, if...else Decision Control Statements, Nested if Statement, while Loop, for Loop, continue and break Statements.

UNIT III FUNCTIONS AND STRINGS

9

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the Function, The return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments. Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

UNIT IV | LISTS, TUPLES, DICTIONARIES AND FILES | 9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list Parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension. Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages.

UNIT V OBJECT-ORIENTED AND FUNCTIONAL PROGRAMMING

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, Polymorphism. Functional Programming: Lambda. Iterators, Generators, List Comprehensions.

TOTAL: 45 PERIODS

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Develop algorithmic solutions to simple computational
	problems.
CO2:	Develop and execute simple Python programs using
	Control Statements
CO3:	Develop simple Python programs for solving problems
	using Functions and Strings
CO4:	Build a Python program using lists, tuples, dictionaries
	and files.
CO5:	Construct a code related to Object-Oriented Programming
	Concept

CO6:	Construct a code related to Functional Programming.
TEXT	BOOKS:
1	Allen B. Downey, ``Think Python: How to Think Like a
	Computer Scientist", 2nd edition, Updated for Python 3,
	Shroff/O'Reilly Publishers, 2016
	(http://greenteapress.com/wp/think-python/).
2	Karl Beecher, "Computational Thinking: A
	Beginner's Guide to Problem Solving and
	Programming", 1st Edition, BCS Learning & Camp;
	Development Limited, 2017.
REFE	RENCES:
1	Learning To Program with Python. Richard L. Halterman.
	Copyright © 2011
2	Python for Everybody, Exploring Data Using Python 3.
	Dr. Charles R. Severance. 2016.
3	Paul Deitel and Harvey Deitel, "Python for
	Programmers", Pearson Education, 1st Edition, 2021.
4	G Venkatesh and Madhavan Mukund, "Computational
	Thinking: A Primer for Programmers and Data
	Scientists", 1st Edition, Notion Press, 2021.
5	John V Guttag, "Introduction to Computation and
	Programming Using Python: With Applications to
	Computational Modeling and Understanding Data",
	Third Edition, MIT Press , 2021
6	Eric Matthes, "Python Crash Course, A Hands - on Project
	Based Introduction to Programming", 2nd Edition, No
	Starch Press, 2019.
7	https://www.python.org/
8	Martin C. Brown, "Python: The Complete Reference", 4th
	Edition, Mc-Graw Hill, 2018.

COs]	PO	s					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	1	1	-	-	-	-	1	3	1	-	
2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-	
3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-	
4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-	
5	3	2	1	1	1	-	1	1	-	-	-	1	3	1	-	
6	3	2	1	1	1	-	1	1	1	1	1	1	3	1	1	
Overall Correlation	1	1	1	1	1	1	1	3	1	1						
Recommended	ies	26-07-2023														
Approved								1st ACM Date					09-09-2023			

23HS102	HERITAGE OF TAMILS	L	T	P	С
		1	0	0	1

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil Nadu.

UNIT I LANGUAGE AND LITERATURE 3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism & Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART - SCULPTURE

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

UNIT III | FOLK AND MARTIAL ARTS 3 Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance -Sports and Games of Tamils. UNIT IV THINAI CONCEPT OF TAMILS 3 Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils -Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age -Overseas Conquest of Cholas UNIT V CONTRIBUTION OF TAMILS TO INDIAN 3 NATIONAL MOVEMENT AND INDIAN **CULTURE** Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine - Inscriptions & Manuscripts - Print History of Tamil Books. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:**Explain the evolution of Tamil language and literature, focusing on its cultural, ethical, and secular themes. CO2: Outline the making of musical instruments related to Tamil heritage. CO3: Discuss the sports and games of Tamils **CO4:** Explain the education and literacy during Sangam age. CO5: Express the importance and contribution of Tamils to Indian Freedom Struggle

CO6: Outline the print history of books in Tamil Nadu

TEX	T BOC	K	S:															
1	தமிழக	ഖ	ரலா	ாறு-ப	0க்க(ளும்	பண்	пЦп	டும்-	கே.ே	கபிஎ்	ന ്തെ	(வெ	ញាក្នេ(<u>-</u>			
	தமிழ்நா	ſĠ	ШΠL	நூல்	மற்	றும்	கல்	விட	பியல்	് பன	ரிகஎ்	ர கழ் 	கம்).					
2	ക ഞ്ഞിര	ரித்	தமி) jjj -	மு	തെ	வர்	Q	ல. ச	ந்தர	ம் (வ	பிகட	ன் ப	பிரசு	ரம்).			
REF	EFERENCES: 1																	
1	- அயூ	ഒ	വെ	கை	நத	ிக்ச	ഞ	Ţu	ில்	சங்க	க க	ால	நக	Ţ				
	நாகரிகம் (தொல்லியல் துறை வெளியீடு)																	
2																		
	துறை	ရ	வஎ	<u>វាឃឹ</u>	<u>டு)</u>													
(COs	POs													PSO	S		
	200	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	-	-	-	-	-	2	2	-	-	-	-	-	-	-	-		
	2	-	-	-	-	-	2	2	-	-	-	-	-	-	-	-		
	3		-	-	-		2	2	_	-	-	-	-	-	1.	-		
	4	N.	er i	200		-	2	2	-	4	-	-	1	-	-	-		
	5	1	-	To the same of	-	-	2	2	-	-	-	-	-	-1	-	-		
	6	-	-	-7	-	-	2	2	1	A	-	٥				-		
	verall relation	416	_	L.	2	-	2	-	- 01		e e	NIC	110	GV	o -			
Re	commer	ıde	d by	у Во	ard o	of St	udi	es	02-	08-20	23	OCITY	AUT	ONO	MUNIC			
	Approved										1st ACM Date				09-09-2023			

23PH111	ENGINEERING PHYSICS	L	T	P	C
		3	0	2	4

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses-factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule – torque –rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

UNIT II | ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

UNIT III	OPTICS AND LASERS	9										
Reflection	Reflection and refraction of light waves - total internal reflection -											

types of optical fiber, Numerical Aperture and acceptance angle - interference -Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating
- 6. Airwedge- Determination of thickness of a thinsheet / wire

- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
 - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Determine the mechanical properties of materials.
- CO2: Apply the principles of electromagnetic waves to real world system.
- CO3: Determine the thickness of thin wire and the characteristic parameter of an optical fiber.
- CO4: Apply the principles of lasers to real world application.
- CO5: Organize the quantum mechanical properties of particles and waves.
- CO6: Utilize the quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1 D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", McGraw Hill Education (Indian Edition), 2017.
- **2** Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", McGraw-Hill (Indian Edition), 2017.

REFERENCES:																	
1	R.Wolfs	son	," E	Esse	ntia	al U	Jniv	ers	ity	Phy	sics	", V	olur	ne î	1 &	2.	
	Pearson	Ed	luca	tio	n (Iı	ndia	n E	Edit	ion)	, 20	009.						
2	Paul A	. T	iple	r, '	'Ph	ysic	: -	Vo	lun	ne 1	l &	2",	CBS	5, (I	Indi	an	
	Edition)	, 20	004.														
3	K.Thyagarajan and A.Ghatak,"Lasers: Fundamentals and																
	Applications," Laxmi Publications, (Indian Edition), 2019.																
4	D.Halliday, R.Resnick and J.Walker, "Principles of Physics",																
	Wiley (Indian Edition), 2015.																
5	N.Garcia, A.Damask and S.Schwarz, "Physics for Computer																
	Science Students", Springer Verlag, 2016.																
	COs						I	POs	,					F	SO	s	
,	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1 NOW	3	2	1	1	-	1	1	-/	1	1		1	3	ř	ı	
Į.	2	3	2	1	\1	-	_	1	-(ı	ı	1	3	F	-	
	3	3	2	/1	1	-	- 0	6	-	Ð	-		1	3		J-	
1	4	3	2	1	1	Ξ	-	-	-	-	-	-	1	3	-	-	
	5	3	2	1	1	cc	ıπ	Εć	ıΕ	ŒΕ	TE	СH	10	3	G)	67	
	6	3	2	1	1	AFF	LIAT	EO T	οĀN	iā u	NIVER	SITY	1	3	400	-	
	verall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_	
	Correlation Co																
Reco					of S	tud	ies								00.5		
	A	ppr	ove	d				1 st	AC	M		Date	•	09-	09-2	.023	

23CY111	ENGINEERING CHEMISTRY	L	T	P	C
		3	0	1	4

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical

vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO₂ system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO₂ emission and carbon sequestration, Green Hydrogen.

UNIT V | ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid battery and lithium-ion battery; Electric vehicles – working

principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2: Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3: Estimate the knowledge of phase rule and composites for material selection requirements
- CO4: Choose a suitable fuel for engineering processes and applications
- CO5: Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6: Explain the different types of batteries, fuel cells and working principles of Electric vehicles

TEX	Г ВООК	S:														
1	P. C. Ja	in a	and	Mo	onic	a Ja	ain,	"E	ngii	nee	ring	Che	emis	try"	, 17	7th
	Edition	, D	han	pat	Ra	i P	ubl	ishi	ng	Co	mpa	ny ((P) I	Ĺtd,	Ne	ew
	Delhi, 2	018														
2	Sivasar												McC	Grav	w-F	Iill
	Publish															
3	S.S. Dar															
	Publish	0											.S.,		High	
	Enginee					atic	cs",	Kh	ann	a P	ubli	sher	s, N	ew	Del	hi,
	44 th Edition, 2018.															
REF																
1	B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Text book of nanoscience and nanotechnology",															
	Universities Press-IIM Series in Metallurgy and Materials															
2	Science, 2018.															
2	O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.															
3	Friedrich Emich, "Engineering Chemistry", Scientific															
3	International PVT, LTD, New Delhi, 2014New Delhi, 2018.															
4	ShikhaAgarwal, "Engineering Chemistry-Fundamentals and															
-	Applica	_			_	,		_			-					
	Edition			8			_			-			NO			
5	O.V. Ro	_	3.37	anc					_						_	
	Book fo															
	Busines	s M	[edi	a, N	Jew	Yo	rk,	2nc	l Ed	litio	n, 20	013	Ü			
	COs]	POs	,					I	PSC	s
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	2	2	1	_	-	-	_	2	-	-	-	-	1	2	-	-
	3	2	1	-	-	-	-	2	-	-	_	_	1	2	-	-
	4	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	5	3 2 1 1 3 2 3														
	6	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
O	Overall 3 2 1 1 -							2					2	2		
Cor	relation	3		L	1	_	_	3	_	_	_	_	2	3	_	_
Reco	mmende	d by	Bo	ard	of S	Stud	lies	28-	07-2	2023						

Approved

1st ACM

Date

09-09-2023

23AD121	PYTHON PROGRAMMING	L	T	P	C
	LABORATORY	0	0	4	2

The main objective of this laboratory is to put into practice computational thinking. The students will be expected to write, compile, run and debug Python programs to demonstrate the usage of:

- Operators and Conditional Statements
- Control Structures and Functions (both recursive and iterative) and Recursion.
- String functions
- Lists, Sets, Dictionaries, Tuples and Files.
- Object-Oriented Programming

Exercise 1 Programs to demonstrate the usage of operators and conditional statements.

- 1. Write a program that takes two integers as command line arguments and prints the sum of two integers.
- 2. Program to display the information:
 Your name, Full Address, Mobile Number,
 College Name, Course Subjects
- 3. Program that reads the URL of a website as input and displays contents of a webpage.

Exercise 2 Programs to demonstrate usage of control structures.

- 4. Program to find the sum of all prime numbers between 1 and 1000.
- 5. Program to find the product of two matrices.
- 6. Program to find the roots of a quadratic equation.

Exercise 3 Programs to demonstrate the usage of Functions and Recursion

- 7. Write both recursive and non-recursive functions for the following:
 - a. To find GCD of two integers
 - b. To find the factorial of positive integer
 - c. To print Fibonacci Sequence up to given number _n'

- d. To convert decimal number to Binary equivalent
- 8. Program with a function that accepts two arguments: a list and a number _n'. It should display all the numbers in the list that are greater than the given number _n'.
- 9. Program with a function to find how many numbers are divisible by 2, 3,4,5,6 and 7 between 1 to 1000.

Exercise 4 Programs to demonstrate the usage of String functions.

- 10. Program that accepts two strings S1, S2, and finds whether they are equal are not.
- 11. Program to count the number of occurrences of characters in each string.
- 12. Program to find whether a given string is palindrome or not.

Exercise 5 Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

- 13. Simple sorting, Histogram, Students marks statement, Retail bill preparation
- 14. Write a program that combines lists L1 and L2 into a dictionary.
- 15. Program to display a list of all unique words in a text file and word count, copy file, Voter's age validation, Marks range validation (0-100).

Exercise 6 Programs to demonstrate the usage of Object-Oriented Programming

- 16. Program to implement the inheritance.
- 17. Program to implement polymorphism

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs.

CO3:	Constru	ıct p	orog	grar	ns i	n P	yth	on 1	ısir	ıg c	ondi	tion	als a	nd	100	ps
	for solv	ing	pro	ble	ms.											
CO4:	Utilize f	Utilize functions to decompose a Python program.														
CO5:	Analyse compound data using Python data structures.															
CO6:	Interpret data from/to files in Python Programs															
	POs PSOs															
`	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
	1	1 3 2 1 1 1 1 1 1 3 1 -												-		
	2	3	2	1	1	1	ı	-	ı	1	-	1	1	3	1	-
	3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	_
	5	3	3	2	2	1	-	-	-	-	-	-	1	3	1	-
	6	2	1	-	-	1	-	-	1	1	1	1	1	3	1	1
O	verall							1	1	1	1	1	1.2	2	1	1
Corr	relation 3 2 1 1 1 1 1 1 1 1 1															
Reco	mmende	d by	Во	ard	of S	Stud	ies	02-	08-2	2023						
3	Approved									1st ACM Date				09-09-2023		

23HS121		COMMUNICATION SKILLS	L	T	P	C						
		LABORATORY	0	0	2	1						
COURSE O	BJE	CTIVES:										
• To en	abl	e the students to comprehend the main	ide	a ar	nd							
specif	fic i	nformation of the listening passage										
	•	students express themselves clearly, an	d									
		icate effectively with others.										
		luce authentic language use and contex	-									
vocat	oura	ry that might not be encountered in tex	XtDO	OKS	•							
Exercise: 1	Lis	stening to conversations set in everyda	y so	cial								
	COI	ntext and complete gap-filling exercise										
Exercise: 2 Listening to a monologue in everyday social contex												
Diagram labelling and MCQ												
Exercise: 3	Lis	stening to a group conversation in acad	lemi	c se	ttir	ıg						
(IPO)	an	d answer MCQ			~							
Exercise : 4	Lis	stening to a lecture and answer MCQ o	r ga	p fi	llin	g						
Exercise : 5	Lis	stening to Ted Talks, podcasts, docume	enta	ries	-							
18	disc	cussion										
Exercise : 6	Lis	stening to a lecture and reading a text o	on th	ne sa	ame	<u>. </u>						
0/1	sub	ject- compare and contrast			al II Ville							
Exercise : 7	Sp	eaking Introducing oneself	Ealte-									
Exercise : 8	Ar	nswering questions based on the introd	lucti	on								
Exercise : 9	Sp	eaking on a given prompt for 2 mins.										
Exercise: 10	Ar	nswering questions based on the topic s	spok	ken								
Exercise : 11	Ro	ole play- Engaging in conversation										
Exercise: 12 Engaging in Podcast Discussion												
		TOTAL:	20.1	DED	IO	חכ						
COURSE O	TTT		30 1	CK	10	טס						
			ho -	h1-	Łc.							
		pletion of the course, the students will			w:							

CO1: Demonstrate fluency in speaking in variety of situations

CO2: Express their knowledge by talking continuously for more than two minutes on a topic

CO3:	Develop a	acti	ve l	iste	ning	g fo	r m	ore	me	ani	ngfu	l int	erac	tior	ns a	nd
C	onversat	ion	s													
CO4:U	Jse a full	rar	ige	of s	truc	ctur	es 1	natu	ıral	ly a	nd a	ppro	opria	atel	y	
CO5:Id	dentify t	he s	pec	ific	inf	orm	natio	on i	n co	nve	ersat	tions	s, int	erv	iew	s,
tá	alks and	lect	ure	es.												
CO6:	evelop t	he	abil	ity	to c	om	par	e an	ıd a	nal	yse c	liffe	rent	for	ms	of
iı	information, identifying key similarities and differences.															
	POs PSOs PSOs															
C	COs 1 2 3 4 5 6 7 8 9 10														2	3
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 1 1 1 1 - 2 3 - 2															
	2	1	-	-	-	1	-	-	-	2	3	-	2	-	-	-
	3	1	-	-	-	1	1	1	-	2	3	-	2	-	-	-
	4	ı	ı	ı	-	-	-	-	1	ı	3	•	2	ı	-	-
	5	1	ı	1	- 4	1	1	1	1	3	3	1	2	1	1	-
	6 POWE	$\frac{2}{3}$	8		-	-	1	1	-1	2	3		-	í	32	-
	Overall															
Recor	nmended	by	Boa	rd o	of S	tudi	ies	02-	08-2	023	====		V		69	

Approved

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

09-09-2023

1st ACM

23HS201	PROFESSIONAL ENGLISH	L	T	P	С
		3	0	0	3

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays.
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

UNIT I WORKPLACE COMMUNICATION 9

Reading – Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing – Writing emails -emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development– Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary - One-word substitutes; Abbreviations & Acronyms as used in technical contexts and social media.

UNIT II EXPRESSING CAUSE AND EFFECT 9

Reading - Reading longer technical texts - Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development - Active, Passive and Impersonal Passive Voice transformations, Infinitive and Gerunds Vocabulary - Synonyms - contextual meaning of words, Same word acting as different parts of speech, causal expressions.

UNIT III PROVIDING SOLUTIONS TO PROBLEMS 9 Reading - Case Studies, editorials, news reports etc. Writing -Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional Vocabulary - Compound Words, discourse markers. UNIT IV INTERPRETATION OF GRAPHICS 9 Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. development-Possessive & Relative numerical adjectives Vocabulary Homonyms and Homophones, sequence words. REPORT WRITING AND RESUME WRITING UNIT V Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details CO2: Demonstrate the understanding of more grammatical structures and diction while reading and writing

46

CO3: Use appropriate expressions to describe process and product,

the ability to communicate

professional environment through emails and reports

solutions and prove an argument in writing

CO4: Establish

compare and contrast data, analyze problems, provide

effectively

in

- CO5: Determine the language use appropriate for different social media platforms used for digital marketing
- CO6: Convert skills to assets and position themselves in job market through their own professional narratives

TEXT BOOKS:

- V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha Priyadharshini, Veena Selvam, English for Science & Technology I, Cambridge University Press and Assessment
- V. Chellammal, Deepa Mary Francis, K N Shoba, P R Sujatha Priyadharshini, Veena Selvam, English for Science & Technology II, Cambridge University Press and Assessment

REFERENCES:

- Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 2 Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.

COs						I	POs		100			-	I	PSO	s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1 GIVE	RIR	'n	-	-	0	1	1) E	2	3	Ų.	2		9	-
2	-	_	-	-	WEE	LIA	10.11	D AN	2	3	SHY	2	DINO	WOR	-
3	-	-	-	•	-	-	1	-	2	3	-	2	-	-	-
4	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
5	-	-	-	-	-	-	1	-	2	3	-	2	-	-	-
6	-	-	-	1	-	-	-	-	2	3	-	3	-	-	-
Overall						1	1		2	3		3			
Correlation	_	_	_	-	_	1	1	-	_	3	-	3	-	_	-
Recommende	Recommended by Board of Studies 02-08-2023														
A	ppr	ove	d				1st	t AC	CM		Date		09-	09-2	2023

23MA203	STATISTICS AND NUMERICAL	L	T	P	С
	METHODS	3	1	0	4

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS 9+3

Sampling distributions – Standard error-Large sample test for single mean, proportion, difference of means -Small sample Tests-T Test for single mean and difference of means-F test for equality of variance – Chi square test for single variance- Independence of attribute-Goodness of fit (Binomial Distribution, Poisson Distribution).

UNIT II DESIGN OF EXPERIMENTS 9+3

One way and two way classifications - Completely randomized design - Randomized block design - Latin square design.

UNIT III | SOLUTION OF EQUATIONS AND | 9+3 | EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear

system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a square matrix by Power method

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION 9+3

Interpolation - Newton's forward and backward difference interpolation -Lagrange's and Newton's divided difference interpolations -- Approximation of derivative using interpolation polynomials - Numerical single integration and double using Trapezoidal and Simpson's 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY 9+3 DIFFERENTIAL EQUATIONS

Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge- Kutta method for solving first order differential equations - Multi step methods: Milne's and Adam's Bashforth method.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Examine the given data for large and small samples problems.
- **CO2:** Examine the problems involving design of experiments.
- CO3: Find the numerical solutions for nonlinear (algebraic or transcendental) equations, large system of linear equations and Eigen value problem of a matrix, when analytical methods fail to give solution.
- CO4: Determine the intermediate values of the experimental data, using Newton's forward, backward, divided difference and Lagrange's methods.
- CO5: Find the solutions for the problems involving numerical differentiation and integration.
- CO6: Solve numerically, ordinary differential equations which is used to solve different kinds of problems occurring in engineering and technology.

TEXT BOOKS: 1 Grewal. B.S. and Grewal. J.S., "Numerical Methods in																
			S	and	d (Gre	wa1	Ţ	S	"N	11me	rica	1 M	[eth	ods	in
_	Engine							-								
	New D		_		CIC		ς,	100			J11, 1			· u.	11011	<i>C10</i> ,
2	Johnson				illeı	r. I :	and	Fr	eun	nd I	. "N	fille	r and	d Fı	reur	d's
	Probab									-						
	Asia, 8t								-0-		, -					
REF	ERENCE			- ,												
1	P. Siva	ran	na]	Kris	shna	a D	as	"A	Te	xt	Bool	s of	Sta	tisti	ics a	and
	Numer	ical	Μe	etho	ods'	' Vi	iji′s	Aca	ade	my						
2	Burden						_					ical	Ana	lys	is"	9th
	Edition													,		
3	Devore	e.J.L		Pro	bab	ilit	y aı	nd S	Stat	isti	cs fo	r Er	ngin	eeri	ng a	and
						_	-						-		_	
	the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014 New Delhi, 2014 New Delhi, 8th Edition, 2014 New Delhi, 2014 New Delhi															
4	Gerald.C.F. and Wheatley.P.O. "Applied Numerical															
	Analys	Analysis" Pearson Education, Asia, New Delhi, 7th Edition,														
	2007		.6	y.	- /-			A	D.			3	1			
	COs	X	45	12			I	POs							PSC)s
,	COSCINE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	AF	HLIA	ED	O A	INA.	UNIVI	RSIT	1	3	DM_DI	15_
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	1	1	1	3	-	-
	5	3	2	1	1	-	-	•	•	-	1	1	1	3	1	-
	6	3	2	1	1	•	-	•	-	-	1	1	1	3	•	•
	verall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_
	relation															
Reco	mmended						lies					D :	1	00	. 00. 1	2000
	Approve	ed b	y A	cad	emi	C		1s	t AC	_M		Date	9	09	-09-2	2023

23PH206	MATERIAL SCIENCE	L	T	P	C
		3	0	0	3

- To make the students to understand the basics of crystallography and its importance in studying materials properties.
- To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials.
- To instil knowledge on physics of semiconductors, determination of charge carriers and device applications.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications.

UNIT I CRYSTALLOGRAPHY

9

Crystal structures: BCC, FCC and HCP – directions and planes – linear and planar densities – crystal imperfections- edge and screw dislocations – grain and twin boundaries - Burgers vector and elastic strain energy- Slip systems, plastic deformation of materials - Polymorphism.

UNIT II ELECTRICAL AND MAGNETIC PROPERTIES 9 OF MATERIALS

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Quantum free electron theory: Tunneling - degenerate states - Fermi- Dirac statistics - Density of energy states. Magnetic materials: Dia, para and ferromagnetic effects -Domain theory and hysteresis of ferromagnets - exchange interaction and ferromagnetism - quantum interference devices - GMR devices.

UNIT III SEMICONDUCTORS AND TRANSPORT PHYSICS

9

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – Carrier transport in Semiconductors: Drift, mobility and diffusion (qualitative) – Hall effect and devices – Ohmic contacts – Schottky diode – introduction to solid state drive (SSD).

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption loss and gain. Optical processes in quantum wells – Optoelectronic devices: light detectors and solar cells – light emitting diode – laser diode – optical processes in organic semiconductor devices – excitonic state.

UNIT V NANOELECTRONIC DEVICES

9

Quantum confinement – Quantum structures – quantum wells, wires and dots – Zener-Bloch oscillations – Resonant tunnelling – quantum interference effects – mesoscopic structures – Single electron phenomena – Single electron Transistor. Active and passive optoelectronic devices – photo processes – spintronics – carbon nanotubes: Properties and applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the basics of crystallography and its importance in studying materials properties.
- CO2: Compute charge carrier density of metals and fermi energy level.
- CO3: Apply the knowledge of magnetic properties of materials in

	data storage 4: Compute carrier concentration in intrinsic and extrinsic															
CO4:		_	_	rier	CO	nce	ntra	atio	n iı	n ir	ntrin	sic	and	ex	trin	sic
	semico				-	1100						.orc	aria	CA		orc.
CO5:	Build a	a so	oun	d ş	gras	sp (of 1	<no< th=""><th>wle</th><th>dge</th><th>in</th><th>dif</th><th>ferei</th><th>nt c</th><th>pti</th><th>cal</th></no<>	wle	dge	in	dif	ferei	nt c	pti	cal
	proper	ties	of 1	nat	eria	Īs, d	opti	cal	disp	olay	s an	d ap	plic	atic	ns.	
CO6:	Develo	p aı	n id	ea c	of si	gni	fica	nce	of 1	nan	o str	uctu	ıres,	qua	antı	ım
	confine		nt a	nd	ens	urii	ng n	anc	o de	vice	e ap	plica	ation	ıs		
TEX	Г ВООК															
1	V.Ragh										_		_			
	Course									$\overline{}$						
2	Jasprit											nics	: Ph	ysic	cs a	nd
	Techno															
3	G.W.H									Van	oele	ctro	nics.	. Pe	ears	on
	Educat		(In	diar	ı Ec	litic	n),	200	9.							
	ERENCE								,							-
1	R.Balas				•			- 400					Scie	nce	a	nd
	Engineering. Wiley (Indian Edition), 2014. Wendelin Wright and Donald Askeland, Essentials of															
2																
2	Materials Science and Engineering, CL Engineering, 2013. Robert E Pierret Semiconductor Device Fundamentals															
3	Robert F.Pierret, Semiconductor Device Fundamentals, Pearson, 2006															
4	Pallab l		-	har	va	Sen	nico	ndı	ıcto	or O	ntoe	lect	roni	c De	vic	es
_	Pearson				<i>y</i> 01,		JLI	EK		UF	Pioc	1000	MU	LU	Gi	<i>CO</i> ,
5		-			esse	: <i>I</i>	١da	ms	aı	nd	Su	mita	P	enn	ath	ur,
	Nanote	0		-												
	2017.			0,					0		,					
	COs						F	Os						I	PSC)s
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	6	3	2	1	1	_	-	-	-	-	-	-	1	3	-	-
	erall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_
	elation							1.	00.2	000						
Reco	mmende				ot S	otuc	lies			2023		Dati		00	00.2	0000
	A	ppı	ove	a				Lst	AC	.IVI		Date	2	U9-	UY-2	2023

23ME201	APPLIED MECHANICS	L	T	P	C
		3	0	0	3

- Inculcate the ability to analyze any problem in a simple and logical manner.
- Learn the use of scalar and vector analytical techniques for analyzing forces in statically determinate structures.
- Introduce the equilibrium of rigid bodies, vector methods and free body diagram.
- Learn the principles of friction, forces and to determine and apply the concepts offrictional forces at the contact surfaces of various engineering systems.
- To develop basic dynamics concepts such as force, momentum, work and energy.
- To apply the well understood basic principles for the real time.

UNIT I BASICS AND STATICS OF PARTICLES 9

Introduction – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – vector representation of forces – Vector operations of forces -additions, subtraction, dot product, cross product - Coplanar Forces - rectangular components - Equilibrium of a particle – Forces in space – Equilibrium of a particle in space - Equivalent systems of forces, Free body diagram

UNIT II | EQUILIBRIUM OF RIGID BODIES

9

Principle of transmissibility - Varignon's theorem -Types of supports - Action and reaction forces - stable equilibrium - Moment of a force about a point and about an axis - Single equivalent force - Equilibrium of rigid bodies in two dimensions - Equilibrium of rigid bodies in three dimensions, Analysis of Trusses - Method of Joints and Method of sections

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Centroids and centre of mass - Centroids of lines and areas - Rectangular, circular, triangular areas by integration - T section, I section, Angle section, Hollow section by using standard formula - Theorems of Pappus - Area moments of inertia of plane areas - rectangular, circular, triangular areas by integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and Perpendicular axis theorem - Principal moments of inertia of plane areas - Principal axes of inertia-Mass moment of inertia - mass moment of inertia for prismatic, cylindrical and spherical solids from first principle - Relation to area moments of inertia.

UNIT IV | FRICTION

9

Friction force - Ladder Friction, Wedge friction, Screw friction - Rolling resistance, Square threaded Screws, Journal Bearings, Thrust Bearings, Disc friction, Wheel friction, Rolling resistance

UNIT V DYNAMICS OF PARTICLES

9

Newton's laws of motion - Principle of Work and Energy, Applications of the Principle of Work and Energy, Power and Efficiency, Conservation of Energy, Principle of Impulse and Momentum, Impacts of bodies - Work Energy Equation -Impulse and Momentum equation

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply law of forces on particles.
- **CO2:** Calculate forces on rigid bodies.
- **CO3:** Determine reaction forces at the support
- CO4: Calculate area moment of inertia of planar body and mass moment of inertia of rigid bodies.
- CO5: Determine friction and its effects at the surfaces of contact for ladder, wedge, belt and bearings.
- **CO6:** Calculate dynamic forces on rigid bodies.

	BOOK			1 T	1	_	т	-	P		7 .		r 1	•		
1	Beer, F			-			-									
	Engine		`				,					-				
	Edition	ı, T	ata	M	[cG	raw	7-H	ill	Pul	olis	hing	COI	npai	ıy,	Ne	W
	Delhi (200	4).													
2	Bhavik	atti	, S.	S a	nd	Raj	jasł	neka	araj	рра	, K.	G., -	-Eng	gine	erir	ıg
	Mecha	nics	sI,	N	ew	A	Age	I	nte	rna	tiona	al	(P)	Liı	nite	ed
	Publish	ners	, 19	998.												
REFE	RENCE	S:														
1	Hibbel	ler,	F	R.C	a	nd	Α	sh	ok	G	upta	, -	-Eng	gine	erir	ng
	Mecha										_		_			_
	Educat						,									
2	Irving	Н	. 5	Shar	mes	s a	ınd	K	risł	nna	M	ohar	na I	Rao	. (j.,
		Irving H. Shames and Krishna Mohana Rao. G., —Engineering Mechanics - Statics and Dynamics, 4th														
		Edition, Pearson Education 2006.														
3	Meriam J.L. and Kraige L.G., — Engineering Mechanics-															
	F. 45	Statics - Volume 1, Dynamics - Volume 21, Third Edition,														
	200	Jo <mark>hn Wile</mark> y and amp; Sons, 1993.														
4	50.00	John Wiley and amp; Sons, 1993. Rajasekaran S and Sankarasubramanian G.,														
	-Engir		60 (T)										11.00		- N. P	_ ′
	Edition		7												ous	
		., .					_	PO			20				SO	
(COs	1	2	3	4	5		7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	-	, _	1	_	-	-	2	3	1	1
	2	3	2	1	1	2	_	_	1	_	-	_	2	3	1	1
	3	3	2	1	1	2		_	1				2	3	1	2
					1	2	-	-		-	-	-				2
	4	3	2	1			_	_	1	_	-	-	2	3	1	
	5	3	2	1	1	2	-	_	1	-	-	-	2	3	1	2
_	6	3	2	1	1	2	-	-	1	-	-	-	2	3	1	2
	erall	3	2	1	1	2	_	_	1	_	_	_	2	3	1	2
	elation															
Recom	mended				of S	tud	ies		-08-			D :	Т	00. 1	10.5	000
	Ar	pro	vec	ı				1st ACM Date 09-09-2							19-20	J23

23HS203	TAMILS AND TECHNOLOGY	L	T	P	C
		1	0	0	1

- To summarize the weaving industry and ceramic technology during Sangam Age
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola, Pallava and Pandya period
- To Explain about the water bodies of Sangam age and relate it to the agricultural usage
- To Outline to students the agriculture and irrigation technology during the Chola Period
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software

UNIT I WEAVING AND CERAMIC TECHNOLOGY 3

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION 3 TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III | MANUFACTURING TECHNOLOGY 3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV | AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use -Agriculture and Agro Processing - Knowledge of Sea - Fisheries -Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3 Development of Scientific Tamil -Tamil computing Digitalization of Tamil Books -Development of Tamil Software -Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Summarize the weaving industry and ceramic technology during Sangam Age CO2: Explain the design and construction of houses during Sangam Age CO3: Explain the sculptures and temples of Chola, Pallava and Pandya period. **CO4:** Explain about the water bodies of Sangam age and relate it to the agricultural usage CO5: Outline the agriculture and irrigation technology during the Chola Period. CO6: Interpret and explain the digitalization of tamil books and development of Tamil software **TEXT BOOKS:** Dr.K.K.Pillay ,"Social Life of Tamils", A joint publication of 1 TNTB & ESC and RMRL

DEEDENCEC.																
REFERENCES: 1 Dr.S.Singaravelu ,"Social Life of the Tamils - The Classical																
1	Dr.S.Sir	ngai	rave	elu	""So	ocia	l Li	ife (of th	ne 🛚	[ami	ils -	The	Cla	issic	cal
	Period"	, F	ubl	ish	ed	by:	In	teri	nati	ona	l In	stitu	ıte	of	Tan	nil
	Studies															
2	Dr.S.V.S	Sub	ataı	mar	niar	1	,	D	r.K.	D.	Tl	hiru	navı	ıkk	aras	su,
	"Histor	ical	Н	Ieri	tage	e (of	the	T	am	ils",	Pι	ublis	hec	l k	ov:
International Institute of Tamil Studies																
POs PSOs																
(COs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
	2	_	_	_	-	_	1	1	1	_	-	_	-	_	_	_
	3	_	_	-	-	_	1	1	1	-	-	_	-	_	_	_
	4	_	_	-	-	_	1	1	1	_	-	_	-	_	-	_
	5	-	_	-	-	_	1	1_	1	-	-	_		-	-	_
	6 00W	ER D	RE.	-	-	-	1	1	1	4		2	A	-		_
Overall																
Reco	mmende	d by	Во	ard	of S	Stud	lies	14-	08-2	023		>			The same	
1	A	ppr	ove	d	/			1 st	AC	M		Date	5	09-	09-2	023

23EE281 BASIC ELECTRICAL AND L T P C ELECTRONICS ENGINEERING 2 0 2 3 COURSE OBJECTIVES:				
COURSE OBJECTIVES:				
To introduce the basics of electric circuits and analysis				
To impart knowledge in the basics of working				
principles and application of electrical machines				
To introduce analog devices and their characteristics				
To educate on the fundamental concepts of digital				
electronics, functional elements and working of				
measuring instruments				
 To demonstrate the load test on DC machines, working 				
of PN Junction diodes, Zener diodes and rectifiers.				
UNIT I ELECTRICAL CIRCUITS 6				
DC Circuits: Circuit Components: Conductor, Resistor, Inductor,				
Capacitor-Ohm's Law-Kirchhoff's Laws-Nodal Analysis, Mesh				
analysis with independent sources only (Steady State)-				
Introduction to AC Circuits -Steady state analysis of RL, RC, and				
RLC circuits (Simple problems only).				
UNIT II ELECTRICAL MACHINES				
Construction and Working principle of DC Generators, EMF				
equation, Types and Applications- Working Principle of DC				
motors, Torque Equation, Types and Applications				
Construction, Working principle and Applications of Single-				
Phase Transformer.				
UNIT III ANALOG ELECTRONICS 6				
PN Junction Diodes, Zener Diode-Characteristics &				
Applications-Bipolar Junction Transistor, JFET, SCR, MOSFET,				
- Types, I-V Characteristics and Applications - Rectifier.				
11				
UNIT IV DIGITAL ELECTRONICS 6				
**				
UNIT IV DIGITAL ELECTRONICS 6				

(up to 3 variables).

UNIT	· V	MEASUREMENTS AND	6	
		INSTRUMENTATION		
Functional elements of an instrument, Standards and calibration,				
Operating Principle, types- Moving Coil and Moving Iron				
meters, Instrument Transformers- CT and PT, DSO-Block				
Diagr	am			
Total: 30 PERIODS				
LAB COMPONENT				
1. Verification of Ohms and Kirchhoff's Laws.				
2. Load test on DC Shunt Motor.				
3.	3. Characteristics of PN and Zener Diodes			
4.	4. Design and analysis of Half wave and Full Wave			
	rectifiers			
5. Implementation of Binary Adder and Subtractor				
6.	Stu	dy of DSO		
- 2	OW	Total: $30 + 30 = 60$ Peri	ods	
COURSE OUTCOMES:				
After completion of the course, the students will be able to:				
CO1:	CO1: Apply fundamental laws to DC electric circuits and			
A	demonstrate it experimentally.			
CO2:	Expl	ain the steady state AC circuits with RL, RC, and	7	
	RLC	Circuits		
CO3:				
	electrical machines with experimental results			
CO4:	CO4: Demonstrate the characteristics of various analogous			
		tronic devices		
CO5:	Ехре	eriment with the basic concepts of digital electronic	cs	
		demonstrate the implementation of Binary Adder		
	1	Culhtuastan		

CO6: Illustrate the operating principles of measuring instruments and demonstrate DSO for the basic

and Subtractor

measurements.

TEXT	BOOK	S:														
1	Kothar	i D	Ра	nd	I.J I	Nag	grat	h,–	-Ba	sic l	Elect	trica	l and	1		
	Electro														Hill	
	Educat	ion	,202	20												
2	Sedha l	R. S	.,—	A to	extl	200	k b	ook	of	Ap	plie	d Ele	ectro	nic	sI, S	.
	Chand															
3	A.K. Sawhney, Puneet Sawhney A Course in Electrical															
	& Electronic Measurements & Instrumentation', Dhanpat															
	Rai and Co, 2015.															
-	RENCES: Kothari D P and I.J Nagrath, —Basic Electrical															
1					-	_	_									
	Engine 2019.	erır	ıg∥,	Fo.	urti	n Eo	11t1	on,	Mc	Gr	aw I	HIII .	Edu	catio	on,	
2	S.K. Bh	atta	ach	ary	a —	Bas	ic I	Elec	tric	al a	and I	Elect	roni	.cs		
	Engine	erir	ıg∥,	Pe	arso	on I	Edu	ıcat	ion	, Se	cono	d Ed	itior	ı, 20	17.	
3	Thoma			-		_				-		s',				
	11thEd				_			~	_	_		₽.,			477	
4	Albert Malvino, David Bates, _Electronic Principles,															
		McGraw Hill Education; 7th edition, 2017.														
5	Mahmo Circuits															
6	H.S. Ka Hill, No		5.30				nst	rur	nen	tati	on'	, Tat	а Мо	Gr	aw-	X
7	James A						arc	1 C.	Do	orf,-	– Do	orf's	Intro	odu	ctic	n
	to Elect									-						
	· ·							PO	s					F	SO	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	1	1	1	-	1	3	-	1
	2	2	1	-	-	-	-	-	1	1	1	-	1	2	-	1
	3	3	2	1	1	-	1	1	1	1	1	-	1	3	-	1
	4	2	1	-	-	-	1	1	1	1	1	-	1	2	-	1
	5	5 3 2 1 1 1 1 1 - 1 3 - 1														
	6 2 1 1								-	3	-	1				
Ov	Overall 2 2 1 1					1	1	1	1	1		1	3		1	
Corr	Correlation 3 2 1 1 - 1				1	1	1	1	1	-	1	3	_	1		
Recom	mended	by 1	Boa	rd (of S	tud	ies	26	-07-	2023	3					
	Approved					1st	AC	M		Date	•	09-0	-09-2023			

23ME211	ENGINEERING GRAPHICS	L	T	P	С
		3	0	2	4

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

	9 1	, -	
UNIT II	PROJECTION OF POINTS,	LINES AND	9+6
	PLANE SURFACE		

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line

method. Projection of planes (hexagonal and pentagonal planes only) inclined to both the principal planes by rotating object method.

LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- 2. Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

UNIT III	PROJECTION OF SOLIDS AND FREE HAND	9+6
	SKETCHING	

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

UNIT IV	PROJECTION OF SECTIONED SOLIDS AND	9+6
	DEVELOPMENT OF SURFACES	

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section

	nlane	inclined to the horizontal plane	
UNI		ISOMETRIC PROJECTION	9+6
		,	
	-	of isometric projection - Isometric scale - Isometric	
		c projections of simple solids and truncated sol	
		yramids, cylinders, cones- combination of two	solid
,		simple vertical positions.	
		EXERCISES:	
		ing Isometric view and projection of simple solids.	
		ing three dimensional modeling of isometric proje	ction
(of cor	nbination of solids.	
		TOTAL: 75 PER	IODS
COU		OUTCOMES:	
		r completion of the course, the students will be able	e to:
CO1:	Cons	struct the conic curves, involutes and cycloids.	
CO2:	Deve	elop and Sketch the orthographic projections of po	oints,
j.	lines	a <mark>nd pl</mark> ane surfaces.	-1,
CO3:	Deve	elop and Sketch the orthographic projections of si	mple
4	solid	ls.	
CO4:	Cons	struct the projections of sectioned solids	and
	deve	elopment of the lateral surfaces of solids.	1005
CO5:	Deve	elop and Sketch the isometric sections of solids.	
CO6:	Deve	elop and Sketch the orthographic projection 2D an	d 3D
	obje	cts using Auto CAD.	
TEX	Г ВО	OKS:	
1	Bhat	t N.D. and Panchal V.M., -Engineering Draw	⁄ing∥,
	Chai	rotar Publishing House, 53rd Edition, 2019.	
2	Basa	nt Agarwal and Agarwal C.M.,—Engineering Draw	ing∥,
		Graw Hill, 2nd Edition, 2019	
REFI	EREN	CES:	
1	Natr	rajan K.V., —A Text Book of Engineering Grap	hicsI,
	Dha	nalakshmi Publishers, Chennai, 2018.	

2	Gopalakrishna K.R., —Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition,															
	combin	ed),	, Sı	ıbh	as	Pul	olica	atio	ns,	Ва	ngal	lore,	27t	h I	Editi	on,
	2017.															
3	Luzzader, Warren.J. and Duff, John M., —Fundamentals of															
	Engineering Drawing with an introduction to Interactive															
	Computer Graphics for Design and Production, Eastern															
	Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi,															
	2005.															
4	Parthas	ara	thy	N	1. :	S.	anc	1 Y	Vela	a l	Mura	ali,	— Е1	ngii	neer	ing
	Graphic	sI,	Ox	for	d U	Jniv	vers	ity,	Pr	ess	, Ne	ew l	Delh	i, 2	2015	. 5.
	Shah M	.B.,	and	d R	ana	В.	C., -	–Er	ngir	eer	ing	Dra	wing	ʒ∥, I	ears	son
	Shah M.B., and Rana B.C., —Engineering Drawing, Pearson Education India, 2nd Edition, 2009.															
	Educati	on	Ind	1a, .	2na	. Ea	11110	m, ∠	2005	1.						
5	Venugo										Engi	neer	ing	Gra	phi	cs",
5		pal	K.	and	d Pı	abl	nu I	Raja	V.,	, —I	_		ing	Gra	phi	cs",
	Venugo New Ag	pal	K.	and	d Pı	abl	nu I (P) I	Raja	V.,	, —I	_		ring		phi PSC	
	Venugo	pal	K.	and	d Pı	abl	nu I (P) I	Raja Lim	V.,	, —I	_		ring 12			
	Venugo New Ag	pal ge I	K.	and	d Pi tior	abl	nu I (P) I	Raja Lim POs	V.,	, —I d, 2	008.				PSC)s
	Venugo New As	pal ge I 1	K.	and rna	d Pı tior	rabl nal (nu I (P) I	Raja Lim	V., nited	, —I d, 2	10	11	12	1	PSC 2)s
	Venugo New As COs	pal ge I 1	K. nter	and rna 3	d Pition	rabl nal (5 2	nu I (P) I	Raja Lim	V., nited 8	, —I d, 2	10 3	11 2	12 2	1 2	PSC 2)s
	Venugo New As COs	ppal ge I 1 3	K. nte:	3 1	d Prition	rabl nal (5 2	nu I (P) I	Raja Lim	8 1	, —I d, 2	10 3 3	11 2 2	12 2 2	1 2 2	PSC 2 2 2)s
	Venugo New As COs	ppal ge I 1 3 3	2 2 2 2	3 1 1	d Prition 4 1 1	5 2 2	nu I (P) I	Raja Lim	8 1 1	, —I d, 2	10 3 3	11 2 2 2	12 2 2 2	1 2 2 2	PSC 2 2 2 2 2)s
	Venugo New Ag COs 1 2 3 4	ppal ge I 1 3 3 3	2 2 2 2 2	3 1 1 1	1 Prition 4 1 1 1	5 2 2 2	nu I (P) I 6	Raja Lim POs 7 - -	8 1 1 1	, —I d, 2 9 - - -	10 3 3 3	11 2 2 2 2	12 2 2 2 2	1 2 2 2 2	PSC 2 2 2 2 2)s
0	Venugo New As COs 1 2 3 4 5 6 verall	1 3 3 3 3 3	2 2 2 2 2 2 2	3 1 1 1 1 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 2 2 2 2 2 2	nu I (P) I 6	Raja Lim POs 7 - -	8 1 1 1 1 1	9 - - -	10 3 3 3 3 3	11 2 2 2 2 2 2	12 2 2 2 2 2 2	1 2 2 2 2 2 2 2	PSC 2 2 2 2 2 2 2 2)s
O	Venugo New Ag COs 1 2 3 4 5	1 3 3 3 3 3 3	K. nter 2 2 2 2 2 2 2 2 2 2	3 1 1 1 1 1	4 1 1 1 1 1 1 1 1	5 2 2 2 2 2 2	nu I (P) 1	Raja Lim POs 7 - - - -	8 1 1 1 1 1	9 - - - -	3 3 3 3 3 3	11 2 2 2 2 2 2	12 2 2 2 2 2	1 2 2 2 2 2	PSC 2 2 2 2 2 2 2)s

1st ACM

Date

09-09-2023

Approved

23ME221	ENGINEERING PRACTICES	L	T	P	C
	LABORATORY	0	0	4	2

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work;
 Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment; Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK

- a) Sawing
- b) Planning
- c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture
- b) Study of common industrial trusses using models.

PART II MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

BASIC MACHINING PRACTICE

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

SHEET METAL WORK

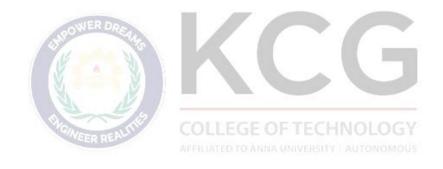
- a) Forming and Bending
- b) Making of a square Tray

MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.


TOTAL: 30 PERIODS

COL	RSE OU	TTC	<u>'O</u> N	/EC	·											
COC	After co					he c	0111	1 20	the	ct11	dent	- TAT	ill he	a h	le to	٠.
CO1·	Plan the															
COI.	work.	· PI	pen	110	аус	Jut	101	COI	LIIII	<i>J</i> 11 1	ious	CHOI	u pi	uiii	DIII	5
CO2		00.0	£ 147	·a1.4	ina	001	11121		1 a	24.0	0.220	ntu	ız toc	1 fo	.14	
CO2.	Make use of welding equipment and carpentry tool for making joints															
CO2	U	making joints.														
CO3:	Demonstrate on centrifugal pump, air conditioner and foundry operations															
CO4:	foundry operations. Demonstrate the electrical wiring connections for															
CO4:	Demonstrate the electrical wiring connections for															
		household applications and study the working of iron box and fan regulator.														
												1	1	• .	1	
CO5:	Identify								npc	ner	its a	na e	xpia	ın t	ne	
604	gates and soldering methods.															
CO6:	Examine the performance and operation of CRO, LED TV															
and Smart phone. POs PSOs																
(COs	310					POs				10					_
	W	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	3	2	1	1	1	1	1	_	-	2	2	2	2	1	-
	2 TONE	3	2	1	1	1	1	1	3E	OF	2	2	2	2	(t)	(-
	3	3	2	1	1	1	1	1	O An	NAL	2	2	2	2	17	5_
	4	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
	5	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
	6	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
O	verall	3	2	1	1	1	1	1	_	_	2	2	2	2	1	_
Cor	relation			_							_	_	_			
Reco	mmended	d by	Во	ard	of S	Stud	lies	14-	08-2	2023						

23ME222	APPLIED MECHANICS L	T	P	C						
	LABORATORY 0	0	4	2						
COURSE O	BJECTIVES:	l .								
• Stud	y the physics behind the physical systems.									
Acqu	aire knowledge on application of laws of m	ech	nani	ics.						
• Stud	y the dynamics of rigid bodies									
LIST OF EX	LIST OF EXPERIMENTS:									
1. Verif	y the Law of Polygon of Forces									
2. Deter	rmination of Rolling Friction									
3. Deter	rmination of Sliding Friction									
4. Deter	rmination of Efficiency of Square Threade	d Sc	crev	V						
Jack.										
5. Equil	librium of Forces in space Apparatus									
	rmination of the Force acting on a Balloon									
7. Deter	rmination of Torque transmitted by a Drui	n	4							
8. Static	c and Dynamic conditions - Spring mass sy	yste	em							
SV SV	er <mark>an</mark> d Efficiency of the rope brake arrange	_								
10. Deter	rmination of center of gravity of connecting			16						
1 1 2	TOTAL: 60 I	PER	IOI	OS						
100	OUTCOMES:	.00	υY							
	completion of the course, the students will b	e al	ole 1	to:						
•	y the laws of mechanics.									
	y the concept of rolling friction.									
CO3: Apply	the concept of screw friction.									
CO4: Solve	the forces acting on the body in space.									
CO5: Make	use of the static and dynamic conditions of	a r	igid	Ĺ						
body										
CO6: Apply	y the concept to find the support reactions									

COs]	PO	s					I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
2	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
3	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
4	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
5	3	2	1	1	1	1	1	1	1	2	2	2	2	1	1
6	3	2	1	1	1	1	1	1	1	2	2	2	2	1	1
Overall Correlation	3	2	1	1	1	-	-	1	-	2	2	2	2	1	1
Recommended by Board of Studies								26-07-2023							
Approved						1st ACM Date 0					9-09-2023				

23HS221	SOFT SKILLS	L	T	P	С
		0	0	2	1

- To help learners improve their interpersonal skills and critical thinking
- To familiarize learners with the attributes of a leader to enhance team performance
- To prepare students to face job interviews
- To help learners to know the importance of ethics in work place

UNIT I INTERPERSONAL COMMUNICATION

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

UNIT II TEAM WORK AND LEADERSHIP

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

UNIT III TIME MANAGEMENT AND STRESS MANAGEMENT

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self- awareness and regulation.

UNIT IV CRITICAL THINKING AND WORK ETHICS

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance, attitude, character, organizational skills, productivity, respect.

UNIT V INTERVIEW SKILLS AND RESUME BUILDING TECHNIQUES

Telephonic interview, online interviews, f2f interviews, FAQ soft skills interview questions, drafting error-free CVs/ Resumes and Cover Letters, selecting the ideal format for resume, content drafting along with sequencing, art of representing one's qualifications and most relevant work history, video resume, website resume.

TOTAL: PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Express their thoughts, opinions and ideas confidently to one or more people in spoken form
- CO2: Develop evolving competences required for professional success
- CO3: Demonstrate knowledge and skills in a group as team player and leader
- CO4: Compose a comprehensive resume reflecting qualifications, exposure and achievements
- CO5: Exhibit knowledge and skills confidently during job interviews
- CO6: Demonstrate ethical and professional behaviour at workplace in all situations

TEXT BOOKS:

1 Soft Skills: Key to Success in Workplace and Life by Meenakshi Raman & Shalini Upadhyay. Cengage

REFERENCES:

- 1 English for Job Seekers (Language and Soft Skills for the Aspiring) by Geetha Rajeevan, C.L.N. Prakash) Cambridge University Press pvt, Ltd.
- 2 Business Benchmark by Norman Whitby. Cambridge University Press pvt, Ltd

COs						I	POs	,					I	PSC	s		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	-	-	-	-	-	-	-	-	2	2	-	-	-	-	-		
2	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2		
3	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-		
4	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-		
5	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-		
6	-	-	-	-	-	-	-	3	3	3	-	-	-	1	3		
Overall Correlation	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2		
Recommended	Recommended by Board of Studie										6 14-08-2023						
Α	Approved						1st ACM Date					?	09-09-2023				

SEMESTER -III

23MA302	TRANSFORMS AND PARTIAL	L	T	P	C
	DIFFERENTIAL EQUATIONS	3	1	0	4
COURSE OBJ	ECTIVES:				

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems

UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+3

Formation of partial differential equations –Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES 9+3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

UNIT III	APPLICATIONS OF PARTIAL	9+3
	DIFFERENTIAL EQUATIONS	

Classification of second order Quasi Linear PDE - Method of separation of variables - Fourier series solutions of one dimensional wave equation - One dimensional equation of Heat

conduction – Steady state solution of two dimensional equation of heat conduction (Infinite) (Cartesian coordinates only)

UNIT IV | FOURIER TRANSFORMS

9+3

Statement of Fourier integral theorem– Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem (Without proof) – Parseval's identity.

UNIT V Z-TRANSFORMS AND DIFFERENCE EQUATIONS

9+3

Z-transforms - Elementary properties - Convergence of Z-transforms - Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations - Solution of difference equations using Z - transforms.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Solve the given standard partial differential equations.
- CO2: Compute the general Fourier series which plays a vital role in engineering applications.
- CO3: Examine the half range Fourier series and harmonic analysis
- CO4: Find the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems, one dimensional wave equations.
- **CO5:** Apply the mathematical principles on Fourier transforms to solve some of the physical problems of engineering.
- CO6: Apply the effective mathematical tools for the solutions of difference equations by using Z transform techniques for discrete time systems.

TEXT BOOKS:

Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.

- **2** Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.
- 3 P.Sivaramakrishna Das and C.Vijayakumari "A Text Book on TPDE" Pearson Publications

REFERENCES:

- 1 Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- **2** Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.

COs		POs												PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-		
2	3	2	1	1	-	•	1	ı	1	-	ı	1	3	1	-		
3	3	2	1	1	-	-	1	-	- 2	-	1	1	3	1	-		
4 DOWER	3	2	1	1	-	7	7	-7	9	-	9	1	3	30	-		
5	3	2	1	1	24		į.	-(-	-	-	1	3	-	Ĭ -		
6	3	2	1	1	-		ð	-7	A	1	1	1	3	- 0	-		
Overall Correlation	3	2	1	1	-	_	-		7 1	-		1	3	1			

Recommended by Board of Studies 04-04-2024

Approved 2nd ACM Date 25-05-2024

23AU301	THERMODYNAMICS AND	L	T	P	C
	HEAT TRANSFER	3	0	0	3

- To explain and apply the laws of thermodynamics and analyze air standard cycles.
- To demonstrate Steam power cycles and Refrigeration and Air conditioning cycles.
- To develop the ability to solve complex heat transfer problems using mathematical and analytical methods and design heat exchangers for efficient heat transfer.

UNIT I BASIC THERMODYNAMICS

9

Systems, closed, open and isolated. Property, state, path and process, quasi-static process, Zeroth law, first law. Steady flow energy equation. Engineering Applications of Steady flow energy equation. Heat and work transfer in flow and non-flow processes. Second law, Kelvin-Planck statement – Clausius statement.

UNIT II AIR STANDARD CYCLES AND COMPRESSORS

9

Cycle, Carnot cycle, Otto, Diesel, Dual combustion and Brayton cycles; Calculation of Air standard efficiency. Compressors, Classifications of compressors, reciprocating compressor-Rotary, Axial and Vane compressors.

UNIT III | STEAM PROPERTIES AND CYCLE

9

Formation of steam and its thermodynamic properties, T-s and h-s diagrams. Properties of steam, Dryness fraction, Quality of steam by steam tables and Mollier chart – Simple Rankine cycle, Efficiency, Steam Nozzles, Types of nozzles, Friction in nozzles (descriptive).

UNIT IV REFRIGERATION AND AIR-CONDITIONING

9

Construction and working principles of refrigeration, Vapour compression system - Vapour absorption types, Comparison - Definition of Co-efficient of performance (COP), Properties of

refrigerants – Basic principle, summer, winter and year round Air conditioning.

UNIT V INTRODUCTION TO HEAT TRANSFER

9

Modes of heat transfer, Heat conduction in parallel, radial and composite wall – Heat conduction through hollow and composite cylinders. Basics of Convective heat transfer and Fundamentals of radiative heat transfer (descriptive only) – Types of heat exchangers, Logarithmic Mean Temperature Difference (LMTD).

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Demonstrate the understanding of fundamental thermodynamic concepts.
- CO2: Interpret the laws of thermodynamics and its application to systems and cycles.
- CO3: Solve any flow specific problem in an engineering approach based on basic concepts and logic sequences.
- CO4: Compare and contrast between various types of refrigeration and air conditioning cycles.
- CO5: Categorize the modes of heat transfer and solve problems involving heat conduction through various materials.
- **CO6:** Examine the amount of heat transfer by heat exchanger.

TEXT BOOKS:

- 1 Chattopadhyay. P "Engineering Thermodynamics", oxford University Press, New Delhi, 2nd Edition, 2016.
- 2 Nag. P.K., "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 6th edition, 2017.

REFERENCES:

- 1 Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 2 Holman. J. P., "Thermodynamics", 3rd Ed. McGraw-Hill, 2007.

3	Mathu	r &	: Sł	narı	na	Ste	am	Та	ble	s, J	ain	Pub	lishe	rs,	Ne	W
	Delhi,	201	3,													
4	Merala	C,	Po	the	r, C	raię	z W	, Sc	me	erto	n, "	Ther	mod	yna	ami	cs
	for En	gin	eer	s",	Sch	nau	m (Out	line	e S	eries	, Ta	ta N	ЛcС	Grav	v-
	Hill, New Delhi, 2004.															
	POs PSOs															
	.08	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	2	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	4	2	1	-	-	-	-	-	-	-	1	-	-	2	-	-
	5	3	3	2	2	-	-	-	-	-	1	1	-	3	-	-
	6	3	3	2	2	-	-	-	-	-	1	-	-	3	-	-
Ov	erall	3	2	1	1				ď,				N	3	1	
Corr	elation	3	4	I	1	Ī	Ā	7	7	7	-	P ,	1	3	No.	-
Recom	Recommended by Board of Studies						ies	6 04-04-2024								

Approved

Date

2nd ACM

25-05-2024

23AU302	AUTOMOTIVE ENGINES	L	T	P	C
		3	0	0	3

- To acquire knowledge on the primary engine components and the subsystems of automotive engines.
- To understand spark ignition and compression ignition engines fuel systems in Automotives.
- To develop understanding of combustion process in SI and CI engines and the requirements of cooling and lubrication systems.

UNIT I ENGINE FUNDAMENTALS

Engine types and their operation- classifications – Terminology-Four stroke and two stroke cycle- Engine components, working principle of SI and CI engines - Engine operating parameters- Fuel – air and actual cycle analysis – Engine emissions – valve and port timing diagram – firing order.

UNIT II FUEL SUPPLY SYSTEM AND IGNITION 9 SYSTEM

SI Engine: Air – Fuel ratio, Simple Carburetor – Injection systems – Single point and Multipoint fuel injection – Gasoline Direct Injection. Ignition System – Battery Ignition System – Magneto Ignition System – Electronic Ignition Systems. CI Engine: Jerk type fuel injection pump – Distributor type fuel injection pump. Common rail direct injection system – Fuel injector

UNIT III | COMBUSTION IN SI ENGINES | 9

Combustion process – Stages of combustion, Flame propagation – Flame velocity and area of flame front – Rate of pressure rise – Cycle to cycle variation, Abnormal combustion – Effect of engine operating and design variables on combustion, Combustion chambers – Types, Factors controlling combustion chamber design.

UNIT IV | COMBUSTION IN CI ENGINES

Importance of air motion – Swirl, squish and tumble – Swirl ratio. Fuel air mixing – Stages of combustion – Delay period –

Factors affecting delay period, Knock in CI engines – Methods of controlling diesel knock. CI engine combustion chambers – Combustion chamber design objectives – Open and divided. Induction swirl, turbulent combustion chambers. – Air cell chamber – Combustion chamber.

UNIT V | ENGINE SUBSYSTEM

9

Types of cooling systems and its working, Properties of coolants. Crankcase ventilation. Engine lubrication – Types of lubricating systems and its working – Supercharging and Turbocharging – Types – Working principle.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Outline the construction and working of IC engine and its cycle.
- CO2: Explain the various fuel system, injection system and ignition system used in SI and CI engines.
- CO3: Demonstrate the combustion process in SI Engine for understanding the performance and emission characteristics.
- CO4: Demonstrate the combustion process in CI Engine for understanding the performance and emission characteristics.
- CO5: Summarize the working of lubrication and cooling system.
- CO6: Apply the concept of turbo-charging and super-charging for engine performance enhancement.

TEXT BOOKS:

- 1 Ganesan V, "Internal combustion engines", 4th edition, Tata McGraw Hill Education, 2017.
- 2 M.L. Mathur and R.P.Sharma, Internal Combustion Engine, Dhanpath Rai Publications (P) Ltd, New Delhi 110002.

DEFENDACES																
REFE	RENCE	S:														
1	Rajput	R.	K, '	'A t	text	boo	ok c	of Ir	ıter	nal	Con	nbus	stion	En	gin	es
	- 2nd e	dit	ion	, La	ıxm	ıi Pı	ubli	icat	ion	s (F) Lto	d, 20	17.			
2	Heinz	Hes	sile	r, A	dva	ance	ed e	eng	ine	tec	hnol	ogy.	But	terv	vor	th
	Heinm	anı	ı pı	ıbli	cat	ions	s, 19	995								
3	Heldt,	Heldt, P.M., High Speed Combustion Engines, Oxford														
	IBH Pt	IBH Publishing Co., Calcutta, 1965.														
4	K. K. R	K. K. Ramalingm, Internal Combustion Engines, SciTech														
	publications, Chennai, 2018.															
									s					F	SO	s
	:Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	2	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	3	2	1	-		-	-		e-	-	-	-	- 2	3	-	-
	4.0WER	2	1	₀ -	-	-	A	7-	-/	7	1	-	-	2	1/2	-
6	5	2	1	X	-	Lá	K	-	_	-	-	- 1	7-	3	-	-
	6 3 2 1 1								Z	-	-	-1	1	3	-	-
1/1000	erall elation	3	2	1	1	-	_	-	_	1		-1015		3	-	-
Recom	mended	by	Boa	rd (of S	tud	ies	04	-04-	202	4	-Hi	IUI	.01	JΪ	
	Approved						ALE	2 nd ACM Date					25-05-2024			

23HS301	UNIVERSAL HUMAN VALUES	L	T	P	C
	AND ETHICS	3	0	0	3

- To develop a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- To understand (or developing clarity) the harmony in the human being, family, society and nature/existence.
- To strengthen the self-reflection.
- To develop commitment and courage to act.

UNIT I	COURSE INTRODUCTION	9

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration - Continuous Happiness and Prosperity- A look at basic Human Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority -Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

_	•	
UNIT II	UNDERSTANDING HARMONY IN THE	9
	HUMAN BEING	

Harmony in Myself- Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body'- Sukh and Suvidha- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Harmony in Human-Human Relationship -Understanding Harmony in the family – the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust(Vishwas) and Respect as the foundational values of relationship -Understanding the meaning of Vishwas; Difference between intention and competence -Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family)-Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order- from family to world family.

UNIT IV ENGINEERING ETHICS

9

9

Senses of <u>Engineering Ethics</u>, – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles – Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.

UNIT V | SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination-Moral Leadership -Code of Conduct - Corporate Social Responsibility.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Explain the need of value education.

CO2: Interpret the difference between self and body.

CO3: Demonstrate the need to exist as a unit of Family and society. CO4: Classify Harmony at all levels. **CO5:** Apply the values acquired in the professional front. CO6: Identify appropriate technologies for ecofriendly production systems. **TEXT BOOKS:** 1 R R Gaur, R Sangal, G P Bagaria, Human Values and Professional Ethics, Excel Books, New Delhi, 2010 3. Mike W. Martin and Roland Schinzinger, -Ethics in 2 Engineering, Tata McGraw Hill, New Delhi, 2003. Govindarajan M, Natarajan S, Senthil Kumar V. 3 -Engineering Ethics, Prentice Hall of India, New Delhi, 2004 REFERENCES: Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya 1 Prakashan, Amarkantak, 1999. Human Values, A.N. Tripathi, New Age Intl. Publishers, 2 New Delhi, 2004. The Story of Stuff (Book). 3 The Story of My Experiments with Truth - by Mohandas 4 Karamchand Gandhi AICTE Model Curriculum Humanities, Social Science and Management Courses (UG Engineering & Technology) 169 | Page . Small is Beautiful - E. F Schumacher. Slow is Beautiful - Cecile Andrews. 6 7 Economy of Permanence - J C Kumarappa 8. Bharat Mein Angreji Raj - Pandit Sunderlal. Rediscovering India - by Dharampal. 8 Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi. 9 India Wins Freedom - Maulana Abdul Kalam Azad. 10 Vivekananda - Romain Rolland (English) 13. Gandhi -11 Romain Rolland (English). 12 Charles B. Fleddermann, —Engineering EthicsI, Pearson Prentice Hall, New Jersey, 2004.

13	Charles E. Harris, Michael S. Pritchard and Michael J.															
	Rabins,	— Е:	ngi	nee	ring	g Etl	hics	s – (Con	сер	ts ar	nd C	ases	∥,		
	Cengage	e Le	earr	ning	, 20	009.										
WEB	SOURC	ES	:													
1	www.onlineethics.org															
2	www.nspe.org															
3	www.globalethics.org															
	POs PSOs PSOs															
'	COs	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	-	-	-	ı	-	3	3	3	3	3	1	-	-	-	3
	2	-	-	-	-	-	3	3	3	3	3	•	-	-	-	3
	3	-	-	-	-	-	3	3	3	3	3	•	-	-	-	3
	4	-	-	-	-	-	3	3	3	3	3	1	-	-	-	3
	5	-	-	-	-	-	3	3	3	3	3	-		-	-	3
	6 .ow	42/2	250	1	-	-	3	3	3	3	3	-	A		-	3
	verall relatio <mark>n</mark>	erall 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3														
Reco	mmended	d by	Во	ard	of S	tud	lies	08-	04-2	024		-				
	Approved							2 nd ACM Date 25-05				05-2	2024			

23ME311	MANUFACTURING	L	T	P	C
	PROCESSES	3	0	2	4

- To illustrate the working principles of various metal casting processes.
- To learn and apply the working principles of various metal joining processes.
- To analyze the working principles of bulk deformation of metals.
- To study the concepts and basic mechanics of metal cutting and the factors affecting machinability.
- To learn working of basic and advanced turning machines and super finishing process.

UNIT I METAL CASTING PROCESSES

9

Sand Casting: Sand Mould – Type of Patterns - Pattern Materials - Cores –Types and Applications –Melting Furnaces: Cupola Furnaces; Principle of Special Casting Processes: Shell - Investment – Pressure Die Casting - Centrifugal Casting – Stir Casting – CO2 Casting; Defects in Sand Casting Process-Remedies.

UNIT II PRINCIPLES AND APPLICATIONS OF 9 JOINING PROCESSES

Operating Principle, Basic Equipment, Merits And Applications of: Fusion Welding Processes: Gas Welding - Manual Metal Arc Welding - Gas Tungsten Arc Welding - Gas Metal Arc Welding - Submerged Arc Welding; Operating Principle And Applications of: Resistance Welding - Plasma Arc Welding - Thermit Welding; Brazing And Soldering; Weld Defects.

UNIT III FORMING PROCESSES

q

Hot and Cold Working of metal - Forging processes- Open, impression and closed die forging - Rolling Mills - Rolling Operations - Principle of rod and wire drawing - Principles of

Extrusion – Types – Hot and Cold extrusion. . Sheet metal operations – Blanking, Punching and Working principle and applications – Hydro forming – Metal spinning and Explosive forming,

UNIT IV | MECHANICS OF METAL CUTTING

9

Mechanics of Chip Formation, Forces in Machining, Types of Chip, Cutting Tools – Single Point Cutting Tool Nomenclature, Orthogonal and Oblique Metal Cutting, Thermal Aspects, Cutting Tool Materials, Tool Wear, Tool Life, Surface Finish, Cutting Fluids.

UNIT V TURNING, GEAR CUTTING, SHAPING AND FINISHING PROCESSES

Centre Lathe, Constructional Features, Specification, Operations - Taper Turning Methods, Thread Cutting- Capstan and Turret Lathes. Gear cutting, Gear hobbing and Gear shaping. Types of grinding Process – Cylindrical grinding, surface grinding and internal grinding, Shaper and Milling machines and operations

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Preparing green sand moulds with cast patterns.
- 2. Taper Turning and Eccentric Turning on circular parts using lathe machine.
- 3. Knurling, external and internal thread cutting on circular parts using lathe machine.
- 4. Shaping Square and Hexagonal Heads on circular parts using shaper machine.
- 5. Drilling using radial drilling machine.
- 6. Cutting spur and helical gear using milling machine.
- 7. Generating gears using gear hobbing machine.
- 8. Generating gears using gear shaping machine.
- 9. Grinding components using cylindrical grinding machine.
- 10. Grinding components using surface grinding machine

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

	Explain the principle of different metal casting processes.															
CO2:	Describ	e t	he '	var	iou	s n	neta	al jo	ini	ng	proc	esse	es.			
CO3:	Summa	ıriz	e v	ario	ous	bu	lk (defo	orm	nati	on p	roce	esses	an	d sh	eet
	metal f			$\overline{}$												
CO4:	Apply											_				
	identify									_						•
CO5:	Explair										-			eatı	ıres	of
606	Centre															1
CO6:		scribe the constructional features of gear cutting and per finishing process.														
TEVT	BOOK!		snir	ıg J	oro	ces	s.									
						// 3. 4	r			•		. .		•		1
1	Kalpak															nd
2	Techno P.N.Ra															Мс
_	Grawh											orui	116 1	-		IVIC
REFE	RENCE		Jac	icai	.101	100	II C	A	011,	20.	10.					
1	Rao. P.	27.00	"N	lan	11f2	cti	rin	σ	Гес	hno	ology	v "	Meta	al (⁷ 11##i	inσ
- 4	and Ma															
2	Hajra				_				-							
A 1	Elemen															
	Media															
-	Mumba												NO			
3	Sharma								of	pr	odu	ctio	n Te	chr	nolo	gy,
	S.Chand and Co. Ltd., 2004						200									
]	PO	s						PSC)s
C	Os	1	2	3	4	5	6		8 8	9	10	11	12	1	PSC 2	Os 3
					4	5		PO		9 1	10 2	11 2	12 2	-		
	Os	1	2		4 -	5 -	6	PO 7	8					1	2	3
	Os 1	1 2	2	3	4 - -	-	6 2	PO: 7 3	8 1	1	2	2	2	1	2	3
	Os 1 2	1 2 2	2 1 1	3	4 - - 1	1	6 2 2	7 3 3	8 1 1	1	2	2	2	1 1 1	2 1 1	3 1 1
	Os 1 2 3	1 2 2 2	2 1 1	3		1 1	6 2 2 2	7 3 3 3	8 1 1 1	1	2 2 2	2 2 2	2 2 2	1 1 1	1 1 1	3 1 1
	Os - 1 2 3 4	1 2 2 2 3	1 1 1 2	3		- - 1	6 2 2 2 1	7 3 3 3	8 1 1 1 1	1	2 2 2 2	2 2 2 2	2 2 2 2	1 1 1 1	2 1 1 1	3 1 1 1 1
	1 2 3 4 5 5	1 2 2 2 3 2 2	2 1 1 2 1 1	3 1	- - 1 -	- - 1 1	6 2 2 2 1 1	7 3 3 3 3 3 3	8 1 1 1 1 1 1	1 1 - -	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2 2	1 1 1 1 1 1	1 1 1 1 1	3 1 1 1 1 1 1
Ov	Os - 1 2 3 4 5 6	1 2 2 2 3 2	1 1 1 2	3 - - 1		- - 1	6 2 2 2 1	7 3 3 3 3	8 1 1 1 1	1	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	1 1 1 1 1	1 1 1 1	3 1 1 1 1
Ov	Os	1 2 2 2 3 2 2	2 1 1 2 1 1 2	3 - - 1 - 1	- - 1 -	- - 1 1 1	6 2 2 2 1 1 1	7 3 3 3 3 3 1	8 1 1 1 1 1 1	1 1 - - 1	2 2 2 2 2 2	2 2 2 2 2	2 2 2 2 2 2	1 1 1 1 1 1	1 1 1 1 1	3 1 1 1 1 1 1

23AU311	FUEL AND LUBRICANTS	L	T	P	C
		3	0	2	4

- To study the world energy scenario in automotive sector and the conventional fuels for IC engines, its production, characteristics and additives.
- To impart the knowledge of alternate liquid fuels and gaseous fuels for engines with their compatibility, performance and emission characteristics.
- To know about the need of lubricants, factors influencing the lubricants and testing of fuels.

UNIT I	CONVENTIONAL FUELS FOR I.C. ENGINES	9

Petroleum based conventional fuels for SI and CI engine, Demand and Availability of crude oil – Production - National and International standards for conventional fuels. Crude Distillation, Chemical structure, desirable characteristics of SI Engine fuels – Petrol – Properties, Specification, Volatility characteristics, knock rating and additives. Desirable characteristics of CI Engine fuels – Diesel – Properties, Specification, Chemical structure, Ignition quality, Cetane rating and additives.

UNIT II LIQUID FUELS

Need for alternative liquid fuels - Availability, Properties, Composition, Merits, Demerits, Performance and Emission characteristics of Methanol, Ethanol, Straight Vegetable Oil, Bio diesel (Esterification) and their blends.

UNIT III GASEOUS FUELS 9

Need for alternative gaseous fuels – Availability, Properties, Composition, Merits, Demerits, Performance and Emission characteristics of Hydrogen, Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG). Modifications required for LPG and CNG in the conventional engines.

UNIT IV COMBUSTION OF FUELS

9

Stoichiometry - Calculation of theoretically correct air required for combustion of liquid and gaseous fuels - Volumetric and gravimetric analysis of the dry products of combustion, Mass of dry gas per kg of fuel burnt, Mass of carbon in the exhaust gas, Mass of carbon burnt to carbon monoxide per kg of fuel, Heat loss due to incomplete combustion.

UNIT V LUBRICANTS AND TESTING OF FUELS

9

Lubricants: Need for lubricants, engine friction, Effect of engine variables on friction requirements of automotive lubricants-Mineral & Synthetic, Classification of lubricating oils, Properties of lubricating oils, Additives and tests on lubricants – Grease, Classification, Properties, Testing of grease.

Testing of fuels: Relative density, Calorific value, Distillation, Reid vapour pressure, Flash point, Spontaneous ignition temperature, Viscosity, Pour point, Flammability, Ignitability, Diesel index, API gravity and aniline point.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Distillation test of liquid fuels
- 2. Aniline Point test of diesel.
- 3. Calorific value of liquid fuel.
- 4. Reid vapour pressure test.
- 5. Flash and Fire points of fuel and oil.
- 6. Copper strip Corrosion Test
- 7. Cloud & Pour point Test.
- 8. Temperature dependence of viscosity of lubricants by Redwood Viscometer.
- 9. Viscosity Index of lubricants by Saybolt Viscometer.
- 10. Ash content and Carbon Residue Test
- 11. Drop point of grease and mechanical penetration in grease
- 12. Density determination of different fuels.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Explair	ı th	ne c	list	illa	tior	ı pı	roce	ess,	ad	ditiv	es f	or f	uels	ar	nd
	charact						_									
CO2:	Outline	e tl	ne	nee	ed	and	d p	erf	orn	nan	ce c	hara	acter	isti	cs (of
	alterna	alternative liquid fuels for both SI and CI engines.														
CO3:	Outline														cs (of
	alterna															
CO4:	-	Analyze the correct air required for combustion of liquid														
	and gas															
	Explair															
CO6:			e te	stir	ng p	oro	ced	ure	for	va	riou	s fue	el pro	ope:	rtie	s.
	BOOK															
1	B.P. Pu Narosa							- (Com	ıbus	stior	an	d Er	niss	sion	ıs,
2	S.S. Th 2010.	ips	e, <i>A</i>	Alte	rna	tive	e Fı	uels	s, J <i>A</i>	AIC	O P	ublis	shing	gН	ous	se,
REFE	RENCE	S:			-	_		_								
1	EranSh	er	-I	Ian	dbo	ook	of	A	ir /	Pol	lutio	n fi	om	Int	ern	al
6	Combu	ıstic	on	Eng	gine	es-F	Poll	uta	nt :	For	mati	ion a	and	Co	ntro	ol,
	Acader		10.00				16	L	\setminus				100			
2	Matthe															
A	and vil	orat	tior	ı in	ro	ad	veł	nicle	es,	Else	evier	, Ind	dian	Ed	itio	n,
1	2011.			7	- (0		EG	E (0	GV	<u> </u>
3	Marco Publica					ssic	ns	fro	m t	wo	stro	oke e	engii	nes,	SA	Ε
4	Sarkar,			els	An	d C	Con	nbu	stic	n∥,	Orio	ente	d Lo	ngı	nar	ın
	Press, 1	1990).													
C	Os	_	_	_		_		PO		_	40		40		SO	
	4	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	3	2	1	2	2	-	-	2	-	-	-	-	1	2	-	-
	4	3	3			-	_		-	-	-	-	1		-	-
	<u>5</u>	2	1	-	-	-	_	2	-	-	-	-	1	2	-	-
	o erall		1	_	-	_	_		_	_	-	-	1		_	<u> </u>
		3	2	1	1	-	-	2	-	-	-	-	1	2	-	-
Correlation							ies	01	-04-	2024	1	1	1	<u> </u>		
Kecom	menaca	~ ,						-	-							

23AU321	COMPUTER AIDED DESIGN	L	T	P	C			
	LABORATORY	0	0	4	2			
COURSE OBJECTIVES:								

- To make the students understand and interpret drawings of machine components.
- To familiarize the students with Indian Standards on drawing practices and standard components.
- To gain practical experience in handling 2D drafting and 3D modelling software systems.

LIST OF EXPERIMENTS:

ENGINE DESIGN EXPERIMENTS

- Design and modelling of piston, piston pin and piston rings.
- 2. Design and modelling of connecting rod assembly.
- 3. Design and modelling of crankshaft assembly.
- 4. Design and modelling of flywheel.
- 5. Design and drawing of the inlet and exhaust valves.
- 6. Design and modelling of cam and camshaft.

CHASSIS DESIGN EXPERIMENTS

- Design and modelling of frame. 1.
- Design and modelling of clutch assembly. 2.
- 3. Design and modelling of sliding mesh gearbox.
- 4. Design and modelling of propeller shaft with universal ioint

	Joint.							
	TOTAL: 60 PERIODS							
COU	RSE OUTCOMES:							
After completion of the course, the students will be able to:								
CO1:	Outline the drawing standards, Fits and Tolerances.							
CO2:	Construct the part drawings, sectional views and							
	assembly drawings as per standards.							
CO3:	Utilize standard drawing layout for modelled parts with							
	BoM.							
CO4:	Interpret the importance of GD&T.							
CO5:	Model various engine components.							

CO6:	Model	var	iou	s cl	nass	sis (con	ıpo	ner	ıts.							
TEXT	BOOK	S:															
1	Radhal	cris	hna	an	Р,	Sı	ubr	am	any	an	S.	an	d F	Raju	. \	<i>7.,</i>	
	"CAD/		-					dit	ion	, N	ew A	Age [Inte	nat	ion	al	
	(P) Ltd																
2	Mikell.												-				
	-	Computer Integrated Manufacturing", Prentice Hall of India, 2008.															
REFE	RENCE		<i>.</i>														
1	N. D. E		H a	nd	V N	/IF	ano	ha	1 "1	Mag	hin	- Dr	awir	nσ"	48	th	
	Edition												· · · · · · · · · · · · · · · · · ·	-6 A	. 10	~11	
2	Junnar										wing	y",	1st	Ed	itio	n,	
	Pearson											, .				•	
3	N. Sid	des	shw	ar,	P.	K	anr	niał	ı, V	V.V	.S. S	Sastr	i, "	Ma	chiı	ne	
- 2	Drawin	ng"	, pi	ubl	ishe	ed b	у Т	ata	M	c G	rawl	Hill,	2006	5.	1		
4	S. Tryn					•							-			ed	
	Machir	ne I)rav	win	g",	CB	SP	ubl	ish	ers,	Nev	w De	elhi,	200	7.		
Λ	X.		الخار								- 33		4				
C	Os				-			PO		•	40	44	14.3		SC	-	
	VEER	2	2	3	4	5	6	7	8	9	10	11	12 1	2	2	3 1	
	2	3	2	1	1	2	_	2	1	-		-	$\frac{1}{1}$	2	2	1	
	3	3	2	1	1	2	-	2	1	-	-	-	1	2	2	1	
	4	2	1	_	1	2	_	2	1	_	_	_	1	2	2	1	
	5	3	2	1	1	2	<u>-</u>	2	1	-	_	-	1	3	2	1	
	6 3 2 1 1 2 -					_	2	1	_	_	_	1	3	2	1		
Ov	erall												1			-	
	elation	3	2	1	1	2	-	2	1	-	-	-	1	3	2	1	
Recom	mended	by	Boa	rd (of S	tud	ies		04-		4						
	A	pro	ove	d				2 nd ACM Date					0	05-05-2024			

23AU322	AUTOMOTIVE ENGINES	L	T	P	C
	LABORATORY	0	0	4	2

- To associate various testing methodologies used in engine performance evaluation.
- To analyse and interpret test data obtained from engine testing and emission measurement.
- To display the regulatory framework governing engine emissions, including emission standards and testing protocols.

LIST OF EXPERIMENTS:

- 1. Study of Engine Dynamometers
- 2. Study of IC engine Pressure measurement systems for combustion analysis.
- 3. Performance study on petrol engine.
- 4. Performance study on diesel engine.
- 5. Determination of Frictional power on multi cylinder petrol/diesel engines.
- 6. Heat balance test on an automotive petrol/diesel engine
- 7. Measurement of HC, CO, CO₂, O₂ and NOx using exhaust gas analyser
- 8. Diesel smoke measurement.

TOTAL: 60 PERIODS

COU	COURSE OUTCOMES:							
After completion of the course, the students will be able to								
CO1:	Identify the various emission measuring instruments.							
CO2:	2: Demonstrate the various engine testing instruments.							
CO3:	Explain the procedure to measure the emission.							
CO4:	Examine the engine performance and emission							
	characteristics.							
CO5:	CO5: Summarize the available emission norms.							

CO6:	Interpr	terpret data obtained from engine testing and emissions															
	measu	rem	ement.														
	Os					PO	s					F	SC	s			
	.Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	2	1	1	2	-	2	1	-	-	-	1	3	2	1	
	2	2	1	-	-	2	-	2	1	-	-	-	1	2	2	1	
	3	2	1	-	-	2	-	2	1	-	-	-	1	2	2	1	
	4	3	3	2	2	2	1	2	1	1	ı	-	1	2	2	1	
	5	2	1	1	-	2	1	2	1	1	ı	-	1	2	2	1	
	6	2	1	-	-	2	-	2	1	-	-	-	1	2	2	1	
_	erall elation	3	2	1	1	2	1	2	1	ı	•	-	1	3	2	1	
Recom	mended	by	Boa	rd (of S	tud	ies	01-	04-	2024	4						
	Approved								AC	\mathbf{M}	D	ate	05	-05	-202	!4	

23ES391	PRESENTATION SKILLS	L	T	P	C
		0	0	2	1*

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

UNIT I BRAINSTORMING AND OUTLINING

6

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

UNIT II STRUCTURING THE PRESENTATION

6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

UNIT III DELIVERY TECHNIQUES

6

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language- eye

contact, gestures, movement on stage.
UNIT IV USE OF TECHNOLOGICAL AIDS
Use of presentation software like MS Power Point, Google Slides
etc, incorporating images, graphs, charts and videos, using
interactive tools like quizzes and polls, using remote presentation
tools like zoom, MS Teams, WebEx for screen sharing, virtua
whiteboards and chat functionalities, incorporating AR/VR for
more immersive presentations.
UNIT V HANDLING QUESTIONS AND FEEDBACK
Audience engagement through questions, PAR (Point, Answer
Redirect) strategy for structuring responses to questions
Understanding feedback process - Receiving, interpreting and
evaluating constructively, active listening techniques for
processing feedback, responding to feedback- acknowledging
clarifying and appreciating, Dealing with challenging feedback.
TOTAL: 30 PERIOD
COURSE OUTCOMES:
After completion of the course, the students will be able to:
CO1: Construct ideas for presentation through mind mapping techniques
CO2: Organize ideas and structure the presentation with
captivating introduction, body paragraphs illustrated with
examples and reasons and compelling conclusion
CO3: Apply vocal variety and body language techniques to
enhance delivery CO4: Prepare engaging presentations by integrating multimedia
elements
CO5: Demonstrate proficiency in delivering presentations in
remote platforms utilizing various technological tools and
strategies to engage audience in Virtual environments
CO6: Exhibit active listening skills by responding to questions
with clarity and confidence and incorporating constructive
feedback for professional development

TEXT BOOKS:

- 1 Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.
- **2** Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

REFERENCES:

Approved

1 Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

COs						I	POs						I	PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
2	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
3	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
4	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
5 ow	2	2	1	1	-	- 8	4	1	1	1		1	2	2	1
6	2	2	1	1	-	A	-	1	1	1	-	1	2	2	1
Overall Correlation	2	2	1	1	-	4	-	1	1	1		1	2	2	1
Recommende	d by	, Bo	ard	of S	Stud	ies	04-	04-2	024						

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

25-05-2024

2nd ACM

SEMESTER -IV

23MA401	OPTIMIZATION	L	T	P	С
	TECHNIQUES	3	1	0	4

COURSE OBJECTIVES:

- Formulate and solve linear programming problems (LPP).
- Evaluate Transportation and Assignment Problems.
- Obtain solution to network problems using CPM and PERT techniques.
- Optimize the function subject to the constraints.

UNIT I LINEAR PROGRAMMING MODELS

9+3

Introduction of Operations Research - mathematical formulation of LPP- Graphical Methods to solve LPP- Simplex Method- Big M method, Two phase method.

UNIT II TRANSPORTATION PROBLEMS AND 9+3 ASSIGNMENT PROBLEMS

Transportation problem (TP) - finding basic feasible solution of TP using North-West Corner Rule, Least Cost and Vogel's Approximation Method - MODI method for finding optimal solution for TP - Assignment problem - Hungarian method for solving Assignment problem - Travelling salesman problem as assignment problem - Production Scheduling problem - Introduction, Problems in single machine scheduling.

UNIT III | INVENTORY CONTROL

9+3

Introduction, Models – Problems in Purchase and Production (Manufacturing) models with and without shortages – Theory on types of inventory control systems: P& Q, ABC, VED, FNS, XYZ, SDE and HML.

UNIT IV PROJECT MANAGEMENT

9+3

Project definition - Gantt chart - Project network - Diagram representation - Floats - Critical path method (CPM) - PERT-Cost considerations in PERT and CPM.

UNIT V | CLASSICAL OPTIMIZATION THEORY

9+3

Unconstrained problems - necessary and sufficient conditions -

Newton-Raphson method, Constrained problems - equality																
	straints - inequality constraints - Kuhn-Tucker conditions.															
			1								ГОТ					DS
COU	RSE OL	JTC	CON	ИES	S:											
	After co	mp	oleti	ion	of t	he	cou	rse	the	e sti	uder	its w	ill b	e al	ole	to:
	Solve l	_														
	Exami											,				
CO3:	Exami	ne .	Ass	ign	me	nt I	rol	olen	ns.							
CO4:	Plan	the	pι	ırcl	nase	2/	ma	nuf	act	urir	ng p	olic	ies	to	me	et
	custon	ner	deı	nar	nds.											
CO5:	Find so	olu	tior	ıs to	ne	two	ork	pro	ble	ms	usin	g CF	M a	nd I	PEF	T?
	techni	_														
	Optimize the function subject to the constraints.															
TEXT	BOOKS:															
1	Hamdy A Taha, Operations Research: An Introduction,															
	Pearson, 10th Edition, 2017.															
2	R. Pannerselvan, Operations Research, 2nd Edition, PHI															
DEFE	Publications, 2006.															
	RENCE		CI				D		-\			-				
1	Dontz	_						_	ram	ımı	ng	ana	exi	tens	510r	ıs,
2	Prince		_			_			oia.	1100	in 1/	[ana	~~~	on t	То	t-a
2	ND Vo McGra															
3	I. K.										earc					
3	Applic												inco	ту	aı	iu
			0110	, 111	4011			PO			., _0	± - .		I	PSC	s
C	Os	1	2	3	4	5	6	7	_	9	10	11	12		2	
	1	3	2	1	1	-	-	-	-	-	_	-	1	3	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
5 3 2 1 1 -				-	-	-	-	-	-	1	3	-	-			
6 3 2 1 1						-	-	-	-	-	-	1	3			
	erall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_
	elation						Ĺ.,							3		
Recom	mended				of S	tud	ies					04-2				
Approved								2 ^{nc}	1 A(ĽM		Date	9	25-	05-2	024

23AU401	AUTOMOTIVE	L	T	P	C
	TRANSMISSION	3	0	0	3

- To study the need and types of clutch and gearbox.
- To make the students understand the basic construction and working of hydrodynamic transmission systems and epicyclic gear.
- To realize about the importance of hydrostatic and electric drives.

UNIT I CLUTCH AND GEAR BOX

9

Requirement of transmission system, Different types of clutches, Principle & Construction of single plate coil spring and diaphragm spring clutches, need and objectives of Gear box. Construction and operation of sliding mesh, Constant mesh and Synchromesh gearboxes. – Determination of gear ratios for vehicles. Performance of automobile such as resistance to motion, Tractive effort, Engine speed, Power and acceleration.

UNIT II HYDRODYNAMIC TRANSMISSION

9

Fluid coupling - Principle - Constructional details. Torque capacity. Performance characteristics. Reduction of drag torque in fluid coupling. Torque Converter - Principle - Constructional details, Performance characteristics. Multistage torque converters and Polyphase torque converters.

UNIT III	EPICYCLIC GEARBOXES USED IN	9
	AUTOMATIC TRANSMISSION	

Principle of planetary gear trains - Wilson Gear box, Simpson planetary gear train, Cotal electromagnetic transmission - Hydraulic control system for Automatic Transmission.

UNIT IV AUTOMATIC TRANSMISSION 9 APPLICATIONS

Automated Manual Transmission (AMT) - Need for automatic transmission, four speed longitudinally mounted automatic transmission - Chevrolet - Turboglide Transmission,

Conti	nuously Variable Transmission (CVT) - Types	-
Opera	tions of a typical CVT.	
UNIT	V HYDROSTATIC AND ELECTRIC DRIVE	9
Princ	ples of Hydrostatic drive, various types of hydrostat	tic
syste	ns. Advantages and limitations. Comparison	of
hydro	static drive with hydrodynamic drive, Construction an	nd
work	ng of typical Janny hydrostatic drive. Electric drive – type	es
- Prin	riple of early and modified Ward Leonard Control system	m
- Adv	antages & limitations. Modern Electric drive.	
	TOTAL: 45 PERIOI	DS
	SE OUTCOMES:	
	After completion of the course, the students will be able	
CO1:	Explain the construction and working of various cluto	ch
	models.	
CO2:	Select the gearbox based on the automotive performance	ce
A	requirement.	ľ.
CO3:	Summarize the various hydrodynamic transmission	on
	systems based on the construction and working.	
CO4:	Outline the working of epicyclic gears and its application in transmission	on
	III tidibilibolofi.	
CO5:	Examine the various automatic transmissions and i	its
001	application.	
CO6:	1 1	
	BOOKS:	
1	Heinz Hesiler, Advanced engine technology. Butterwork	th
	Heinmann publications, 2011	. 1
2	Devaradjane. Dr. G., Kumaresan. Dr. M., —Automobi	ıle
	Engineering, AMK Publishers, 2013.	
	RENCES:	
1	JackErkavec, Automotive Technology-A System	ns
	approach, Cengage learning, Delmar, 2010.	
2	Judge.A.W., Modern Transmission System, Chapma	an
	and Hall Ltd, 2000.	

3	Garrett	T.K	(., I	Vev	v to	n. I	ζ., 9	Stee	eds.	W.,	, —T	he N	loto	r Ve	hic	le
	Publish	ned	: Bı	ıtte	rwo	orth	ı H	eine	ema	nn	,13tł	n Ed:	ition	-20	00.	
4	Heldt,	P.N	И.,	Hi	gh-	Spe	ed	Co	mb	ust	ion	Eng	ines	, O:	xfo	rd
	IBH Pu	IBH Publishing Co., Calcutta.														
	COs													F	SO	s
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	2	1	-	-	-	2	2	1	-	-	-	1	2	-	1
	2	3	2	1	1	1	2	2	1	-	-	-	1	3	1	1
	3	2	1	-	-	-	2		1	-	-	-	1	2	-	1
	4	2	1	-	-	-	2		1	-	-	-	1	2	-	1
	5	3	3	2	2	-	2		1	1	-	-	1	3	-	1

2

1 1

Recommended by Board of Studies

3 2 1

25-03-2024

Approved

1

2nd ACM

Date

25-05-2024

1 1

3

1

Overall

Correlation

COLLEGE OF TECHNOLOGY

23AU402	AUTOMOTIVE ELECTRICAL	L	T	P	C
	AND ELECTRNOCS	3	0	0	3
	ENGINEERING				

- To provide students with a comprehensive understanding of vehicle electrical systems, including electrical circuits, power supply, and battery fundamentals.
- To provide students with a deep understanding of alternators, starter motors and automotive lighting technology in automotive applications.
- To provide students with a comprehensive understanding of automotive electronics, sensors, actuators, and vehicle networking.

UNIT I INTRODUCTION AND AUTOMOTIVE 9 BATTERIES

Introduction - Overview of vehicle electrical systems - Electrical circuits - Electrical power supply in conventional vehicle - Dimensioning of wires - Circuit diagrams and symbols - Electromagnetic Compatibility and interference suppression. Batteries - Battery design - Method of operation - Lead acid battery construction - Battery ratings and testing - Maintenance - Free batteries.

UNIT II STARTING AND CHARGING SYSTEM 9

Alternators – Generation of electrical energy in vehicle - Physical principles - Alternator and voltage regulations versions – Power losses – Characteristics curve - Alternator operation in the vehicle - Alternator circuitry. Starter Motors – Development and Starting requirements in the IC engines - Starter motor design – Starter motor control and power circuits.

UNIT III | LIGHTING AND AUXILLARY SYSTEM | 9

Automotive lighting technology – Technical demands – Development of lighting technology - Light sources – Physical principles – Front and rear lighting system - Interior lighting system – Special purpose lamps – Adaptive Lighting system -

Instrument clusters - Wiper and washer systems - Electric horns.

UNIT IV AUTOMOTIVE ELECTRONICS AND SENSORS AND ACTUATOR

9

Automotive Electronics - Overview and demands - Basic principles of semiconductor technology - Electronic Components - semiconductor components - Microcontrollers - Sensor - Signal Processing - Data Processing in the vehicle - Glossary for automotive microelectronics. Automotive Sensors - Basics - Sensors : Position, Speed, Acceleration / Vibrational, Force / Torque, Flow meters, Gas / Concentration, Temperature - Measured Quantities, Measuring Principles and automotive applications. Automotive Actuators - Electromechanical actuators - Fluid mechanical actuators.

UNIT V VEHICLE NETWORKING

a

Data transfer between automotive electronics systems - Basic principles of networking - Network topology - Network organization - OSI reference model - Control mechanisms - Communication protocols in embedded systems - Vehicle Communication Protocols - Cross-system functions - Requirements for bus systems- Classification of bus systems- Applications in the vehicle - Coupling of networks - Examples of networked Vehicles - Bus system- CAN, LIN, Flexray - MOST etc.

TOTAL: 45 PERIODS

COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Illustrate the construction of automotive batteries and its charging system. CO2: Identify the mechanism of starter motor, and describe the working of starter motor and alternator in the vehicle. CO3: Summarize the lighting and auxiliary system in automobile. CO4: Outline the basic principle of semiconductor and its application in automobile.

CO5:	Select s	sens	sors	s ar	ıd a	ctu	ato	rs l	oase	ed c	n th	e re	quir	eme	ent	of				
	automo		•	•																
CO6:	Explair	n th	ie v	ari	ous	ve	hic	le c	com	mu	ınica	tion	pro	toc	ols	in				
	automo	obil	e.																	
TEXT	BOOK	S:																		
1	Bosch .	Au	ton	oti	ve :	Ele	ctri	cs a	and	Αι	ıtom	otiv	e El	ectr	oni	cs				
	System	ıs a	and	1 (Com	npo	ner	ıts,	Ne	etw	orki	ng	and	\mathbf{H}	ybr	id				
	Drive,	5th	Ed	itio	n, 2	2007	7.													
2	S.V. D	ish	ore	, "/	Aut	om	otiv	ve :	Ele	ctri	cal a	and	Elec	ctro	nic	s",				
	Lakshr	ni I	ub	lica	tio	ns (Che	nna	ai, 2	019).									
REFE	ERENCES:																			
1	James D Halderman, "Automotive Electrical and																			
	Electronics", Prentice Hall, USA 2013.																			
2	Tom Denton, "Automotive Electrical and Electronics																			
- 72	Systems," Third Edition, SAE International, 2004.																			
3	William Ribbens, "Understanding Automotive																			
	Electronics - An Engineering Perspective", 7th Edition,																			
1	Elsevier Butterworth-Heinemann Publishers, 2012.																			
4	Barry		900									- H - E HL	1.001		- 11	nd				
	Electro	nic	s",	Del	ma	r Pı				Clif	ton	Park	, US	Α, 2	201	0.				
	Os				Α	FFILI	ALE	PO	S	A.UN	(IVER)	HY	AUTO	T	SC)s				
	.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
	1	2	1	-	-	-	2	2	1	-	-	-	1	2	-	1				
	2	3	2	1	1	-	2	-	1	-	-	-	1	3	•	1				
	3	2	1	-	-	-	2	-	1	-	-	-	1	2	-	1				
	4	2	1	-	-	-	2	2	1	-	ı	-	1	2	-	1				
	5	3	2	1	1	-	2	-	1	-	ı	-	1	3	-	1				
	6	2	-	1	ı	ı	ı	1	2	1	1									
	verall 3 2 1 1 - 2 1 1 1 3 - 1																			
	elation		_	_																
Recom	mended	by l			of S	tud	ies					-03-2								
l		2nc	1 A(CM		Date	•	25-()5-2	024										

23CE412	STRENGTH OF MATERIALS	L	T	P	C
		3	0	2	4

- To understand the concepts of stress, strain, principal stresses and principal planes.
- To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- To determine stresses and deformation in circular shafts and helical spring due to torsion.
- To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I STRESS, STRAIN AND DEFORMATION OF 9 SOLIDS

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound bars – Thermal stresses – Elastic constants, Poisson's ratio – Volumetric strains – Stresses on inclined planes – principal stresses and principal planes – Mohr's circle for plane stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND 9 STRESSES IN BEAMS

Beams – types transverse loading on beams – Shear force and bending moment in beams – Cantilevers – Simply supported beams and over – hanging beams. Theory of simple bendingbending stress distribution – Load carrying capacity – Proportioning of sections– Shear stress distribution.

UNIT III DEFLECTION OF BEAMS 9

Double Integration method - Macaulay's method - Area moment method- Conjugate beam method for computation of slopes and deflections in determinate beams.

UNIT IV	TORSION, SPRINGS AND COLUMNS	9
Theory of	Torsion - Stresses and deformations in solid a	and

hollow circular shafts – Stepped shafts – Power transmitted by a shaft. Helical springs – Differences between closely coiled and open coiled helical springs – Closely coiled helical springs – Calculation of shear stress, deflection and stiffness. Columns – Euler's theory – Calculation of crippling load for different end conditions for a long column.

UNIT V	THIN CYLINDERS, SPHERES AND THICK	9
	CYLINDERS	

Stresses in thin and thick cylindrical shell, deformation in thin and thick cylinders – spherical shells subjected to internal pressure –Deformation in spherical shells.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Tension test on mild steel rod
- 2. Double shear test on mild steel rod
- 3. Torsion test on mild steel rod
- 4. Izod Impact test on metal specimen
- 5. Charpy Impact test on metal specimen
- 6. Rockwell Hardness test on metals
- 7. Brinell Hardness test on metals
- 8. Compression test on helical spring.
- 9. Heat Treatment Processes- Annealing, Normalizing, Quenching and Tempering
- 10. Jominy End Quench Test

CO1: Calculate the different stresses developed in the solids when subjected to different loading conditions. CO2: Analyse the shear force and bending moment diagrams of the beams under the various loading conditions. CO3: Examine the bending stress and shear stress distribution of various sections of the beam.

CO4:	Calcula	ate	th	e s	slop	e e	anc	l d	lefle	ecti	on	of l	ean	ıs	usir	ng
	differe	nt r	net	hoc	ls.											
CO5:	Apply	the	ba	sic	eq	uati	ion	s to	de	sig	n sh	afts,	spr	ings	s ar	nd
	columi	ns.														
CO6:	Calcula	ate	the	stre	esse	es d	eve	lop	ed	in t	he tł	nin c	ylino	ler,	thi	ck
	cylinde	er, a	ınd	spl	her	ical	she	ells.								
TEXT	BOOK	BOOKS: Bansal, R.K., "Strength of Materials", Laxmi Publications														
1	Bansal	, R.	K.,	"St	ren	gth	of	Ma	ter	ials	', La	ıxmi	Pub	lica	tio	ns
	(P) Ltd., 2016.															
2	Rattan S.S., "Strength of Materials", Tata McGraw Hill															
	Education Pvt. Ltd., New Delhi, 2017.															
REFE	RENCE	RENCES:														
1	Rajput R.K. "Strength of Materials (Mechanics of Solids)",															
	S.Chand & company Ltd., New Delhi, 7th edition, 2018.															
2	Egor P	Egor P Popov, "Engineering Mechanics of Solids", 2nd														
_ A	edition	edition, PHI Learning Pvt. Ltd., New Delhi, 2015.														
3	Beer. F	.P. o	& J	ohn	sto	n. E	E.R.	"M	lecł	nan	ics o	f Ma	teria	ıls"	, Ta	ta
	McGra	w I	Hill	, 8t	h E	diti	on,	Ne	w l	Dell	ni 20)19.				
4	Subran	· .						0					11		xfo	
	Univer	sity	Pr	ess	, O:	xfo	rd I	lig	her	Ed	ucat	ion S	Serie	s, 2	010	
	Os				//	PER	ALE	PO	S	A UN	IVER:	1117	AUIU	Ī	PSC	s
	.08	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	-	1	2	1	-	-	3	1	-
	2	3	2	1	1	1	1	ı	ı	2	ı	-	-	3	1	-
	3	3	2	1	1	1	1	-	1	2	1	-	-	3	1	-
	4	3	2	1	1	1	1	-	1	2	ı	-	-	3	1	-
	5	3	2	1	1	1	1	ı	ı	2	ı	-	-	3	1	-
	6	3	2	1	1	1	1	-	1	2	1	-	-	3	1	-
	erall	erall 3 2 1 1 1 1 2 3 1 -														
	relation															
Recommended by Board of Studies																
Approved								2 ^{nc}	1 A(CM		Date	2	25-0)5-2	024

23AU421	AUTOMOTIVE ELECTRICAL	L	T	P	C
	AND ELECTRONICS	0	0	4	2
	ENGINEERING LABORATORY				

- To understand the principles, components, and functions of vehicle lighting systems, including headlights, taillights, turn signals, and interior lighting, and their significance for safety and visibility.
- To provide students with a comprehensive understanding and practical skills in utilizing electronic instrumentation and microcontroller programming techniques for automotive applications.
- To develop proficiency in designing, implementing, and troubleshooting electronic systems essential for automotive diagnostics and control.

LIST OF EXPERIMENTS:

Electrical System

- 1. Study of Vehicle lighting system.
- 2. Study of an Ignition system.
- 3. Study of Layout of an Automotive Electrical System.
- 4. Study of Voltage regulator, solenoids, Horn and wiper mechanism.
- 5. Testing of Battery Hydrometer, Individual Cell voltage test.
- 6. Testing of Starter Motor Load test
- 7. Testing of Alternator Load test.

Electronic System

- 1. Visualization of Engine Sensor Signals and fault Diagnosis using OBD Kit.
- 2. Interface of Seven segment display.
- 3. Interfacing of ADC for a sensor and Interfacing of DAC actuator
- 4. Interface circuit like amplifier, filter, Multiplexer and De Multiplexer

- 5. Basic microprocessor programming like arithmetic and Logic operation, code conversion, look up table etc.
- 6. Programming in microcontroller

7. Study of Virtual Instrumentation and Communication Protocols (CAN, LIN MOST) **TOTAL: 60 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the working principle of Electrical circuits in automobile Outline the working principle of Ignition system. CO2: CO3: Demonstrate the working principle of Battery, and starter motor Summarize the working principle of auxiliary systems CO4: used in automobiles. **CO5:** Explain the use of sensors in an automobile. Develop programming knowledge on Microprocessor. CO6: **POs PSOs** COs Overall Correlation Recommended by Board of Studies 01-04-2024 Approved 2nd ACM Date 05-05-2024

23ES	491	APTITUDE AND LOGICAL	L	T	P	C
		REASONING -1	0	0	2	1
COU	RSE OB	JECTIVES:				
•	To imp	rove the problem solving and logical th	ninki	ng	abil	lity
	of the s	tudents.				
•	To acqu	aaint student with frequently asked que	estio	ns a	and	
		s in quantitative aptitude and logical re	easo	ning	3.	
UNI						4
		M, HCF, Averages, Ratio & Proportio	n, M	Iixtı	ares	3 &
	gation.					
UNI						4
		Гime and work, Pipes and Cistern, codi	ng a	nd		
deco						
UNI						4
		Pistance, Train, Boats and Streams, Ana	logy	•		
UNI						4
	- Table 1	tation (BAR,PIE,LINE), Seating arrange	mer	ıt.	7	
UNI	Account of	5				4
-		<mark>st an</mark> d Compound Interest, Profit loss a	nd I	Disc	our	ıt,
Partr	nership.					M
6071	700000	TOTAL	20 1	PER	CIO	DS
COU		TCOMES:				10
601		mpletion of the course, the students wi				
CO1:	-	e and solve complex problems, and	tost	er (criti	ical
COL		g and logical reasoning skills.	-	1	1	
CO2:		undamental mathematical problems,		er	ınaı	nce
CO2		mputational skills and numerical ability	_		1	
CO3:		o strategies for tackling a variety of p				
		courage the use of multiple approa	cnes	ιο	SO	ive
COA		ns efficiently. e and solve different data analysis prob	10m	o fo	ti	m 0
CO4.	•					ше
COE		ance, and interpret data analysis for a cinformation from graphs, and solve qu			_	502
000.		nitorination from graphs, and solve quematical operations such as ratios, pro				
		and statistical estimation.	POIL	10118	,, 00	ioiC
CO6		uestions in a fraction of a minute u	isina	r eh	ort	C11t
200.	method		عاتدن	, 31	·OIt	cui
	niculou	0				

TEX	TEXT BOOK:															
1	Smith,	Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.														
2	Agarv	val,	R.S	5. "Ç)uaı	ntita	ativ	e A	ptit	ude	." 2r	nd e	d., S.	Ch	anc	1
	Publish	ing	ŗ.													
REFI	ERENCE	ES:														
1	Agarwa	al, F	R.S.	"A	Mo	der	n A	ppr	oac	h to	Ve:	rbal	& N	lon-	-Ve	rbal
	Reason	ing.	." 2r	nd e	d.,	S. C	har	nd I	ubl	ishi	ing					
	Cos	POs PSOs														
`	CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

Cos						ľ	'Us						ı	'5 U	S
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	-	-	2	1	1	2	1	2	3	1	-	3
2	2	3	3	-	-	2	-	1	3	2	2	3	2	1	3
3	3	3	3	-	-	2	-	1	2	2	2	3	2	-	3
4	2	3	2	3	1	2	1	2	3	3	2	3	1	2	3
5	3	2	2	ı	1	3	-	2	2	3	3	3	3	1	3
6	3	3	3	3	2	3	1	3	3	2	3	3	3	1	3
Overall	ES.	3	No.			×		1						400	
Correlation	3	3	3	1	1	3	1	2	3	3	3	3	2	1	3
Recommende	d by	⁷ Bo	ard	of S	tud	ies	08-04-2024						0		
A			2nd	1 A(CM		Date	1	25-	05-2	2024				

COLLEGE OF TECHNOLOGY

23AU422	MINI PROJECT -1	L	T	P	C
		0	0	2	1

- Encourage students to apply foundational theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork and effective communication.
- Train students in basic research methodology, technical documentation, and presentation techniques to articulate project outcomes clearly.
- Enhance students' ability to systematically design, analyze, and evaluate simple prototypes or models.
- Prepare students for real-world engineering challenges and lay the foundation for multidisciplinary teamwork and problem-solving in advanced projects.

COURSE DESCRIPTION:

This course serves as an introductory platform for students to apply the foundational knowledge acquired from their core and interdisciplinary subjects in a practical setting. This course enables students to work on small-scale, department-relevant projects that focus on problem identification, basic design, and preliminary prototype development. With limited prior expertise, students will explore the process of translating theoretical concepts into tangible solutions, fostering creativity, teamwork, and critical thinking. The course emphasizes handson learning, communication, and project documentation, laying a strong foundation for advanced projects and professional challenges in later semesters.

PROJECT OUTLINE:

,	
Week 1	Course Orientation and Topic Selection
Week 2	Problem Definition and Objective Setting
Week 3	Literature Review and Research
Week 4	First Review and Feedback

Week 5	Problem Refinement and Research Gap
	Identification
Week 6	Conceptual Design and Initial Approach
Week 7	Methodology and Project Planning
Week 8	Second Review and Project Evaluation
Week 9	Design Refinement and Testing
Week 10	Resource Identification and Budget Estimation
Week 11	Report Writing and Presentation Preparation
Week 12	Third Review Presentation and Submission of
	Thesis

EVALUATION:

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The project should focus on topics from first three or four semester (whichever is applicable) subjects / industry demand topics, or futuristic technologies. It is recommended for Faculty of Aeronautical Engineering, Civil Engineering, and Mechanical Engineering students, the project should demonstrate an understanding of first principles of engineering.
- Similarly for students of Faculty of Computer Science Engineering, the project may involve programming using Python or C language. For Faculty of Electronics and Communication Engineering, the student project shall incorporate appropriate techniques and systems relevant to the field. For the students of Faculty of Fashion Technology, the project based on material innovations, or technology in fashion is recommended.

- The evaluation will focus on how well the project is structured, including clarity and logical flow in both oral presentations and written texts.
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability, innovation, and SDG-aligned goals.
- The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply basic engineering principles to solve simple problems.
- CO2: Choose relevant sources to understand the current knowledge and identify areas to improve.
- CO3: Utilise basic tools and techniques to test simple solutions.
- CO4: Interpret the impact of engineering solutions on society and the environment.
- CO5: Combine in teams to plan and complete projects within given constraints.
- CO6: Develop comprehensive technical reports and deliver structured presentations to effectively convey project outcomes.

COs]	POs	5					I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
2	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
3	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
4	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
5	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
6	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
Overall Correlation	3	2	1	1	1	1	1	3	2	2	2	1	3	1	3
Recommended	rd (of S	tud	ies	01	-04-	202	4							
A	2 nd ACM Date 25-05-202							24							

SEMESTER -V

	SEMIESTER -V									
23RE501	RESEARCH METHODOLOGY	L	T	P	C					
	AND INTELLECTUAL	2	0	0	2					
	PROPERTY RIGHTS									
COURSE OF	BJECTIVES:									
• To pr	ovide an overview on selection of rese	earch	ı pr	obl	em					
based on the Literature review										
• To e	nhance knowledge on the Data co	ollec	tion	n a	and					
Analy	ysis									
• To o	utline the importance of ethical prin	ncip	les	to	be					
follov	ved in Research work and IPR									
UNIT I	NTRODUCTION TO RESEARCH				6					
F	FORMULATION									
Meaning of	aning of research problem, Sources of research problem									
Criteria- good research problem, and selecting a research										
problem, Scope and objectives of research problem. Defining and										
formulating	the research problem - Necessity of	defi	nin	g t	he					
problem - Im	portance of literature review in definir	ng a	pro	ble	m					
UNIT II I	ITERATURE REVIEW				6					
Literature re	view – Primary and secondary source	es -	rev	iew	īs,					
treatise, mon	ographs-patents – web as a source – s	earc	hin	g t	he					
	al literature review – Identifying gap		eas	fro	m					
	iew - Development of working hypoth	esis								
UNIT III I	DATA ANALYSIS				6					
Execution of	f the research - Data Processing a	nd .	Ana	alys	sis					
strategies -	Data Analysis with Statistical	Pac	kag	es	-					
	on and Interpretation									
	REPORT, THESIS PAPER, AND RESI	EAR	CH		6					
I	PROPASAL WRITING									
Structure and	d components of scientific reports - Ty	pes (of r	epo	rt					
- Technical r	eports and thesis – Significance – Diffe	rent	ste	ps	in					
	ion – Layout, structure and Languag									
	lustrations and tables - Bibliograph									
referencing,	citations- index and footnotes, how to	writ	e re	po	rt-					

Paper Developing,- Plagiarism- Research Proposal- Format of research proposal- a presentation - assessment by a review committee

UNIT V INTELLECTUAL PROPERTY AND PATENT 6 RIGHTS

Ethical principles- Plagiarism, Nature of Intellectual Property - Patents, Designs, Trade and Copyright- patent search, Process of Patenting and Development: technological research, innovation, patenting, and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of Patent Rights – Scope of Patent Rights, Geographical Indications

TOTAL: 30 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: **CO1:** Analyze the literature to identify the research gap in the given area of research. **CO2:** Identify and formulate the research Problem **CO3:** Analyze and synthesize the data using research methods and knowledge to provide scientific interpretation and conclusion. CO4: Prepare research reports and proposals by properly synthesizing, arranging the research documents to provide comprehensive technical and scientific report Conduct patent database search in various countries for CO5: the research problem identified. CO6: Apply ethical principles in research and reporting to promote healthy scientific practice TEXT BOOKS: 1 Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An Introduction to Research Methodology, RBSA Publishers. Kothari, C.R., 1990. Research Methodology: Methods and 2 Techniques. New Age International. 418p.

3	Sinha,	S	5.C.	а	ınd	Ι	Ohii	mai	٦,	A.l	K.,	200	2.	Res	earc	ch
	Metho															
4	Trochi	im,	W.	.M.	K.,	200)5.]	Res	ear	ch I	Metl	hods	$: th \epsilon$	e co	nci	se
	knowl	.edg	ge b	ase	e, A	ton	nic :	Dog	g Pı	ubli	shir	ıg. 2'	70p.			
5	Wadel															
	Marks	, C	ору	rig	ght	des	ign	s ar	nd C	Geo	grap	hica	l ind	lica	tion	ıs.
	Unive	rsa	l La	w]	Pub	lisł	ning	7								
REFE	RENCE	S:														
1	Anthor	ıy,	M.	, (Graz	ziar	10,	A.I	M.	ano	1 Ra	aulir	ı, M	[.L.,	20	09.
	Researc	ch l	Иet	hoo	ds:	ΑP	roc	ess	of i	Inq	uiry	, All	yn a	nd 1	Bac	on.
2	Carlos,															
	and de	vel	opii	ng o	cou	ntri	ies:	the	TR	IPS	agr	eem	ent a	and	pol	icy
	options															
3	Coley,								g,	C.	Α.,	19	90,	"Pr	opc	sal
	Writing", Sage Publications.															
4	Day, R.A., 1992.How to Write and Publish a Scientific															
- 3	Paper, Cambridge University Press.															
5	Fink, A., 2009. Conducting Research Literature Reviews:															
	From the Internet to Paper. Sage Publications															
6	Leedy,							-	-		04 F	ract	ical	Res	sear	ch:
	Plannir		-	-	_								_			
7	Satarka							ectı	ıal	pro	pert	y ri	ghts	and	d cc	ру
	right. E	SS	Pul	blic	atio	ns.		110	Ann	A UI	IVER	HY	AUTO	NOM	100	
C	Os				1 .	· -		PO							SO	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
,	1	3	2	1	1	1	1	-	1	1	2	-	1	3	2	1
	2	3	2	1	1	1	ı	-	1	1	2	1	1	3	2	1
	3	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	4	3	2	1	1	1	-	_	1	1	2	-	1	3	2	1
,	5	3	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	6	2	2	1	1	1	-	-	1	1	2	-	1	3	2	1
	erall															
	lation	3	2	1	1	1	-	-	1	1	2	- 1 3 2				
Corre	iutioii															
	mended		Boa		of S	tud	ies	07-	-11-	2024	1					

23AU501	AUTOMOTIVE CHASSIS	L	T	P	C
		3	0	0	3

- To understand the basics of various vehicle frames and learn about different types of front axles.
- To explore steering systems and their functions and study suspension systems of and their components.
- To gain knowledge about braking systems used in automobiles

UNIT I INTRODUCTION

9

Types of chassis lay out with reference to power plant locations and drives, vehicle frames, various types of frames, passenger car frames, x member type frame, box section type frame, load acting on frames, constructional details, materials, sub frame, testing of vehicle frames, checking of frame alignment

UNIT II FRONT AXLE AND STEERING SYSTEM

Types of front axles, construction details, materials, front wheel geometry: castor, camber, king pin inclination, toe-in and toe-out, condition for true rolling motion of wheels during steering, steering geometry, Ackermann and Davis steering system, constructional details of steering linkages, different types of steering gear boxes, slip angle, over-steer and under steer, turning radius, wheel wobble, power assisted steering, steering ratio – power steering – centre point steering.

UNIT III AXLES AND TYRES

9

Construction and Design of Drive Axles, Types of Loads acting on drive axles, Full – Floating, Three–Quarter Floating and Semi–Floating Axles, Axle Housings and Types – Lift axle, Dead axle, Types and Constructional Details of Different Types of Wheels and Rims, Different Types of Tyres and their constructional details.

UNIT IV | SUSPENSION SYSTEM

9

Need of suspension system, type of suspension, suspension springs, constructional details and characteristics of leaf spring,

variable rate leaf suspension, coil and torsion bar springs, antiroll bar, front wheel & rear wheel independent suspension, rubber suspension, pneumatics suspensions, shock absorbers, torque reaction, air suspension system electronically controlled, hydro-gas suspension.

UNIT V BRAKING SYSTEM

9

Theory of Automobile Braking, Stopping Distance Time and Braking Efficiency, Effect of Weight Transfer during Braking, Theory of Drum Brakes, Loading and Trailing Shoes, Braking Torque, Constructional Details of Drum Brake and its Activators, Disc Brake Theory, Types and Construction, Hydraulic Braking System, Mechanical Braking System, Pneumatic Braking System, Power-Assisted Braking System, Anti-Lock Braking System, Constructional Details.

TOTAL:	45	PERI	ODS
--------	----	------	-----

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Classify the chassis lay out with reference to power plant locations and drives.
- CO2: Explain the steering geometry and derive the condition for true rolling motion of an automobile.
- CO3: Choose the type of rear axle for a various vehicle and know about the various types of wheels and tyres.
- CO4: Select appropriate suspension system based on the vehicle requirement.
- CO5: Summarize the braking system based on the constructional details.
- **CO6:** Compare the stopping distance, time, braking efficiency of the vehicle and weight transfer during braking.

TEXT BOOKS:

- 1 Kirpal Singh, Automobile Engineering, Standard Publisher, New Delhi, 14th Edition, 2019.
- **2** K.K. Ramalingam, "Automobile Engineering", Sci-tech publication (India), 2011.

REFE	RENCE	S:														
1	Р Не	inz		Haz	zler	.,	Mo	ode	rn	V	ehic	le	Tec	hnc	log	у,
	Butterv	Butterworth, London, 2005														
2	Robert	Во	oscl	٦,	"Bo	sch	ı A	luto	omo	otiv	e E	Iand	boo	k",	SA	Æ
	Interna	tio	nal;	10	th e	dit	ion	, 20	18.							
3	Newto	n S	teed	ds a	nd	Ga	rre	t, N	loto	or V	ehic	des,	13th	Ed	itio	n,
	Butterv	vor	th,	Lor	ndo	n, 2	2005	5.								
4	N.K. C	N.K. Giri, Automotive Mechanics, Kanna Publishers,														
	2007.															
	20-							PO	s					F	SC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	-	1	-	-	-	1	2	-	1
	2	2	1	-	-	-	2	-	1	-	-	-	1	2	-	1
	3	3	2	1	1	ī	2	_	. 1	- 1	-	-	1	3	-	1
- 2	4.OWER	3	2	1	1	-	2	7-	1	7		-	1	3	W	1
A	5	2	1	A	-	L	2	-	1	-	-	-	1	2	-	1
	6	2	1	- 1	-	F	2	-	1	-	70	L- 1	1	2	-	1
1.7	erall elation	3 2 1 1 - 2 - 1 - - - 1 3 - 1														
Recom	mended	by :	Boa	rd (of S	tud	ies	EU	E	JF	07	-11-2	024	.01	IJΪ	
Approved							ATE	3 rd ACM Date 30-11-2024								

23AU511	INTRODUCTION TO FINITE	L	T	P	C
	ELEMENT ANALYSIS	3	0	2	4

- To impart basic knowledge in finite element method.
- To provide knowledge in 1D, 2D elements.
- To practice approaching heat conduction problems using finite element method.

UNIT I INTRODUCTION

9

Relevance and scope of finite element methods - Strain Vs displacement relations - Stresses and equilibrium - Natural and essential boundary conditions - Rayleigh-Ritz - Galerkin method - FEA procedure - Discretization of domain - Element shapes, types, size, location and numbers.

UNIT II ONE-DIMENSIONAL (1D) PROBLEM

q

Coordinate systems - Global, local and natural. Finite element formulation - Shape function, Stiffness matrix, Load vector and assembly of global equation - 1D bar element and two nodded truss element problems. Introduction to beam elements.

UNIT III | TWO-DIMENSIONAL (2D) PROBLEM

9

Finite Element Formulation - Shape function for linear triangular element, Constant Strain Triangular (CST) element. Strain Vs displacement matrix of CST element, Plane stress, plane strain and axisymmetric conditions - Problems. Introduction to space frame and planar frame elements.

UNIT IV HEAT TRANSFER APPLICATIONS

9

Formulation of shape function, Stiffness matrix, Load vector, Assembly of global equation - 1D and 2D elements with heat conduction, Heat convection and internal heat generation conditions - Problems. Introduction to 3D axisymmetric problems.

UNIT V	HIGHER ORDER ELEMENTS AND	9	9
	ISOPARAMETRIC ELEMENT		
	FORMULATION		

Selection of order of polynomial-linear, simplex, complex and multiplex elements, mesh refinement methods and convergence requirements. Iso, Sub and Super parametric element, shape functions for a 2-D four nodded and eight nodded Isoparametric rectangular element using natural coordinate system - problems. Gaussian quadrature method-problems.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Structural analysis of beam elements subjected to point loads with UDL and UVL to observe deformation, shear force, bending moment and von misses stress distribution
- Structural analysis of solid element with drilled holes (Steel plate and L bracket) subjected to point loads to observe deformation and von misses stress distribution
- 3. Mode frequency analysis of beams (Cantilever, simply supported, fixed ends) to observe deformation and von misses stress distribution.
- 4. Thermal analysis of composite cylinder subjected to conduction and convection to determine the heat transfer, thermal flux and thermal gradient
- 5. Static structural analysis of piston and connecting rod to determine deformation and stress
- 6. Thermal analysis of automobile components to determine steady state temperature distribution

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Apply the Galerkin and Rayleigh Ritz's approach in finite element methods.
- CO2: Develop finite element equation using shape functions and stiffness matrix for 1D problems.
- CO3: Develop finite element equation using shape functions and stiffness matrix for 2D problems.

CO4	Develo	n c	har	o f	11120	tio	n c	+iff	noc	c 122	atris	v 10:	24 17	octo	or f	Or.
CO4.	1D and	-	-													
	probler			1611	ien	15	VV I LI	. 11	cat	CO	iiuu	ctioi	i, co	1100	CIIC	л
CO5:	Build		· cl	har	acte	ris	tics	-	ดเเล	tio	n o	f Is	o-pa	ran	netr	ic
CO 0.	elemen			ilai	ucu	.110	cico		quu	· ·		1 10	o pu	1411		10
CO6:		onstruct shape function for 2-D four and eight nodded														
	probler			1									O			
TEXT	BOOK	S:														
1	Reddy.	J.]	N.,	"A	n	Int	rod	uct	ion	to	the	Fir	nite	Ele	me	nt
	Method	-														
2	Seshu,	Ρ,	//-	Гех	t E	Boo	k (of	Fin	ite	Ele	men	t A	nal	ysis	s",
	Prentic	е-Н	[all	of I	Ind	ia F	vt.	Lto	l., N	Jew	<i>y</i> De	lhi, 2	2007.			
REFE	RENCE	S:														
1	Bhatti A															
	and A				ıs",	Jo	hn	Wi	iley	&	Son	ns, Z	2005	(Iı	ndia	an
	Reprint				- 1			4		4			4			
2		Chandrupatla & Belagundu, "Introduction to Finite														
		Elements in Engineering", 3rd Edition, Prentice Hall														
2	U	College Div, 1990 Rao, S.S., "The Finite Element Method in Engineering",														
3	3rd Edi												engu	ieei	rıng	5''
4	Robert	_		_									el E	. Pl	esh	a,
	Robert															
	Elemen	nt A	۱na	lysi	is",	4th	ı E	diti	on,	W	iley	Stu	lent	Ed	itio	n,
	2002.													_		
C	Os		1	1				PO			1	1			SC	
,		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	2	-	-	-	-	-	-	3	-	-
	2	3	2	1	1	2	2	-	-	1	-	-	-	3	2	-
	3	3	2	1	1	2	2	-	-	-	-	-	-	3	2	-
	4	3	2	1	1	2	2	-	-	-	-	-	-	3	2	-
	5	3	2	1	1	-	2	-	-	-	-	-	-	3	-	-
	6	3	2	1	1	2	2	-	-	-	-	-	-	3	2	-
Ov	erall	_	_	4	-	_	_							_	_	
Corre	elation	3	2	1	1	2	2	-	-	-	-	-	_	3	2	-
Recom	mended	by 1	Boa	rd (of S	tud	ies	07	-11-	2024	4					
	Λ	2226	vec	1				3 rd ACM Date 30-11-2024								

23AU521	AUTOMOTIVE COMPONENTS	L	T	P	C
	LABORATORY	0	0	4	2

- To experience the skill of dismantling and assembling of engines and to optimize the combustion process in SI and CI engines
- To understand the requirements of fuel systems in automobile vehicle.
- To understand the mounting of components, the basic working principle of components with the engine for accurate operations.

LIST OF EXPERIMENTS:

- 1. Dismantling and assembling of Multi-cylinder Petrol Engine
- 2. Dismantling and assembling of Multi-cylinder Diesel Engine
- 3. Dismantling and assembling of Transfer case.
- 4. Study of chassis layouts and Measurement of light Vehicle Frame.
- 5. Exercise on dismantling and assembling of front, rear axles, and determination of differential gear ratio.
- 6. Exercise on brake adjustment and brake bleeding of braking system.
- 7. Dismantling, Measurement and Assembling of Single plate, Diaphragm Clutch.
- 8. Exercise on dismantling and determining the gear ratio of synchromesh gear box.
- 9. Measurement of steering ratio, steering angle, and turning radius of steering system.
- 10. Dismantling and assembling of suspension system.

TOTAL: 60 PERIODS

COU	COURSE OUTCOMES:															
	After co					he (7011	rse.	the	e st	udei	าts พ	zill h	e al	ole	to:
CO1:	Develo															
CO1.	of engi	_					11111.	1118	, as	SCII	10111	ig ai	ia iii	БРС	CII	<i>)</i> 11
CO2:	Ü			_						L-	۰. C	T 0 1	¬τ			
CO3:	Explair		ne '	wo	rkıı	ng	of	bra	kır	ıg,	stee	rıng,	, su	spe	nsı	on
	system															
CO4:	Outline	e th	e w	ork	cing	g of	tra	nsn	niss	sion	sys	tem.				
CO5:	Develo	Develop skills in dismantling and assembling of chassis														
	compo	components.														
CO6:	Solve n	Solve minor repairs and trouble shoots the breakdowns in														
	the aut	the automotive components.														
								POs	s					F	PSC)s
	COs	1	2	3	4	_5	6	7 8 9 10 11 12					12	1	2	3
	LOWER	3	2	1	1	-	1	-	1	2	1	1	1	3	1	1
- 6	2	3	2	1	1	1	1	-	1	2	1	1	1	3	-	1
	3	2	1	-	-	F	1	1	1	2	1	1	1	2	-	1
	4	2	1	-	-5	_	1		1	2	1	1	1	2	-	1
	5	3	2	1	1	-	1		1	2	1	1	1	3	-	1
	6 NEER I	3	2	1	1	0	1	-6	1	2	1	1	1	3	ΞY	1
Ov	erall	3	2	1	1		1	119	1	2	1	1	1	3	345	1
Corre	elation	3		1	1	-	1	-	1	_	1	1	1	3	_	1
Recom	mended	by 1	Boa	rd (of S	tudi	ies	07-	11-	202	4					
			vec				-		Α(ate			-202	

23AU522	MINI PROJECT -2	L	T	P	C
		0	0	4	2

- Introduce students to fundamental project-based learning experiences within their domain.
- Develop problem-solving and critical thinking abilities through hands-on application of core concepts.
- Foster teamwork, communication, and project management skills through structured collaboration.
- Encourage students to explore innovative and sustainable solutions relevant to their field of study.
- Guide students in technical documentation and presentation of project outcomes.

COURSE DESCRIPTION:

Building on the foundational knowledge from Mini Project 1, this course emphasizes a more detailed and structured approach to project execution. Students will work on a more complex problem, incorporating advanced techniques and a systematic methodology. The focus will be on innovation, problem-solving, and sustainability. Teams will develop a working prototype, test their design, and refine their solutions based on data-driven analysis. The course prepares students for final-year projects and professional engineering challenges.

PROJECT (OUTLINE:
Week 1	Orientation, problem identification, and scope
	definition
Week 2	In-depth literature review and identification of
	research gaps
Week 3	Conceptual design and methodology finalization
Week 4	First Review
Week 5	Initial prototype development and testing
Week 6	Data collection, performance analysis
Week 7	Design iteration and refinement based on feedback

Week 8	Second Review								
Week 9	Advanced testing, troubleshooting, and second								
	review								
Week 10	Final prototype development, validation, and								
	documentation								
Week 11	Report Writing								
Week 12	Third Review Presentation and Submission of Thesis								

EVALUATION:

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The evaluation based on innovation, feasibility, execution, and documentation
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability and innovation.
- The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content.

COURSE OUTCOMES:						
After completion of the course, the students will be able to						
CO1:	Apply advanced engineering principles to analyze and					
	solve complex problems.					
CO2:	Identify and utilize relevant sources to enhance technical					
	understanding and innovation.					
CO3:	Utilize advanced tools and methodologies to develop and					
	test engineering solutions.					

CO4:	Analy	ze	th	e s	soci	eta	l a	nd	eı	ıviı	onn	nenta	al i	mpa	act	of	
	engineering solutions through detailed analysis.																
CO5:	Combine effectively in multidisciplinary teams to manage																
	and execute projects.																
CO6:	Develop and present comprehensive technical reports																
	with structured documentation and impactful																
	presentations.																
COs			POs											PSOs			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1		3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
2		3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
3		3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
4		3	3	2	1	1	1	1	3	2	2	2	1	3	1	3	
5		3	3	3	3	1	1	1	3	2	2	2	1	3	1	3	
600WER		3	2	1	1	1	1	1	3	2	2	2	1	3	1	3	
Overall Correlation		3	3	2	2	1	1	1	3	2	2	2	1	3	1	3	
Recommended by Board of Studies 01-0									01-04-2024								
Approved							2 nd ACM Date					2	25-05-2024				
COLLEGE OF TECHNOLOGY																	

23ES	591	APTITUDE AND LOGICAL	L	T	P	C
		REASONING -2	0	0	2	1
COU	RSE OF	BJECTIVES:	1			
•	To im	prove the problem solving and logi	cal	thin	king	7
		of the students.				,
•	To acq	uaint the student with frequently aske	d pa	tteri	ns ir	ı
	quanti	tative aptitude and logical reasor	ning	du	ring	5
		s examinations and campus interviews	S			
UNI	ГΙ					4
Prob	ability, I	Permutation & Combination, Algebra,	Prol	olem	s or	1
ages						
UNI	ГІІ					4
Mens	suration	, Logarithms, inequalities and modulu	s, Sy	llog	ism	
UNI	ΓIII					4
Dire	ctions, 1	ogical sequence words, number ser	ies,	Ana	alyt	ical
Reas	oning	THE CONTRACTOR OF THE CONTRACT	- 4		4	34
UNI	ΓΙΥ	71,00		- 1		4
Blood	d relatio	n, Clock and Calendar, Picture puzzle	s		1	
UNI		, ce		9		4
Data	sufficie	ncy, cube and cuboids, odd man out				
	CINE	TOTA	L: 20	PE	RIO	DS
COU		JTCOMES: AFFILIATED TO ANNA UNIVERSITY	AU	TONO	MOU	5
		empletion of the course, the students w		e ab	le to) :
CO1:		concepts of probability, permutation, a	and			
		ation to solve real-world problems.				
CO2:		lgebraic problems and age-related pro	blen	ns us	sing	
)	approaches and techniques.				
CO3:	-	e and solve problems in mensuration,	loga	rith	ms,	
		equalities.				
CO4:	-	et and solve problems related to direct	ions	, log	ical	
00-	_	ce, and number series.	•	- 1		
CO5:		y and solve problems in logical reason	_	such	as	
666		sm, blood relations, clock and calendar		1		
CO6:		y and solve problems in logical reason		such	as	
	syllogis	sm, blood relations, clock and calendar	1.			

TEX	TEXT BOOK:															
1	Smith,	Joh	n. ".	AP	ΓIPΕ	EDL	4." 2	2nd	ed.	., W	iley	Pub	lish	ers,	202	20.
2	Agarw	al, I	R.S.	"Q1	uant	titat	ive	Ap	titu	de.'	2nc	l ed.	, S. (Cha	nd	
	Publish	ning	5.					-								
REFI	ERENCE	ES:														
1	Agarw													lon-	•	
	Verbal	Rea	asor	ning	g." 21	nd e	ed.,	S. C	Chai	nd I	Publ	ishiı	ng.			
	COs		POs PSOs													
`	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	3	2	2	2	1	3	1	2	3	2	2
	2	3	2	2	2	3	2	3	2	1	2	1	2	3	2	3
	3	3	3	2	2	2	2	2	2	1	3	1	2	3	3	2
	4	2	3	2	1	2	3	1	2	3	3	2	3	2	2	3
	5	2	3	3	2	2	2	2	3	2	2	2	3	3	3	3
	6	3	3	2	2	3	2	3	3	2	2	1	2	3	3	2
O	zerall	Eid	DRIS	1			- 24		- 1	- E		7	10	-	-	

3 3

Recommended by Board of Studies

Approved

Correlation

2

3 3

COLLEGE OF TECHNOLOGY

3 2

13-11-2024

Date

3 3 3

30-11-2024

3 2

3rd ACM

SEMESTER -VI

23CE611	ENVIRONMENTAL SCIENCE	L	T	P	C
	AND ENGINEERING	3	0	1	4

COURSE OBJECTIVES:

- To provide basic knowledge on environment impact assessment
- To create an awareness on the pollutants in the environment
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products

9

 To develop simple climate models and evaluate climate changes using models

UNIT I INTRODUCTION TO ENVIRONMENT IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework

UNIT II MOVEMENT OF POLLUTANTS IN 9 ENVIRONMENT

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

TINIT III	ECOLOGICAL I	DESTOD ATIO	NT .	0
UNII III	ECOLOGICAL	XE51OKATIO	IN.	9
Wastewat	er treatment:	anaerobic,	aerobic	process,
methanog	enesis, treatment	schemes for	waste wat	er: dairy,
distillery,	tannery, sugar,	antibiotic in	dustries: sol	lid waste

treatment: sources and management (composting, vermiculture and methane production, landfill. hazardous waste treatment).

UNIT IV ECOLOGICALLY SAFE PRODUCTS AND PROCESSES 9

Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation

UNIT V CLIMATE CHANGE MODELS 9

Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date

TOTAL: 60 PERIODS

LIST OF EXPERIMENTS

- 1. Determination of Bio fuel parameters such as flash point and fire point.
- 2. Determination of density of biofuels.
- 3. Determination of BOD/COD in water.
- 4. Simulating the RCM and GCM model for different geographic conditions.
- 5. Measurement of Pollutant in environment by Gaussian Plume model.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the importance of the process of Environmental impact assessment and its types.
- CO2: Illustrate the chemical processes and pollutant chemistry
- CO3: Identify the methods to solve environmental problems
- **CO4:** Apply the knowledge to develop ecofriendly products.
- CO5: Construct the various simple climate models for simulation

CO6:	Apply t	he (clin	nate	mo	odel	sir	nul	atio	n to	mo	nito	r clii	mat	e	
	change															
TEX	г воок	S:														
1	David .	ΕN	eeli	n "(Clin	nate	e Cl	nan	ge a	nd	Mod	delli	ng",			
	Cambri	dge	Ur	iive	rsit	y Pı	ress	s, Ca	alifo	rni	a 20	12.	Ü			
2	Evans, 0	Evans, G.G. & Furlong, J. 2010. Environmental														
	Biotech	nol	ogy	: Th	eor	y aı	nd.	App	olica	atio	n (21	nd e	ditic	n).		
	Wiley-B	lac	kwe	ell F	ub	lica	tior	ıs.								
3	Pani, B.	200)7. 🗆	Γext	boo	ok o	of E	nvii	oni	ner	ıtal (Cher	nistı	y. I	K	
	internat	ion	al F	ubl	ish	ing	Но	use								
4	N.S. Ra	maı	n , A	۱.R.	Ga	jbh	iye	& S	.R.	Kha	nde	shw	ar,			
	Environ	me	nta	l Im	ıpad	ct A	sse	ssm	ent	, 20	14,I]	K In	terna	atio	nal	
	Pvt Ltd.															
REFE	ERENCE	S:				_	à						- 5			
1	Carson	Carson (1907-1964). Environment Conservation-book														
2	Encyclopaedia of Environmental Issues by Craig W. Allin															
i i	&Probe.															
3	Encyclopaedia of Environmental studies by William															
	Ashwor	th.	4	2												-
4	Climate	Ch	ang	ge a	nd	Clir	nat	e M	[ode	elin	g- K	indl	e Ed	itio	n.	
5	Environ	me	nta	11y-	Fri	end	ly I	Proc	luc	t de	velo	pme	ent -	DNO	MUL	7
	Eberhar	nd A	Abil	e ,F	Rein	er A	Anc	lerl,	200	5						
	COs]	POs	6					I	PSC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	1	-	-	ı	-	-	2	-	-
	2	3	2	1	1	-	3	2	-	-	-	-	1	3	-	_
	3	3	2	1	1	-	3	2	-	-	-	-	1	3	-	_
	4	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	verall	3	2	1	1	_	3	2	_	_	_	_	1	3	_	_
	elation															
Kecoi	nmended	_			of S	tud	ıes		11-2			D (20	11 1	000 4
	Α	ppr	ove	a				3rd	3rd ACM Date 30				30-	11-2	2024	

23AU611	AUTOMOTIVE ENGINE AND	L	T	P	C
	CHASSIS COMPONENTS	3	0	2	4
	DESIGN				

COURSE OBJECTIVES:

- To understand the design concept and principle involved in various engine components.
- To apply the design procedures involved in various engine components like cylinder, piston, connecting rod, crankshaft, flywheel, axle, suspension and steering systems.
- To demonstrate the concepts of stress analysis, theories of failure and material science in the design of automotive components

UNIT I INTRODUCTION

9

Engineering materials - Introduction endurance limit, notch sensitivity. Tolerances, types of tolerances and fits, design considerations for interference fits, surface finish, surface roughness, Rankine's formula - Tetmajer's formula - Johnson formula- design of pushrods.

UNIT II DESIGN OF CYLINDER, PISTON AND 9 CONNECTING ROD

Choice of material for cylinder and piston, design of cylinder, piston, and piston pin, piston rings, piston failures, lubrication of piston assembly. Material for connecting rod, determining minimum length of connecting rod, small end design, shank design, design of big end cap bolts.

UNIT III DESIGN OF CRANKSHAFT AND 9 FLYWHEEL 9

Balancing of I.C. engines, significance of firing order. Material for crankshaft, design of crankshaft under bending and twisting, balancing weight calculations, development of short and long crank arms. Determination of the mass of a flywheel for a given co - efficient of speed fluctuation. Engine flywheel - stresses on the rim of the flywheels. Design of hubs and arms of the

flywheel, t	turning moment diagram.	
UNIT IV	DESIGN OF VEHICLE FRAME,	9
	SUSPENSION AND STEERING SYSTEMS	
Study of lo	oads-moments and stresses on frame members. Des	sign
of frame f	or passenger and commercial vehicle - Design of	leaf
Springs-Co	oil springs and torsion bar springs. Determination	n of
_	dimensions and proportions for steering linkage	
_	ninimum error in steering.	
UNIT V	DESIGN OF FRONT AXLE, REAR AXLE	9
	AND DRIVE LINE	
Analysis o	of loads-moments and stresses at different section	s of
_	Determination of bearing loads at Kingpin bearing	
	ndle bearings. Design of front axle beam. Design	_
_	shaft. Design details of final drive gearing. Des	
	full floating, semi-floating and three quarter float	_
- 100 C	s and rear axle housings and design aspects of f	_
drive.		
	TOTAL: 45 PERIO	DDS
LIST OF E	XPERIMENTS:	-
1.//	Design and drawing of piston, piston pin and pi	
	rings AFFILIATED TO ANNA UNIVERSITY LAUTONOMOR	
2.	Design of connecting rod and assembly	
3.	Design of crank shaft.	
4.	Design and drawing of flywheel.	
5.	Design of cam and camshaft	
6.	Design of vehicle frame and chassis	
7.	Design of steering system	
8. 9.	Design of suspension system Design of front axle	
10.	Design of rear axle and drive line system.	
10.	TOTAL: 30 PERIO	DDS
COURSE	OUTCOMES:	<u> </u>
	completion of the course, the students will be able	e to:
CO1: Util	1	
	an an anta	

CO2: Apply the design procedure concepts in cylinder, piston

components.

	and co	nne	ecti	nσ	rod											
CO3:	Select			$\overline{}$			ran	nete	rs	for	the	- cr	anks	haft	- at	nd
CO 0.	flywhe			.001	5**	Pu	ıuıı	icic	.10	101	tiit	CI	ar inco	I IUI I		ia
CO4:	Apply	t]	ne	de	esig	n	pro	oce	dur	e	con	cepts	s ir	ı f	ram	ıe,
	susper	nsio	n a	nd	ste	erin	ıg.					-				
CO5:	Apply	the	de	sig	n pı	roce	edu	re f	or t	he	desi	gn o	f veh	icle	fro	nt
	and re															
CO6:	Utilize	the	e de	esię	ցո լ	oro	ced	ure	for	r th	e de	esign	of o	lriv	e li	ne
	system															
	BOOK															
1	Khurn															
	Design		Eur	asi	a E	diti	ion,	N	ew	Pu	blis	hing	Ho	use	(Pv	zt)
	Ltd, 20					1.			•		U T.C.	1		1 1.		
2	Giri, N					obi.	le N	Лес	har	nics	", K	hanr	na pu	1bl1	she	rs,
DEEE	New E		11, 2	.007	<u>'•</u>											
	RENCE		// N /	1.		. D	انددا		T/	The		D. 1.	1: 1-		NI	
1		Jain.R.K, "Machine Design", Khanna Publishers, New Delhi, 2005.														
2		Dean Averns, "Automobile Chassis Design", Illife Book														
_	Co., 20		.1113	,	Mu	iOII	1001		CH	1551	3 D	zsigi	/ II	inc	DO	OK
3	J.H.Sm	ith	, A	n I	ntr	odu	ıcti	on	to	Mo	derr	ı Ve	hicle	e Do	esig	'n,
	Oxford														CV	
4	R.L.No	orto	n,	Ma	chi	ne	Des	sigr	n: <i>I</i>	۱n	Inte	grate	ed A	ppı	oac	ch,
	New Je	erse	ey F	rer	ntic	е Н	all,	200)9.	124.37	VIVER	2117	AUTU	NUW	1005	
	Os							PO	s					F	SO	s
	.05	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	2	ı	1	1	-	1	1	3	2	1
	2	3	2	1	1	2	2	-	1	ı	1	ı	1	3	2	1
	3	3	2	1	1	2	2	ı	1	1	-	1	1	3	2	1
	4	3	2	1	1	2	2	-	1	-	-	-	1	3	2	1
	5	3 2 1 1 2 2 - 1 1 3 2 1								1						
	6	3	2	1	1	2	2	_	1	-	-	-	1	3	2	1
Ov	rerall								1				1	2	2	1
Corre	orrelation $\begin{vmatrix} 3 & 2 & 1 & 1 & 2 & 2 \end{vmatrix}$					2	-	1	-	-	-	1	3	2	1	
Recom	mended				of S	tud	lies			202	4					
	Aı	ppro	ove	d				3rd	AC	CM	D	ate	30	0-11	-202	24

23AU612	TWO AND THREE WHEELERS	L	T	P	C
		3	0	2	4

COURSE OBJECTIVES:

- To understand the power transmission & frames of different two wheelers and technical specification.
- To make the students understand the construction of steering, suspension & brake system of two and three wheelers.
- To make the students understand the construction of cooling, lubrication & wheels, tyres of two and three wheelers and power transmission of electric two and three wheelers.

UNIT I INTRODUCTION OF TWO WHEELER

Classifications of two wheelers – Power transmission layout of two wheelers - Mopeds- Scooters and Motorcycles - Technical Specifications. Types of two wheeler frames - Kick starter system - Self-Start system - Gear shifting mechanism - CVT- Final Drive. Two wheeler dynamics-Linear and angular motions -Handling characteristics-Road holding -Vehicle stability - Aerodynamics - Squat and dive.

UNIT II INTRODUCTION OF THREE-WHEELER

Three wheeler vehicles - Auto Rickshaws- Pickup Van- Delivery Van- Body construction- Technical specifications- Engines-CNG- Diesel - Frame and body - Loads acting - Drive train - Layout - Differential.

UNIT III STEERING, SUSPENSION AND BRAKE 9

Steering System - Handlebar- Front end Geometry - Steering Gearbox - Suspension - Front and Rear Forks - Springs for Suspension - Telescopic Suspension - Mono Suspension - Hydraulic Shock Absorber-Gas Filled Shock Absorber. Design Consideration for Brake - Drum Brakes - Disc Brakes - Control System - ABS and its types.

UNIT IV COOLING AND LUBRICATION SYSTEMS- 9 WHEELS AND TYRES

Types of Cooling System - Air Cooling System - Liquid Cooling System - Challenges in Cooling System - Lubrication System - Properties of Lubricating Oil - Additives for Lubricant - Grading - Petrol Lubrication - Splash Lubrication - Pressurized and Semi pressurized lubrication - Constructional details of wheels and tyres of two and three wheelers.

UNIT V | ELECTRIC TWO AND THREE WHEELERS | 9

Power Transmission Layout of Electric Two Wheelers - Motor - Hub Motors - Controller- Alternator- Battery systems- BMS - Performance of electric two wheelers- Electric three Wheelers- Layout- Performance.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS :

- 1. Demonstration on removal and fitting of given tyre.
- 2. Demonstration on the components of electric bike
- 3. Demonstration on compression and rebounce force of shock absorber
- 4. Dismantling and assembling of two wheeler gear box and finding gear ratios.
- 5. Dismantling and assembling of three wheeler box and finding gear ratios
- 6. Dismantling and assembling of three wheeler steering system
- 7. Two wheeler chain test
- 8. Brake and clutch adjustment in two and three wheeler as per specification
- 9. Performance test of a two wheeler using chassis dynamometer
- 10. Performance test on coil spring

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain about the two wheeler types, frames and transmission system.
- CO2: Summarize the three-wheeler types, frames, and

	transm	iss	ion	sys	ster	n.										
CO3:	Compa	are	abo	out	ste	eri	ng	ano	l sı	ısp	ensi	on s	yste	m o	f tv	vo
	and th	ree	wh	eel	er.		Ü			•			-			
CO4:	Select	the	ap	pro	opr	iate	bı	ake	e sy	ste	m f	or tv	wo a	nd	thr	ee
	wheele	er.														
CO5:	Summ	ariz	ze a	abo	ut	coo	ling	g sy	yste	ems	, lul	orica	tion	sys	ten	ıs,
	wheels	an	d t	yre	s.											
CO6:	Choose		e p	ow	er t	ran	sm	issi	on	for	elec	tric 1	two	and	thr	ee
	wheele															
TEXT	BOOK															
1	P E Irv			Mo	tore	cycl	e E	ngi	nee	erin	g' V	eloc	e En	terp	rise	es-
	Inc 2															
2	Dhruv						vo a	and	l Th	ree	Wh	eele	r Teo	chno	olog	gy'
	PHI Le		ning	<u>z- 2</u>	015											
REFE	RENCE															
1		K. Newton - W. Steeds and T. K. Garrett- 'Motor Vehicle'														
	Butterworth Heinemann- 13th Edition- 2000.															
2	Dr. Kirpal Singh - 'Automobile Engineering' Vol. I and II- Standard Random variables - Publishers- New Delhi- 2011															
	- 20		785				_		_							
3	V. Gan										Engi	nes'	Tata	Mc	Gra	ıw
- 4	Hill Bo												1 7	71		
4	Tom		0. % 2007													
	System Edition	ıs - 2	100 017	uti,	eag	ge	тау	/lor	a	na	Fra	ncis	Gr	oup	- 5	tn
	Eaitioi	1- 2	017	•				PO						Т.	SO	١
C	Os	1	2	3	4	5	6	7	8	9	10	11	12	1		_
	1	2	1	3	4	2	2	3	3	9	10	11	1	2	2	3
	2	2	1	-	-	2	2	3	3	-	-	_	1	2	2	3
	3	2	1	-	_	2	2	3	3	-	-	-	1	2	2	3
	<u></u> 4	3	2	1	1	2	2	3	3	_	_	-	1	3	2	3
				2	3	3	_	_		1	2	2	3			
							2	3	3	-			1	3	2	3
	vorall								_	-	_	1	9			
Correlation 3 2 1 1 2 2			2	3	3	-	-	-	1	3	2	3				
	mended	bv	Boa	ırd	of S	tud	ies	<u> </u>			07	'-11-2	2024	1	l	ı
			ove					3rd	AC	'M		Date		30-1	1-20	124

23AU621	PROJECT WORK PHASE-1	L	T	P	C
		0	0	4	2

COURSE DESCRIPTION:

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

COURSE OBJECTIVES:

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

PROJECT (OUTLINE:
Week 1	Orientation and course overview. Formation of
	project teams and approval of topics by HoD.
Week 2	Initial meeting with supervisors. Define problem
	statement and objectives
Week 3	Literature review: Research methodologies and
	topic-specific studies.
Week 4	Zeroth Review.
Week 5	Refinement of literature review and identification of
	research gaps.

Week 6	Identification of Base Paper.
Week 7	First Review.
Week 8	Conceptual design discussions and brainstorming
	solutions.
Week 9	Narrowing done on the exact work.
Week 10	Completion of first stage of the Project.
Week 11	Development of detailed conceptual design and
	methodology.
Week 12	Incorporation of feedback and refinement of design
	and methodology.
Week 13	Second Review.
Week 14	Compilation of Phase 1 results, report writing, and
	presentation preparation.
Week 15	Final Viva Voce Presentations.

Individual meetings will be set up on a need's basis in conjunction with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is required to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDGaligned goals.
- Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written

	communication, ensuring effective delivery of technical												of	tecl	nnic	al
	conten	t.														
COU	RSE OU	TC	ON	ЛES	5:											
	After co	mp	leti	on	of t	he	cou	ırse	, th	e st	ude	nts v	vill b	e a	ble	to:
CO1:	Develo	p	fea	sib	le	so	luti	ons	s 1	Эy	ana	lyzi	ng	con	npl	ex
	engine	erir	ng	pro	ble	ems	us	sing	g fo	oun	dati	onal	kno	owl	edg	ge,
	mather	mat	ics,	an	d s	cier	ice.									
CO2:	Survey literatures to identify gaps, define research															
	questions, and propose designs and methods for solving															
	engineering problems.															
CO3:	Make use of modern tools to check the feasibility of the															
	solutions effectively.															
CO4:	Evaluate societal and environmental impacts of solutions															
	while incorporating sustainability and ethical practices.															
CO5:	Combine in teams to plan, manage, and lead projects															
A	within professional and economic constraints.															
CO6:	Formulate technical reports, deliver presentations, and															
	engage	in	life	lon	g le	earı		_		apt	to n	ew t	echr		_	
	Os	4		2/				POs						I	SO	s
	WEER	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3
	5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	6 3 2 2 2 1 2								3	3	3	3	3	3	1	3
	erall	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	Correlation											J	J	J	•	J
Recom	Recommended by Board of Studies					ies			202			1 -	20.44.2024			
	Approved					3 rd ACM Date			30-11-2024							

23AU622	TECHNICAL TRAINING	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

COURSE OBJECTIVES:

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

COURSE OUTCOMES:

COUN	SE OUTCOMES.
A	After completion of the course, the students will be able to:
CO1:	Identify specific domain from the enrolled branch and to
	get training preferable in computer-oriented platform.
CO2:	Survey and apprehend the learning modules in the
	training program and to become expert in the specific
	domain.
CO3:	Apply theoretical learning in the practical environment
	and enhance the skillset of learner.
CO4:	Estimate the learning using available data.
CO5:	Defend a presentation about the learning done in the
	specified skillset.

CO6:

Construct a technical report about the training.

GUIDELINES:

- More than one training program may be given depending on availability and interest of the students. One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

EVALUATION PATTERN:

Training Coordinator:

50 marks (Training Manual – 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall approve the entries in the Training Manual during the weekly meeting with the student), Attendance – 10).

Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

Training duration - 30 Hours

COs							PO	s					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	-	2	1	-	-	-	-	3	3	-	-	
2	3	3	2	1	-	2	1	-	-	-	-	3	3	-	-	
3	3	3	3	3	3	-	-	1	-	2	-	3	3	3	1	
4	3	3	3	2	2	-	-	1	-	3	-	3	3	2	1	
5	3	3	3	2	1	2	-	2	1	2	-	2	3	1	2	
6	3	3	3	3	2	2	-	2	1	3	-	3	3	2	2	
Overall Correlation	3 3 3 3 2 2 1 2 - 3 - 3 3 2											2				
Recommended	ies	s 07-11-2024														
Approved								3 rd ACM Date					30-11-2024			

23AU623	TECHNICAL SEMINAR - 1	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./ B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every

member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10).

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical content, overall quality, templates followed, adequacy of references etc.).

										,	ГОТ	AL:	30 I	PER	IOI	DS
COU	RSE OU	TC	ON	/IES	5:											
	After co	mp	leti	on	of t	he (cou	rse	, th	e st	uder	nts w	vill b	e al	ole	to:
CO1:	Identify	y ac	cade	emi	c d	ocu	ıme	nts	fro	m t	he li	tera	ture	wh	ich	are
	related	to	her	/hi	s aı	eas	s of	inte	eres	st.						
CO2:	Survey and apprehend an academic document from the literature which is related to her/ his areas of interest.															
	literatu	ıre v	whi	ch	is r	elat	ed	to l	ier/	/ hi	s are	as o	f int	eres	st.	
CO3:	1 1															
CO4:	Estimate the Contents using available literature.															
CO5:	Defend a presentation about an academic document.															
CO6:	Construct a technical report.															
COs			POs PSO													s
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
- 2	2 OWER	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
A	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
Ov	erall	3	3	2	1	1	1	10	2	3	3	2	2	3	2	2
Corr	- -					_	20		_							
Recom	Recommended by Board of Studies						ies	<u> </u>								
	Approved							3rd ACM				ate	30)-11	-202	24

SEMESTER - VII

23AU701	INTELLIGENT VEHICLE	L	T	P	C
	TECHNOLOGY	3	0	0	3

COURSE OBJECTIVES:

- To understand the importance of intelligent vehicle systems to the modern world and learn the working principles of various ADAS systems and focusing on those in-vehicle solutions.
- To appreciate the role of electronics in providing improved control to a variety of vehicle systems.
- To utilize appropriate methodologies and be aware of the design and implementation issues of advanced techniques.

UNIT I INTRODUCTION TO INTELLIGENT 9 VEHICLE SYSTEMS

Definition, modern trends in Auto industry, various intelligent systems present in the vehicle, Need for IVS, Benefits, Advanced Driver Assistance System-Types/Levels, Next Generation Intelligent Vehicles, and General Vehicle Control.

UNIT II AUTOMOTIVE IOT INTEGRATION 9

Developments on IoT in Automotive Sector, Connected Car Services and Applications- Infotainment, Vehicle and Smartphone Integration, Driving Insights- Analytics, On Board Diagnostics, Stolen Vehicle Tracking, Biometrics Information for Driver Identification, Vehicle Communication- V2V, V2X, V2R, IoT in Intelligent Transportation, Introduction to Autonomous Vehicle.

UNIT III TRAFFIC SURROUNDING SYSTEM 9

Modelling traffic and driver interactions, Simulation of driver and city interaction, Behavior and driving pattern, simulation of driver and highway interaction, Behavior and driving pattern, Application: Traffic alert - Real time road data on Navigation, Navigation System- Global Positioning System, Geographical Information Systems Architecture, Road Sign Recognition.

UNIT IV ADVANCED VEHICLE CONTROL SYSTEMS AND SAFETY SYSTEMS FOR **MODERN VEHICLES**

Introduction- Design overview, circuit diagram and Algorithm, Driver safety systems- ABS, Driver Aid system- ESP, Blind Spot monitoring system, Collision mitigation system, Adaptive Headlamps, Automatic parking system, Eight-way seating system, Adaptive cruise control system, Collapsible and tiltable steering column, Lane Departure Warning.

CONNECTED VEHICLE SYSTEMS

Introduction to CVS, Telematics control system architecture driver information systems, Vehicle -vehicle interaction using TCS, Current trends in auto industry, In-Vehicle Entertainment System - Mirror link, Web link, App link, Apple Car Play, Android Auto. Application: e-call system - design, functions and limitations.

	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Analyze the importance of modern trends in vehicle
	System. AFFILIATED TO ANNA UNIVERSITY I AUTONOMOUS
CO2:	Apply the knowledge for selection of sensor and
	communication protocols for interfacing sensors.
CO3:	Apply the knowledge for understanding the traffic
	information in the surroundings.
CO4:	Illustrate the various intelligent systems used in
	automobiles and entertainment features inside the
	vehicle.
CO5:	Explain the intelligent systems associated with
	Autonomous vehicle.
CO6:	Explain the perception, prediction and routing of
	autonomous driving.

TEXT	BOOK	S:														
1	A. Pera		s, l	J. F	Ierı	nan	dez	z-ja	vo,	E. 0	Onie	eva a	nd 1	I. G	arc	ia-
	Zuazol			Eds.			ntel	, .	•			spor		Sys		
	Techno		`		,			_				-		,		
2	A. Esk		•								-					
	Spring				•	,						C	,			,
REFE	RENCE			0												
1	R. K. J	urg	en,	Na	avig	gati	on	and	d Ir	ntel	liger	nt Ti	rans	por	tati	on
	System	ıs -	Pro	ogr	ess	Te	chn	olo	gy,	Αι	ıton	notiv	e El	ecti	on	ics
	Series, Warrendale, PA: SAE International 2014. H. Cheng, Autonomous, Intelligent, Vehicles: Theory															
2	H. Cheng, Autonomous Intelligent Vehicles: Theory,															
	Algorithms, and Implementation, Berlin: Springer, 2011.															
3	P. C. Cacciabue (Ed.), Modelling Driver Behavior in															
	Automotive Environments Critical Issues in Driver Interactions with Intelligent Transport Systems Springer-															
- 2	PA 7.300		ld: F. FR				1000	nt 🛚	[rai	nsp	ort S	Syste	ms S	Spri	nge	er-
1	Verlag London Ltd, 2007. Michael F. McCrath Autonomous Vehicles:															
4	Michael E. McGrath, —Autonomous Vehicles:															
1	Oppor	tun	itie	s,	Stra	ateg	gies	, a	ınd	D	isru	ption	ns,	Am	azc	n,
Α.	2018.	4		/		_	_								-v	
C	Os	EA	A SAME					PO:			I EN				PSC	
	4	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	2	1	2	-	1	-	-	-	1	3	1	1
	2	3	2			1	2	-	1	-	-	-	1	3	1	1
	3	3		1	1	1		-	1	-	-	-	1	3	1	1
	4	2	1	-	<i>-</i>	1	2	-	1	-	-	-	1	2	1	1
	5	2	<i>-</i>	1	-	-	-	1	2	1	1					
0	6	1	1	1	1		-	_	-	-	-	1	2		1	
	Overall 3 2 1 1 1 2 - 1 - - - 1 3 1 1 relation - - - - - - - 1 3 1 1															
		hv i	Roa	rd c	of S	tud	ies	07	_11_	202 ⁴	 1					
RCCOIII	Recommended by Board of Studies Approved						103		A(Date	•	30-2	11-2	024
L	Appioved															

T																
23AU	702			(COI	MP	RE:	HE.	NS:	IOI	1		L	Т	P	C
													2	0	0	2
PURI	POSE:															
То	provide	e a	CO	mp	lete	re	vie	w (of t	he	topi	cs c	over	ed	in	the
pre	evious	ser	nes	ters	5,	to	er	ısuı	re	tha	it a	a c	omp	reh	ens	ive
	derstand	•	,			,										
	ted as															
exa	aminatio	ns	lik	e (GA'	TE,	T	AN	CE	Τ ε	etc.	It w	vill	also	h	elp
	students to face job interviews and competitive examinations.															
COU	COURSE OUTCOMES: After completion of the course, the students will be able to:															
	After co	mp	leti	on	of t	he o	cou	rse,	the	e sti	uder	nts w	ill b	e al	ole	to:
CO1:	Analys	Analyse the phenomena involved in the concerned														
	problem and solve them.															
CO2:	Apply principles to new and unique circumstances.															
CO3:	Estimate concepts and principles of concerned branch of															
A	engineering.															
CO4:	Distinguish between facts and opinion in the engineering															
	field.		18					100					-			111
CO5:	Deduct								-				1000			
CO6:	Interpr							ts	anc	d g	raph	ns a	nd j	ud	ge	the
	relevan	ice (of i	nfo	rma	atio		110	Anini	M. Un	IVEN;		AUTU	ne Crini	(JU)	
(Os		•]	PO	S			1	1	I	SC	s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	1	-	2	1	-	-	-	-	1	3	-	-
	2	3	2	1	1	-	1	1	-	-	-	-	1	3	•	-
	3	3	3	3	3	3	-	-	3	-	3	-	3	3	3	3
	4	3	2	1	1	2	-	-	1	-	3	_	3	3	2	1
	5	3	3	3	2	1	2	-	2	_	2	_	2	3	1	2
	6	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2
	erall	3	3	3	3	3	2	1	2	_	3	_	3	3	3	2
	elation												J	J	J	_
Recom	mended	,			of S	tud	ies			2024			_			
	Approved							3rd	AC	CM	D	ate	3	0-11	L -2 0	24

23AU711	VEHICLE MAINTENANCE	L	T	P	C
		3	0	2	4

COURSE OBJECTIVES:

- To understand the various methods of maintaining vehicles and their subsystems and familiarize with transmission driveline maintenance.
- To acquire knowledge on the chassis maintenance and learn the working principles of battery and electrical maintenance.
- To understand the Air conditioning maintenance

UNIT I	MAINTENANCE OF WORKSHOP AND	9
	PRACTICES	

Maintenance – Need, importance, primary and secondary functions, policies - classification of maintenance work - vehicle insurance - basic problem diagnosis. Personnel, machines and equipment, vehicles, fire safety - First aid. Basic tools – special service tools – measuring instruments – condition checking of seals, gaskets and sealants. Scheduled maintenance services – service intervals - Towing and recovering.

UNIT II	ENGINE AND SUBSYSTEM					
	MAINTENANCE TELETO ANNA UNIVERSITY AUTONOMOR	15				

General Engine service- Dismantling of Engine components-Engine repair- working on the underside, front, top, ancillaries-Service of basic engine parts, cooling and lubricating system, fuel system, Intake and Exhaust system, electrical system - Electronic fuel injection and engine management service - fault diagnosisservicing emission controls.

UNIT III	TRANSMISSION & DRIVELINE	9
	MAINTENANCE	

Clutch- general checks, adjustment and service- Dismantling, identifying, checking and reassembling transmission, transaxle-road testing- Removing and replacing propeller shaft, servicing of cross and yoke joint and constant velocity joints- Rear axle service points- removing axle shaft and bearings- servicing

UNIT IV CHASSIS MAINTENANCE

9

Inspection, Maintenance and Service of brakes, bleeding of brakes. Inspection, Maintenance and Service of Mc person strut, coil spring, leaf spring, shock absorbers. Dismantling and assembly procedures Wheel alignment and balance, removing and fitting of tyres, tyre wear and tyre rotation. Inspection, Maintenance and Service of steering linkage, steering column, Rack and pinion steering, Recirculating ball steering service, power steering system

UNIT V MAINTENANCE OF AUXILIARY SYSTEMS

9

Maintenance of batteries, starting system, charging system and body electrical -Fault diagnosis using Scan tools. Maintenance of air conditioning parts like compressor, condenser, expansion valve, evaporator - Replacement of hoses- Leak detection- AC Charging-Fault diagnosis Vehicle body repair like panel beating, tinkering, soldering, polishing, painting.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Tightening and adjustment of wheel bearing.
- 2. Adjustment of pedal play in clutch, brake, hand brake lever and steering wheel orientation.
- 3. Wheel alignment in four-wheelers.
- 4. Minor and major tune-up of gasoline and diesel engines.
- 5. Calibration of Fuel injection pump.
- 6. Fault diagnosis and service of Electrical systems like battery, starting system, charging system, lighting system.
- 7. Removal and fitting of tyre.
- 8. Engine fault diagnosis using a scan tool.
- 9. Fault diagnosis of brake system Air bleeding from hydraulic brakes.
- $10. \ Performance \ test \ on \ two-wheeler \ chass is \ dynamometer.$
- 11. Servicing of Coolant and Lubrication System.

TOTAL: 30 PERIODS

COU	RSE OUTCOMES:						
	After completion of the course, the students will be able to:						
CO1:	Explain about the classification of maintenance, vehicle						
	problem diagnosis and service procedures and layout of						
	the automotive service station.						
CO2:	Analyze the engine problems, diagnose the fault, and						
	engine subsystem maintenance.						
CO3:	Identify the fault in clutches and differential assemblies						
CO4:	Identify the fault and service in the brake, suspension and						
	steering system						
CO5:	Explain the fault diagnosis and maintenance of batteries,						
	the starting system, and the charging system						
CO6:	Illustrate the fault diagnosis and maintenance of the air-						
	conditioning system and vehicle body.						
TEXT	BOOKS:						
1	Ed.May, "Automotive Mechanics" Volume One and Two,						
	McGraw-Hill Publications, 2003						
2	W.C. Haresign, "Modern Vehicle Maintenance,"						
	Routledge, 2010						
REFE	RENCES:						
1	Bosch Automotive Handbook, Sixth Edition, 2004.						
2	Ramalingam. K.K., "Internal combustion engine", Scitech						
	publications, Chennai, 2003.						
3	A.W. Judge, "Vehicle Maintenance: Mechanics and						
	Practices," McGraw-Hill Publications, 2005.						
4	James D. Halderman, "Automotive Technology:						
	Principles, Diagnosis, and Service," Prentice Hall, 2012.						

COs		POs											PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	1	2	1	3	2	2	1	2	-	1
2	3	3	2	2	-	1	2	1	3	2	2	1	3	-	1
3	3	2	1	1	-	1	2	1	3	2	2	1	3	-	1
4	3	2	1	1	-	1	2	1	3	2	2	1	3	-	1
5	2	1	-	-	-	1	2	1	3	2	2	1	2	1	1
6	2	1	-	-	-	1	2	1	3	2	2	1	2	-	1
Overall Correlation	3	2	1	1	-	1	2	1	3	2	2	1	3	-	1
Recommended by Board of Studies					ies	07-11-2024									
Aı	pro	ove	đ				3rd	A (CM	D	ate	3	0-11	L -2 0	24

23AU712	VEHICLE DYNAMICS	L	T	P	C
		3	0	2	4

COURSE OBJECTIVES:

- To understand the fundamentals of vibration and acquire knowledge on the tyre under various mode of operations.
- To familiarize with the mathematical model of vehicle system and acquire knowledge on the vehicle during manoeuvring.
- To evaluate the tractive force and braking force for different vehicles.

UNIT I | CONCEPT OF VIBRATION

9

Formation, Definitions, Modelling and Simulation, Global and Vehicle Coordinate System, Free, Forced, Undamped and Damped Vibration, Response Analysis of Single DOF, Two DOF, Magnification factor, Transmissibility, Vibration absorber, Vibration measuring instruments.

UNIT II TYRES

9

Tyre forces and moments, Tyre structure, Longitudinal and Lateral force at various slip angles, rolling resistance, Tractive and cornering property of tyre. Performance of tyre on wet surface. Ride property of tyres. Magic formulae tyre model, Estimation of tyre road friction. Test on Various road surfaces. Tyre vibration.

UNIT III VERTICAL DYNAMICS

9

Human response to vibration, Sources of Vibration. Design and analysis of Passive, Semi-active and Active suspension using Quarter car, half car and full car model. Influence of suspension stiffness, suspension damping, and tyre stiffness. Control law for LQR, H-Infinite, Skyhook damping. Air suspension system and their properties.

UNIT IV	LONGITUDINAL DYNAMICS AND
	CONTROL

9

Aerodynamic forces and moments. Equation of motion. Tyre forces, rolling resistance, Load distribution for three wheeler and

four wheeler. Calculation of Maximum acceleration, Reaction forces for Different drives. Braking and Driving torque. Prediction of Vehicle performance. ABS, stability control, Traction control.

UNIT V LATERAL DYNAMICS

9

Steady state handling characteristics. Steady state response to steering input. Testing of handling characteristics. Transient response characteristics, Direction control of vehicles. Stability of vehicle on banked road, during turn. Effect of suspension on cornering.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Response analysis of Single degree of freedom system.
- 2. Modelling of Tyre using magic formula
- 3. Response analysis of quarter car model
- 4. Maximum acceleration for different vehicle drives.
- 5. Steady state handling characteristics

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Evaluate the natural frequencies for free, forced and damped vibration
- **CO2:** Analyze the response of single DOF and two DOF system.
- CO3: Illustrate the forces and moments acting on the tyre for different roads.
- **CO4:** Examine the performance of suspension systems using mathematical model
- CO5: Explain the effect of vehicle longitudinal dynamics.
- CO6: Analyze the cornering stability of the vehicle using lateral dynamics.

TEXT BOOKS:

Rajesh Rajamani, "Vehicle Dynamics and Control", 1st edition, Springer, 2005

2	Singire	su	S.	Rac	ס, "	Me	cha	nic	al '	Vib	ratic	ns",	5th	Ec	litic	n,
		Prentice Hall, 2010.														
REFE	RENCE	S:														
1	Dean Karnopp, "Vehicle Stability", 1st edition, Marcel															
	Dekkei									,						
2	Hans	Hans B Pacejka, "Tyre and Vehicle Dynamics", 2nd														
	edition			,		-						,				
3	Jan Zu	ijdi	ijk,	'Ve	ehic	cle	dyr	nam	nics	an	d d	amp	ing"	, A	uth	or
	House	,	,				J					1				
4	Michae			nde	211	&	Da	mia	n :	Hai	rty,	"The	e M	lult	iboo	dy
	System															-
	Limite		_	_							J					
_								PO	S					I	PSC	s
C	COs	1	2	3	4	5	6	PO:	s 8	9	10	11	12	I 1	PSC 2)s 3
(COs 1 OWER	1	2	3	4 3	5	1			9	10	11	12			
		_				5 -	6			9 -	10	11		1		
	1,00WER	3	3	3	3	5	6			9	10 - -	11 - -	1	1 3		
	1,0WER	3	3	3	3	5 - - - 3	6 1 1	7 - -		9	10	11 - - -	1	1 3 3		
	1 OWER 2 3	3 2	3 3 1	3 2 -	3 2 -	-	6 1 1	7 - - 1		9	10 - - - -	11 - - -	1 1 1	1 3 3 2	2 -	- - -
	1.0WER 2 3	3 3 2 3	3 3 1 3	3 2 - 2	3 2 -	- - 3	6 1 1 1	7 - - 1		9	10	11	1 1 1	1 3 3 2 3	2 - - - 3	3
	1 OWER 2 3 4 5	3 3 2 3 2	3 1 3 1	3 2 - 2 - 2	3 2 - 2 -	- - - 3	6 1 1 1 1	7 - 1 1		9		11 - - - -	1 1 1 1	1 3 3 2 3 2	2 - - - 3 -	3
Ov	1,00 VER 2 3 4 5 6 VEER	3 3 2 3 2 3	3 1 3 1 3	3 2 - 2 - 2	3 2 - 2 - 2	- - 3 -	6 1 1 1 1 1	7 - 1 1 1		9		11	1 1 1 1 1	1 3 2 3 2 3	2 - - - 3 -	3
Ov	1 2 3 4 5 6 EER verall	3 3 2 3 2 3 3	3 1 3 1 3 3	3 2 - 2 - 2 2	3 2 - 2 - 2 2	- - 3 - 1	6 1 1 1 1 1 1	7 - 1 1 1 1			TEXT	11	1 1 1 1 1	1 3 2 3 2 3	2 - - - 3 -	3

23AU721	PROJECT WORK PHASE-2	L	T	P	C
		0	0	6	3

COURSE DESCRIPTION:

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through simulation, or experimental fabrication, Students will refine their designs, validate test problems, and commission setups for final testing. This phase application, emphasizes hands-on calibration, demonstration of results, culminating final in presentation and report submission.

COURSE OBJECTIVES:

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

PROJECT	OU	TL	INE:

_	
Week 1	Review of Phase 1 outcomes and refinement of
	proposed methodology.
Week 2	Material procurement/ software setup for
	simulation, and initiation of fabrication/simulation
	work.
Week 3	Intermediate fabrication/simulation work and initial
	testing or calibration, troubleshooting challenges.

Week 4	Second Review.
Week 5	Validation of test problem or refinement of
	prototype/simulation
Week 6	Optimisation of the test setup or solution trials, Data
	curation / uncertainty analysis
Week 7	Final testing of setup or simulation outcomes,
	Validation of Data.
Week 8	Third Review
Week 9	Demonstration of the solution with high level of data
	accuracy and precision.
Week 10	Compilation of Phase 2 results, report writing, and
	presentation preparation.
Week 11	Preparing or publishing of research article/ Filing or
	Grant of Patent
Week 12	Final Viva Voce Presentations.
1100000	meetings will be set up on a need's basis in conjunction

with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.
- Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Apply appropriate methodologies to implement solutions															
	for complex engineering problems identified in phase -1															
	using hardware / software or both systems.															
CO2:	Develop existing functional prototypes or simulations															
	models	nodels by integrating theoretical and practical														
	knowledge.															
CO3:	Evaluate solutions ensuring compliance with design															
	specifications.															
CO4:	Appraise the performance of solutions by refining															
	designs or improving algorithms for enhanced outcomes.															
CO5:	Collaborate effectively with team members to plan,															
	manage, and execute engineering projects adhering to															
	ethical principles and professional standards.															
CO6:	Prepare technical reports, impactful presentations that															
communicate solutions effectively.																
6	1				K	PO	S					I	PSC)s		
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
1	2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	3 NEER I	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3
5																
	5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	5 6		2	2	2	1	2	2	3	3	3	3	3	3	1	3
Ov		3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
_	6	3				<u> </u>			_			_				
Corr	6 verall	3 3	2	2	2	1 1	2	2 2 07	3 3 -11-	3	3 3	3	3 3	3 3	1	3 3

23AU722	TECHNICAL SEMINAR - 2	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar-2' is intended to be continuation of Technical Seminar 1. It enables a B.E./ B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10).

(Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

D	D															
Repo										T A .	¬ / 1		c			
	0 marks							-			`					
	ontent,			l q	ual	ity,	teı	mp	late	s fo	ollov	ved,	ade	equa	acy	of
	eference															
	COURSE OUTCOMES:															
-	After completion of the course, the students will be able to:															
CO1:	Identify	y ac	ade	emi	c d	ocu	me	nts	fro	m t	he li	terat	ture	wh	ich	are
	related	to 1	her	/hi	s ar	eas	of	inte	eres	st.						
CO2:	Survey	an	d a	pp	reh	enc	l ar	ı ac	cad	emi	ic do	ocun	nent	fro	m	the
	literatu	re v	whi	ch i	is re	elat	ed	to h	er/	hi:	s are	as o	f int	eres	st.	
CO3:	Compil	le a	pre	eser	ntat	ion	ab	out	an	aca	den	nic d	ocur	ner	ıt.	
CO4:	Estima															
CO5:	Defend	аŗ	ores	ent	atio	on a	abo	ut a	n a	cad	lemi	c do	cum	ent		
CO6:	Constru								200							
/2	OWER	DRE		00	T		-	PO	s /					F	SC	s
C	Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 ^	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2
	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4 3 3 2 1 1 1							2	2	3	3	2	171	3	2	2
	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
0	erall	3	3		1	1	1	1						3	1	
	eran elation	3	3	2	1	1	1	1	2	3	3	2	2	3	2	2
		hr. 1	P.c.s	w,d -	¥ C	الدروا	ios	10	11	2024	1					
Kecom	mended	pro			or 9	iud	ies					ate	2(1_11	-202	24
	Al	pre	vec	ı				3rd ACM Date 30-11-2024							.4	

SEMESTER-VIII

23AU821	CAPSTONE PROJECT	L	T	P	C
		0	0	20	10

COURSE DESCRIPTION:

Prerequisites:

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

COURSE OBJECTIVES:

The Capstone Project should demonstrate the depth and extent of knowledge of students

During this course, students will

- Investigate and evaluate prominent literature connected to your CP.
- Present a clearly articulated investigative framework, while situating projects within established academic practices and/ or ideas.
- Develop and create practical resources (either

- computational or experimental) for the concerned area of interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

	1										
PROJI	ECT (OUTLINE:									
Week	1	Identification problem.									
Week	2	Literature review.									
Week	3	Preliminary work.									
Week	4	First review.									
Week	5	Completion of first stage of the Project methodology.									
Week	6	Development.									
Week	7	Testing & Validation.									
Week	8	Second review.									
Week	9	Repeatability.									
Week	10	Report correction and Documentation									
Week	11	Third review-Submission of paper for									
	10	conference/journal									
Week	12	Thesis Correction and Submission									
Indivi	ndividual meetings will be set up on a need's basis in conjunction										
with de	leveloping work										
COUR	RSE OUTCOMES:										
I	After completion of the course, the students will be able to:										
CO1:	Take part in challenging practical problems and find										
	solutions by formulating proper methodology.										
CO2:		research methodology to tackle a specific problem.									
CO3:		struct extensive study on particular research projects.									
CO4:	Deve	elop experimental and computational studies on									
		vative research projects.									
CO5:		nate incremental study on existing research projects.									
CO6:	Take	part in real life engineering challenges and propose									
	appropriate solutions.										

COs]	PO	5					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	3	2	3	3	2	3	2	3	2	3	2	3	3	2	3	
3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	
4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
5	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	
6	6 2 2 2 2 2 2						2	2	2	2	2	2	2	2	2	
Overall 3 3 3 3 3 3 3							3	3	3	3	3	3	3	3	3	
Recommended	Recommended by Board of Studie						6 07-11-2024									
Approved							3 rd ACM Date 30					30-1	11-20)24		

VERTICAL -1 - ELECTRIC VEHICLE

23AU031	ELECTRIC VEHICLE, DRIVE	L	T	P	С
	AND STORAGE SYSTEM	3	0	0	3

COURSE OBJECTIVES:

- To explain the fundamentals of electric vehicles drive systems and energy storage components and to differentiate between battery electric vehicles and hybrid electric vehicles.
- To describe about the components of an electric drive system- electric motor, power electronics and transmission.
- To explain about the different types of energy storage systems used in EV and about the challenges and opportunities associated with EV charging infrastructure development.

UNIT I ELECTRIC VEHICLES

Need of electric vehicles, Comparative study of diesel, Petrol and pure Electric Vehicles, Advantages and Limitations of electric vehicles, Layout of an electric vehicles, System components, Performance of electric Vehicles. Traction motor characteristics. Tractive effort.

UNIT II HYBRID VEHICLES

(

Hybrid electric drive trains - Types of hybrid drive - Train topologies, Concepts, architecture, Power flow control, Fuel efficiency analysis, Regenerative braking in HEVs - Energy consumption during braking, Control strategies, Plug - In hybrid, Merits and demerits

UNIT III | ELECTRIC DRIVE TRAINS

9

Basic concept of electric traction, Electronic control system, Configuration of electric vehicles, Introduction to various electric drive-train topologies, Power flow control in electric drive-train topologies, Requirements of motor for electric vehicles, DC Motor drives, Induction Motor drives, Magnet Motor drives.

UNIT IV | ENERGY STORAGE

9

Requirements of energy sources in electric vehicles, Battery based energy storage and its analysis, Fuel cell based energy storage and its analysis, Supercapacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.

UNIT V | CHARGING SYSTEM

9

Conductive - Basic charger circuits, Microprocessor based charger circuit. Inductive - Principle of inductive charging, charging Infrastructure: Domestic Charging Infrastructure, Public Charging Infrastructure, Normal Charging Station, Occasional Charging Station, Fast Charging Station, Battery Swapping Station, Move and - Charge zone.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the knowledge of operations of the subsystems and components used in electric vehicles.
- CO2: Compare electric and hybrid vehicles.
- CO3: Explain the operations of different types of drive train topology used in different types of electric vehicles.
- **CO4:** Choose an appropriate energy storage device based on the application in Electric vehicles.
- CO5: Choose the suitable charging methods for electric vehicles based on the requirements.
- **CO6:** Explain the various charging station.

TEXT BOOKS:

- 1 C.C. Chan and K.T. Chau, Modern Electric Vehicle Technology, Oxford University Press, 2001
 - 2 James Larminie and John Lowry, "Electric Vehicle Technology Explained" John Wiley & Sons, 2003.

REFERENCES:

1 Ron HodKinson, "light Weight Electric/ Hybrid Vehicle

	Design	sign", Butterworth Heinemann Publication, 2005														
	U															
2	Lino C	uz	zell	a,	" V e	ehic	cle	Pro	pu	ls1C	n S	yste	m"	Spr	ıng	er
	Publica	tio	ns,	200	5.											
3	Iqbal 1	Hu	sair	۱, '	"Ele	ectr	ic	and	d I	-Iyl	orid	Vel	nicle	s-D	esię	gn
	Fundar	ner	ntal	s",	CR	C P	res	s, 20	003							
4	Mehrda	ad	Ehs	ani	, "I	Mo	der	n E	lect	ric,	Ну	brid	Ele	ctri	ar	nd
	Fuel Ce	ell V	/eh	icle	s",	CR	C F	res	s, 2	005						
	70-							PO	s					ŀ	SO	s
	COs										12	1	2	3		
	1	3	2	1	1	-	-	2	-	-	-	-	1	3	-	-
	2	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	3	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	4	3	2	1	1	-	-	2	-	-	-	-	1	3	-	-
	5	3	2	1	1	ī	-	2	e	N		1	1	3	1	-
-2	60WER	2	1	-	-	-	A	2	-/	7	-	-	1	3	~	-
7/	erall elation	3	2	1	1	7	-	2	-	-	_	-	1	3	_	-

COLLEGE OF TECHNOLOGY

23AU032	BATTERIES AND I	T	P	C
	MANAGEMENT SYSTEM 3	3 0	0	3
COURSE	OBJECTIVES:			
• To	explain about different types of batteries	and t	o f	ind
the	e performance parameters of battery pack	and	су	cle
life	e.			
 To 	calculate the battery health and its sign	nifica	nce	in
ba	ttery management.			
 To 	introduce model-based approaches and to	ident	ify	the
CO	mponents of a battery management system			
UNIT I	ADVANCED BATTERIES			9
Li-ion Batte	eries-different formats, chemistry, safe opera	ating	are	ea,
efficiency,	aging. Characteristics-SOC, DOD, SOH. I	Balan	cin	g-
Passive Ba	lancing Vs Active Balancing. Other Batte	ries-l	NC	M
and NCA I	Batteries. NCR18650B specifications.		-	
UNIT II	BATTERY PACK			9
Battery Pac	ck - Design, Sizing, Calculations, Flow char	t, rea	l ar	ıd
simulation	Model. Peak power - Definition, Testing	meth	ods	s -
Relationshi	ips with Power, Temperature and ohmic	c Int	ern	al
Resistance.	Cloud based and Local Smart charging.		äΥ	
UNIT III	BATTERY MODELLING	ONOM	0105	9
Battery N	Modelling Methods-Equivalent Circuit	Mo	ode	ls,
Electrocher	mical Model, Neural Network Mod	el.	EC	M
Compariso	ns- Rint model, Thevenin model, PNGV mo	odel.	Sta	te
1	5	Mode	elliı	ng
software/s	imulation frameworks.			
UNIT IV	BATTERY STATE ESTIMATION			9
SOC Estim	nation- Definition, importance, single cell	Vs s	seri	es
	OC. Estimation Methods- Load voltage, Elec			
force, AC	impedance, Ah counting, Neural network	s, N	eur	0-
fuzzy forec	ast method, Kalman filter. Estimation Algo		ıs.	
UNIT V	BMS ARCHITECTURE AND REAL TIM	E		9
	COMPONENTS			

Battery Management System- need, operation, classification.

BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex Ray- CANedge1 package. ARBIN Battery Tester. Development with Modeling software and Model-Based Design. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Apply the working knowledge of different Li-ion Batteries. **CO2:** Develop a Battery Pack and make related calculations. CO3: Apply various battery modelling techniques to assess battery performance. **CO4:** Select suitable battery based on the estimation of battery state. CO5: Develop range calculations based on different types of modelling approaches. CO6: Model different BMS architectures for real-world usage. **TEXT BOOKS:** Ali Emadi et al., Vehicular Electric Power Systems, Marcel 1 Dekker, Inc, 2004. James Larminie and John Lowry, "Electric Vehicle 2 Technology Explained" John Wiley & Sons, 2003. REFERENCES: Iqbal Husain, "Electric and Hybrid Vehicles-Design 1 Fundamentals", CRC Press, 2003. Mehrdad Ehsani, "Modern Electric, Hybrid Electric and 2 Fuel Cell Vehicles", CRC Press, 2005. 3 Xiaojun Tan, Andrea Vezzini, Yuqian Fan, Neeta Khare, You Xu, Liangliang Wei Battery Management System and its Applications, China Machine Press, 2022. Valer Pop, Henk Jan Bergveld, Dmitry Danilov, Paul P. L. 4 Regtien and Peter H. L. Notten Battery Management

Systems, Springer, 2008.

COs]	POs	5					PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	-	2	-	-	-	-	1	3	-	-
2	3	2	1	1	-	-	2	-	-	-	-	1	3	-	-
3	3	2	1	1	-	-	2	-	-	-	-	1	3	-	-
4	3	2	1	1	-	-	2	-	-	-	-	1	3	-	-
5	3	2	1	1	-	1	2	1	1	•	•	1	3	1	-
6	3	2	1	1	-	-	2	-	-	-	-	1	3	-	-
Overall Correlation	3	2	1	1	-	-	2	ı	1	-	1	1	3	ı	-

23AU033 NEW GENERATION AND L T P C								
23AU033	_	L		P	C			
COLIDGE OD	HYBRID VEHICLES	3	0	0	3			
COURSE OB								
	iarize with the challenges associated			-				
	technology and explore advancement	ents	in	n	ew			
	on vehicle technologies.							
_	in the components and operation of h	•						
drivetrains and to understand the fuel cells and solar for EV.								
To explore the advancements in battery technology, vehicle-								
to-grid	integration, autonomous driving f	eatu	ıres	, a	nd			
connecti	vity.							
UNIT I IN	TRODUCTION				9			
Introduction of	on New generation vehicles - Electric	and	d hy	ybr	id			
vehicles, Flexi	ble Fuel Vehicles (FFV), Solar Power	ed V	Veh	icle	s,			
Magnetic track	k vehicles. Principle and comparison.							
UNIT II EI	ECTRIC VEHICLES	N.			9			
Electric Vehic	<mark>le - Need - Types - Cost and Emis</mark> s	ion.	Ele	ectr	ic			
Vehicle Techn	ology - Layouts, Cables, Componen	ts, (Con	trol	ls.			
Batteries - Ov	verview and its types. Battery plug -	In	and	l lif	e.			
Ultra - Capaci	tor, Charging - Methods and Standard	ds. A	Alte	rna	te			
charging sour	ces - Wireless & Solar.							
UNIT III H	YBRID ELECTRIC VEHICLES				9			
Hybrid Electr	ic vehicles - Classification - Micro,	Mi	ld,	Fu	11,			
Plug-in, EV. L	ayout and Architecture – Series, Parall	el ar	nd S	Seri	es			
- Parallel Hyb:	rid, Propulsion systems and compone	nts.						
UNIT IV FU	JEL CELLS AND SOLAR FOR ELEC	TRI	C		9			
V	EHICLES							
Fuel cell - Intr	oduction, Technologies & Fuel cell typ	es -	As	pec	ts			
of alkaline, S	SOFC, DMFC, and PEM fuel cells	, O	bsta	acle	s.			
Operation prin	nciples, Solar panels, Battery Selection	Ор	tior	ıs.				
UNIT V V	EHICLE AUTOMATED TRACKS				9			
National high	way network with automated roads a	nd v	ehi	cles	3 -			
			_		_			

Satellite control of vehicle operation for safe and fast travel, GPS.

Advanced Safety systems in Automobiles.

	TOTAL: 45 PERIODS															
COU	RSE OU	TC	ON	/IES	5:											
	After co	mp	leti	on	of t	he (cou	rse	, the	e st	uder	nts w	vill b	e al	ole	to:
	Explair															
	vehicle	s.									O					
CO2:	Model	the	op	era	tior	ı an	ıd a	rch	itec	tur	e of	elect	tric v	zehi	cles	3
CO3:	Compa	ire (diff	ere	nt t	уре	e of	hyl	bric	l ve	hicle	2.				
CO4:	Choose	e st	ıita	ble	sol	ar	par	nels	fo	r aj	oplic	atio	ns ii	n h	ybr	id
	electric	ve	hicl	es.												
CO5:	Identify	y f	uel	C€	ell	for	ap	opli	cati	ions	s in	hy	brid	el	ectı	ic
	vehicle															
CO6:	Apply	the	kn	ow]	ed	ge c	of v	ehi	cle a	aute	oma	ted t	rack	S		
TEXT	BOOK	S:														
1	Amir	Kha	ajep	ou	r, S	Sab	er	Fall	lah	an	d A	vest	ta G	3000	darz	zi,
	Electric	ar	nd l	nyb	rid	vel	hicl	es 1	tech	no	logie	es, n	node	ling	g ar	nd
	control															
2	Tom I		TOTAL.					nd	H_{Σ}	ybr	id V	/ehi	cles,	Se	cor	nd
	Edition		out	led	ge,	202	20.					_		1		
	RENCE															
1	1000	pert Bosch, "Bosch Automotive Handbook", SAE ernational; 10th edition, 2018.														
2			_	_						1.	(I	11	1	D		2
2	Gopal Narosa	4 1 1 1 1 1 1			-											
3	Mehrd															
	M. Ebr															
															0.	.01
4		ehicles, Third Edition, CRC Press, 2018. nce hybrid vehicle power transmission, SAE														
		hnical papers.														
	l.							PO	s					ŀ	SC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	ı	-	3	2	-	-	ı	ı	1	2	-	-
	2	3	2	1	1	-	3	2	-	-	1	ı	1	3	-	-
	3	2	1	-	-	-	3	2	-	-	-	-	1	2	-	-
	4	3	2	1	1	-	3	2	_	_	-	-	1	3	-	-
	5	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	erall	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
Corr	elation															

23AU034	AUTOMOTIVE POWER	L	T	P	C
	ELECTRONICS	3	0	0	3

- To explain the significance of power electronics in automotive engineering.
- To Identify and explain the function of power electronic components used in automotive systems.
- To familiarize with semiconductor devices commonly used in automotive power electronics.

UNIT I AUTOMOTIVE POWER SEMICONDUCTOR 9 DEVICES

Power Electronic Circuits - Types, design of equipments, RMS waveforms, Peripheral effects. Power Transistors - Types, operation. Diodes - Types, operation and characteristics. BJT and MOSFETs - Steady state, Switching characteristics. Power MOSFETs and IGBTs - Importance, Operations. SPICEMODELS - Diode, BJT and MOSFETs Simulation concepts

UNIT II AUTOMOTIVE POWER ELECTRONIC 9 CONVERTERS

DC-DC Converters - Principle, Operation and characteristics. Step-Down (Buck) Converter - Step-Up (Boost) Converter - Buck-Boost Converter. Input Filter & Convertors - Design considerations. SPICE MODEL - Buck Converter simulation concept.

UNIT III RECTIFIERS AND INVERTERS

Diode Rectifiers – Single -Phase, Three-Phase, Poly-Phase Diode Rectifiers - Rectifier circuit design. Voltage Source Inverters – Single-Phase, Three-Phase Voltage Source Inverters. Current Source Inverters - Inverter circuit design. SPICE MODEL - Rectifiers and Invertors simulation concepts.

UNIT IV AC AND DC DRIVES 9

DC Drives - Performance equations, single - Phase and three phase half - Wave, full, Dual converter and semiconductor drives. AC Drives - Three-Phase Induction Motor, Various

controls, DSP based Vector Control. MATLAB/SIMULINK Modeling Capabilities. Field - Oriented Control Modeling of Induction Motor Drives.

UNIT V RECENT TRENDS AND CASE STUDIES IN POWER ELECTRONICS 9

Wide bandgap (WBG) semiconductors - Silicon power Transistors - Design overview - Gallium Nitride Transistors - SiC Vs GaN in power switching applications - HEV/EV On board chargers - Wibotic autonomous wireless charging systems - Boeing 787 Electrical Power System - Case studies. Simulation Packages overview.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Choose Power Semiconductor Devices for specific applications.
- CO2: Identify the operation and characteristics of the DC-DC Converters.
- **CO3:** Analyze the operation of Rectifiers and Inverters.
- CO4: Explain the operation of AC and DC Drives.
- **CO5:** Explain the operations of wireless charging systems.
- CO6: Analyze and compare wide bandgap (WBG) semiconductors and silicon power transistors.

TEXT BOOKS:

- 1 Rashid M.H., "Power Electronics Circuits- Devices and Applications", Pearson Education, Fourth Edition, 2014.
- 2 Haitham Abu-Rub, Mariusz Malinowski and Kamal Al-Haddad "Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications", John Wiley and sons, 2014.

REFERENCES:

Ali Emadi, "Handbook of automotive power electronics and motor drives ", CRC Press, 2005.

2	Rashid M.H., "SPICE for Power Electronics and Electric
	Power", CRC Press, Third Edition, New Delhi, 2012.

- Bimal K. Bose," New Power Electronics and Variable Frequency Drives"- IEEE Press, 1997.
- 4 Bhimbhra P.S., "Power Electronics", Khanna Publishers, 2002.

COs]	POs	3					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	2	-	2	-	3	-	-	1	3	2	-	
2	3	2	1	1	2	-	2	-	3	-	-	1	3	2	1	
3	3	3	2	2	2	-	2	-	3	-	-	1	3	2	-	
4	2	1	-	-	2	-	2	-	3	-	-	1	2	2	1	
5	2	1	-	-	2	-	2	-	3	-	-	1	2	2	1	
6	3	3	2	2	2	- 2	2	-	3	-	-	1	3	2	-	
Overall Correlation	3	2	1	1	2		2	1	3	-	-	1	3	2	-	

COLLEGE OF TECHNOLOGY

23AU035	FUEL CELL TECHNOLOGIES	L	T	P	C
		3	0	0	3

- To describe the basic operating principles of fuel cells and to Identify and the key components of a fuel cell system.
- To familiarize with hydrogen storage technologies and to explore fuel cell stack design -stack architecture, cell arrangement.
- To discuss standards, protocols, and testing procedures for assessing fuel cell reliability and safety.

UNIT I FUEL CELL PERFORMANCE 9

Basic structure, critical functions of components – Fuel cell stacking - Fuel cell systems types – Advantages and disadvantages – Applications and status - Cell efficiency – Factors affecting - The efficiency of Electrochemical Energy conversion.

UNIT II ALKALINE (AFC) AND SOLID OXIDE FUEL 9 CELLS

Principle of operation - Modules - Fuel cell stacks - General performance characteristics - Ammonia as AFC - Electrodes: materials and manufacturing - Stacks and systems - Factors affecting the performance of AFC - Cell components Anode and Cathode materials - Configurations and performance - Cell components - Mechanisms of Electrode reactions

UNIT III DIRECT METHANOL AND PROTON 9 EXCHANGE MEMBRANE FUEL CELLS

Catalyst and Non catalyst aspects - Methanol cross over - Catalyst aspects and scale up - Engineering aspects - Scientific aspects and challenges - Milestones in technology development - Challenges to high temperature operations.

,		
UNIT IV	FUEL PROCESSING AND HYDROGEN	9
	STORAGE	

Processing hydrogen from alcohols - Producing hydrogen from

hydrocarbons - Hydrogen from other sources - Gas clean up - Hydrogen storage - Methods of Hydrogen storage - Hydrogen as Engine fuel.

UNIT V | FUEL CELL SYSTEMS

9

Introduction to fuel cell power conditioning systems- Various options- Fuel cell systems fuelled by Natural gas (PEFC, PAFC, MCFC systems)- Coal fuelled fuel cell system-Combined fuel cell and Gas turbine system- Hybrid fuel cell systems- Electric vehicles.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the various factors affecting the performance of fuel cells.
- CO2: Analyze the performance of alkaline and solid oxide fuel cells.
- CO3: Utilize the direct methanol and proton exchange membrane fuel cells.
- CO4: Apply the knowledge of hydrogen storage.
- **CO5:** Evaluate the fuel cell power conditioning systems.
- **CO6:** Assess environmental impact of Fuel cells.

TEXT BOOKS:

- 1 Viswanathan.B and Aulice Scibion, "Fuel Cells: Principles and applications", CRC Press, 2008.
- 2 Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz, "Fuel Cell Fundamentals", John Wiley & Sons, 2016.

REFERENCES:

- Bent Sorensen, "Hydrogen and Fuel Cells Emerging technologies and applications", Elsevier Publishers, Second Edition, 2011.
- Noriko Hikosaka Behling, "Fuel cells", Elsevier Publishers, 1st Edition, 2012.

3	Hoogers G. (Ed), "Fuel Cell Handbook", John Wiley &
	Sons Ltd. 7th Edition, 2004.

4	Nigel Sammes, "Fuel Cell Technology: Reaching Towards
	Commercialization", Springer, 6th Edition, 2006.

					-		_									
COs]	PO	s					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	-	-	1	1	1	-	1	2	-	1	
2	3	3	2	2	ı	-	-	1	1	1	-	1	3	-	1	
3	3	2	1	1	ı	-	-	1	1	1	-	1	3	-	1	
4	3	2	1	1	-	-	-	1	1	1	-	1	3	-	1	
5	3	3	3	3	-	-	-	1	1	1	-	1	3	-	1	
6	3	3	3	3	ı	-	-	1	1	1	-	1	3	-	1	
Overall	3	3	2	2	-	-	1	1	1	1	ı	1	3	1	1	
Correlation				-				e .								

23AU036	SENSORS AND ACTUATORS	L	T	P	C
		3	0	0	3

- To differentiate between sensors and actuators and to familiarize with different types of sensors used in automotive applications.
- To explore the role of actuators in automation, robotics and manufacturing.
- To explore emerging trends and innovations in sensor and actuator technologies

UNIT I	INTRODUCTION TO MEASUREMENTS	10
	AND SENSORS	

Sensors: Functions - Classifications - Main technical requirement and trends Units and standards - Calibration methods - Classification of errors - Error analysis - Limiting error - Probable error Propagation of error - Principle of transduction - Classification. Static characteristics - Mathematical model of transducers - Zero, First and Second order transducers.

UNIT II VARIABLE RESISTANCE AND 8 INDUTANCE SENSORS

Principle of operation - Construction details - Characteristics and applications of resistive potentiometer - Strain gauges - Resistive thermometers - Thermistors - Piezo-resistive sensors - Inductive potentiometer - Variable reluctance transducers - LVDT

UNIT III VARIABLE AND OTHER SPECIAL 9 SENSORS

Variable air gap type, Variable area type and variable permittivity type - Capacitor microphone Piezoelectric, Magneto strictive, Hall Effect, semiconductor sensor - Digital transducers - Humidity Sensor. Rain sensor, climatic condition sensor, solar, light sensor.

UNIT IV AUTOMOTIVE ACTUATORS 9 Electromechanical actuators - Electrical machines - Direct -

Current machines - Three -Phase machines - Single-phase

alternating current Machines - Duty-type ratings for electrical machines. Working principles, Construction and location of actuators, Solenoid, Relay, Stepper motor.

UNIT V AUTOMATIC TEMPERATURE CONTROL ACTUATORS

Different types of actuators used in automatic temperature control - Fixed and variable displacement temperature control - Semi Automatic - Controller design for Fixed and variable displacement type air - Conditioning system.

TOTAL: 45 PERIODS

9

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain common types of sensor and actuators used in vehicles.
- CO2: Develop mathematical model for zero, first and second order transducers.
- CO3: Develop new ideas in designing the variable resistance and inductance sensors.
- **CO4:** Explain the operation of the variable and other special sensors.
- CO5: Summarize the working principles, advantages, and limitations of each type of actuator.
- **CO6:** Develop temperature control actuators for vehicles.

TEXT BOOKS:

- Doebelin's Measurement Systems: 7th Edition (SIE), Ernest O. Doebelin DhaneshN.Manik McGraw Hill Publishers, 2019.
- 2 Patranabis.D, "Sensors and Transducers", 2nd Edition, Prentice Hall India Ltd, 2003

REFERENCES:

1 James D Halderman, "Automotive Electrical and Electronics", Prentice Hall, USA, 2013.

	1															
2	Tom I)en	ton	۱, "	Άu	ıtor	not	ive	El	ect	rical	and	d El	lect	roni	ics
	Systems," Third Edition, SAE International, 2004.															
3	Robert	Robert Brandy, "Automotive Electronics and Computer														
	System	", I	Prei	ntic	e H	Iall,	, 20	01.							_	
4	Willian	William Ribbens, "Understanding Automotive														
	Electro	Electronics -An Engineering Perspective," 7th Edition,														
	Elsevier Butterworth-Heinemann Publishers, 2012.															
	POs									PSOs						
	COs		2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	1	-	2	3	3	-	1	2	-	2
	2	3	2	1	1	-	2	-	2	3	3	-	1	3	-	2
	3	3	2	1	1	-	2	-	2	3	3	•	1	3	-	2
	4	2	1	-	-	-	1	-	2	3	3	-	1	2	-	2
	5 2 1 2 - 2 3 3 - 1								2	1	2					
	6.0WER	3	2	1	1	-	2	1	2	3	3	-	1	3	1	2
1///	erall elat <mark>ion</mark>	3	2	1	1	-	2	_	2	3	3		1	3	J	2

23AU037	AUTOMOTIVE EMBEDDED	L	T	P	C
	SYSTEMS	3	0	0	3

- To explore semiconductor devices and their applications in electronic circuits.
- To familiarize with digital electronics concepts.
- To familiarize with the architecture and components of microprocessors to explore the applications of microprocessors automotive electronics.

UNIT I BASIC OF ELECTRONIC ENGINE 9 CONTROL SYSTEMS

Overview of Automotive systems, fuel economy, air-fuel ratio, emission limits and vehicle performance; Automotive microcontrollers- Electronic control Unit- Hardware & software selection and requirements for Automotive applications – open source ECU- RTOS – Concept for Engine management-Standards; Introduction to AUTOSAR and Introduction to Society SAE- Functional safety ISO 26262- Simulation and modeling of automotive system components.

UNIT II SENSORS AND ACTUATORS FOR AUTOMOTIVES 9

Review of sensors- sensors interface to the ECU, conventional sensors and actuators, Modern sensor and actuators - LIDAR sensor- smart sensors- MEMS/NEMS sensors and actuators for automotive applications.

UNIT III | VEHICLE MANAGEMENT SYSTEMS | 9

Electronic Engine Control-engine mapping, air/fuel ratio spark timing control strategy, fuel control, electronic ignition-Adaptive cruise control - speed control-anti-locking braking system-electronic suspension - electronic steering , Automatic wiper control- body control system ; Vehicle system schematic for interfacing with EMS, ECU. Energy Management system for electric vehicles- Battery management system , power management system-electrically assisted power steering system

A 1	. 1		
		ighting system- Safety and Collision Avoidance.	0
UNIT	. 1 V		9
0 1	1 1	TELEMATICS	1
		liagnosis of vehicles -System diagnostic standards a	
0		requirements Vehicle communication protoc	
		CAN, LIN, FLEXRAY, MOST, KWP2000 and rec	
		ehicle communications- Navigation- Connected C	
		- Tracking- Security for data communicati	
dashb	oard	display and Virtual Instrumentation, multime	dia
		- Role of IOT in Automotive systems.	
UNIT	\mathbf{V}	ELECTRIC VEHICLES	9
Electr	ic ve	ehicles -Components- Plug in Electrical vehicles	cle-
Charg	ging	station - Aggregators- Fuel cells/Solar powe	red
vehic	les- A	utonomous vehicles.	
12	OW	TOTAL: 45 PERIO	DDS
COU	RSE (OUTCOMES:	1
	After	completion of the course, the students will be able	e to:
	507.00	oly the electronic concept in automotive engine.	
CO2:	Y , F 1000	egorize the types of sensors and actuators emobiles.	
CO3	-	nonstrate the various vehicle management systems	
CO4:		lyze the various diagnostic tools used in veh	icie
COF	syste		•
CO5:		imarize the connected car technology and track	ıng
001	syste		
		ct the appropriate electric vehicles.	
TEXT			
1		nan and Halkias, "Integrated Electronics", T	ata
	McC	Graw-Hill publishers, 1995.	
2	Ram	nesh Goankar, "Microprocessor Architectur	re",
	Prog 1998	gramming and Applications with 8085, Wiley Easte 3.	ern,

REFE	RENCE	S:														
1	Malvin	10	aı	nd	I	Lead	ch,	1	'Di	gita	1	Prin	ciple	es	ar	nd
	Applications", Tata McGraw-Hill, 1996															
2	Mehta	Mehta V.K, "Principles of Electronics", S. Chand and														
	Company Ltd., 1994															
3	Dougle	Dougles V. Hall, "Microprocessor and Interfacing",														
	Progra	Programming and Hardware, Tata McGraw- Hill, 1999.														
4	Salivahanan S, Suresh Kumar N, Vallavaraj A, "Electronic															
	Devices and Circuits" First Edition, Tata McGraw-Hill,															
	1999.															
]	PO	<u>s</u>					F	SC)s
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	3	2	2	-	-	Ē	-	-	-	1	1	3	17	-
12	3.0WER	2	1	₂₀ -	-1	-	1	7	-/	-		-	1	2		-
1	4	3	3	2	2	Lá	K	-	1	-	-	- /	1	3	-	-
1	5	2	1	-	-	F	Z	-	7	1	70	, - 1	1	2	_	-
	6	3	2	1	1	_	-		-	1	_ 8	-	1	3	-	-
Ov	erall	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	elation	- 4	200		- 7			-		1				500		1

23AU038	AUTOMOTIVE ELECTRICAL	L	T	P	C
25/10/050	SYSTEMS AND DRIVES	3	0	0	3
COURSE OB		J	U	U	
	plain the basic principles of electricity	z cii	·C11i	te a	nd
	ical components relevant to		itor		
	cations.	at	1101	1101	IVC
	xplain the operation of charging,	ctar	tina	. .	nd
	on system.	Star	tiiiş	5 a	niu
O .	miliarize with power electronics use	d ir	ı m	ode	orn
	les and to explore emerging trends and				
	tomotive electrical systems.	ı icc.	HIIC	nog	,103
	LECTRICAL WIRING AND COMPO	NIE	NIT	c	9
	- Electrical wiring, Terminals and				
	t devices relays - Relay logic diagram				\circ
	rter - MCB fuses timer counter - Vel				
-674 X (See					
100000000000000000000000000000000000000	lighting systems - Horn circuit - Wij	per	CIIC	un	_
5.0	<mark>w c</mark> ircuit and central locking circuit. HARGING AND STARTING SYSTI	71/4			9
100	12		i	inal a	
- 10 / P	of charging system, Charging system	1			
	and charging circuits, Starting syst				
	r types, Characteristics - Drive i		lan	ISII	ıs,
	irements, Servicing and trouble shoot: GNITION SYSTEM	mg.			9
	ignition system - Battery coil ignition		-		
	Programmed - Distributor less ignition		-		
	e and retard mechanisms – Types of sp	park	pii	ıgs.	_
	OWER ELECTRONIC DEVICES				9
	wer electronics - Power electronic syst				
	ctor devices principle of operation stea	-			
_	racteristics of power diodes - Power	ΒIJ	- P	ow	er
	CR - DIAC - TRIAC			<u> </u>	
	LECTRIC MOTOR DRIVES		-		9
Introductions	DC TO DC converters - Boost conver	ter a	nd	buo	ck

converter - AC Induction motor and control - BLDC motor and

control - Plug in battery charger design, stepper motor and control - Servo Motor and control - Permanent magnet synchronous motor **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the vehicle wiring harness, working of field devices and circuit diagrams for various sub systems. Illustrate the circuit diagram for starting and charging CO2: system with characteristics of starter motor alternator. **CO3:** Explain the various ignition systems with spark advance and retard mechanisms. CO4: Summarize various power electronic devices with characteristics and functions. CO5: Relate the operations of the different types of Traction motors. CO6: Classify AC convertor & DC convertor. TEXT BOOKS: 1 Tom Denton, Automobile electrical and electronic systems" 5th edition, United Kingdom, 2017. 2 Rashid .M.H. Power electronics: circuit devices and applications" 4th edition, Pearson education. New Delhi, 2017. REFERENCES: Wei Liu, Introduction to hybrid vehicle system modelling 1 and control, 1st Edition, Wiley, New Delhi, 2015. 2 Robert Bosch, "Bosch Automotive electric and automotive electronics, 5th Edition, Springer, 2013. John G. Hayes and G. Abas Goodarzi, Electric Powertrain: 3 Energy Systems, Power Electronics and Drives for Electric and Fuel Cell Vehicles,

Hybrid,

Publication, 1999.

4	K. T. Chau, Electric Vehicle Machines and Drives: Design,
	Analysis and Application, Wiley-IEEE Press, 2015.

COs							PO	S					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	2	-	-	-	-	-	1	2	-	-	
2	2	1	-	-	-	2	-	-	-	-	-	1	2	-	-	
3	2	1	-	-	-	2	-	-	-	-	-	1	2	-	-	
4	2	1	-	-	-	2	-	-	-	-	-	1	2	-	-	
5	2	1	-	-	-	2	1	-	-	ı	ı	1	2	1	-	
6	2	1	-	-	-	2	-	-	-	-	-	1	2	-	-	
Overall	2	1	-	-	-	2	-	-	-	ı	-	1	2	1	-	
Correlation																

VERTICAL -2 - COMPUTATIONAL DESIGN

23AU039	COMPUTER AIDED DESIGN	L	T	P	C
	AND MANUFACTURING	3	0	0	3

COURSE OBJECTIVES:

- To learn fundamental design principles and techniques, geometric dimensioning and tolerance.
- To familiarize with computer aided design and manufacturing (CAD/CAM) techniques, CAD/CAM integration, CNC programming.
- To develop problem-solving skills related to design and manufacturing challenges.

UNIT I COMPUTER AIDED DESIGN (CAD) 9

Overview of 2D drawings, Work area customization, Constraints and parameters, sketching tools, Geometrical modifications, Converting 2D drawings to 3D models, Modeling features and tools, Dimensioning and annotations, Materials and appearances, File import/export.

UNIT II COMPUTER AIDED MANUFACTURING 9 (CAM)

Overview of machining processes, Work setup, cutting tool selection, Calculation of feeds and speeds, Material removal rate, CAM cycles, Cutting planes selection, Toolpath setup, Postprocessing of G-Codes.

UNIT III | CAD AND CAM INTEGRATION | 9

Introduction - Networking - Techniques, components, Interface cards, Network standards, Graphics standards - Graphical kernel system, Data exchange format - IGES and STEP. Process planning, Computer Aided Process Planning (CAPP), Product life cycle management (PLM), Enterprise resource planning (ERP).

UNIT IV	FUNDAMENTAL OF CNC AND PART	9
	PROGRAMMING	

Introduction to NC systems and CNC - Machine axis and Coordinate system - CNC machine tools - Principle of operation

CNC - Construction features including structure - Drives and CNC controllers - 2D and 3D machining on CNC - Introduction of Part Programming types - Detailed Manual part programming on Lathe & Milling machines using G codes and M codes - Cutting Cycles, Loops, Sub program and Macros.

UNIT V | ADDITIVE MANUFACTURING

9

Rapid Prototyping: Introduction, Classification of RP Processes, Advantages & disadvantages. RP Applications in Design, Concept Models, Form & fit checking, Functional testing, CAD data verification, Rapid Tooling, and bio fabrication. Working Principle, Application, Advantages & disadvantages of Stereolithography Apparatus (SLA) Selective Laser Sintering (SLS), 3D Printing, Fused Deposition Modeling (FDM).

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Build part drawings and 3D models using CAD techniques.
- **CO2:** Construct the CAM Toolpath for specific given operations
- CO3: Apply the knowledge of the process between conceptualization of a product to its reality.
- CO4: Develop collaboration between product design and manufacturing.
- CO5: Apply NC & CNC programming concepts to develop part programme for Lathe & Milling Machines
- CO6: Apply the knowledge of various cost-effective alternatives for manufacturing products.

TEXT BOOKS:

Mikell. P. Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.

2	Radhakrishnan	Р,	Subramanyan	S.	and	Raju	V.,
	"CAD/CAM/C	IM",	2nd Edition, Ne	ew A	Age In	ternati	onal
	(P) Ltd, New De	lhi, 2	2000.				

REFERENCES:

- 1 Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufacturing management " Second Edition, Pearson Education, 1999.
- **2** Donald Hearn and M. Pauline Baker "Computer Graphics". Prentice Hall, Inc, 1992.
- Foley, Wan Dam, Feiner and Hughes "Computer graphics principles & practice" Pearson Education, 2003
- William M Neumann and Robert F. Sproul "Principles of Computer Graphics", McGraw Hill Book Co. Singapore, 1989.

COs	POs													PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1 ^	3	2	1	1	2	1	1	7	F	2	7	1	3	2	-		
2	3	2	1	1	2	1	1	i -	7	2	-	1	3	2	-		
3	3	2	1	1	2	1	1	-	-	2	-	1	3	2	-		
4 VEER	3	2	1	1	2	1	1	E)ŀ	2	- [1]	1	3	2	-		
5	3	2	1	1	2	1	1	N NIN	A UP	2	112	1	3	2	1		
6	3	2	1	1	2	1	1	-	-	2	-	1	3	2	-		
Overall	3	2	1	1	2	1	1	-	-	2	-	1	3	2	-		
Correlation																	

23AU040	INTEGRATED	L	T	P	C
	COMPUTATIONAL	3	0	0	3
	MATERIALS ENGINEERING				

- To explore methods for materials selection and design based on performance requirements, constraints, and optimization criteria.
- To learn about optimization techniques and design of experiments (DOE) methods
- To analyze current challenges and future directions in the development of new computational methods

UNIT I	BASICS OF COMPUTATIONAL	9
	MATERIALS SCIENCE	

Atomistic theory of matter, Statistical mechanics of materials (equilibrium and non -Equilibrium systems and ensembles) Coarse graining methods, Continuum models of materials and microstructures.

UNIT II MULTISCALE SIMULATION METHODS 9

Molecular Dynamics, Equilibrium and kinetic Monte Carlo simulation, Mesoscopic methods such as Dislocation Dynamics and the Phase Field method and continuum -Level modeling of materials behavior in Finite Element simulations.

UNIT III NUMERICAL METHODS FOR ATOMISTIC 9 MODELING I

General theory of atomistic simulations - MD integration algorithms for different thermodynamic ensembles (NVE,NVT,NPT), Energy minimization algorithms and structure optimization, Introduction to Density Functional Theory, Determination of defect properties, Atomic interaction potentials, including EAM, BOP and Tight Binding Methods.

UNIT IV NUMERICAL METHODS FOR ATOMISTIC 9 MODELING II

Monte Carlo and kinetic Monte Carlo methods, Modeling thermally activated events: Transition state theory, Nudged elastic band calculations, Hyperdynamic Generalized Continuum Models of Microstructure: Cosserat continua, Micromorphic continua, Nonlocal and gradient-dependent models.

UNIT V	DISLOCATION THEORY AND	9
	SIMULATION	

Foundations of dislocation theory (stress and strain fields, dislocation energetics and interactions), Dislocation-based modeling of plastic deformation processes, Discrete and continuous simulation approaches.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Summarize different types of models of materials based on statistical mechanics.
- CO2: Identify the simulation techniques for solving a particular problem in material science.
- CO3: Develop basic atomistic and microstructure level simulations.
- **CO4:** Apply numerical methods for thermally activated events.
- CO5: Apply numerical methods for generalized continuum models, gradient-dependent models.
- **CO6:** Model the role of dislocations and other material defects.

TEXT BOOKS:

- Lee, J., Computational Materials Science: An Introduction,2nd Edition, CRC Press 2016.
- 2 | Sholl, D. S., and Steckel, J. A., Density Functional Theory: A Practical Introduction, 1st Edition, Wiley, 2009.

REFERENCES:

1 Richard Lesar, "Introduction to Computational Materials Science: Fundamentals to Applications", Cambridge University Press, 2013.

2	June G	lun	n I	ee.	"(Com	าบน	tati	ona	1 N	/late	rials	Scie	ence	e: A	۱n
	*	Introduction", CRC press, 2011														
3	Dove, M.T., Introduction to Lattice Dynamics, 1st Edition,															
	Cambridge University Press, 1993.															
4	Maciej	Maciej Pietrzyk, Lukasz Madej, Lukasz Rauch, Danuta														
	Szeliga	Szeliga, "Computational Materials Engineering:														
	Achieving High Accuracy and Efficiency in Metals															
	Process	sing	3	Si	imu	ılat	ion	s"		But	terw	orth	· 1-He	ine	mar	nn
	Publish	ier,	201	15.												
	70-]	PO	S					I	PSC	s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	2	-	1	2	-	-
	2	3	2	1	1	1	-	-	-	-	2	-	1	3	-	-
		-												_		
	3	3	2	1	1	ī.	-	_	-	-	2	-	1	3	-	-

5

6

Overall

Correlation

3 2

1 1 1

3 2

3

1 1

1 1

MEET LATED TO ANNA UNIVERSITY | AUTONOMOUS

2

2

2

1 3

1 3

1 3

23AU041	VEHICLE DESIGN AND DATA	L	T	P	C
	CHARACTERISTICS	3	0	0	3
COURSE OF	BJECTIVES:				
• To	collect important technical specific	atio	ns	of	an
auto	omobile from Technical notes, research	pu	blic	atic	ns.
• To	calculate and tabulate various vehicle	pe	rfor	ma	nce
par	ameters.				
• To	draw vehicle performance curves	usii	ng	des	ign
par	ameters.				
UNIT I IN	TRODUCTION				9
Assumptions	s to be made in designing a vehicle, Rar	nge	of v	alu	es
for Gross V	ehicle Weight, Frontal Area, maxir	nur	n s	pee	d,
maximum ac	cceleration, gradability in different gea	ars,	Bas	ics	of
Automobile l					
UNIT II R	ESISTANCE TO VEHICLE MOTION				9
Calculation,	Tabulation and Plotting of Curves	for	Aiı	aı	nd
Rolling Resis	s <mark>tan</mark> ces at va <mark>r</mark> ious vehicle speeds, Cal	cula	tio	n ar	nd
Plotting of D	riving force, Power requirement for di	ffer	ent	loa	ds
	ion, Maximum Power calculation.				
1 to 1	PERFORMANCE CURVES - I		_0	GY	9
Calculation,	Tabulation and Plotting of Torque and	l M	echa	anic	cal
Efficiency for	different vehicle speeds, Interpolation	n of	Pre	ssu	re
- Volume d	iagram, Calculation of frictional Me	an	Effe	ecti	ve
Pressure, Cal	culation of Engine Cubic Capacity, Bor	e aı	nd S	stro	ke
Length.					
UNIT IV P	ERFORMANCE CURVES - II				9
Connecting r	od length to Crank Radius Ratio, Plott	ing	of I	Pisto	on
Velocity and	Acceleration against Crank Angle,	Plot	ting	g G	as
force, Inertia	force and Resultant force against C	ran	k A	ng	le,
	ment and Side Thrust against Crank Ar	ıgle			
	EAR RATIOS				9
Determination	on of Gear Ratios, Acceleration and	Gra	ada	bilit	ty,

Typical Problems on Vehicle performance.

TOTAL: 45 PERIO														IOI	DS	
COURSE OUTCOMES:																
After completion of the course, the students will be able t														to:		
CO1:	Choose the parameters required to design Engine.															
CO2:	Explain	Explain the different resistances of the vehicle and tractive												ve		
	Effort.															
CO3:	Compa	Compare Engine performance parameters														
CO4:	List various design parameters of the Vehicle															
CO5:	Model various gear ratios related to Vehicle Performance.															
CO6:	Develop the performance curves of the Engine and															
	vehicle															
TEXT BOOKS:																
1	Giri. N. K., "Automotive Mechanics", Khanna Publishers,															
	New Delhi, 2005.										1					
2	P.M. Heldt, "High Speed Combustion Engines", Oxford and I.B.H. Publishing Co., Kolkata, 2002.															
DEEE	RENCE		Pu	DHS	SINII	ig C	٥.,	NO.	ıkaı	ia, 2	2002.	-	W.		d.	
1	Gupta.		R.B		" Δ	11tc	mo	hil	0	En	oinc	orin	راا	S	aths	72
	Prakashan, 8th Edition, 2013.															
2	V. Ganesan "Internal Combustion Engines" Tata McGraw Hill Publishers, 2003.										w					
											ģ.					
3	Internal combustion engine Fundamentals by J															
		Heywood, Second Edition, McGraw-Hill Education, 2018. Julian Happian-smith, "Introduction to Modern Vehicle														
4						th,	"In	tro	duc	ctio	n to	Mo	dern	Ve	hic	le
	Design" SAE, 2002. POs PSO															
COs 1		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		3	2	1	1	-	1	-	1	_	2	-	1	3	_	1
2		2	1	-	-	_	1	_	1	_	2	_	1	2	-	1
3		3	3	2	2	_	1	_	1	_	2	_	1	3	_	1
4		3	3	2	2	-	1	-	1	-	2	-	1	3	-	1
5		3	2	1	1	-	1	-	1	-	2	-	1	3	-	1
6		3	2	1	1	-	1	-	1	-	2	-	1	3	-	1
Overall		3	3	2	2	-	1	-	1	_	2	-	1	3	_	1
Correlation																

23AU042	COMPUTATIONAL AND	L	T	P	С
	VISUALIZATION THEORY	3	0	0	3

- To explore the fundamental principles of computation, including algorithms, data structures, complexity analysis, and computational models
- To familiarize with software tools and libraries for interactive data visualization and exploration
- To apply computational and visualization theory in various scientific and engineering domains

UNIT I AUTOMATA THEORY

9

Defining Automaton, Finite Automaton, Transitions and Its properties, Acceptability by Finite Automaton, Nondeterministic Finite State Machines, DFA and NDFA equivalence, Mealy and Moore Machines, Minimizing Automata.

UNIT II REGULAR GRAMMAR & CONTEXT FREE 9 LANGUAGES AND PUSHDOWN AUTOMATA

Regular Grammar, Regular Expressions, Finite automata and Regular Expressions, Pumping Lemma and its Applications, Closure Properties, Regular Sets and Regular Grammar Context Free Languages: Context-free Languages, Derivation Tree, Ambiguity of Grammar, CFG simplification, Normal Forms, Pumping Lemma for CFG Pushdown Automata: Definitions, Acceptance by PDA, PDA and CFG

UNIT III TURING MACHINES & UNDECIDABILITY 9

Turing Machine Definition, Representations, Acceptability by Turing Machines, Designing and Description of Turing Machines, Turing Machine Construction, Variants of Turing Machine, Undecidability: The Church-Turing thesis, Universal Turing Machine, Halting Problem, Introduction to Unsolvable Problems

UNIT	IV	FOUNDATIONS FOR DATA	9						
		VISUALIZATION							
Introd	luctio	on to Visualization – Visualization stages	_						
Exper	imen	tal Semiotics based on Perception - Gibson	's						
-		e theory - A Model of Perceptual Processing - Co							
		ts of Visualization - Types of Data.							
UNIT		MULTIDIMENSIONAL VISUALIZATION	9						
1D, 2	D, 3D	- Multiple Dimensions - Trees - Web Works - D	ata						
Mapp	ing: I	Data Visualization- Workspaces.							
	TOTAL: 45 PERIODS								
COU	RSE (OUTCOMES:							
	After	completion of the course, the students will be able	e to:						
CO1:	CO1: Distinguish between different types of automata and								
	apply minimization techniques to optimize automata								
CO2:	Ana	lyze and construct regular grammars and context-f	ree						
	gran	nmars							
CO3:	Expl	ain Turing Machines and Pushdown Automata							
CO4:		ly visualization techniques by understanding							
	stage	es of visualization	Y						
CO5:	Inte	rpret 1D, 2D, and 3D visualizations	5						
CO6:	Utili	ze various techniques for effective representation	of						
	mult	tidimensional data.							
TEXT	BOC	OKS:							
1	-	croft E. J., Ullman D. J. and Motwani R., Introduct							
	to A	Automata Theory, Languages and Computati	on,						
	Pear	rson Education (2007) 3rd edition.							
2	Kavi	i Mahesh, "Theory of Computation", Wiley Inc	dia,						
	2011	•							
REFE	REN	CES:							
1	Mar	tin C. J., "Introduction to Languages and the The	ory						
ĺ	of C	omputation", McGraw-Hill Higher Education (20	11)						
	4th e	edition.							

2	Colin	Ma	ro.	"In	for	mai	Hion	. 17	1011	aliz	atio	n D	rcor	atio	n f	Or
2		Colin Ware "Information Visualization Perception for Design", 3rd edition, Morgan Kaufman 2012. Introduction														
	U						_	•								
	to Lan	gua	iges	s aı	nd	the	Th	ieoi	у	of (Com	puta	ition	, Jo	hn	E
	Martin	, M	cGı	aw	-Hi	ill E	du	cati	on							
3	Chaom	ei (Cha	ın,	"In	fori	mat	ion	Vi	sua	lizat	ion"	, be	yon	d t	he
	horizoi	ո, 2	nd	edi	tior	n, S	pri	nge	r V	erla	ag, 2	004.				
4	Pauline	. I	Vill	s,	"V	isu	alis	atic	n:	A	Beg	ginne	er's	Gu	ıid€	2",
	Hodde	r aı	nd S	Stoi	ıgh	lon	, 19	99.								
	COs		POs PSOs													
•	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	2	1	-	-	-	-	2	-	1	3	1	-
	2	3	3	2	2	1	-	-	-	-	2	-	1	3	1	-
	3	2	1	-	-	1	-	-	-	-	2	-	1	2	1	-
	4	3	2	1	1	1	-	_	e-	-1	2	-	1	3	1	-
-2	5 OWER	3	3	3	3	1	d	/-	-/	7	2	<u>-</u>	1	3	1	-
A	6	3	2	1	1	1	1	-	_	-	2	- (1	3	1	-
	verall elation	3	3	2	2	1	1		-	10	2	<u> </u>	1	3	1	_

COLLEGE OF TECHNOLOGY

23AU043	COMPUTER INTEGRATED	L	T	P	C
	MANUFACTURING	3	0	0	3
	IN AUTOMOTIVE SECTOR				

- To explore techniques and technologies for quality control and inspection in automotive manufacturing
- To demonstrate the concept of FMS, agile production of automotive components and products.
- To infer the PLM concepts and tools used to manage the entire lifecycle of automotive products

UNIT I INTRODUCTION

10

Manufacturing and its types – CIM - Definition and need: Hardware and software. Concurrent Engineering: Definition, Sequential Engineering Versus Concurrent Engineering, Benefits of Concurrent Engineering, Characteristics of concurrent Engineering, Collaborative Product Development. Basic Elements of an automated system – Levels of Automation – Lean Production and Just–In-Time Production.

UNIT II	PRODUCTION PLANNING & CONTROL	1 0
CAN	AND COMPUTERISED PROCESS	Y
	PLANNING AFFILIATED TO ANNA UNIVERSITY AUTONOMO	US.

Process planning – Aggregate Production Planning and Master Production Schedule – Material Requirement Planning (MRP) – Simple Problems – Capacity Planning – Shop Floor Control – Inventory Control – EOQ, WIP costs & Inventory Holding Costs - Simple Problems.

UNIT III | CELLULAR MANUFACTURING

9

Group Technology (GT), Part Families – Parts Classification and coding – Simple Problems in OPITZ Part Coding system – Production flow Analysis – Cellular Manufacturing – Composite part concept – Machine cell design and layout – Quantitative analysis in Cellular Manufacturing – Rank Order Clustering Method - Arranging Machines in a GT cell – Hollier Method.

UNIT IV FLEXIBLE MANUFACTURING SYSTEM 8 (FMS) AND AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)

Types of Flexibility - FMS - FMS Components - FMS Application & Benefits - FMS Planning and Control - Quantitative analysis in FMS - Simple Problems. Automated Guided Vehicle System (AGVS) - AGVS Application - Vehicle Guidance technology - Vehicle Management & Safety

UNIT V INDUSTRIAL ROBOTICS

8

Robot Anatomy and Related Attributes – Classification - Control systems – End Effectors – Sensors – Applications – Basics of Robot Part Programming – Robot Accuracy and Repeatability – Simple Problems.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

	W M
CO1:	Compare Traditional Manufacturing environment to
	Computer Integrated Manufacturing environment.
CO2:	Explain the basic elements of an automated system
CO3:	Apply computers for process planning
CO4:	Summarize cellular manufacturing
CO5:	Apply the knowledge of the operations of Automatic
	guidance system
CO6:	Utilize Robot part programming
TEXT	BOOKS:
1	Mikell .P. Groover "Automation, Production Systems and
	Computer Integrated Manufacturing", Prentice Hall of
	India, 2009.
2	Kant Vajpayee S, "Principles of Computer Integrated
	Manufacturing", Prentice Hall India, 2003.

REFE	RENCE	S:														
1	Henry	W	ebb	er	"Co	omj	put	er	Inte	egra	ated	Ma	nufa	ctu	ring	y",
	NY res	IY research press, USA, 2020.														
2	Gideor	ιH	ale	vi a	nd	Ro	lan	d V	Vei	11, '	'Prir	ncipl	les o	f P	roce	ess
	Plannir	anning - A Logical Approach" Chapman & Hall,														
	Londo	n, 1	995	·												
3	P Rao,	N	Te	wa	ri a	and	Т.	K.	Ku	ndr	a, "	Con	nput	er .	Aid	ed
	Manufa	actı	ırir	ıg",	, Ta	ta N	AcC	Gra	w F	Hill	Publ	lishi	ng C	com	par	ıy,
	2000.	Manufacturing", Tata McGraw Hill Publishing Company, 000.														
4	James	es A.Rehg, "Computer Integrated Manufacturing",														
	Pearson			_		-	-			O						, .
			POs PSOs													
C	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	2	1	1	1	_	-	_	_	1	3	1	_
	2 WER	2	1	_	-	1	1	1	-2			2	1	2	1	_
- 6	3	3	2	1	1	1/	1	1	1	-	-	-	1	3	1	ā -
	4	2	1		_	1	1	1	7	1			1	2	1	_
	5	3	2	1	1	1	1	1					1	3	1	_
-\	6	3	2	1	1	1	1	1	_	_	_	_	1	3	1	_
Ov	erall	3	2	1	1	1	1	1	Ē	DF	TE	CHI	N	3	1	
	elation			1	1				AND	A UI	IIVER	SITY	AUTO		_	

23AU044	CFD AND HEAT TRANSFER	L	T	P	C
		3	0	0	3

- To Enhance problem-solving skills by applying CFD and heat transfer principles
- Gain insight into different heat transfer mechanisms such as conduction, convection, and radiation
- To solve complex problems in the field of fluid flow and heat transfer by using high speed computers.

UNIT I GOVERNING EQUATIONS AND 9 BOUNDARY CONDITIONS

Basics of computational fluid dynamics – Continuity, Momentum and Energy equations – Chemical species transport equations – Initial conditions and boundary conditions – Time - Averaged equations for Turbulent Flow – Mathematical behavior of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations.

UNIT II FINITE DIFFERENCE AND FINITE VOLUME 9 METHODS FOR DIFFUSION

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy – Finite volume formulation for steady state One, Two and Three – Dimensional diffusion problems – Parabolic equations – Explicit and Implicit schemes - Stability conditions – Example problems on elliptic and parabolic equations – Use of Finite Difference and Finite Volume methods.

UNIT III FINITE VOLUME METHOD FOR 9 CONVECTION DIFFUSION

Steady one - Dimensional - Convection and diffusion - Central, Upwind differencing schemes - Properties of discretization schemes - Conservativeness, Boundedness, Transportiveness, Hybrid, Power - Law, QUICK Schemes.

UNIT IV | FUNDAMENTALS OF HEAT TRANSFER | 9 | Conduction in parallel, Radial and composite wall – Basics of

Convective heat transfer - Fundamentals of Radiative heat transfer - Flow through heat exchangers. PHASE CHANGE HEAT TRANSFER AND UNIT V 9 **HEAT EXCHANGERS** Nusselt's theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient - Fouling Factors - Analysis - LMTD method - NTU method. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the governing equations and boundary conditions for Fluid dynamics CO2: Analyze Finite difference and Finite volume method for Diffusion CO3: Solve Convective diffusion by Finite volume method **CO4:** Apply the concepts of heat transfer in three modes to real problems **CO5:** Apply the concepts of phase change heat transfer **CO6:** Examine the performance of heat exchangers TEXT BOOKS: Ghoshdastidar, P.S., "Computer Simulation of flow and 1 heat transfer", Tata McGraw Hill Publishing Company Ltd., 2017. Versteeg, H.K. and Malalasekera, W., "An Introduction to 2 Computational Fluid Dynamics: The finite volume Method", Pearson Education Ltd. Second Edition, 2007. REFERENCES: 1 Anil W. Date "Introduction to Computational Fluid Dynamics" Cambridge University Press, 2005.

2

Press, 2005

Ghoshdastidar P.S., "Heat Transfer", Oxford University

3	Muralidhar, K., and Sundararajan, T., "Computational
	Fluid Flow and Heat Transfer", Narosa Publishing House,
	New Delhi, 2014.

4 Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, 2004.

COs							PO	s					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	1	1	1	•	-	-	1	2	1	1	
2	3	3	2	2	1	1	1	1	-	-	-	1	3	1	1	
3	3	2	1	1	1	1	1	1	-	-	-	1	3	1	1	
4	3	2	1	1	1	1	1	1	-	-	-	1	3	1	1	
5	3	2	1	1	1	1	1	1	-	-	-	1	3	1	1	
6	3	3	2	2	1	1	1	1	-	-	-	1	3	1	1	
Overall	3	3	2	2	1	1	1	1	-		-	1	3	1	1	
Correlation	DRE		0			A		1		7						

COLLEGE OF TECHNOLOGY

23AU045	MECHNAICS OF MACHINES	L	T	P	C
		3	0	0	3

- To analyze the geometry and motion of mechanismsinvolved with displacement, velocity and acceleration.
- To evaluate the forces and torques acting on machine components to understand their motion.
- To explore cams and gears, vibration and balancing, effect of friction in power transmission.

UNIT I MECHANISMS

q

Definition – Machine and Structure – Kinematic link, pair and chain – Classification of Kinematic pairs – Constraint and motion – Degrees of freedom - Slider crank – Single and double – Crank rocker mechanisms – Inversions, applications – Introduction to Kinematic analysis and synthesis of simple mechanisms – Determination of velocity and acceleration of simple mechanisms.

UNIT II FRICTION

q

Types of friction – Friction in screw and nut – Screw jack – Pivot, collar and thrust bearings – Plate and cone clutch – Belt and rope drives – Creep in belts – Open and crossed belt drives – Ratio of tensions – Effect of centrifugal and initial tensions – Condition for maximum power transmission.

UNIT III GEARS AND CAMS

9

Gear – Types and profile – Nomenclature of spur and helical gears – Laws of gearing – Interference – Requirement of minimum number of teeth in gears – Gear trains – Simple, compound and reverted gear trains – Epicyclic gear trains – Cams different types of followers – Cam – Types of cams and followers – Cam design for different follower motions.

UNIT IV VIBRATION

C

Free, forced and damped vibrations of single degree of freedom systems – Force transmitted to supports – Vibration Isolation – Vibration absorption – Torsional vibration of shafts – Single and

multi	- Rotor systems - Geared shafts - Critical speed of shafts.							
UNIT	V BALANCING 9							
1	and dynamic balancing - Single and several masses in							
	ent planes - Primary and secondary balancing of							
_	reciprocating masses – Balancing of single and multi -Cylinder							
engin	engines - Governors and Gyroscopic effects.							
	TOTAL: 45 PERIODS							
	RSE OUTCOMES:							
	After completion of the course, the students will be able to:							
CO1:	Apply the concepts of kinematics and dynamics of							
	machinery in design and analysis of engineering							
	problems.							
	Apply the frictional concept in automotive systems.							
	Analyze cam and their motion							
CO4:	Choose the gears and gear trains for their applications.							
CO5:								
	vi <mark>brations</mark> .							
CO6:	Identify the required balancing mass needed in rotary and							
	reciprocating masses.							
TEXT	BOOKS:							
1	Bansal R.K., "Theory of Machines", Laxmi Publications							
	Pvt Ltd., New Delhi, 20th edition 2009.							
2	Rattan S.S., "Theory of machines", Tata McGraw Hill							
	publishing Co., New Delhi, 2nd edition 2011.							
	RENCES:							
1	Gosh A and Mallick A.K., "Theory of Machines and							
	Mechanisms", Affiliated East West press, 2009.							
2	Malhotra D.R. and Gupta H.C, "The Theory of machines",							
	Satya Prakasam, Tech. India Publications, 2008.							
3	Rao J.S. and Dukkipati R.V., "Mechanism and Machine							
	Theory", Second Edition, Wiley Eastern Limited, 2006.							
4	Shigley J.E. and Uicker J.J., "Theory of Machines and							
	Mechanisms", McGraw Hill, 2006.							

COs		POs												PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	-	1	1	1	-	-	-	1	3	-	1	
2	3	2	1	1	-	1	1	1	-	-	-	1	2	-	1	
3	3	3	2	2	-	1	1	1	-	-	-	1	3	-	1	
4	3	2	1	1	-	1	1	1	-	-	-	1	3	-	1	
5	3	3	2	2	-	1	1	1	1	ı	•	1	3	1	1	
6	3	2	1	1	-	1	1	1	1	ı	ı	1	3	1	1	
Overall	3	3	2	2	-	1	1	1	-	-	-	1	3	-	1	
Correlation																

23AU046	MACHINE DESIGN	L	T	P	С
		3	0	0	3

- To understand the design methodology for machine elements.
- To analyze the forces acting on a machine element and apply the suitable design methodology.
- To understand the various standards and methods of standardization.

UNIT I STEADY STRESSES AND VARIABLE 9 STRESSES IN MACHIN MEMBERS

Introduction to the design process - Factors influencing machine design, materials selection direct - Fits and tolerances - Direct, Bending and torsional stress equations - Impact and shock loading - Calculation of principle stresses for various load combinations, eccentric loading - Curved beams - crane hook and 'C' frame- Factor of safety - Theories of failure - Design based on strength and stiffness - Stress concentration

UNIT II SHAFTS AND COUPLINGS 9

Variable load and cyclic loads - Fatigue strength - S-N curve - Continued cyclic stress - Stress concentration factor - Soderberg and Good man equations. Design of solid and hollow shafts based on strength, Rigidity and critical speed - Keys, keyways and splines - Types of couplings - Design of couplings based on given speed and load conditions.

UNIT III TEMPORARY AND PERMANENT JOINTS 9

Threaded fasteners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints - Welded joints, Riveted joints for structures - Theory of bonded joints.

UNIT IV ENERGY STORING ELEMENTS AND 9 ENGINE COMPONENTS

Various types of springs, Optimization of helical springs - Rubber springs - Flywheels considering stresses in rims and

arms	for engines and punching machines - Connecting Rods and
crank	shafts.
UNIT	TV BEARINGS 9
Slidir	ng contact and rolling contact bearings - Hydrodynamic
journ	al bearings, Sommerfeld Number, Raimondi and Boyd
graph	ns - Selection of Rolling Contact bearings.
	TOTAL: 45 PERIODS
	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Model the machine members to withstand a steady load
	using failure theories.
CO2:	Develop shaft that are able to withstand the Fatigue
	failure by using Soderberg, Goodman and Gerbers
- 2	equations.
CO3:	Identify and Design coupling using given load conditions.
CO4:	
	rivets and welded joints) for integrating the machine
	elements in assembly under static and variable loading
	conditions.
CO5:	1 0
	applications (Railway buffer spring, Automobile
	suspension, engine valve and safety valve) to prevent
	unwanted shock and vibrations.
	Select the suitable bearing based on the application
	BOOKS:
1	Bhandari V, "Design of Machine Elements", 4th Edition,
	Tata McGraw-Hill Book Co, 2016.
2	R.S.Khurmi, "A text book of Machine Design", S Chand,
	New Delhi.
REFE	ERENCES:

Design", Tata McGraw-Hill Book Co., 2010.

1

Alfred Hall, Halowenko, A and Laughlin, H., "Machine

									_							
2	Ansel	U	gur	al,	"N	Лес	har	nica	1 1	Des	sign	-	An	In	teg	ral
	Appro	Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.														
3	P.C. C	Gop	e,	"N	Лас	hin	e	Des	sigr	1 -	- F1	unda	ameı	ntal	aı	nd
	Applic	atio	n"	, PF	HI 1	ear	nin	g p	riva	ite l	Ltd,	Nev	v De	lhi,	201	2.
4	R.B. Pa	R.B. Patel, "Design of Machine Elements", MacMillan														
	Publish	ners	s In	dia	ΡI	Ltd.	., Te	ech	-Ma	ax E	Educ	atio	nal r	eso	urc	es,
	2011.															
	60		POs PSOs													
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	2	2	2	-	1	-	1	3	-	2
	2	3	2	1	1	-	2	2	2	-	-	-	1	3	-	2
	3	3	2	1	1	-	2	2	2	1	•	-	1	3	-	2
	4	3	2	1	1	-	2	2	2	-	-	-	1	3	-	2
	5	3	3	2	2	-	2	2	2	1	-	-	1	3	-	2
-/4	6 OWER	3	2	1	1	-	2	2	2/	-	-	-	1	3	-	2
Ov	erall erall	3	3	2	2	-4	2	2	2	-	-	-	1	3		2
Corr	elat <mark>ion</mark>		8			Y	/						1			

VERTICAL -3 - VEHICLE RESEARCH AND VALIDATION

23AU047	ADVANCED AUTOMOTIVE	L	T	P	C
	MATERIALS	3	0	0	3

COURSE OBJECTIVES:

- To provide students with a comprehensive understanding of engineering materials, their properties, and the basis of material selection in various applications.
- To understand the concepts of materials selection for various components in internal combustion engines and automotive structures.
- To identify the technologies utilized in sensors and electronic devices for automotive applications.

UNIT I ENGINEERING MATERIALS AND THEIR 9 PROPERTIES

Classes of engineering materials - The evolution of engineering materials, Definition of materials properties, Displaying material properties using materials selection charts, Forces for change in materials selection and design, Materials and the environment - Selection of materials for automotive applications.

UNIT II BASIS OF MATERIAL SELECTION

Selection strategy, Attribute limits and Material indices, Structural index Selection procedure: Design process - Types of design, design requirements, Function, Material attributes, Shape and Manufacturing processes. Systematic process selection, Energy consumption for production, Material costs, Availability, Recyclability, Environmental consideration.

UNIT III	MATERIALS FOR ENGINES AND	9
	TRANSMISSION SYSTEMS	

Materials selection for IC engines: Piston, Piston rings, Cylinder, Engine block, Connecting rod, Crank shaft, Fly wheels, Gear box, Gears, Clutches.

UNIT IV	MATERIALS FOR AUTOMOTIVE	9
	STRUCTURES	

Materials selection for bearings, Leaf springs, Chassis & frames, Bumper, Shock absorbers, Wind screens, Panels, Brake shoes, Disc, wheels, Differentials, Damping and antifriction fluids, Tires and tubes.

UNIT V	ELECTRONIC MATERIALS FOR	9
	AUTOMOTIVE	

Materials for sensors and electronic devices meant for Engine Speed and Crank Position, Throttle position sensor, Manifold Absolute Pressure, Temperature Sensor, Oxygen Sensor, Piezoelectric Sensor, Ultrasonic Sensor and Dew Sensor, Sensor Materials and Technologies, Merits and Demerits.

Piezo	electric Sensor, Ultrasonic Sensor and Dew Sensor, Sensor
Mater	rials and Technologies, Merits and Demerits.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Compare different class of materials and their
6	applications.
CO2:	Identify the Selection criteria for various components and
	importance.
CO3:	Develop the various costs of materials for IC engines
	parts.
CO4:	Summarize various materials used for automotive
	structures.
CO5:	Select suitable electronic material for Automobile
	applications.
CO6:	Analyze different materials used for sensors in a vehicle.
TEXT	BOOKS:
1	Gladius Lewis, "Selection of Engineering Materials",
	Prentice Hall Inc. New Jersey USA, 1995.
2	Hiroshi Yamagata," The Science and Technology of
	Materials in Automotive Engines", Woodhead
	Publishing, 2005
REFE	RENCES:
1	ASM Handbook. "Materials Selection and Design", Vol.

	20- ASI	M N	Лet	als	Par	k C	hic	o. U	SA,	, 19	97.					
2	Cantor	,	"A	uto	omo	otiv	e	E	ngi	nee	ring	:	Ligh	ıtw	eigł	nt,
	Functio	Functional, and Novel Materials", Taylor & Francis														
	Group,	Group, London, 2006.														
3	James	A.	Ja	col	os,	Th	om	as	F.	Ki	lduf	f., '	"Eng	gine	erii	ng
	Materia	Materials Technology: Structure, Processing, Properties &														
	Selection	on"	, Pr	ent	ice	На	11, L	JSA	, 19	996.						
4	M F As	M F Ashby, "Materials Selection in Mechanical Design",														
	third edition, Butterworth- Heineman, New York, 2005.															
	Os		POs PSOs)s		
•	.08	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	-	-	- 1	-	-	-	1	3		-
- 2					_	-	- - 2	-	-	-	1 1/1	-	_	_	-	- - -
	3	3	2		_	Ē	- 2 2	- - -	- - -	-	1 1	-	1	3	1 1	- - -
	3 4,0WER	3	2	1	1	- - -	100	-	- - - - -	1 1		-	1	3 2	-	- - - -
	3 4,0WER	3 2 3	2 1 2	1 - 1	1 - 1	-	2	-	-			-	1 1 1	3 2 3	-	- - - -

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

		_					
23AU048		P C					
) 3					
	DBJECTIVES:						
 To provide students with a comprehensive understanding 							
of system and functional safety principles, and							
cybersecurity in the context of automotive technology and							
roac	l networks.						
• To u	inderstand functional safety assessment methods	and					
func	ctional safety design principles in the contex	t of					
auto	omotive systems.						
 Το ι 	understand the functional safety verification meth	nods					
in a	utomotive systems.						
UNIT I	INTRODUCTION	9					
Definition of System and Functional safety, Lifecycle of safe							
product, Safety terminologies, System engineering - From Faults							
to Hazards,	Reliability.						
UNIT II AUTOMOTIVE FUNCTIONAL SAFETY 9							
	STANDARD						
Cyber secur	rity in Road Network, V2V connectivity, SAE J301	.6 –					
Levels of au	ıtomation, ADAS system block diagrams, Overvi	.ew					
of Safety sta	andards ISO26262, IEC 61508, ISO 13849, ISO TS50)83,					
ISO PAS 21	448, and ISO SAE DIS 21434.						
UNIT III	FUNCTIONAL SAFETY ASSESSMENT	9					
	METHODS						
System deco	omposition, Safety analysis methods, Safety functi	on,					
Automotive	e Safety Integrity Levels (ASIL), Item definiti	on,					
Impact Ana	llysis, HARA, Functional Safety Concept, Diagno	stic					
techniques,	Technical Safety Concept.						
UNIT IV	FUNCTIONAL SAFETY DESIGN	9					
Safety funct	tion, Safety pitfalls, Residual faults, Fault prevent	ion					
design, Fau	lt tolerant design, Modelling methods in Techni	ical					
Safety cond	cept, Safety plan, Safe SW development, Role	of					
product safe	ety engineer.						
TINITE X7	PINICTIONIAL CAPPTY/MEDITICATION						

FUNCTIONAL SAFETY VERIFICATION

HW & SW integration checks, Safety - Related systems design assessments, Verification of functional safety, Test results integration in safety case, Introduction to Automotive SPICE - SW maturity model, introduction to SW stacks (AUTOSAR, RTOS, etc.).

DECO	industry modely inducation to 511 stacks (110 105111)
RIOS	s, etc.).
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the automotive functional safety product
	lifecycle.
CO2:	Choose the safety standards according to application in
	automotive industry.
CO3:	Choose a functional item on a vehicle level, construct
	hazard assessment and risk analysis, and select an ASIL
	level for the item.
CO4:	Analyze and select appropriate work products while
	understanding the lifecycle.
CO5:	List the requirements of functional safety at the system,
	hardware, and software design phases.
CO6:	1
	development, and in-use phases.
TEXT	BOOKS:
1	Hans- Leo Ross, "Functional Safety for Road Vehicles:
	New Challenges and Solutions for E-mobility and
	Automated Driving" Springer International Publishing;
	1st edition, 2016.
2	Joseph D. Miller, 'Automotive System Safety: Critical
	Considerations for Engineering and Effective
	Management', Wiley, 2020.
REFE	RENCES:
1	Markus Maurer, Hermann Winner, "Automotive Systems
	Engineering - I & II", Springer, 2013.
2	Bülent Sari, "Fail-operational Safety Architecture for

	ADAS/	'AI	S	yst	ems	s ai	nd	a N	1od	lel-	drive	en A	Appr	oac	h fo	or
	Depend	den	t Fa	ilu	re A	4na	lys	is",	Sp	ring	ger, 2	2020				
3	Peter J	oha	ann	es	Ber	gm	ille	r, "	Tov	war	ds F	unc	tion	al S	afe	ty
	in Driv	in Drive-by-Wire Vehicles", Springer, 2015.														
4	Robert Bosch GmbH - "Safety, Comfort and Convenience															
	Systems" - Wiley; 3rd edition, 2007.															
(COs POs PSO												s			
	.08	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	2 1 1 2 1 2 1 2 -											1		
		_														
	2	3	2	1	1	-	1	2	1	-	-	2	1	3	-	1
	3	3	2	1	1	-	1	2	1	- -	-	2	1	3	-	1
				_	_	- - -			_	- -	-		_		- -	_
	3	3	2	1	1		1	2	1	- - -	-	2	1	3	- - -	1
	3 4	3	2	1 2	1 2		1	2	1	-		2	1 1	3	- - -	1

Correlation

COLLEGE OF TECHNOLOGY

	_								
23AU049 COMBUSTION L T P	_								
TERMODYNAMICS AND 3 0 0	3								
HEAT TRANSFER									
COURSE OBJECTIVES:									
To study and understand the applications	of								
thermodynamics in combustion and concepts	of								
combustion kinetics and impart the knowledge ab-	out								
the different types of flames during combustion.									
 To apply the heat transfer concepts for the measurem 	ent								
of temperature in piston.									
To study about the different types of instruments for	the								
analysis of combustion in IC engines.									
UNIT I THERMODYNAMICS OF COMBUSTION	9								
Combustion process in IC Engines-Premixed - Diffusion, Fir	st								
and Second Law of Thermodynamics applied to combustion -									
Combustion Stoichiometry - Chemical equilibrium - Spra	ay								
formation.	di.								
UNIT II CHEMICAL KINETICS OF COMBUSTION	9								
Combustion kinetics, Rate of reaction, equation of Arrheniu	1S,								
Activation energy, Chemical thermodynamic model for Norm	al								
Combustion.									
UNIT III FLAMES	9								
Laminar - Premixed - Diffusion flames - Flame spec	ed								
correlations - Quenching - Flammability. Ignition flan	ne								
stabilization - Turbulent premixed, diffusion flames	_								
Damkohler number.									
UNIT IV HEAT TRANSFER IN IC ENGINES	9								
Engine heat transfer - Heat Balance. Measurement	of								
instantaneous heat transfer rate. Heat transfer modelling. He	at								
transfer coefficients- Radiative heat transfer. Temperatu	re								
measurement in piston.									
UNIT V INSTRUMENTATION	9								
Pressure sensors - Piezoelectric pickup - Crank angle encoder	r -								

Thermocouples. Hot wire anemometer - Laser Doppler anemometry and velocimetry for flow and combustion analysis in IC engines. Measurement of cylinder peak pressure and HRR calculation.

caicui	ation.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
=	After completion of the course, the students will be able to:
CO1:	Summarize the concepts of combustion in
	thermodynamics.
CO2:	Identify the kinetics behind the chemical reaction of
	combustion of fuels.
CO3:	Distinguish the flame types inside a combustion chamber.
CO4:	Apply the principle of different modes of heat transfer in
	IC engines.
CO5:	Explain the various measuring sensors related to
- 4	combustion analysis
CO6:	Analyze the in-cylinder pressure and HRR.
TEXT	BOOKS:
1	John. B. Heywood, "Internal Combustion Engines", Tata
	McGraw Hill Co., Newyork, 1988.
2	Achintya Mukhopathyay and Swarnendu Sen,
	"Fundamentals of Combustion Engineering John. B.
	Heywood," Internal Combustion Engines", CRC Press.,
	New York, 2019.
REFE	RENCES:
1	Ashley Campbel, "Thermodynamic analysis of
	combustion engine", John book company, New York,
	1979.
2	Ganesan. V. "Computer Simulation of Spark Ignition
	Engine Process", Wiley eastern India ltd, 1996.
3	Irvin Glasman, "Combustion" Academic Press, London,
	1987, ISBN 0-12-285851-4

4	J.I. Ramos, "Modeling of Internal Combustion Engine", McGraw hill book company New York 1990.															
	· · ·]	PO	s					P	SO	s
COs 1 2 3 4 5 6 7 8 9 1			10	11	12	1	2	3								
	1	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	3	2	2	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
	6	3	3	2	2	-	-	-	-	-	-	-	1	3	-	-
	erall elation	3	2	1	1	-	ı	ı	-	-	-	-	1	3	-	-

23AU050	ALTERNATIVE FUELS AND	L	T	P	C
	ENERGY SYSTEMS	3	0	0	3

- To provide students with a comprehensive understanding of alternative liquid fuels, and their applications in automotive engines.
- To provide students with a comprehensive understanding of alternative gaseous fuels, and their applications in automotive engines.
- To provide students with a comprehensive understanding of electric vehicles (EVs) and hybrid vehicles (HVs).

UNIT I ALCOHOL FUELS

9

Introduction to alternative fuels - Need for alternative fuels - Availability of different alternative fuels for SI and CI engines. Alcohols as fuels. Production methods of alcohols. Properties of alcohols as fuels. Methods of using alcohols in CI and SI engines. Performance combustion and emission characteristics in CI and SI engines. DME - DEE - as fuels.

UNIT II VEGETABLE OILS

9

Various vegetable oils and their important properties. Different methods of using vegetable oils engines – Blending, preheating Trans-esterification - Emulsification - Performance – Combustion - Emission Characteristics in diesel engines.

UNIT III HYDROGEN AND LPG

9

Production methods of hydrogen- Properties of hydrogen - Problems associated with hydrogen as fuel - Solutions. Different methods of using hydrogen in SI and CI engines - Performance - Combustion - Emission Characteristics in SI and CI engines. Hydrogen storage - Safety aspects of hydrogen and its limitations. LPG - Properties of LPG - Limitations of LPG as a fuel - Performance-combustion - Emission Characteristics in SI and CI engines.

UNIT IV BIOGAS AND NATURAL GAS

9

Production methods of Biogas and Natural gas - Properties.

Scrubbing of CO₂ and H₂S from Biogas. Modification required to use in SI and CI Engines – Performance -combustion – Emission characteristics of Biogas and Natural gas in SI and CI engines

UNIT V | ELECTRIC AND HYBRID VEHICLES

9

Layout of Electric vehicle and Hybrid vehicles – Advantages and drawbacks of electric and hybrid vehicles. System components and drives - Electronic control system – Different configurations of Hybrid vehicles. Power split device. High energy and power density batteries.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Develop knowledge in all the possible ways of using alcohols as a fuel in IC engines.
- CO2: Summarize on biodiesel and their properties to use as fuel in CI and SI engines.
- CO3: Identify the uses of hydrogen and LPG as fuel in IC engines as an alternative for fossil fuels.
- CO4: Explain the usefulness of natural gas and biogas towards IC engines.
- **CO5:** Develop the adequate knowledge on electric vehicle.
- **CO6:** Show the adequate knowledge on hybrid vehicle.

TEXT BOOKS:

- Ayhan Demirbas, 'Biodiesel A Realistic Fuel Alternative for Diesel Engines', Springer- Verlag London Limited 2008.
- 2 Devaradjane. Dr. G., Kumaresan. Dr. M., "Automobile Engineering", AMK Publishers, 2013.

REFERENCES:

1 Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, The Biodiesel Handbook, AOCS Press Champaign, Illinois 2005.

2	Richard	d L	Be	cht	old	Р	.E.	Alt	ern	ativ	e Fι	ıels	Gui	de 1	boo	k,
	Society	of	Au	ton	noti	ve	Eng	gine	ers	, 19	97.					
3	Science	d	irec	t je	our	nal	s (Bio	mas	ss (& B	io e	nerg	gy,	Fue	el,
	Energy	, I	Ene	rgy	C	onv	ers	ion	. N	I an	ager	nent	:, Н	ydı	oge	en
	Energy	, et	c.) (on l	oiof	uel	s.									
4	Transa	nsactions of SAE on Biofuels (Alcohols, vegetable oils,														
	CNG, I	, LPG, Hydrogen, Biogas etc.).														
	Os							PO	s					F	SC	s
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	1	2	1	1	1	-	1	3	-	1
	2	2	1	-	-	-	1	2	1	1	ı	-	1	2	-	1
	3	3	2	1	1	-	1	2	1	-	-	-	1	3	-	1
	4	2	1	-	-	-	1	2	1	-	-	-	1	2	-	1
	5	3	2	1	1		1	2	1			_	1	3		1

1 2 1

Overall

Correlation

3 2 1 1

1

1

3

1

1

23AU051	AUTOMOTIVE	L	T	P	C
	INSTRUMENTATION	3	0	0	3

- To provide students with a comprehensive understanding of mechanical measurement techniques and vibration and body testing methods in automotive engineering.
- To understand the concepts of crash and brake testing methods in automotive engineering.
- To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering.

UNIT I MECHANICAL MEASUREMENT

9

Introduction to measurements – Construction, Principle, Working of Instruments for measuring force, Torque, Pressure, Temperature, Fluid flow, Velocity, Rotational speed.

UNIT II VIBRATION AND BODY TEST

9

Vibration measurement instrument – accelerometer and signal conditioning. Dynamic simulation sled testing, methodology, vehicle acceleration measurement and documentation. Dolly roll over test, dolly role over fixture, photographic / video coverage. Vehicle roof strength test –Door system crush test – wind tunnel tests.

UNIT III | CRASH AND BRAKE TEST

9

Crash tests – Standards – Road hazard impact test for wheel and tyre assemblies, test procedures, Failure and performance criteria. Bumpers - Types of tests, pendulum test, Fixed collision barrier test, Procedure, Performance criteria. Air and hydraulic brake test, Air brake actuator, Valves test, Performance requirements.

UNIT IV ENGINE EXPERIMENTAL TECHNIQ

q

I.S Code for Engine testing – Instruments for performance, Emission and combustion testing of engine, Instrumentation for measuring noise, Vibration in cylinder.

IINIT	V VEHICLE EXPERIMENTAL TECHNIQUES	9									
	ratory tests - Test tracks - Endurance Tests - Dynam										
	ring fatigue, Dynamic radial fatigue tests - Procedu										
	ng moment and radial load calculations.	ıc,									
Derica	TOTAL: 45 PERIO	DS									
COU	RSE OUTCOMES:										
	After completion of the course, the students will be able	to:									
	Show the knowledge of engine measurement for vario										
	parameters.										
CO2:	O2: Develop a measurement strategy for vibration test.										
	Explain standards of crash test and identify the failures	· .									
CO4:											
CO5:	Analyze the engine characteristics using different	nt									
	instruments										
CO6:	Explain about endurance test and fatigue test of vehicle	<u>).</u>									
TEXT	BOOKS:	ľ									
1	Crouse W H and Anglin D L., "Automotive Mechanics	s"′									
	Tata McGraw Hill Publishing Company, 2004.	F. II									
2	Jain R K "Mechanical and Industrial Measurements	s",									
	Khanna Publishers, Delhi, 1999.										
REFE	RENCES:										
1	Beckwith TG and Buck N L, "Mechanical Measurements	s",									
	Addition Wesley Publishing Company Limited, 1995.										
2	J.G .Giles, Vehicle Operation & Testing. Volume 7	of									
	automotive technology series, Iliffe, 1969.										
3	Stockel M W, "Auto Mechanics Fundamentals", Goo	od									
	Heart-Wilcox Co., Inc., 2000.										
4	Richard D. Atkins, "An Introduction to Engine Testing	ng									
	and Development", SAE International, 2009.										

COs		POs)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
3	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
5	3	3	2	2	-	-	1	1	1	•	•	1	3	•	-
6	2	1	-	-	-	-	1	1	1	ı	ı	1	2	-	-
Overall Correlation	3	2	1	1	-	-	-	-	1	ı	ı	1	3	1	-

TESTING AND MEASUREMENT SYSTEMS OURSE OBJECTIVES: To provide students with a comprehensive understanding of measurement systems and transducers commonly used in automotive applications. To understand the various measurements commonly used in automotive engineering. To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measuremental techniques - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes - Endurance Tests - Crept tester, Vahiela porformance tests - Brakes												
COURSE OBJECTIVES: • To provide students with a comprehensive understanding of measurement systems and transducers commonly used in automotive applications. • To understand the various measurements commonly used in automotive engineering. • To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND 7 TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	23AU052	TESTING AND	L	T	P	C						
To provide students with a comprehensive understanding of measurement systems and transducers commonly used in automotive applications. To understand the various measurements commonly used in automotive engineering. To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND 7 TERMINATING DEVICE 7 Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -		MEASUREMENT SYSTEMS	3	0	0	3						
understanding of measurement systems and transducers commonly used in automotive applications. • To understand the various measurements commonly used in automotive engineering. • To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND 9 TERMINATING DEVICE 9 Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	COURSE	OBJECTIVES:										
commonly used in automotive applications. To understand the various measurements commonly used in automotive engineering. To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND 9 TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	• To	provide students with a co	omp	reh	ens	ive						
To understand the various measurements commonly used in automotive engineering. To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND 7 TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -				anso	luc	ers						
used in automotive engineering. To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND 7 TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -												
• To provide students with a comprehensive understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND 7 TERMINATING DEVICE 9 Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -			ts c	omi	moı	nly						
understanding of experimental techniques used in engine and vehicle testing in automotive engineering. UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -		8		1								
UNIT I BASIC OF MEASUREMENT SYSTEMS 9 Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	1											
Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. VINIT II												
Introduction to Measurement systems-static and dynamic measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	UNIT I BASIC OF MEASUREMENT SYSTEMS 9											
measurement - Closed and open loop system - Requirements and characteristics - Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -				dvn	am	ic						
and characteristics – Analysis of experimental detail. Error analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICE Transducers for Automotive Applications – Amplifiers – Filters – Data Acquisition – Indicators, Printers and displays – Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque – Wheel force – Exhaust temperature – Aerodynamic measurements – G-force measurement – Fuel flow measurements – Vibration measurement – Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing – Study of engine dynamometers – Instrumentation for testing of engine - Measurement of noise – Vibration – In cylinder gas flow – Flame temperature – Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests – Study of chassis dynamometer – Test tracks –				-								
analysis - Calibration of instruments. UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICE Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -												
TRANSDUCERS, MODIFIERS AND TERMINATING DEVICE Transducers for Automotive Applications – Amplifiers - Filters – Data Acquisition - Indicators, Printers and displays – Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque – Wheel force – Exhaust temperature – Aerodynamic measurements – G-force measurement – Fuel flow measurements – Vibration measurement – Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers – Instrumentation for testing of engine - Measurement of noise – Vibration - In cylinder gas flow – Flame temperature – Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests – Study of chassis dynamometer – Test tracks –												
Transducers for Automotive Applications - Amplifiers - Filters - Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9 Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	ARC Andrew		7		Ì	9						
- Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9												
- Data Acquisition - Indicators, Printers and displays - Signal analyzer. UNIT III ENGINE MEASUREMENT SYTEMS 9	Transducers for Automotive Applications - Amplifiers - Filters											
Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	100000000000000000000000000000000000000											
Engine torque - Wheel force - Exhaust temperature - Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	100											
Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	UNIT III	ENGINE MEASUREMENT SYTEMS	AUTO	NON	005	9						
Aerodynamic measurements - G-force measurement - Fuel flow measurements - Vibration measurement - Acoustic measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	Engine to	rque – Wheel force – Exhaust ter	npe	ratu	re	-						
measurement. UNIT IV ENGINE EXPERIMENTAL TECHNIQUES 9 I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	_	-	eme	nt –	Fu	el						
UNIT IV ENGINE EXPERIMENTAL TECHNIQUES I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	flow meas	surements - Vibration measurement	-	Acc	ust	ic						
I.S Code for Engine testing - Study of engine dynamometers - Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	measureme	ent.										
Instrumentation for testing of engine - Measurement of noise - Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	UNIT IV	ENGINE EXPERIMENTAL TECHNIQ	UE	5		9						
Vibration - In cylinder gas flow - Flame temperature - Dynamic Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests - Study of chassis dynamometer - Test tracks -	I.S Code fo	or Engine testing - Study of engine dyna	amo	met	ers	_						
Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests – Study of chassis dynamometer – Test tracks –	Instrument	tation for testing of engine - Measureme	nt o	f no	oise	_						
Cylinder pressure measurements. UNIT V VEHICLE EXPERIMENTAL TECHNIQUES 9 Laboratory tests – Study of chassis dynamometer – Test tracks –	Vibration -	In cylinder gas flow - Flame temperatur	re - l	Dyn	am	ic						
Laboratory tests – Study of chassis dynamometer – Test tracks –												
		-	QUI	ES		9						
Endurance Tosts Crash tosts Vahiala nouformanas tost Proles	Laboratory	tests - Study of chassis dynamometer -	Test	tra	cks	_						
Endurance resis – Crash tests – vehicle performance test – brake	Endurance	Tests - Crash tests - Vehicle performance	e tes	t – I	3ral	кe						

tests.

										,	ТОТ	AL:	45 F	PER	IOI	DS
COU	RSE OU	TC	ON	1ES	}:											
	After co	mp	leti	on (of t	he o	cou	rse	, the	e st	uder	nts w	vill b	e al	ble '	to:
CO1:	Show	the	ir	kno	wl	edg	ge	abc	ut	dif	fere	nt r	neas	ure	me	nt
	method															
CO2:	Utilize						ne r	nea	sur	em	ent o	of pr	essu	re,	forc	e,
	temper															
CO3:	Develo	-						_	iing	; m	easu	ring	inst	rur	nen	ıts
	for auto															
	Identify															
CO5:	Examir		he p	oara	ame	eter	s of	the	e en	ıgin	e inc	cludi	ing n	ois	e ar	ıd
		vibration.														
CO6:	_	Interpret measurement data, to estimate measurement												nt		
	uncertainties. BOOKS:															
			T T		1 4	1	. ,		- //				3.4	1		"
1		Crouse W H and Anglin D L., "Automotive Mechanics"														
2	Tata McGraw Hill Publishing Company, 2004. Rangan Sharma and Mani, Instrumentation Devices and															
2	Rangan, Sharma and Mani, Instrumentation Devices and systems, Tata McGraw Hill Publishing Co., Ltd., 1990.															
DEEE	RENCE		ata	1010	.GI	aw	111	II	ubi	ISIII	ng C	ر.0., 1	Ju.,	195	<i>7</i> 0.	
1	A.W.		lae		Fno	rine	opri	nσ	P	rec	ision	1 N	leası	1re1	mer	nt.
•	Chapm													uici	iiici	ιι,
2	Beckwi													eme	nts	<i>"</i>
_	Oxford															′
3	D.Pata							_								ta
	McGra				-									- ,	_	
4	Richard													· Te	estir	ng
	and Development", SAE International, 2009.										O					
	Os							PO						I	PSO)s
	.Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	ı	1	-	-	-	-	ı	-	1	2	1	1
	2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	5	3	3	2	2	1	-	-	-	-	-	-	1	3	1	-
	6	2	1	-	-	1	-	-	-	-	-	-	1	2	1	-
	erall	3	2	1	1	1	_	_	_	_	_	_	1	3	1	_
Corr	elation		_	1	1	1							_	,	1	

23AU053 VEHICLE BODY ENGINEERING L T P C
3 0 0 3
COURSE OBJECTIVES:
To provide students with a comprehensiv
understanding of car body, bus body and commercia
vehicle details in automotive design and manufacturing
To understand the concepts of vehicle aerodynamics in
automotive engineering.
To provide students with a comprehensiv
understanding of body materials, trim, mechanisms
and body repair techniques in automotive engineering
UNIT I CAR BODY DETAILS 9
Types of Car body - Saloon, convertibles, Limousine, Racing and
Sports car - Car body terminology - Visibility - Regulations,
Improvement in visibility and tests for visibility. Driver seat
design - Car Body Construction - Various panels in car bodies.
Safety: Safety design, safety equipment for cars.
UNIT II BUS BODY DETAILS 9
Types of bus body: based on capacity, Distance travelled and
based on construction - Bus body lay out, Floor height, Engine
location, and Entrance and exit location. Types of metal sections
used - Regulations - Constructional details: Conventional and
integral.
UNIT III COMMERCIAL VEHICLE DETAILS 9
Types of commercial vehicle bodies - Light commercial vehicle
body. Construction details of Flat platform body, Tipper body
and Tanker body - Dimensions of driver's seat in relation to
controls - Driver's cab design.
UNIT IV VEHICLE AERODYNAMICS 9
Objectives, Vehicle drag and types. Effects of forces and
moments. Side wind effects on forces and moments. Various
body optimization techniques for minimum drag. Wind tunnels
- Principle of operation, Types. Wind tunnel testing such as:

Flow visualization techniques, Airflow management test - Measurement of various forces and moments by using wind tunnel balance.

UNIT V BODY MATERIALS, TRIM, MECHANISMS 9 AND BODY REPAIR

Types and properties of materials used in body construction and insulation - Steel sheet, timber, plastics and GRP, Insulation materials. Body trim items - Body mechanisms. Hand tools power tools for body repair. Vehicle corrosion - Anticorrosion methods -Modern painting process procedure.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the different aspects of car body based on construction details.
- CO2: Summarize the various types of bus body.
- CO3: Identify the commercial vehicle body based on construction details.
- CO4: Explain the role of various aerodynamic forces and moments in vehicle body design.
- CO5: Identify the properties of various materials used in vehicle body construction.
- **CO6:** Select hand tools for body repairs and maintenance.

TEXT BOOKS:

- 1 Dieler Anselm., The passenger car body, SAE International, 2000.
 - 2 James E Duffy, Body Repair Technology for 4-Wheelers, Cengage Learning, 2009.

REFERENCES:

- Braithwaite, J.B., Vehicle Body building and drawing, Heinemann Educational Books Ltd., London, 1997.
- **2** Giles, G.J., Body construction and design, Illiffe Books Butterworth & Co., 1991.

3	John	Fenton,	Vehicle	Body	layout	and	analysis,				
	Mechanical Engineering Publication Ltd., London, 1992.										

4	Powloski, J., Vehicle Body Engineering, Business Books
	Ltd., 1998.

COs	POs										PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	3	2	1	-	-	-	1	2	-	1
2	2	1	-	-	-	3	2	1	-	-	-	1	2	-	1
3	3	2	1	1	-	3	2	1	-	-	-	1	3	-	1
4	2	1	-	-	-	3	2	1	-	-	-	1	2	-	1
5	3	2	1	1	-	3	2	1	-	-	-	1	3	-	1
6	3	2	1	1	-	3	2	1	1	ı	-	1	3	-	1
Overall Correlation	3	2	1	1	-	3	2	1	-	1	-	1	3	-	1

23AU054	IC ENGINE PROCESS	L	T	P	C
	MODELLING	3	0	0	3

- To understand the principles and fundamentals of simulation, including the advantages of computer simulation over traditional experimental methods in analyzing internal combustion engine performance.
- To provide students with a comprehensive understanding of stoichiometry and adiabatic flame temperature in the I.C engine combustion processes.
- To gain insights into SI engine simulation techniques that include the modeling of gas exchange processes and CI engine simulation

UNIT I INTRODUCTION TO SIMULATION

Introduction to Simulation, Advantages of computer simulation, Classification of engine models. Intake and exhaust flow models – Steady and Unsteady flow - Gas Dynamic Models. Thermodynamic based in cylinder models. Step by step approach in SI engine simulation.

UNIT II STOICHIOMETRY AND ADIABATIC 9 FLAME TEMPERATURE

Reactive processes, Heat of reaction, measurement of URP, Measurement of HRP. Introduction - Combustion equation for hydrocarbon fuels. Calculation of minimum air, excess air and stoichiometric air required for combustion. Introduction, Complete combustion in C-H-N-O systems, Constant volume adiabatic combustion, constant pressure adiabatic combustion, calculation of adiabatic flame temperature.

UNIT III | SI ENGINE SIMULATION 9

Introduction to SI Engine simulation with air as working medium. Fuel air cycle analysis - Temperature drop due to fuel vaporization, Full throttle operation, Work output and efficiency calculation, Part - Throttle operation, Engine performance at part throttle, supercharged operation. SI Engines simulation with

_	essive combustion.	
UNIT	IV SI ENGINE SIMULATION WITH GAS	9
	EXCHANGE PROCESS	
Intro	luction to gas exchange process, Heat transfer proce	ess,
frictio	on calculations, Compression of simulated value	es,
Valid	ation of the computer code, Engine performan	ice
	ation, Pressure crank angle diagram, Brake power, Bra	ke
therm	al efficiency, Effect of speed on performance.	
UNIT	V CI ENGINE SIMULATION	9
Zero,	one and multi-zone models for diesel engine combustic	on.
Wieb	e's Model, Whitehouse model and Watson model for die	sel
comb	ustion. Heat release rate and heat transfer mode	els.
Equil	ibrium calculations. Parametric studies on simulat	ed
engin	e performance.	
	TOTAL: 45 PERIO	DS
COU	RSE OUTCOMES:	ř.
4	After completion of the course, the students will be able	to:
CO1:	Explain about simulation of IC engine components.	
CO2:	Apply the principle of the stoichiometric ratio as	nd
	adiabatic flame temperature.	
CO3:	Develop a simulation model for SI engine.	5
CO4:	Summarize the concept of gas exchange process in	SI
	engine.	
CO5:	Develop a simulation model for CI engine.	
CO6:	Examine parametric studies of CI engine simulation.	
TEXT	BOOKS:	
1	Ganesan.V. "Computer Simulation of spark igniti-	on
	engine process", Universities Press (I) Ltd, Hyderba	ad,
	1996.	
2	Lino Guzzella and Christpher H.Onder, "Introduction	to
	Modeling and Control of Internal Combustion Engi	
	Systems", Springer, 2010.	

REFE	RENCE	S:														
1	Ashley		Ca	mp	bel,	,	"Th	err	noc	lyn	amic	2 6	analy	ysis		of
	combu	combustion engines", John Wiley & Sons, New York, 1986.														
2	Bensor	Benson.R.S., Whitehouse.N.D., "Internal Combustion														
	Engine	Engines", Pergamon Press, oxford, 1979														
3	John. E	John. B. Heywood, 'Internal Combustion Engines'", Tata														
	McGra	McGraw Hill Co., Newyork, 1988.														
4	Ramos	Ramoss.A.L., "Modelling of Internal Combustion Engines														
	Processes", McGraw Hill Publishing Co., 1992.															
-	COs PSOs PSOs															
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	-	-	1	ı	1	1	2	-	-
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	3	3	2	1	1	1	-	-	e -	1).	-	1	3	1	-
- 2	4 OWER	2	1	g	-	1	A	/-	-/	7	1	P- ,	1	2	1	-
4	5	3	2	1	1	1	K	-	4	-	-	-	1	3	1	-
Y	6	3	3	2	2	1	7	×	7	1	4		1	3	1	-
	erall elation	3	2	1	1	1	_	-	-			_	1	3	1	-

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

VERTICAL -4 - SPECIAL PURPOSE VEHICLES

23AU055	AGRICULTURAL VEHICLES	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the various types of agricultural vehicles and their functions
- To familiarize with safety practices and regulatory compliance related to agricultural vehicle operation
- To develop problem-solving and decision-making skills relevant to agricultural vehicle operation and management.

UNIT I TRACTORS

ç

Tractors - Classification - Types of tractors with their application, Power take off shaft - Purpose - Application - Types, hydraulic system in tractors - Necessity, Depth & draft control -Types. Final drives - Farming equipment's - Types - Disc plough, Mouldboard plough, Harrow plough, Rotary plough, Thresher, Sprayer. Farm Equipment for Marginal, Small & amp; Medium land holding farmers - Power Tiller & amp; Attachments, Power reaper, Power sprayer, Irrigation Pump set, Electric Farm Equipment (viz Brush Cutter, Battery operated sprayer, Multipurpose Power Tiller) Mini Robots.

UNIT II FARM MACHINERY DESIGN

9

Research and development procedure; Basic design principles of farm machines, Implements and tools. Design of various components for performance, Strength and wear. Selection of materials of construction. Design of power transmission of elements, Bearings, Controls and safety devices. Seed drill, planter, harvesting and threshing machine and its components.

UNIT III TRACTOR DESIGN PRINCIPLES

9

Trends in tractor design. Principles of similitude in engine design. Design of principle engine parts. Design of main, big and small end bearings. Design of cooling and lubrication systems. Design of tractor clutches, Brakes, Transmission, chassis,

Steering, and hydraulics system. Design of seat and controls from ergonomic consideration. Introduction to computer aided design.

UNIT IV FARM MACHINERY DYNAMICS, NOISE AND VIBRATION

Tractor chassis mechanics, Hydraulic control of tractors, Determination of C.G and moment of inertia, Dynamic stability and tractive ability of tractor, Tire selection. Noise and vibration effects, Design of operators' seat and suspension and controls, Strain gauges and instruments for the measurement of tractor engine power, Torque, Fuel consumption, Draft and drawbar power.

PRECISION FARMING MACHINERY UNIT V 9 **TECHNIQUES**

Concept and introduction of precision farming - Importance, Definition, Principles and concepts - Role of GIS and GPS -Mobile mapping system and its application in precision farming - Geo referencing and photometric correction - Sensors for information gathering - UAV - Geo statistics - Robotics in horticulture

	AFFILIATED TO ANNA U TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the fundamentals of Agricultural Vehicles.
CO2:	List the tools and techniques used in Agricultural
	vehicles.
CO3:	Explain the design of the farm machinery
CO4:	Identify the implementation and challenges in precision
	farming machinery techniques.
CO5:	Develop continuous improvement methods for farming.
CO6:	Identify the methods of improving productivity,
	efficiency and making farming more sustainable.

TEXT	ВООК	S:														
1	Srivast	ava	, <i>I</i>	۱.K	., (Goe	rin	g,	C.F	Ξ.,	Roh	rbac	h, I	R.P.	ar	nd
	Buckm	aste	er, l	D.R	. "I	Eng	ine	erir	ıg F	rin	ciple	es of	Agr	icu	ltur	al
	Machir	nes'	', 2ı	nd I	Edi	tior	ı. U	SA	. 20	13.	_					
2	Kepnei	:, R	.A.	, B	ain	er,	R.	anc	l B	erge	er, E	E.L.	Prin	cipl	les	of
	Farm Machinery. John Wiley and Sons, New York. 1978.															
REFE	REFERENCES:															
1	Singh, T.P, "Farm Machinery", PHI Learning Pvt. Ltd.,															
	Delhi, 2017.															
2	MacMillan, R.H. Mechanics of Tractor Implement															
	Performance. University of Melbourne, 2002.															
3	Bernacki, H., Haman, J. and Kanafojski, Cz. "Agricultural															
	Machines: Theory and Construction". U.S. Dept. of															
	Commerce, National Technical Information Service,															
- 2	Springfield, Virginia, 1972.															
4	Liljeda	hl,	J.B.	, Tu	ırno	quis	st, I	² .K.	, Sr	nith	ı, D.	W. a	nd I	Iok	i, N	1.,
	"Tracto						- 1				المنسد		Editi	on.	Cl	3S
	Publish	ers	&	Dis	trik	outo				Dell	ni, 20	004				***
0	COs	4						PO						I	PSC	s
	WEER	1	2	3	4	5	6	7		9	10	11	12	1	2	3
	1	2	1	-	-		1	1	1	A.UA	IIVER:	dl <u>Y</u>	1	2	0US	1
	2	3	3	2	2	-	1	1	1	-	-	-	1	3	-	1
	3	2	1	-	-	-	1	1	1	-	-	-	1	2	-	1
	4	3	2	1	1	-	1	1	1	-	-	-	1	3	-	1
	5	3	2	1	1	-	1	1	1	-	-	-	1	3	-	1
	6	3	2	1	1	-	1	1	1	-	-	-	1	3	-	1
_	erall	3	2	1	1	-	1	1	1	-	-	-	1	3	-	1
Corr	elation															

23AU056	DEFENCE VEHICLES	L	T	P	C
		3	0	0	3

- To learn about defence vehicle systems, including their design, construction, and operation.
- To understand the latest technological innovations in defence vehicle design, such as improvements in armor protection, weapon systems integration
- To familiarize on safety protocols and best practices to prevent accidents

UNIT I COMBAT VEHICLE ENGINEERING

9

Engineering principles to the design of combat systems with emphasis on detection, Tracking and identification systems, Vehicle Configuration, Man Machine Interface, Sensor technologies (radars, ESM, active and passive sonar, infrared, electro-optical, and magnetic/electric/gravity field sensors).

UNIT II AEROSPACE PROPULSION

9

Classification & mode of operation of various propulsion systems, basis thermodynamics & fluid Dynamics. Rocket motor design & analysis, Gas Turbine Engine design, GT engine efficiency, GT engine heat transfer & cooling. Jet engine control (compressor performance, axial turbine performance, Fuel systems & pumps, airframe fuel systems, hydro mechanical fuel metering, Electronics engine control).

UNIT III NAVAL TECHNOLOGY

9

Introduction of naval combat systems, Integration of naval combat systems, Detection, Engagement and control elements interact with each other and on how to combine them into an efficient and survivable combat system, System-oriented approach to integrating the principles of Naval Architecture and Marine Engineering in the design of ship subsystems.

UNIT IV	COMMUNICATION SYSTEMS AND	9
	SENSORS	

Introduction to RADAR, Radar parameters/definitions, radar

equations, Radar cross section (RCS) & Theory of detection, Clutter. Atmospheric propagation, Surveillance and Tracking Radar, Free space optical communication, Fiber optics communication, Wireless/cellular communications.

UNIT V	HIGH ENERGY MATERIALS	9
	TECHNOLOGY	

Understanding of high energy materials from theoretical and practical standpoints, to formulate the bases for evaluating competitive and alternative high energy material systems, High energy materials physics and chemistry. Molecular energetic of the high energy materials.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the fundamentals of combat vehicle engineering.
- CO2: Identify the tools and techniques used in naval technology.
- **CO3:** Summarize the communication systems and sensors.
- CO4: Analyze high energy materials technology.
- CO5: Apply the principles of basis thermodynamics & fluid dynamic in defence vehicle
- **CO6:** Explain high energy material technology

TEXT BOOKS:

- 1 Measurement, Instrumentation and sensor Handbook", by John G Webster. Publisher: CRC Press, Florida.
- **2** Engineering Principles of Combat Modeling and Distributed Simulation", by Andreas Tolk. Publisher: Wiley Publication.

REFERENCES:

- 1 "Rocket Propulsion Elements", by George Paul Sutton and Oscar Biblarz. Publisher: John Wiley & Sons, 2017.
- 2 "Modern Engineering for Design of Liquid-Propellant Rocket Engines: Progress in Astronautics and Aeronautics

	Series"	by	Die	eter	K.	Hu	zel	, Da	avic	łН	. Hu	ang,	199	2.		
3	"Intro	duc	tio	n to	N	ava	a1 P	Arch	nite	ctu	re",	by [Гирр	er,	E.	C
	Fourth.	Fourth. Publisher Butterworth-Heinemann. Formerly														
	Muckle	Muckle's Naval Architecture for Marine Engineers, 2005.														
4	"The N	'The Maritime Engineering Reference Book: A Guide to														
	Ship D	Ship Design, Construction and Operation". Publisher:														
	Butterv	Butterworth-Heinemann, 2008.														
	POs										PSOs					
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	2	2	-	-	-	1	2	-	2
	2	3	2	1	1	-	2	2	2	-	-	-	1	3	-	2
	3	2	1	-	-	-	2	2	2	-	-	-	1	2	-	2
	4	3	3	2	2	-	2	2	2	-	-	-	1	3	-	2
	5	3	2	1	1	-	2	2	2	-1	-	-	1	3	17	2
-2	60WER	2 1 2 2 2 1									2	1	2			
1/800	erall elat <mark>ion</mark>	3	2	1	1	-	2	2	2	-	-	- (1	3	Ī	2

COLLEGE OF TECHNOLOGY

23AU057	CONSTRUCTION VEHICLES	L	T	P	C
		3	0	0	3
COLIDEE OBL	ECTIVES.				

- To learn about current industry trends, emerging technologies, and future directions in construction vehicle design and operation.
- To familiarize with safety practices and regulatory compliance related to construction vehicle operation.
- To understand the operational principles associated with construction vehicles, including maneuvering, and utilization of different attachments and accessories.

UNIT I INTRODUCTION AND EQUIPMENT COST

Selection of equipment for earth work - Earth moving operations

- Types of earthwork equipment- Tractors, Motor graders, Scrapers, Front end waders, Earth movers.

UNIT II DOZERS AND SCRAPERS

9

Dozers types- Crawler bulldozer, Wheel bulldozer, Mini bulldozer, Straight blades (S-blade), Universal blade (U-blade), S-U (semi-u) blade, Angle blade. Scrapers types – Single - Engine wheeled, Dual-engine wheeled, Elevating and pull-type scrapers.

UNIT III EARTH MOVING CONSTRUCTIONAL 9 MACHINES-TRUCKS AND HAULING EQUIPMENT

Dumpers - Safety features, safe warning system for dumper, Design aspects on dumper body, Articulated dumpers, Loaders - Single bucket, Multi bucket and rotary types - bulldozers, Kinematics for loader and bulldozers with operational linkages, Motor graders, Power shawl, Bush cutters, Stumpers.

UNIT IV VEHICLE SYSTEMS & ADVANCE 9 FEATURES 9

Brake system and actuation – Disc caliper brakes. Body hoist and bucket operational hydraulics. Hydro - pneumatic suspension

cylinders. Power steering system. Articulated steering assembly - Power and capacity of earth moving machines.

UNIT V OFF-THE-ROAD TIRES AND TRACKS

9

Types of off-the-road tires, Transport for earthmoving machines, Work for slow moving earthmoving machines and load and carry for transporting - digging. Off-highway tires have six categories of service compactor, Earthmover, Grader, Loader, log-skidder and mining and logging.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the various earth moving operations
- **CO2:** Identify the types of dozers.
- CO3: Explain the construction, working and applications of various earth moving operations.
- **CO4:** Analyze the types and use of off road tires.
- **CO5:** Distinguish the concept of hydraulics and pneumatics.
- CO6: Summarize various earth moving constructional machines, trucks and hauling operations.

TEXT BOOKS:

- Abrosimov.K. Bran berg.A and Katayer.K. & quot; Road making machinery & quot; MIR Publishers, Moscow, 1971.
- 2 Satyanarayana. B., Construction planning and equipment standard publishers and distributors, New Delhi, 1985.

REFERENCES:

- 1 Bart H Vanderveen; Tanks and Transport Vehicles Frederic Warne and Co Ltd. London.
- S. Ageikin, "Off the Road Wheeled and Combined Traction Devices: Theory and Calculation", Ash gate Publishing Co. Ltd. 1988.
- 3 Schulz Erich; Diesel equipment I, McGraw Hill Company, London, 1982.

4	Robert L Peurifoy, "Construction, planning, equipment
	and methods" Tata McGraw Hill Publishing company
	Ltd. 2002.

COs							PO	S					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	-	2	1	1	-	-	-	1	2	-	1	
2	3	2	1	1	-	2	1	1	-	-	-	1	3	-	1	
3	2	1	-	-	-	2	1	1	-	-	-	1	2	-	1	
4	3	3	2	2	-	2	1	1	-	-	-	1	3	-	1	
5	3	3	2	2	-	2	1	1	-	-	-	1	3	-	1	
6	2	1	-	-	-	2	1	1	-	-	-	1	2	-	1	
Overall Correlation	3	2	1	1	-	2	1	1	-	-	-	1	3	-	1	

23AU058	MARINE VEHICLES	L	T	P	C
		3	0	0	3

- To learn about Marine vehicle systems, including their design, construction, and operation.
- To understand the latest technological innovations in marine vehicle design
- To familiarize on safety protocols and best practices to prevent accidents

UNIT I MARINE VEHICLES

Q

Types – General – By function – Commercial marine vehicles - Passenger ship, Cargo ships, Oil and chemical tankers, Cattle carriers, Harbor crafts, Off shore platform, Container ships, Reefers and gas carriers.

UNIT II REMOTELY OPERABLE VEHICLE (ROV), UMS SHIPS

Remotely Operable Vehicles (ROV) – The ROV business – Design theory and standards – Control and simulation – Design and stability – Components of ROV – Applications, UMS operation and controls, Submersibles types – Applications, Autonomous Underwater Vehicle (AUV) – Design and construction considerations – Components – Sensors – Navigation - Control strategies – Applications.

UNIT III MANNED AND UN MANNED 9 SUBMERSIBLE

Introduction – Design and operational consideration – Pressure hull exo-structure – Ballasting and trim – Maneuvering and control – Life support and habitability – Emergency devices and equipment's – Certification and classification, Towed vehicles – Gliders – Crawler.

UNIT IV MOTION OF SHIPS & FLOATING SYSTEMS 9

Ship motions – Co-ordinate systems, six- DOF, Uncoupled and coupled equation of motion; Hydrodynamic coefficients; Wave excitation – Summary of wave theory, Dispersion relation, Wave

pressure, Velocity, Acceleration; Encounter frequency; Motion damping effects, Magnification and tuning factors. Ship responses in regular waves. Ship controllability fundamentals - Stability and control in the horizontal and vertical planes.

UNIT V MARINE POWER PLANT

9

Marine Diesel Engines – Low speed and medium speed engines – Auxiliary engines –Marine Nuclear power installation – Principles of operation of Atomic Reactors – Different types of Reactors – Use of Nuclear reactors in sea going vessels Marine Turbines – Steam turbine classification based on impulse and reaction principles – Flow through blade passages, Marine gas turbines.

Ί	O	IAI	_: 4 5	PE.	RIC	DDS
---	---	-----	---------------	-----	-----	-----

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Identify various marine vehicles based on their function
 CO2: Explain the concept of remote and under water operated vehicles
- CO3: Distinguish manned and unmanned submarine operations.
- **CO4:** Analyze the motion of floating systems
- **CO5:** Demonstrate the requirement of marine power plant
- CO6: Build preliminary knowledge in marine vehicle design, construction and its components

TEXT BOOKS:

- 1 Jonathan M. Ross, human factors for naval marine vehicle design and operation.
- 2 Sabiha A. Wadoo, Pushkin Kachroo, Autonomous underwater vehicles, modelling, control design and Simulation, CRC press, 2011.

REFERENCES:

1 R. Frank Busby, Manned Submersibles, Office of the oceanographer of the navy, 1976.

2	Ferial 1	L h	aw	ry,	Th	e o	cea	n e	ngi	nee	ring	har	ndbo	ok,	CF	₹C
	press, 2000.															
3	Richard	d A	Α	Gey	yer,	"	Sub	me	rsil	oles	an	ıd t	heir	us	se	in
	oceanography and ocean engineering", Elsevier, 1997.															
4	Robert D. Christ, Robert L. Wernli, Sr. "The ROV Manual															
	A User	Gu	uide for Remotely Operated Vehicles", Elsevier,										er,			
	second	cond edition, 2014.														
	20.		POs PSOs)s				
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	1	-	-	-	1	3	1	1
	2	2	1	-	-	1	1	1	1	-	-	-	1	2	1	1
	3	3	3 3 2 2 1 1 1 1 1 3									1	1			
	4	3	3	2	2	1	1	1	1	-	-	-	1	3	1	1
	5	2	1	-		1	1	1	1	-	1	1	1	2	1	1
-2	60WER	3	2	1	1	1	1	1	1	-	1	-	1	3	1	1
Ov	erall	3	2	1	1	1	1	1	1	-	-	- (1	3	1	1
Corr	elation		1			1	1					. 1	100	11		

COLLEGE OF TECHNOLOGY

23AU059	SPACE VEHICLES	L	T	P	C
		3	0	0	3

- To learn about space vehicle systems, including their design, construction, and operation.
- To understand the latest technological innovations in space vehicle design
- To familiarize with the concepts of propulsion, dynamics & controls.

UNIT I UNDERSTANDING FLIGHT LIGHTER 9 THAN AIR & HEAVIER THAN AIR

Classification of flight: Lighter-than-air & Heavier-than-air. Historical evolution of Man-made object flight: Balloon & Archimedes principle, flapping wing & Bird flight, Fixed wing Gliders, Sustained flight with propulsion systems, Rotary-wing & Helicopters. Forces in action during a flight: Lift, Drag, Thrust, weight. Compare: Aerospace vs Space, Levitation Vs Controlled-Flight.

UNIT II MATERIALS, MODELS AND MANUFACTURING TECHNIQUES 9

Functional requirements: Thermal, Structural, Chemical. Fabrication techniques: Material removal, Material Addition-Additive manufacturing/3D printing, Material forming - Forging, Rolling, Spinning, Extrusion, Material Joining - Welding, Bonding, Bolting. Material models: Elastic, Plastic, Visco - elastic, Spring - Mass - Damper models, equivalent electrical/mathematical models. Real world material examples: Metallic, Non-metallic-Elastomeric, Composite, Superalloys.

UNIT III PROPULSION, DYNAMICS & CONTROLS

Principles of achieving controlled flight by various control mechanisms, with simple mathematical models History of Propulsion. Chemical Propulsion: Solid, Liquid, Cryogenic, Hybrid. Electric propulsion. Static & Dynamic Stability and Controls.

UNIT IV | STRUCTURAL DESIGN & PERFORMANCE **OPTIMIZATION** Design approach for constraints: Geometry limits - Stiffness based. Material limits - Strength based, Strain based, Fracturebased. Other constraints: Thermal & Thermo-structural. Optimization: Mass, Aerodynamic. Stiffening approaches: Sandwich, Honey-comb, Hat-stiffened, Pressurized. **FUTURE DIRECTIONS & RESEARCH** UNIT V AREAS IN SPACE VEHICLES Reusable vehicles, Space debris reduction, Green propellants, Space robotics, Inter-planetary travel vehicles. TOTAL: 45 PERIODS **COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain the concept of flight design CO2: Apply Materials, Models and Manufacturing techniques for space applications CO3: Examine the Propulsion, Dynamics & Controls devices CO4: Compare the design and performance of Jet Propulsion systems. CO5: Identify research areas in Space Propulsion **CO6:** Analyze propulsion, dynamics and control TEXT BOOKS: Anderson, J. D., "Introduction to Flight", 7th edition, 1 McGraw-Hill, 2011. 2 B.N.Suresh, Sivan.K, Integrated Design for Space Transportation System, 1st edition, Springer Nature, 2015. **REFERENCES:** Daniel P. Raymer, Aircraft Design: A Conceptual 1 American Institute of Aeronautics and Astronautics, Inc., Washington, 1989.

2	Campb	ell,	F	7.	C.,	11	Ma	nuf	act	urir	ng	Tecl	nnol	ogy	f	or
	Aerosp	Aerospace Structural Materials", Elsevier, 2006.														
3	Turner	, N	1.	J. I	,	Ro	cke	t a	nd	Sp	acec	raft	Pro	pu	lsio	n:
	Princip	Principles, Practice and New Developments, 3rd ed.,														
	Springe	Springer, 2009.														
4	Robert	C.	Nelson, Flight Stability and Automatic Co								ntr	ol				
	(Hardc	ove	ver), Tata McGraw Hill, 1989.													
	Os		POs PSO)s			
	LOS	1	2 3 4 5 6 7 8 9 10 11 12									1	2	3		
	1	2	1	-	-	-	1	1	1	-	-	-	1	2	-	1
	2	3	2	1	1	-	1	1	1	-	-	-	1	3	-	1
	3	3	3	2	2	-	1	1	1	1	-	-	1	3	1	1
	4	3	3	2	2	-	1	1	1	-	-	-	1	3	-	1
	5	3	2	1	1	1	1	1	1	N	1	1	1	3	1/	1
	60WER	3	3	2	2	-	1	1	1	7	7	-	1	3		1
1//	erall elat <mark>ion</mark>	3	3	2	2	-	1	1	1	-	-	- (1	3	1	1

23AU060	GAS DYNAMICS AND JET	L	T	P	С
	PROPULSION	3	0	0	3

- To understand the basic difference between incompressible and compressible flow.
- To understand the phenomenon of shock waves and its effect on flow.
- To gain some basic knowledge about jet propulsion and Rocket Propulsion.

UNIT I BASIC CONCEPTS AND ISENTROPIC 9 FLOWS

Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves, Mach angle and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts - Nozzle and Diffusers.

UNIT II | FLOW THROUGH DUCTS

9

Flows through constant area ducts with heat transfer (Rayleigh flow), Rayleigh line and Rayleigh flow equation and Friction (Fanno flow), Fanno curves and Fanno flow equation. Variation of flow properties.

UNIT III NORMAL SHOCKS

9

Governing equations, Variation of flow parameters like static pressure, Static temperature, Density, Stagnation pressure and entropy across the normal shock, Prandtl – Meyer equation, Impossibility of shock in subsonic flows, Flow in convergent and divergent nozzle with shock.

UNIT IV | JET PROPULSION

9

Aircraft propulsion – Types of jet engines – Study of turbojet engine components – Diffuser, Compressor, Combustion chamber, Turbine and exhaust systems, Performance of turbo jet engines – Thrust, Thrust power, Propulsive and overall efficiencies, Thrust augmentation in turbo jet engine, Ram jet and pulse jet engines.

TINIT	V ROCKET PROPULSION 9	
	et propulsion - Types of rocket engines - Propellants -	_
	ng Systems – Theory of rocket propulsion – Rocket engine	,
perto	rmance, Solid and liquid propellants.	_
	TOTAL: 45 PERIODS	5
	RSE OUTCOMES:	
	After completion of the course, the students will be able to	ı: -
CO1:	Explain the flow through nozzle and diffuser.	
CO2:	Distinguish between Rayleigh flow and Fanno flow.	
CO3:	Develop the adequate knowledge on governing equation	l
	and shock waves	
CO4:	Summarize on different types of jet engines and infer the)
	performance parameters.	
CO5:	Model different types of propellants and feeding system	l
	in rocket engines.	
CO6:	Solve the performance parameters of rocket engines	
TEXT	BOOKS:	
1	Anderson, J.D., "Modern Compressible flow", 3rd Edition,	,
	McGraw Hill, 2003.	
2	Yahya, S.M. "Fundamentals of Compressible Flow", New	r
	Age International (P) Limited, New Delhi, 1996	
REFE	RENCES:	_
1	Sutton. G.P., "Rocket Propulsion Elements", John wiley,	,
	New York, 1986.	
2	Ganesan.V., "Gas Turbines", Tata McGraw Hill	Ī
	Publishing Co., New Delhi, 1999.	
3	Babu. V., "Fundamentals of Gas Dynamics", ANE Books	<u> </u>
	India, 2008.	
4	Cohen. H., G.E.C. Rogers and Saravanamutto, "Gas	3
	Turbine Theory", Longman Group Ltd., 1980.	

COs]	PO	s					F	SC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	2	-	2	-	-	-	1	2	-	2
2	3	3	2	2	-	2	-	2	-	-	-	1	3	-	2
3	3	2	1	1	-	2	-	2	-	-	-	1	3	-	2
4	2	1	-	-	-	2	-	2	-	-	-	1	2	-	2
5	3	2	1	1	-	2	-	2	-	-	-	1	3	-	2
6	3	2	1	1	-	2	-	2	-	-	-	1	3	-	2
Overall Correlation	3	2	1	1	-	2	-	2	-	ı	ı	1	3	ı	2

23AE069	DRONE TECHNOLOGIES	L	T	P	C
		3	0	0	3

- To learn and understand the fundaments of design, fabrication and programming of drone
- To impart the knowledge of an flying and operation of drone
- To know about the various applications of drone

UNIT I INTRODUCTION TO DRONE 9 TECHNOLOGY

Drone Concept - Vocabulary Terminology - History of drone - Types of current generation of drones based on their method of propulsion - Drone technology impact on the businesses - Drone business through entrepreneurship - Opportunities/applications for entrepreneurship and employability.

UNIT II DRONE DESIGN, FABRICATION AND PROGRAMMING 9

Classifications of the UAV - Overview of the main drone parts - Technical characteristics of the parts - Function of the component parts - Assembling a drone - The energy sources - Level of autonomy- Drones configurations - The methods of programming drone - Download program - Install program on computer- Running Programs - Multi rotor stabilization - Flight modes - Wi-Fi connection.

UNIT III DRONE FLYING AND OPERATION 9

Concept of operation for drone - Flight modes - Operate a small drone in a controlled environment - Drone controls Flight operations - management tool - Sensors - Onboard storage capacity - Removable storage devices - Linked mobile devices and applications.

UNIT IV DRONE COMMERCIAL APPLICATIONS

Choosing a drone based on the application - Drones in the insurance sector - Drones in delivering mail, Parcels and other

cargo - Drones in agriculture - Drones in inspection of transmission lines and power distribution - Drones in filming and panoramic picturing.

UNIT V FUTURE DRONES AND SAFETY

9

The safety risks - Guidelines to fly safely - Specific aviation regulation and standardization - Drone license - Miniaturization of drones - Increasing autonomy of drones - The use of drones in swarms.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain about various type of drone technology, drone fabrication and programming.
- CO2: Select the suitable operating procedures for functioning a drone
- CO3: Select appropriate sensors and actuators for Drones
- CO4: Model a drone mechanism for specific applications
- CO5: Develop programs for various drones
- **CO6:** Summarize drone commercial applications

TEXT BOOKS:

- Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", John Wiley & Sons, Inc. 2021.
- **2** Garvit Pandya, "Basics of Unmanned Aerial Vehicles: Time to start working on Drone Technology", Notion Press, 2021.

REFERENCES:

John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016

2	Ales Zavrsnik, "Drones and Unmanned Aerial Systems:
	Legal and Social Implications for Security and
	Surveillance" Springer International Publishing; 1st ed.
	2016.
3	Sachi Nandan Mohanty IVR Rayindra "Drone

- 3 Sachi Nandan Mohanty, J.V.R. Ravindra, "Drone Technology: Future Trends and Practical Applications", Wiley, 2023.
- 4 Terry Kilby and Belinda Kilby, "Make: Getting Started with Drones", Maker Media, Inc., 2016.

COs							PO	s					F	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	1	1	1	2	-	-	-	1	2	1	2
2	3	2	1	1	1	2	1	2	-	-	-	1	3	1	2
3	3	2	1	1	1	2	1	2	1	1	-	1	3	1	2
4,0WER	3	2	1	1	1	1	1	2	7	1	-	1	3	1	2
5	3	2	1	1	1	2	1	2	-	ı	-	1	3	1	2
6	2	1	-	-	1	2	1	2	-	-	7	1	2	1	2
Overall Correlation	3	2	1	1	1	2	1	2			-	1	3	1	2
O/NEED	T-I-N	M			U.			EI	フト	IE	-111	WO.	.01	JΥ	

MEET LATED TO ANNA UNIVERSITY | ALITONOMOUS

23AU061 AUTONOMOUS AND L T P									
CONNECTED VEHICLES 3 0 0 3									
COURSE OBJECTIVES:									
To learn current industry trends, market developments									
and real-world applications of autonomous an									
connected vehicles									
To familiarize safety standards, regulations, and ethical									
considerations associated with autonomous an									
connected vehicle technologies									
 To gain knowledge of system integration, testing 									
methodologies, and validation procedures fo									
autonomous and connected vehicle systems.									
UNIT I INTRODUCTION TO AUTONOMOUS 9									
VEHICLE TECHNOLOGY									
Introduction - SAE autonomous Level Classification - Examples									
- Application of Autonomous Vehicle - Advantages and									
Disadvantages of Autonomous Vehicles.									
UNIT II PATH PLANNING AND DECISION 9									
MAKING									
Principles of decision making and path planning for									
autonomous vehicles - Decision making approaches -									
Approximation – Heuristic - Graph based - Point guidance.									
Verification and validation of decision making and path									
planning - Application examples of task allocation and path									
planning algorithms. UNIT III SENSORS, PERCEPTION AND 9									
VISUALISATION									
Introduction to sensors, Perception and visualization for									
autonomous vehicles - Sensor integration architectures and									
multiple sensor fusion - AI algorithms for sensing and imaging -									
neural networks.									
UNIT IV NETWORKING AND CONNECTED 9									
VEHICLES									
Current and future vehicle networking technologies - CAN, LIN,									

MOST and Flex-ray. The use of modern validation and verification methods - software-in-the-loop, and hardware-in-the-loop techniques. The role of Functional Safety and ISO26262 within the overall control system. Inter-dependency between software engineering and control system - advanced test methods for the validation of safety - critical systems. Connected vehicle control (CACC), intelligent traffic signals, collaborative adaptive cruise and vehicle platooning.

UNIT V HUMAN FACTORS AND ETHICAL 9 DECISION MAKING

Introduction to Human Factors-Human Performance: Perception and Attention -Situation Awareness and Error - Human Reliability: Driver Workload and Fatigue - and Assistive Technology - Designing ADAS Systems-Driverless Vehicles and Ethical Dilemmas: Human Factors and Decision Making Software - Application of Human Factors in Autonomous Vehicles. International and national regulatory frameworks for CAV and their safe operation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the autonomous vehicle technology.
- CO2: Explain the principle of path planning and decision making.
- **CO3:** Select sensors based on the application.
- CO4: Develop AI algorithms for sensing and imaging.
- CO5: Examine the role of functional safety within the overall control system.
- CO6: Summarize the application of human factors in autonomous vehicle.

TEXT BOOKS:

1 Romil Rawat, A. Mary Sowjanya, Syed Imran Patel, Varshali Jaiswal, Imran Khan, Allam Balaram, Autonomous Vehicles Volume 1: Using Machine

	I					_				_			_			
	Intellig	enc	e,1	st E	dit	ion	, W	iley	-Sc	rive	ener	; 202	22.			
2	Hanky	Sj	afri	ie,	"In	itro	du	ctio	n 1	to	Self-	Driv	ing	Ve	ehic	le
	Techno	olog	y",	1st	Ed	litic	n, (CRO	C P	ress	s, 201	19.				
REFE	EFERENCES: 1 Autonomous Driving: How the Driverless Revolution															
1	Autono	omo	ous	Dı	rivi	ng:	Н	ow	the	e D	rive	rles	s Re	vol	utio	n
	will Ch	nan	ge t	the	Wo	orld	l, by	γА	ndı	eas	He	rrma	nn,	Em	era	ld
		Publishing, 2018.														
2	George	George Dimitrakopoulos, Aggelos Tsakanikas, Elias														
		Panagiotopoulos "Autonomous Vehicles: Technologies,														
		Regulations, and Societal Impacts", 1st Edition, Elsevier,														
	2021.															
3	Hod L	Hod Lipson, Melba Kurman, "Driverless: Intelligent Cars														
	and the	-											_	•		
4	Domin														icle	es:
	Netwo	Title-	-									hi.	- 400			
1	Autom		ULT, PS						- 4		0 ,	10				
	(N		W.		-	7	\rightarrow	PO						I	SC	s
C	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	1		12.1													3
1		2	1	4		2	2	2	2	-	-	-	1	2	2	2
	2°/VEGD 1	2	1	1	-5	2	2	2	2)F	TE(CHI	1	2		
	2°/VEER	2	1	<i>-</i> 1	- " - \	2	2	2	2)F	TE(HI	P	2	2	2
	2 NEER 1	2	1 2	- 1 1	- 1 1	2	2	2	2) <u> </u>			1	2	2 2 2	2 2 2
	2 VEER 1 3 4	2 3 3	1 2 2	1	1	2 2 2	2 2 2	2 2 2	2 2 2	DF N.O.			1 1 1	2 3 3	2 2 2 2	2 2 2
	2 VERN 3 4 5	2 3 3 3	1 2 2 3	1 2	1 2	2 2 2 2	2 2 2 2	2 2 2 2	2 2 2 1	-	-	- -	1 1 1 1	2 3 3 3	2 2 2 2 2	2 2 2 2 1
Ox	3 4 5 6	2 3 3	1 2 2	1	1	2 2 2	2 2 2	2 2 2	2 2 2				1 1 1	2 3 3	2 2 2 2	2 2 2 2
	2 VERN 3 4 5	2 3 3 3	1 2 2 3	1 2	1 2	2 2 2 2	2 2 2 2	2 2 2 2	2 2 2 1	-	-	- -	1 1 1 1	2 3 3 3	2 2 2 2 2	2 2 2 2 1

VERTICAL -5 - PRODUCT AND PROCESS DEVELOPMENT

23AU062	AUTOMOTIVE PRODUCT	L	T	P	C
	DESIGN	3	0	0	3

COURSE OBJECTIVES:

- To acquire knowledge on product design and apply them in practice.
- To develop understanding of the fundamentals of new product development.
- To learn prototyping and validation.

UNIT I PRODUCT PLANNING AND CONCEPT 9 PHASE

Introduction – Product Plan – Scope of the Product Plan – Market Research – Business Case Preparation and approval – Project Team – Package Data – Concept Generation and Theme Selection - Studio Engineering and Tape Drawing – Form Explorations.

UNIT II SYSTEM LEVEL DESIGN

9

Surface Data release – Benchmarking - System Level Scope finalization – Component design - Simulations, CAE/CFD – E-BOM Preparations – Design Verification Plan (DVP) – GD&T - Systems Sign-off – Validation Proto Data Release.

UNIT III | PROTOTYPING AND VALIDATION

9

DVP Sign-off – Proto Build Plan – M-BOM Preparations – Proto Parts Development Processes – Proto Build – Component level Validation – System level Validation – Vehicle level Validation – Lab Tests – CFD Reviews – Vehicle Development; Finalization of specifications with iterations.

UNIT IV DATA RELEASE FOR MANUFACTURING

Design for Manufacturing – Design for Assembly – PPAP – CPQ/DQA – Manufacturing Process finalization – Tool cutting Data release – CRASH Simulations – Homologations and CMVR– Integration of Product and Processes – CFT sign-off for Manufacturing.

UNIT V PILOT PRODUCTION AND RAMP-UP

9

Manufacturing Tooling readiness - Pilot Production -CFT

Sign-off for SOP - Start of Production - Production Ramp-																
up.	_															
	TOTAL: 45 PERIODS															
COU	COURSE OUTCOMES:															
	After co	mp	leti	on	of t	he o	cou	rse,	the	e st	uder	nts w	vill b	e al	ole 1	to:
	Explair										_	_		ique	es.	
		Develop a new vehicle model by simulation.														
		ummarize the importance of various design phases.														
		Identify the product design procedure														
	Apply the principles for pilot production.															
	Catego		re	cen	t ac	lva	nce	me	nts	in J	orod	uct (desiį	gn.		
-	BOOK													_		
1	Dieter															
2		T Karl, Ulrich and D Steven, and Eppinger, "Product														
	Design and Development", McGraw Hill, 2009.															
		RENCES:														
1		Ken Hurst, "Engineering Design Principles", Elsevier Science and Technology Books, 2006.														
_													C E		-1	
2	Young			_												
\	for A Interna	uto				Eng	gine	ern	ng		V	olui	ne	Ι,	5.	AŁ
3	Vivek		20 74	_		\11t	om	otiv	7e]	Pro	duct	De	velo	nme	ent:	Α
	System															
	Press,		8-			8	1	, 101			,	100			, .	
4	Fang	Ch	en,	Ja	cqu	es	Te	rke	n,	"A	uton	notiv	e I	nter	act	ion
	Design												_			
	:Os		_	J				POs						F	SO	s
	.Us	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	-	-	-	-	1	2	1	-
	2	3	2	1	1	1	-	-	1	_	_	_	1	3	1	-
	3	2	1	-	-	1	-	_	-	_	-	-	1	2	1	-
	4	3	2	1	1	1	_	_	-	-	-	-	1	3	1	-
	5	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	6	3	3	2	2	1	-	-	-	_	-	-	1	3	1	-
	erall	3	2	1	1	1	_	-	-	-	-	-	1	3	1	-
Corre	elation															

23AU063	ERGONOMICS IN	L	T	P	C
	AUTOMOTIVE DESIGN	3	0	0	3
COURSE OB	JECTIVES:				
• To r	ecognize the electronically controlled	lsys	ten	ı us	sed
in di	riving mechanics.				
• To	understand the importance of en	gon	omi	ics	in
redu	icing the driver fatigue.				
• To 6	explain the role of ergonomics in l	ook	and	d s	afe
oper	ration of the vehicle.				
UNIT I F	UNDAMENTALS OF ERGONOMIC	S			9
Introduction-	principles - applications -	Di	mei	nsio	on
Determination	n, Anthropometry - Need, Data	a c	olle	ctio	on
methodology,	Different postural consideration	s -	R	ece	nt
developments	s in ergonomics and styling.				
UNIT II E	RGONOMICS FOR SEATING			011	9
Seating dime	ensions- Interior ergonomics - Sea	t co	omf	ort	ï -
Suspension se	eats - Split frame seating - Back pai	n re	duc	ers	-
Driver & pilli	on seating arrangement dash board i	nstr	ume	ents	3 -
Electronic dis	splays - Commercial vehicle cabin e	ergoi	non	nics	-
Mechanical pa	ackage layout - Goods vehicle layout.			ΞY	
	RGONOMICS FOR VISIBILITY	AUTO	YOM	0005	9
Regulations -	Driver's visibility - Tests for visibility	- Me	etho	ds	of
improving vis	sibility and space - Dash board equi	pme	nt's	ar	nd
arrangement,	Mirror and cockpit design.				
UNIT IV E	RGONOMICS FOR FRAMES AND	BOI	ΟY		9
Types of fra	me, Construction, loads, Design co	onsi	dera	atio	n,
materials, Erg	gonomics & comfort, Positioning of	ope	erat	ion	al
controls, Ty	pes of three wheeler bodies, La	ayou	ıt,	RT	O
regulations,	•	erg	onc	mi	cs
	s for body work.				
UNIT V V	EHICLE ERGONOMICS				9

ergonomics, Ergonomics system design Technical requirements,

Floor

Pan,

Vehicle

interior

Compartment,

Passenger

Force Analysis, Seating and position - ECE Regulations, Human Factors, Navigation systems, Pedal positioning Crash tests, Forces in rollover, head on impact. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain about various ergonomic techniques. **CO2:** Develop a comfort seat in a given vehicle model. **CO3:** Summarize the importance of ergonomics in reducing the driver fatigue. Explain the role of ergonomics in look and safe operation CO4: of the vehicle. Apply the Knowledge in mirror design and logical CO5: formation of cockpit. **CO6:** Evaluate the regulations of human factors and navigation systems. TEXT BOOKS: Vivek D. Bhise "Ergonomics in the Automotive Design 1 Process", CRC Press Taylor & Francis Group, 2012. Gkikas, N., "Automotive Ergonomics: Driver-Vehicle 2 Interaction". CRC Press, 2016. REFERENCES: Jullian Happian-Smith, "An Introduction to Modern 1 Vehicle Design" Butter worth- Heinemann Publications, 2002. Johnson, W. and Mamalis A.G., "Crashworthiness of 2 Vehicles", London, 1995. Edward. A, "Lamps and Lighting, Hodder & Stoughton", 3 London, 1993.2016. Rollover Prevention, Crash Avoidance, Crashworthiness, 4

Factors", SAE Special

Ergonomics and Human

Publication, 2003.

Cos		POs													s
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	-	-	-	3	2	1	1	1	1	1	2	-	1
2	3	2	1	1	-	3	2	1	ı	1	1	1	3	-	1
3	2	1	-	-	-	3	2	1	ı	1	1	1	2	-	1
4	2	1	-	-	-	3	2	1	-	-	1	1	2	-	1
5	3	2	1	1	-	3	2	1	1	1	1	1	3	-	1
6	3	3	3	3	-	3	2	1	1	ı	1	1	3	1	1
Overall Correlation	3	2	1	1	-	3	2	1	1	•	1	1	3	-	1

23AU064	AUTOMOTIVE CONTROL	L	T	P	C
	SYSTEMS	3	0	0	3

- To understand the technologies relevant to intelligent vehicle systems
- To appreciate the role of electronics in providing improved control to a variety of vehicle systems.
- To recognize the electronically controlled system used in driving mechanics.

UNIT I VEHICLE CONTROL SYSTEM 9

Overview and examples of vehicle control system - Sensors, actuators and controller modules - Vehicle communication Network - System Engineering V-diagram - Algorithm Development - Steps in vehicle control system design - Selection of controlled, Manipulated, Measured disturbance variables - Classification of the variables in various automotive systems like engines, Suspension, Braking.

UNIT II CONTROL SCHEMES, CRUISE AND 9 HEADWAY CONTROL

Feed - Forward control - Cascade control - Design considerations for cascade control, Time delay compensation, Inferential control

- Nonlinear control Adaptive control etc. Cruise control design
- Autonomous cruise control Anti locking brakes Traction control system Vehicle stability control linear and non-linear vehicle model.

UNIT III DRIVER MODELING AND POWERTRAIN 9 CONTROL SYSTEMS

Driving simulators - Percentage of road departure - Driver modeling - Transfer function models - Preview/ Predictive models - Longitudinal driver models Control oriented engine modelling - Air intake model - Fuel dynamics model - Air Fuel ratio dynamics - Engine Control Loops - Air Fuel Ratio control - EGR Control.

UNIT IV CONTROL OF HYBRID AND FUEL CELL 9 VEHICLES

Series-Parallel - Split Hybrid Configurations - Hybrid Vehicle Control Hierarchy - Control Concepts of Series Hybrids - Equivalent Consumption minimization strategy - Control concepts for split hybrid modelling of fuel cell systems - Fuel stack model - Control of fuel cell system.

UNIT V INTELLIGENT TRANSPORT SYSTEM 9

Cross over model principle- Homeostatic Theory- Driving simulators- percentage of road departure Advanced traffic management system- Advanced traveler information system-commercial vehicle operation- Advanced vehicle control system-Preventing collisions- Longitudinal motion control and platoons- Site specific information comparison of longitudinal control approaches- String stability- Automated steering and lateral control - Lane sensing- automated lane change and follow control.

A. I	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the basics of control system used in automobiles
CO2:	Identify the electronically controlled system used in
	driving mechanics.
CO3:	Summarize the working principle of driver modelling and
	power train control systems.
CO4:	Identify the control system used in hybrid and electrical
	vehicles.
CO5:	Illustrate the need of automated transport systems.
CO6:	Categorize the recent trends and intelligent technologies
	associated with modern day vehicles.
TEXT	BOOKS:
1	Galip Ulsoy, "Automotive Control System", Cambridge
	University Press, 2012.

2	Uwe K										Aut	omo	tive	Co	ntr	ol
	System	", S	SAF	ΕPι	ıbli	cati	ons	s, 20)06.	0						
REFE	RENCE	S:														
1	Bosch A	Aut	om	oti	ve I	Har	ıdb	ook	, Si	xth	Edi	tion,	200	4.		
2	Benjam	iin	C.	Ku	0 8	and	F	aric	1 (Goli	nara	ghi,	"A	uto	mat	ic
	Control System", John Wiley & Sons, Eighth edition,															
	2003.															
3	Katsuhiko Ogata, "System Dynamics", Prentice Hall															
	International, Inc. Third Edition, 1998.															
4	Richard C.Dorf and Robert H.Bishop, "Modern Control															
	Systems", Pearson Prentice Hall, 2008.															
	20-							PO	s					F	SO	s
C	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-,	2	-		-	-	-	-	-	2	2	-
9	2.OWER	3	2	1	1	2	A	7	-/	-		-	6	3	2	-
6	3	2	1	1	-	2	K	-	_	-	-	- /	7-	2	2	-
	4	3	2	1	1	2	7	1	7	1	-	-	1	3	2	-
	5	2	1	-)	-	2	-	Ē,	-	/	_ 89	-		2	2	-
	6	3	3	2	2	2	-	-	-	-	-		ī.	3	2	-
	erall elation	3	2	1	1	2	ATE	10	E Á ANN	A US	I EX	TIV.	NOI AUTO	3	2	-

23ME031	ADDITIVE MANUFACTURING	L	T	P	C
		3	0	0	3
COURSE	OBJECTIVES:				
•	To introduce the development	of	Ac	ldit	ive
	Manufacturing (AM), various business	opp	ortı	ınit	ties
	and applications				
•	To familiarize various software tools, 1	oroc	esse	es a	ınd
	techniques to create physical objects	tha	at	sati	sfy
	product development / prototyping	requ	iire	mei	nts,
	using AM.				
•	To be acquainted with vat polymerizati	on a	nd	dir	ect
	energy deposition processes				
UNIT I	INTRODUCTION				9
	- Need - Development of Additive M				_
447.00	hnology: Rapid Prototyping - Rapid Too	1007		_	
Manufact	uring - Additive Manufacturing. AM Pr	oces	s C	hai	n-
3.7	O 52900 Classification - Benefits.	1	_		
	Printing - Bio Printing - Food Printing -				cs
	Case studies: Automobile, Aerospace, Hea	althc	are		9
UNIT II	DESIGN FOR ADDITIVE			зY	9
100	MANUFACTURING (DFAM)				
-	and Objectives - AM Unique Capabi				
	tion - Topology Optimization - General			_	
Lattice Str	ructures - Multi-Material Parts and Grade	d M	ateı	ials	3 -
Data Proc	essing: CAD Model Preparation - AM File				
-Problems	U				-
-	nent: Part Orientation - Support Structur			_	; -
Tool Path	Generation-Design rules for Extrusion b	ased	A	Л.	

UNIT III VAT POLYMERIZATION AND DIRECTED ENERGY DEPOSITION

9

Photo polymerization: Stereo lithography Apparatus (SLA) - Materials - Process - top down and bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Advantages - Applications.

Continuous Liquid Interface Production (CLIP) Technology. Directed Energy Deposition: Laser Engineered Net Shaping (LENS) - Process - Material Delivery - Materials -Benefits - Applications.

UNIT IV POWDER BED FUSION AND MATERIAL 9 EXTRUSION

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism - Materials and Application. Selective Laser Melting (SLM): Materials - Process - Advantages and Applications. Material Extrusion: Fused Deposition Modelling (FDM) - Process-Materials - Applications and Limitations.

UNIT V OTHER ADDITIVE MANUFACTURING 9 PROCESSES 9

Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits- Limitations - Applications. Material Jetting: Multi-jet Modelling - Materials - Process - Benefits - Applications. Sheet Lamination: Laminated Object Manufacturing (LOM) - Basic Principle - Mechanism: Gluing or Adhesive Bonding - Materials - Application and Limitation.

TOTAL: 45 PERIODS

After completion of the course, the students will be able to: CO1: Identify the development of AM technology into various businesses. CO2: Explain about process of transforming a concept into the final product in AM technology.

COURSE OUTCOMES:

- CO3: Explain the VAT polymerization and direct energy deposition processes and its applications.
- CO4: Summarize about the process and applications of powder bed fusion and material extrusion.
- CO5: Compare the advantages, limitations, applications of binder jetting, material jetting and sheet lamination processes.

CO6:	Evalua	te	the	m	ech	ani	sm	of	gl	uin	g or	otl	ner a	adh	esi	ve
	bondin	ıg a	nd	oth	er t	ech	niq	ues	s us	ed	in ra	pid	prot	oty	pe.	
TEXT	BOOK	S:														
1	Ian G	Ian Gibson, David Rosen, Brent Stucker, Mahyar														
	Khoras	Khorasani "Additive manufacturing technologies". 3rd														
	edition	Sp	ring	ger	Ch	am,	, Sv	vitz	erla	and	, 202	21.				
2	Andrea	as (Gel	oha	rdt	an	ıd	Jan	-Ste	effe	n H	Ötte	r, ".	Ado	diti	ve
	Manuf	actı	ırir	ıg:	3I)	Pri	ntir	ng	fo	r P	roto	typi	ng	ar	nd
	Manuf	actı	ırir	ıg",	Н	Ian	ser	pι	ıbli	cati	ions,	. Uı	nited	l S	tate	es,
	2015.															
REFE	RENCE	S:														
1	Andrea	as	(Geb	hai	rdt,		"Į	Jnd	lers	tand	ling		Ado	diti	ve
	Manufa	actı	ırir	ıg:		Ra	apio	d		Pro	ototy	ping	5,	F	Rap	id
	Manufa	Manufacturing", Hanser Gardner Publication,														
- 3	Cincin	Cincinnati., Ohio, 2011.														
2	F . 852	Milan Brandt, "Laser Additive Manufacturing: Materials,														
	Design	, Т	[ecl	nno	log	ies	ar	nd	Ap	pli	catic	ns",	W	ood	lhea	ad
	Publish	ning	z, U	nit	ed I	Kin	gdo	m,	201	16.						16
3	Amit	`	#5.50	9			10000					-1-11	11.001		A 31.7	
	Manuf	actı	ırir	ıg",	1s											
	2015.				Α								AUTO			
4	Kamra									-		-		g: Tl	neo	ry
	and pra	acti	ce"	, Sp	rin	ger				Stat	es, 2	.006.				
	COs		1 -		1 .	· _		PO	_	1 -			I		SC	_
		1	2		4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	2	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	3									-						
	4	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
	5	3	3	2	2	-	-	-	-	-	-	-	-	3	-	-
	6	3	3	3	3	-	-	-	-	-	-	-	-	3	-	-
	erall	3	2	1	1	_	_	_	_	_	_	_	_	3	_	_
Corr	elation															

23AU065	AUTOMOTIVE L	T	P	C
	AERODYNAMICS 3	0	0	3
COURSE O	BJECTIVES:	ı		
• To ur	nderstand the impact of aerodynamic for	ces	aı	nd
mome	ents on performance of vehicle.			
• To acc	quire fundamental and applied understandi	ng (of	
air flo	ws, vehicle aerodynamics and control.			
• To de	velop design skills necessary for the aerod	dyna	an	ii
design	n of road vehicles.			
UNIT I	INTRODUCTION			9
Importance of	of vehicle aerodynamics, fluid mechanics rel	lated	l t	o
vehicles - e	xternal and internal flow problem, resista	ance	t	o
vehicle moti	on, performance, fuel consumption, engine	cool	in	g
requirement	air flow to passenger compartment, duct	for	ai	ir
conditioning	, cooling of transverse engine and rear engin	ie.	Þ	
UNIT II	AERODYNAMIC DRAG			9
Vehicle as a l	oluff body - flow field around car, drag force	- ty	pe	S
of drag force	e. Analysis of aerodynamic drag - drag coel	ffici	en	t.
Strategies for	aerodynamic development - low drag profi	les.		
400-14	SHAPE OPTIMIZATION OF VEHICLES)6		9
	odification, front and rear wind shield angl			
	back, fast back and square back. Dust flow p			S
at the rear, e	ffects of gap configuration and effect of faster	ners	3.	
UNIT IV	VEHICLE HANDLING			9
O	rces and moments on a vehicle, lateral s			_
•	ethods to calculate forces and moments.			
dynamics ur	der side winds, the effects of forces and mo	ome	nts	Ξ,
	es of forces and moments, dirt accumulation		th	e.
	d noise, drag reduction in commercial vehicle	es.		
UNIT V	WIND TUNNELS FOR AUTOMOTIVE			9
	AERODYNAMICS			
Introduction	, principle of wind tunnel technology, limita	atio	ı c	f

simulation, stress with scale models, full scale wind tunnels, measurement techniques, equipment and transducers, road

testin	g methods, numerical methods.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Analyze the internal and external flow in the vehicle.
CO2:	Analyze the flow separation of bluff body to reduce the
	drag forces.
CO3:	Analyze the vehicle shape and size to make a good
	aerodynamic model.
CO4:	Examine the aerodynamic force and moments on vehicle
	body.
CO5:	Explain the wind tunnel technology test in vehicle body.
CO6:	Demonstrate wind tunnel techniques to test the
	aerodynamic design.
TEXT	BOOKS:
1	Wolf-Heinrich Hucho, Aerodynamics for Road Vehicles,
	4th Edition, Warrendale, PA: SAE International, 2014.
2	J. Katz, Race car aerodynamics - Designing for speed,
	Cambridge, MA, Bentley Publishers, 2014 Pope .A, Low
	Speed Wind Tunnel Testing, New York, John Wiley &
	Sons, 2014.
	RENCES:
1	Yomi Obidi, Theory and Applications of Aerodynamics
	for Ground Vehicles, Warrendale, PA: SAE International,
	2014.
2	R.H. Barnard, Road Vehicle Aerodynamic Design, 2nd
2	edition, St Albans: Mech Aero Publishing, 2001.
3	The International Vehicle Aerodynamics Conference, 1st
4	Edition, Woodhead Publishing, October 2014. "Automotive Aerodynamics", Update SP-706, Society of
+	Automotive Engineers Inc., 1987.
	Automotive Engineers inc., 1907.

COs]	POs	S					P	SO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	2	1	-	1	2	-	1	-	1	3	-	2
2	3	3	2	2	ı	-	1	2	-	1	-	1	3	-	2
3	3	3	2	2	-	-	-	2	-	-	-	1	3	-	2
4	3	3	2	2	-	-	-	2	-	-	-	1	3	-	2
5	2	1	-	1	1	ı	1	1	ı	1	-	1	2	-	ı
6	2	1	-	-	-	-	-	-	-	-	-	1	2	-	-
Overall	3	3	2	2	-	-	-	2	-	-	-	1	3	-	2
Correlation															

23AU066	NEW PRODUCT	L	T	P	C
	DEVELOPMENT PROCESS	3	0	0	3

- To acquire knowledge on product design and apply them in practice.
- To develop understanding of the fundamentals of new product development.
- To Familiarize with creative thinking and design concepts.

UNIT I INTRODUCTION

9

Need for developing products – The importance of engineering design – Types of design –The design process – Relevance of product lifecycle issues in design – Designing to codes and standards - Generic product development process – Various phases of product development - Planning for products – Establishing markets - Market segments - market research.

UNIT II CUSTOMER NEEDS

9

Identifying customer needs - Voice of customer - Customer populations - Hierarchy of human need gathering methods - Affinity diagrams - Needs importance - Establishing engineering characteristics - Competitive benchmarking - Quality function deployment - House of quality - Product design specification.

UNIT III | CREATIVE THINKING

9

Creative thinking – Creativity and problem solving - Creative thinking methods - Generating design concepts - Systematic methods for designing – Functional decomposition – Physical decomposition – Functional representation – Morphological methods - TRIZ- Axiomatic design.

UNIT IV DECISION MAKING AND PRODUCT 9 ARCHITECTURE

Decision making - Decision theory - Utility theory - Decision trees - Concept evaluation methods - Pugh concept selection method- Weighted decision matrix - Analytic hierarchy process

Introduction to embodiment design - Product architecture Types of modular architecture - Steps in developing product architecture

UNIT V DESIGN AND COST ANALYSIS

9

Industrial design – Human factors design – User friendly design – Design for serviceability – Design for environment – Cost evaluation – Categories of cost – Overhead costs – Activity based costing – Methods of developing cost estimates – Manufacturing cost – Value analysis in costing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the importance of product design.
- **CO2:** Analyze the needs of a customer towards a product.
- CO3: Categorize the idea of creativeness on the product.
- **CO4:** Develop the decision-making concepts.
- CO5: Build a product based on cost frame and need of the customer.
- **CO6:** Explain the various costs associated with the new product development.

TEXT BOOKS:

- Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development", 4th Edition, Tata McGraw-Hill Education, 2009.
- 2 Kevin Otto, Kristin Wood, "Product Design", Pearson Education, 2015.

REFERENCES:

- 1 Clive L.Dym, Patrick Little, "Engineering Design: A Project-based Introduction", 3rd Edition, John Wiley & Sons, 2009.
 - 2 George E.Dieter, Linda Schmidt, "Engineering Design", McGraw-Hill International Edition, 4th Edition, 2009.
- 3 Yousef Haik, T. M. M. Shahin, "Engineering Design

	Process	Process", 2nd Edition Reprint, Cengage Learning, 2010.														
4	Fang (Fang Chen, Jacques Terken, "Automotive Interaction														
	Design	Design", Springer Singapore, 2023.														
(COs	POs PSOs														
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	2	2	-	-	-	1	2	-	2
	2	3	3	2	2	-	2	2	2	-	-	-	1	3	-	2
	3	3	3	2	2	-	2	2	2	-	-	-	1	3	-	2
	4	3	2	1	1	-	2	2	2	-	-	-	1	3	-	2

2 2 2

2 1 1

6

Overall

Correlation

1

1 3

2

23AU067	AUTOMOTIVE PRODUCT LIFE	L	T	P	C
	CYCLE MANAGEMENT	3	0	0	3
COURSE OF	BJECTIVES:				
To acq	uire knowledge on product life cycle ar	nd ap	oply	the	em
in pra					
	velop understanding of the fundame	ental	s of	f n	ew
	ct life cycle.	1 .	1.0		1
	oly the design requirement for new pro	auci	1116	ecy	cle
UNIT I	gement. MOTIVATION AND INTRODUCTI	ON			9
	B to B, B to C forms of busines		vte	nde	-
	Concepts in PDM - product life cyc				
_	k flows, versions, views, product struc				
,	Vork list, information flow model			•	_
1	, engineering bill of materials.	111	Pre	au	Ci
	COMPONENTS OF PLM SOLUTION	IS		0	9
1000	ted approach in product developmen	1007	1111	ion	_
(1000) 100	rocess in product design - Disparate de	100			
	Cases for preparation of combined BC	· *			
	ponent supplier management and sour			Juli	C1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRODUCT VISUALISATION	CIII	00	SY	9
	al environment and visualization of	of r	rod	11Ct	
	tware, Use of visualization in sever	-			
	iews, Mark-up - case studies.	ai s	tage		<i>J</i> 1
UNIT IV	ROLE OF PLM IN INDUSTRIES				9
	sectors, Ten step approach to PLM- Sta	1+11C	Dox	zior.	_
	ing, Executive Education and Awa				
	tioning; PLM Concept Generation as				
	-			•	
	nap and Plan Generation Business I				
	e Development; Management Report esentation – Benefits of PLM.	rrej	Jara	uo:	L L
Executive Pro	esentation - Denents of PLM.				

Details of modules in a PDM/PLM software, basics on customization and implementation of automotive PDM/PLM

DETAILS OF MODULE

UNIT V

software.

										-	ГОТ	AL:	45 P	ER	IOI	DS
COU	RSE OU	TC	ON	1ES	5:											
		After completion of the course, the students will be able to:														
CO1:		Apply the product lifecycle management in an														
	automo							,				0				
CO2:		Classify the suitable PLM components for OEMS and														
	Tier-I ii									•						
CO3:	Build n	ew	pro	odu	ct c	lesi	gn	and	l st	ylir	ıg.					
CO4:	Identify	y se	ver	al s	stag	es o	of li	ifec	ycle	2.						
CO5:	Explair	ı th	e ro	ole o	of P	'LN	I in	Inc	lus	trie	s.					
CO6:	Catego	rize	th.	e P	DM	/P	LM	mo	odu	le s	oftw	ares	S.			
TEXT	BOOK	S:														
1												nent	t Vol	lum	e 1	",
		Stark John, "Product Lifecycle Management Volume 1", Springer International Publishing, 2015.														
2	Vivek															
	System			nee	erin	g I	mp	len	nen	tati	on 1	st I	Editio	on,	CR	C
- 0	Press, 2017.															
REFE	RENCES: Wang Lihui and Andrew YCN, "Collaborative Design															
1																
A .	and Pla											Mar	nufac	ctur	ing	",
	Springe															
2	Stark Jo															
	Manage							Bill	ion	A UN	usto	mer	Qı	ıest	ion	<i>"</i> ,
	Springe							T . (- 1	3.5			. //	-	_
3	Grieves					rod	uct	L1f	e C	ycl	e Ma	ınag	eme	nt",	Ia	ta
1	McGra					1 T	: C	1	- 1 /	Γ		1	X 7 - 1		- 1	"
4	Stark Jo											nent	VOI	ume	e - 2	,
	Springe	3F 11	nei	па	1101	lai i		PO		3, 4	J16.			Е	SC) c
C	Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	1	-	-	11	1	3	1	1
									1							
	3	3	2	1	1	1	1	1	1		_	_	1	3	1	1
	4	3	2	1	1	1	1	1	1	_	_	-	1	3	1	1
	5	2	1	-	-	1	1	1	1	_	_	_	1	2	1	1
	6	6 3 3 2 2 1 1 1 1 1 3 1 1														
Ov	erall	3	3	2	2	1	1	1	1	-	_	_	1	3	1	1
	elation															

23AU068	DYNAMICS OF GROUND	L	T	P	С
	VEHICLES	3	0	0	3

- To develop physical and mathematical models to predict the dynamic response of vehicles.
- To apply vehicle design performance criteria and how to use the criteria to evaluate vehicle dynamic response.
- To Use dynamic analyses in the design of vehicle.

UNIT I	PERFORMANCE CHARACTERISTICS OF	9
	VEHICLE AND AERODYNAMICS	

SAE Vehicle axis system, Forces & moments affecting vehicle, Earth Fixed coordinate system, Dynamic axle loads, Equations of motion, transmission characteristics, vehicle performance, power limited and traction limited acceleration, braking performance, Brake proportioning, braking efficiency. Mechanics of Air Flow Around a Vehicle, Pressure Distribution on a Vehicle, Aerodynamic Forces, Drag Components, Aerodynamics Aids.

UNIT II TYRE MECHANICS 9

Tyre Construction, Size and Load Rating, Terminology and Axis System, Tractive Properties, Cornering Properties, Camber Thrust, Aligning Moment, Combined Braking and Cornering, Conicity and Ply Steer, Slip, Skid, Rolling Resistance, Elastic Band Model for longitudinal slip, Simple model for lateral slip, Combined longitudinal/lateral slip (friction ellipse), Taut string model for lateral slip, Magic Tyre Formula.

UNIT III SUSPENSIONS 9

Suspension Kinematics, Suspension types, Solid Axles, Independent Suspensions, Anti-Squat and Anti-Pitch Suspension Geometry, Anti-Dive Suspension Geometry, Roll Center Analysis, Suspension Dynamics, Multi-body vibration, Body and Wheel hop modes, Invariant points, Controllable Suspension Elements: Active, Semi-Active. Choice of suspension spring rate, Calculation of effective spring rate, Vehicle

suspension	in fore and apt directions.	
UNIT IV	STEERING SYSTEM	9

The Steering Linkages, Steering System Forces and Moments, Steering System Models, Steering Geometry, Steady Handling (2 DOF steady-state model), Understeer and Oversteer, Effect of Tyre Camber and Vehicle Roll (3 DOF steady-state model), Transient Handling and Directional Stability (2 DOF unsteady model), Effect of Vehicle Roll on Transient Handling (3 DOF unsteady model), Steady-State and Transient Handling of Articulated Vehicles.

UNIT V	ROLLOVER AND MOTORCYCLE	9
	DYNAMICS	

Quasi-Static Rollover of a Rigid Vehicle, Quasi-Static Rollover of a Suspended Vehicle, Transient Rollover. Kinematic structure of motorcycle, geometry of motorcycles, importance of trail, Resistance forces acting on motorcycle (tyre rolling resistance, aerodynamic resistance forces, resistant force caused by slope), Location & height of motor cycle's centre of gravity (C.G), Moments of inertia on Motorcycle. Introduction to Front & Rear suspensions of Motorcycle.

TOTAL: 45 PERIODS

COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Utilize the aerodynamics concept to improve the vehicle
	performance.
CO2:	Select suitable tyre based on the constructional and design
	details.
CO3:	Select suitable suspension system based on the working.
CO4:	Explain the principle behind the steering system.
CO5:	Analyze rollover dynamics on various vehicle.
CO6:	Evaluate the center of gravity, moment of inertia on
	motorcycle.

TEV	r poor	C.														
	F BOOK		רוו	C1		- C	C		1 7	7 - 1- 1	-11	l II-	(1-	T. 1	:::-	
1	J. Y. W	_	_		-			oun	a v	eni	cies	, FO	urtn	Ea	1110	n,
	Wiley-															
2	Singire					Лес	har	nica	ΙV	ibra	atior	ıs," I	Fifth	Ed	itio	n,
	Prentic		[all,	20	10.											
REFI	ERENCES: Dean Karnopp, "Vehicle Dynamics, Stability, and															
1	Dean	Ka	rno	pp,	, "	Vel	hicl	e	Dy	nan	nics,	St	abili	ty,	ar	nd
	Contro	Control", Second Edition, CRC Press, 2013.														
2	Hans I	Hans B Pacejka, "Tyre and Vehicle Dynamics," Second														
	Edition	Edition, SAE International, 2005.														
3	John (John C. Dixon, "Tyres, Suspension, and Handling,"														
		Second Edition, Society of Automotive Engineers Inc.,														
	1996.	3														
4	Michae	1 I	3luı	nde	11	&	Daı	mia	n]	Har	tv.	"The	e M	ulti	boc	lv
	System											No.	- 400			
1	Limited		W/J-759			à				7	_ ,	7			30	
-/-	16		31.1		-	7	7	PO	9					Į.	SO	s
	COs	1	2	3	4	5	6	7	- 1	9	10	11	12	1	2	3
\rightarrow	A STATE OF THE STA	3	2	1	1	-	2	2	2	_	-		1	3	_	2
	2°/VEE0	3	2	1	1	0	2	2	2)F	TE	HI	ipi	3	3 <u>.</u> Y	2
	STEER!					FIL	2	2	2	A UN	IVER:	U Y	110	3	005	
	3	3	2	1	1	-				-				_	-	2
	4	2	1	-	-	-	2	2	2	-	-	-	1	2	-	2
	5	3	3	2	2	-	2	2	2	-	-	-	1	3	-	2
	6	3	3	3	3	-	2	2	2	-	-	-	1	3	-	2
O	verall	3	3	2	2	_	2	2	2	_	_	_	1	3	_	2
Corr	elation	9	9	_	_	_	_	_	_	_	_	_	*	,	_	_

VERTICAL -6 - DIVERISIFIED COURSES GROUP

23AU069	HYDRAULICS AND	L	T	P	C
	PNEUMATICS	3	0	0	3

COURSE OBJECTIVES:

- To study the fluids and components used in modern industrial fluid power system.
- To develop the design, construction and operation of fluid power circuits.
- To learn the working principles and the knowledge of the troubleshooting pneumatic power system and its components.

UNIT I HYDRAULICS PUMPS AND ACTUATORS 9

Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Introduction to pumps, Types of fluid - Fluid Selection criteria-Pumps Pumping theory, Classification, gear pumps, Vane pumps, Piston pumps, Pump performance, Fixed and variable displacement pumps. Hydraulic Actuators cylinders types and construction, Mechanics of Hydraulic Cylinder loading – Problems.

UNIT II HYDRAULIC SYSTEMS CONTROL 9 COMPONENTS 9

Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories: Reservoirs, Pressure Switches – Filters – Types and selection - Applications – Fluid Power ANSI Symbols - Sizing of hydraulic systems - Sealing devices, Reservoir system, Filters and strainers, Problem caused by gases in hydraulic fluids, Wear of moving parts due to solid particle contamination, Fluid Power ANSI Symbols – Problems.

UNIT III HYDRAULIC CIRCUIT DESIGN 9

Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Control of single and Double acting Hydraulic cylinder Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems,

Counter Balance Electro hydraulic circuits, Servo and Proportional valves – Applications.

UNIT IV PNEUMATICS AND ELECTRO PNEUMATIC 9 SYSTEM

Properties of air -Air preparation and distribution - Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit - Classification- Single cylinder and multi cylinder circuits - Cascade method -Integration of fringe circuits, Electro Pneumatic System - Elements- Ladder diagram - Timer circuits - Problems.

UNIT V TROUBLE SHOOTING AND 9 APPLICATIONS

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Press and Forklift applications - Mobile hydraulics; Mechanical, hydraulic servo systems. Conditioning of hydraulic fluids Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding - Design of Pneumatic circuits for metal working, handling, Clamping counter and timer circuits - Low-cost Automation - IOT in Hydraulics and pneumatics.

TOTAL: 45 PERIODS

COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Apply the knowledge of principles of hydraulic pumps
CO2:	Identify a suitable hydraulic pump based on the
	applications.
CO3:	Apply the knowledge of hydraulic actuators and control
	components.
CO4:	Build hydraulic circuits and systems
CO5:	Apply the working principles of pneumatic circuits and
	power systems.
CO6:	Identify various troubles shooting methods in fluid power

	system	S														
TEYT	BOOK															
1	Anthor		Ear	200	ita	"T	1	4 I	2014	7011	TAT:1	ь л	nnli	aati	0100	"
1		-	-			Г	Tur	u I	OW	/ei	WIL	н д	ррп	Cau	OHS	,
	Prentic															
2	Jadeesl										-	s,	Desi	gn	ar	nd
	Applications ", Universities Press, 2015.															
REFERENCES:																
1	James	ames A. Sullivan, "Fluid Power Theory and														
	Applic	Applications", Fourth Edition, Prentice Hall, 1997.														
2	Joshi.P	Joshi.P. "Pneumatic Control", Wiley India, 2008.														
3	Majum	Majumdar, S.R., "Oil Hydraulics Systems - Principles and														
	Maintenance", Tata McGraw Hill, 2001.															
4	Shanm	uga	a s	un	dar	am.	K.	"I	Tyc	lrau	ılic	and	l Pr	neu	mat	ic
	Contro	ls".	Ch	ano	d &	Co	, 20	006.								
	COs	DRE	27	W	П		A	PO	s /	7				I	SC	s
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Ý	1 ^	3	2	1	1	F	N	1	7	T	À	7	1	3	-	-
	2	3	2	1	1	_	-	1	-	1	_	-	1	3	-	-
	3	3	2	1	1	-	-	1	-	H	-	-1510	1	3	-	-
	4 (55) 3 2 1 1 1 1 3															
	4 NEER	3	2	1	1	1		1	-	7	1E	-	1	3	7	1
	4 VEER	3	2	1 1	1 1	0 1	ALE	1 1	A THE	715	I E (Ē	1 1	3	005	1
	-					-			ATIM	A UI	I E V		ALLTIO.		005	1 1
Ov	5	3	2	1	1	-	-	1	-	200	I EV	-	1	3	005	-

23AU070	FUNDAMENTALS OF NANO	L	T	P	C
	SCIENCE	3	0	0	3

- To learn about the categories of nanomaterial's and the effects due to which the properties changes.
- To describe the processes employed for processing zero dimensional nano materials and two dimensional materials and select suitable materials according to the application.
- To explain the importance of preparation environments for nano materials and the importance of safety issues during the preparation of nano materials.

UNIT I INTRODUCTION

9

Nano scale Science and Technology - Implications for Physics, Chemistry, Biology and Engineering - Classifications of nanostructured materials - Nano particles - Quantum dots, Nanowires - Ultra - Thin films - Multi-layered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties.

UNIT II GENERAL METHODS OF PREPARATION

Bottom-up Synthesis -Top-down Approach: Precipitation, Mechanical Milling, Colloidal routes, Self-assembly, Vapor phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE. Aerosol processing - Solid state processing.

UNIT III NANOMATERIALS

9

Carbon nanotubes – Old and new forms of carbon – Structure of CNT and classification – Processing – Solid carbon based production techniques – Gaseous carbon based production technique - Growth mechanisms – Applications- Boron nanotube – Synthesis – Applications.

UNIT IV | CHARACTERIZATION TECHNIQUE

9

X-ray diffraction technique, Scanning Electron Microscopy -Environmental techniques, Transmission Electron Microscopy including high - Resolution imaging, Surface Analysis

UNIT V	A]	PPLICAT	TIONS					9			
techniques - AFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation.											
techniques	-	AFM,	SPM,	STM,	SNOM,	ESCA,	SIN	ЛS-			

Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)-Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing,

Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain the categories of nano materials and the effects. CO2: Apply the processes employed for processing zerodimensional nano materials. CO3: Select processes that can fabricate one-dimensional nanomaterial. CO4: Explain the importance of preparation environments for nano materials. **CO5:** Demonstrate the importance of safety issues during the preparation of nano materials. CO6: Identify suitable characterization technique based on its applications. **TEXT BOOKS:** "Springer 1 Bhusan. Bharat, Handbook of Nanotechnology", 2nd edition, 2007. Carl C. Koch, "Nanostructured Materials, Processing, 2 Properties and Potential Applications", noyes publications, Norwich, New York, U.S.A. 2002.

REFE	ERENCE	S:														
1	Bambe	rg,	D.	, (Gru	ndı	nar	ı,]	M.	an	d L	ede	ntso	v,	N.N	J.,
	"Quan	tun	ı Do	ot F	lete	eros	stru	ctu	res'	", W	Viley	, 199	99.			
2	Charles	s P	. P	ool	e Jı	r.,]	Frai	ηk	J. (Dw ₁	nes,	ʻInt	rodu	ıcti	on	to
	Nanote	Nanotechnology", Wiley Interscience, 2003.														
3	G. Wile	G. Wilde, "Nanostructured Materials', Elsevier, 2008.														
4	Mark	Mark Ratner and Daniel Ratner, "Nano Technology",														
	Pearson	Pearson Education, New Delhi, 2003.														
	POs									I	SO	s				
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	-	-	-	-	1	2	1	-
	2	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
	4	2	1	-	-9	1	-	_		-	-	-	1	2	1	-
-2	50WER	2	1	g-	-	1	A	/-	-/	7	1	-	1	2	1	-
//	6	3	2	1	1	1	K	-	-	-	-	-	1	3	1	-
	verall elation	3	2	1	1	1		1	_	1		-	1	3	1	_

COLLEGE OF TECHNOLOGY

23AU071	ROAD VEHICLE	L	T	P	C
	AERODYNAMICS	3	0	0	3

- To learn the basics of fluid mechanics on vehicle motion and to give the exposure about the shape optimization techniques.
- To relate the influence of rolling resistance and air resistance of various vehicles and two wheelers upon drag force.
- To give insight to wind tunnel and road-testing techniques practiced in industry.

UNIT I SCOPE OF ROAD VEHICLE 9 AERODYNAMICS

Introduction, Properties of Incompressible Fluids, External Flow Phenomena Related to Vehicles, Aerodynamic Forces and Moments, Resistances to Vehicle Motion, Performance, Fuel Consumption and Fuel Economy.

UNIT II AIR RESISTANCE ON PASSENGER CARS 9

Car as a Bluff Body, Drag and Lift, Drag Fractions and Their Local Origins - Front End, Windshield and Pillar, Roof, Rear End, Plan View and Side Panels, Underbody, Wheels and Wheel Housings, Front Spoiler, Rear Spoiler. Strategies for Body Shape Development – Objectives, Detail Optimization, Shape Optimization, Facelift.

UNIT III AERODYNAMIC DRAG ON COMMERCIAL 9 VEHICLES

Relation between Tractive Resistance, Drag Reduction and Fuel Consumption, Aerodynamic Drag Coefficients of Various Commercial Vehicles, Drag Minimization on Trucks and Buses. Add-on devices for drag reduction. Reduction of Vehicle Soiling.

UNIT IVMOTORCYCLE AERODYNAMICS9Development of Motorcycle Aerodynamics, Riding Dynamicsand its Relationship with Aerodynamics, Methods of

Measurement in Road Tests, Rider Influences - Rider and Pillion rider, Influences, Clothing and Helmets. Case Studies on racing models.

UNIT V WIND TUNNELS, MEASUREMENT AND TEST TECHNIQUES

Fundamentals of Wind Tunnel Technique, Tests with Scale Models - Details of Model Construction and Test Technique, Reynolds Number Effects, Climatic Tunnels. Measuring Equipment and Transducers - Flow visualization techniques, Measurement of Aerodynamic Forces and Moments, Pressure Measurements, Measurement of the Airflow Velocity, Temperature Measurement.

	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
12	After completion of the course, the students will be able to:
CO1:	Apply the Knowledge about the different factors influencing drag.
CO2:	Relate the influence of drag on passenger cars.
CO3:	Apply the various drag reduction techniques on
	commercial vehicles.
CO4:	Apply the influence of rider and pillion rider on motorcycle
	aerodynamics.
CO5:	Identify suitable experimental testing methods in
	measuring drag in Vehicles.
CO6:	Apply the knowledge of the flow visualization techniques.
TEXT	BOOKS:
1	Alan Pope, Jewel B. Barlow, William H. Rae "Low speed
	wind tunnel testing", John Wiley & Sons, Third edition,
	1999.
2	Hucho. W.H., "Aerodynamic of Road Vehicles -From Fluid
	Mechanics to Vehicle Engineering", Society of Automotive
	Engineers, U.S, Fourth edition, 1998.

REFE	RENCE	ES:														
1	R.H.Ba	ırna	ard,	"F	Roac	d v	ehi	icle	ae	rod	lyna	mic	des	ign	, A	ın
	Introd	ucti	ion'	', l	Mec	hae	ero	pυ	ıblio	cati	ons,	Th	ird	edi	itio	n,
	2010.															
2	T. Yo	om	i (Obi	di,	// -	Γhe	eory	7 6	anc	1 <i>A</i>	Appli	icati	ons		of
	Aerod	Aerodynamics for Ground Vehicles" SAE International,														
	2014															
3	Gino S	Gino Sovran, "Aerodynamic Drag Mechanisms of Bluff														
	Bodies	Bodies and Road Vehicles", Springer, 2012.														
4	Thoma	Thomas Schuez, "Aerodynamics of Road Vehicles", SAE														
	International, 2015.															
	· ·]	POs	6					F	SC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	2	1	1	-	1	-	1	3	-	1
- 0	2 OWER	2	1	-	-	-	2	1	1	, - T	-	P-7	1	2	1	1
1	3	3	2	1	1	12	2	1	1	-	-	-/	1	3	-	1
1	4	3	2	1	1	-	2	1	1	-	- 54	- \	1	3	-	1
A	5	3	2	1	1	_	2	1	1	1	_>	-	1	3	_	1
	6	3	2	1	1	-	2	1	1	-	-	-	1	3	-	1
Ov	erall	3	2	1	1	QI.	2	1	1	-	I EC	HİN	1	3	ľ	1
Corr	elation				All	FILL	ATES	ITO,	ANNA	UN	IVER5	TYLA	UTON	OM	005	

23AU072	LEAN SIX SIGMA	L	T	P	C
		3	0	0	3

- To learn the basics of Lean and Six Sigma.
- To teach the need and the process of integrating Lean and Six sigma.
- To identify and select the resources required for LSS Projects and selection of projects including Team building.

UNIT I INTRODUCTION TO LEAN AND SIX 9 SIGMA

Introduction to Lean- Definition, Purpose, Features of Lean; Top seven wastes, Need for Lean management, The philosophy of lean management, Creating a lean enterprise, Elements of Lean, Lean principles, the lean metric, Hidden time traps. Introduction to quality, Definition of six sigma, origin of six sigma, Six sigma concept and Critical success factors for six sigma.

UNIT II INTEGRATION OF LEAN AND SIX SIGMA | 9

Evolution of lean six sigma, Synergy of Lean and six sigma, Definition of lean six sigma, Principles of lean six sigma, Scope for lean six sigma, Features of lean six sigma. Laws of lean six sigma, Key elements of LSS, LSS model and the benefits of lean six sigma. Initiation - Top management commitment - Infrastructure and deployment planning, Process focus, Organizational structures, Measures - Rewards and recognition, Infrastructure tools.

UNIT III PROJECT SELECTION AND TEAM 9 BUILDING 9

Resource and project selection, Selection of Black belts, Training of Black belts and Champions, Identification of potential projects, Top down (Balanced score card) and Bottom up approach – Methods of selecting projects – Benefit/Effort graph, Process mapping, Value stream mapping, Predicting and improving team performance, Nine team roles and Team leadership.

UNIT IV THE DMAIC PROCESS AND TOOLS

DMAIC Methodology – Various quality tools used in the Define, Measure, Analyze, Improve and Control phases; Lean Six Sigma, Design for lean six sigma, Case studies. Cause and Effect matrix, Idea – Generating and organizing tools – Brainstorming, Nominal group technique and Multi-voting; Data collection and accuracy tools - Check sheet, Gauge R&R; Understanding and eliminating variation - Run charts; Analyze tools - Scatter plots, ANOVA, Regression analysis, Time trap analysis; Improve tools - Mistake proofing.

UNIT V INSTITUTIONALIZING AND DESIGN FOR S

Institutionalizing lean six sigma – Improving design velocity, Creating cycle time base line, Valuing projects, Gating the projects, Reducing product line complexity, Design for lean six sigma, QFD, Theory of Inventive Problem solving (TRIZ), Robust design; Case study presentations.

TOTAL: 45 PERIODS

After completion of the course, the students will be able to: CO1: Explain the importance of lean manufacturing in the mass production. CO2: Explain the importance of Six Sigma in the globalized competitive world. CO3: Demonstrate the importance of integrating Lean and Six Sigma. CO4: Build a Plan to undertake the LSS projects and suitable teams. CO5: Apply DMAIC methodology to execute LSS projects. CO6: Explain the process of institutionalizing the LSS effort.

Lean Six Sigma", McGraw - Hill, 2003.

Michael L.George, David Rownalds, Bill Kastle, "What is

TEXT BOOKS:

1

2	Nilakanta srinivasan J, "The Master Book for Lean Six
	Sigma Green Belt Certification", Notion Press, 1st Edition,
	2022.
DEEE	DENCES.

- James P. Womack, Daniel T. Jones, "Lean Thinking", Free 1 press business, 2003
- 2 Ronald G.Askin and Jeffrey B.Goldberg, Design and Analysis of Lean Production Systems, John Wiley & Sons. 2003.
- 3 Salman Taghizadegan, "Essentials of Lean Six Sigma", Elsevier, 2010.
- Craig Joseph Setter, "Six Sigma: A Complete Training and 4 Reference Guide" Harmony Living, 2018.

COs]	PO	S					PSOs			
POWER	1 1.	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	1	-	Ld	K	1	4	-	-	-	1	2	-	ī -	
2 ^	2	1	-	-	Y	Y	1	7	M		7	1	2	1	-	
3	2	1	-)	-	_	-	1	1	1	_ 3	-	1	2	-	-	
4	3	2	1	1	-	-	1	-	-	-		1	3	-	-	
5 SINEER	3	2	1	1	0	-1-1	2	E.V	Jr.	I E	-171	1	3	7.1	_	
6	2	1	-	-"	re in	es Les	2	A DI DI	PA. S./ (*)	IVER:	112	1	2	UU3	-	
Overall	3	2	1	1	-	-	1	-	-	-	-	1	3	-	-	
Correlation																

23AU073	RENEWABLE SOURCES OF	L	T	P	C									
ENERGY 3 0 0														
COURSE OBJECTIVES:														
COURSE O	BJECTIVES:													
• To h	have the knowledge about the imp	orta	ance	e a	ind									
Econo	omics of renewable Energy.													
• To ha	ave the knowledge about the differen	t m	eth	ods	of									
powe	er generation using Solar, Wind ene	ergy	an	d	Bio									
energ	y.													
• To h	ave the knowledge about the importa	ance	of	Ti	dal									
energ	y and Wave energy and the operations	s of	hyc	lrog	gen									
syste	ms and fuel cell systems													
UNIT I	INTRODUCTION				9									
World Ene	ergy Use - Reserves of Energy I	Reso	urc	es	_									
Environmen	ntal Aspects of Energy Utilization -	Re	nev	vab	le									
Energy Scer	nario in Tamilnadu, India and around	the	Wo	rld	-									
Potentials -	Achievements / Applications - E	conc	mi	cs	of									
renewable e	nergy systems.													
UNITII	SOLAR ENERGY				9									
Solar Radia	tion - Measurements of Solar Radiation	1 - F	lat	Pla	te									
and Conce	entrating Collectors - Solar dire	ct	The	erm	al									
Application	s – Solar thermal Power Generation - Fr	unda	ame	enta	als									
of Solar Pho	to Voltaic Conversion - Solar Cells - Sol	ar P	VΡ	ow	er									
Generation -	- Solar PV Applications.													
UNIT III	WIND ENERGY				9									
Wind Data	and Energy Estimation - Types of V	Vind	l Eı	nerg	зу									
Systems - Pe	erformance – Site Selection – Details of V	Vind	Tu	rbii	ne									
Generator -	Safety and Environmental Aspects.													
UNIT IV	BIO - ENERGY				9									

OTHER RENEWABLE ENERGY SOURCES

Biomass direct combustion - Biomass gasifiers - Biogas plants - Digesters - Ethanol production - Bio diesel - Cogeneration -

Biomass Applications

UNIT V

Tidal energy - Wave Energy - Open and Closed OTEC Cycles -Small Hydro-Geothermal Energy - Hydrogen and Storage - Fuel Cell Systems - Hybrid Systems. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain the Indian and global energy scenario. CO2: Summarize the various solar energy technologies and its applications. **CO3:** Explain the various wind energy technologies. **CO4:** Interpret the various bio-energy technologies. CO5: Compare the different methods of ocean energy production. Apply knowledge of geothermal energy sources and CO6: power plant types to assess their applications and environmental impacts. TEXT BOOKS: Fundamentals and Applications of Renewable Energy 1 Indian Edition, by Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala, McGraw Hill; First edition. Renewable Energy Sources and Emerging Technologies, by 2 Kothari, Prentice Hall India Learning Private Limited; 2nd edition (1 January 2011), ISBN-10: 8120344707 **REFERENCES:** Godfrey Boyle, "Renewable Energy, Power for 1 Sustainable Future", Oxford University Press, U.K., 2012. Rai.G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2014. Sukhatme.S.P., "Solar Energy: Principles of Thermal 3 Collection and Storage", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2009.

4

Tiwari G.N., "Solar Energy - Fundamentals Design,

Modelling and applications", Alpha Science Intl Ltd, 2015.

COs]	PO	s					PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
2	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
3	2	1	-	-	1	1	-	1	-	1	-	-	2	1	1	
4	2	1	-	-	1	1	-	1	-	-	-	-	2	1	1	
5	2	1	-	1	1	1	1	1	ı	1	-	-	2	1	1	
6	3	2	1	1	1	1	-	1	-	-	-	-	3	1	1	
Overall Correlation	3	2	1	1	1	1	-	1	ı	1	1	-	3	1	1	

23AU074	VEHICLE AIR -	L	T	P	С
	CONDITIONING	3	0	0	3

- To understand the components of the automotive airconditioning and their functions and the latest developments in this field.
- To diagnose the problems in the various parts of Vehicle air conditioning system.
- To gain knowledge of semi and automatic temperature control system for AC.

UNIT I	AUTOMOTIVE AIRCONDITIONING	10
	FUNDAMENTALS	

Purposes of Heating, Ventilation and Air Conditioning-Environmental Concerns- Ozone layer depletion- Location of air conditioning components in a car – Schematic layout of a vehicle refrigeration system. Psychrometry – Basic terminology and Psychrometric mixtures- Psychrometric Chart- Related problems.

UNIT II AUTOMOTIVE COOLING AND HEATING 8 SYSTEM

Vehicle Refrigeration System and related problems- Fixed thermostatic and Orifice tube system- Variable displacement thermostatic and Orifice tube system- Vehicle air conditioning operation Types of compressor- Compressor Clutches-Compressor Clutch electrical circuit- Compressor lubrication-Condensers- Evaporators- Expansion devices- Evaporator temperature and pressure controls- receiver-drier-Accumulators- refrigerant hoses, Connections and other assemblies- Heating system.

UNIT III	CONTROL VALVES AND DELIVERY	10
	SYSTEM	

Types of control devices - HVAC control system modes - System protection switches and valves - Pressure cutoff, Temperature cutoff, Thermal limiters - Refrigeration system diagnosis

Preventing Compressor damage - Preventing damage to other systems - Preventing Overheating Ram air ventilation - Maintaining drivability - Refrigeration system diagnosis Air delivery Components - Handling refrigerants - Discharging, Charging & Leak detection.

UNIT IV TEMPERATURE CONTROL DEVICES

9

Different types of sensors and actuators used in automatic temperature control - Fixed and variable displacement temperature control - Semi Automatic - Controller design for Fixed and variable displacement type air conditioning system.

UNIT V SYSTEM SERVICING AND TESTIN

8

Special tools for servicing vehicle air conditioning – Diagnosing components and air conditioning systems- Diagnosing cooling system- Air delivery system- Automatic temperature Control system diagnosis and service.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain about the parameters in vehicle air conditioning system.
- CO2: Identify and evaluate the various components of automotive air conditioning systems.
- CO3: Identify the problems in the various Parts of the vehicle air conditioning system.
- **CO4:** Explain about semi and automatic temperature control system for AC.
- **CO5:** Examine and service vehicle air-conditioning system.
- **CO6:** Model the vehicle air-conditioning system.

TEXT BOOKS:

Warren Farnell and James D.Halderman, "Automotive Heating, Ventilation, and Air Conditioning systems", Classroom Manual, Pearson Prentice Hall, 2004.

2 Paul Weisler, "Automotive Air Conditioning", Reston Publishing Co. Inc., 1990.

REFERENCES:

- William H Crouse and Donald L Anglin, "Automotive Air conditioning", McGraw Hill Inc., 1990
- Mitchell Information Services, Inc., "Mitchell Automatic Heating and Air Conditioning Systems", Prentice Hall Inc., 1989
- McDonald, K.L., "Automotive Air Conditioning", Theodore Audel series, 1978
- Warren Farnell and James D.Halderman, "Automotive Heating, Ventilation, and Air Conditioning systems", Shop Manual, Pearson Prentice Hall, 2004.

COs					_		PO	S	-				PSOs			
POWER	D1.	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	Lá	1	1	1	-	ı	-	1	2	1	1	
2	3	2	1	1	Y	1	1	1	L	-0	6	1	3	-	1	
3	3	2	1	1	_	1	1	1	1			1	3	-	1	
4	2	1	1	-	-	1	1	1	-		-	1	2	-	1	
5 NEER	3	3	2	2	Ų	1	1	1	Jr.	I,E	-[1]	1	3	<u> </u>	1	
6	3	2	1	1	-	1	1	1	-	UVER	_	1	3	-	1	
Overall	3	2	1	1	-	1	1	1	-	1	-	1	3	-	1	
Correlation																

23AU075	SOLAR ENERGY	L	T	P	C
	TECHNOLOGY	3	0	0	3

- To describe about solar radiation and various solar collectors.
- To explain the various solar thermal energy technologies and their applications.
- To discuss various Solar PV systems designs and their applications.

UNIT I SOLAR RADIATION AND COLLECTORS 9

Solar angles – Sun path diagrams – Radiation - Measurement and estimation on horizontal and tilted surfaces - Flat plate collector thermal analysis - Testing methods - Evacuated tubular collectors - Concentrator collectors - Classification - Design and performance parameters - Tracking systems - Compound parabolic concentrators - Concentrators with point focus - Heliostats - Performance of the collectors.

UNIT II SOLAR THERMAL TECHNOLOGIES 9

Principle of working, Types, Design and operation of Solar heating and cooling systems - Thermal Energy storage systems - Solar Desalination - Solar cooker: Domestic, Community - Solar pond - Solar drying-solar chimney - Solar thermal electricity conversion.

UNIT III SOLAR PV FUNDAMENTALS 9

Semiconductor – Properties - Energy levels - Basic equations of semiconductor devices physics. Solar cells - P-n junction: Homo and hetero junctions - Metal-semiconductor interface - Dark and illumination characteristics - Figure of merits of solar cell - Efficiency limits - Variation of efficiency with the band - Gap and temperature - Efficiency measurements - High efficiency cells - Solar thermo-photovoltaics.

	1	
UNIT IV	SPV SYSTEM DESIGN AND	9
	APPLICATIONS	

Solar cell array system analysis and performance prediction -

Shadow analysis: Reliability - Solar cell array design concepts - PV system design - Design process and optimization - Detailed array design - Storage autonomy - Voltage regulation - Maximum tracking - Centralized and decentralized SPV systems - Standalone - Hybrid and grid connected system - System installation - Operation and maintenances - Field experience - PV market analysis and economics of SPV systems.

UNIT V | SOLAR PASSIVE ARCHITECTURE

9

Thermal comfort - Bioclimatic classification - Passive heating concepts: Direct heat gain - Indirect heat gain - Isolated gain and sunspaces - Passive cooling concepts: Evaporative cooling - Radiative cooling - Application of wind, Water and earth for cooling; Shading - Paints and cavity walls for cooling roof radiation traps - Energy efficient landscape design.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the solar radiation and various solar collectors.
- **CO2:** Explain the characteristics of solar thermal technologies.
- CO3: Analyze the various solar PV cell materials and conversion techniques.
- **CO4:** Select the appropriate grid system based on the application.
- CO5: Categorize various Solar SPV systems designs and their applications.
- CO6: Apply solar passive building techniques for cooling and heating applications.

TEXT BOOKS:

- 1 Chetan Singh Solanki, "Solar Photovoltatics Fundamentals, Technologies and Applications", PHI Learning Private limited, 2011.
- 2 Twidell, J.W. & Weir, A., "Renewable Energy Resources", EFN Spon Ltd., UK, 2015.

DEEE	RENCE	c.														
			//2 T											T 51		
1	G.D. R	ai,	"N	on-	Coı	nve	ntio	ona	I Ei	ner	gy S	our	ces",	Kr	nanı	na
	Publish	ners	, N	ew	De	lhi,	201	14.								
2	P John	P John A. Duffie, William A. Beckman, "Solar Engineering														
	of The	of Thermal Processes", John Wiley & Sons, 2013.														
3	Lovegr	Lovegrove K., Stein W., "Concentrating Solar Power														
	Techno	Technology", Woodhead Publishing Series in Energy,														
	Elsevie	Elsevier, 1st Edition, 2012.														
4	Sukhat	Sukhatme S P, Nayak J K, "Solar Energy - Principle of														
	Therma	Thermal Storage and collection", Tata McGraw Hill, 2008.														
	POs												1			
								PO	S					I	SC	s
	COs	1	2	3	4	5	6	PO:	8	9	10	11	12	1	SC 2)s 3
C	COs 1	1 2	2	3	4	5	_			9	10 -	11 -	12 1			
			_	3 -	4 -	5 -	6	7	8	9 -	10 -	11 - -		1		3
	1	2	1	3 2	4 - - 2	5	6	7	8	9 -	10 - -	11 - -	1	1 2		3
	1 2	2	1 1	-	-	5	6 2 2	7 2 2	8 2 2	9	10	11	1	1 2 2		3 2 2
	1 2 3 0 WER	2 2 3	1 1 3	- - 2	- - 2	5	6 2 2 2	7 2 2 2	8 2 2 2	9	10 - - - -	11 - - - -	1 1 1	1 2 2 3	2 -	3 2 2 2
	1 2 3 OWER	2 2 3 3	1 1 3 2	- - 2 1	- - 2 1	5	6 2 2 2 2	7 2 2 2 2	8 2 2 2 2	9	10 - - - -	11 - - - -	1 1 1 1	1 2 2 3 3	2 -	3 2 2 2 2
	1 2 3 4 5	2 2 3 3	1 1 3 2 3	- 2 1 2	- 2 1 2	5	6 2 2 2 2 2	7 2 2 2 2 2	8 2 2 2 2 2	9	10	11 - - - -	1 1 1 1 1	1 2 2 3 3	2 -	3 2 2 2 2 2

23AU076	DIGITAL MANUFACTURING	L	T	P	С	1
	OF AUTOMOBILES	3	0	0	3	

- To understand the different technologies in the digital manufacturing concept.
- To Design, analysis and optimize of parts using CAD/CAM/CAE technologies.
- To understand the concept of rapid prototyping and reverse engineering.

UNIT I CONCEPTION AND DEVELOPMENT OF 9 PRODUCTS 9

Design processes and methods - CAD/CAM/CAE technologies and product lifecycle management (PLM). Concepts generation and embodiment. Expression of product design ideas using 2D sketches.

UNIT II COMPUTER AIDED DESIGN AND 9 ENGINEERING 9

3D modeling. Parametric design. Assembly modeling. Render the appearance of a product. CAD and additive manufacturing. Finite Element Analysis (FEA) to validate functional performance: General stages of the process, Solid and FEA models, Materials definition, Loading (loads, displacements constraints...), Post-processing, Results and verifications. Topology optimization.

UNIT III OPEN-SOURCE PRINTER AND RAPID 9 PROTOTYPING

Concept of open - Source 3D printer - Structural details, Control mechanism - Materials and Applications. Introduction to rapid tooling (RT) - Direct and Indirect tooling - Silicone rubber molding, Epoxy tooling, Spray Metal Coating, 3D printing direct, Electro Optical Sintering (EOS) - Working Principle, Materials and Applications.

UNIT IV	REVERSE ENGINEERING	9
General m	ethodology: point clouds, meshes, NURBS sur	face

models and parametric CAD models. Digitizing methods and main technologies: Applications and selection of reverse engineering systems, Reverse Engineering.

UNIT V INDUSTRIAL INTERNET OF THINGS

9

Industrial Internet of Things and Cyber Manufacturing Systems, Application map for Industrial Cyber Physical Systems (CPS) – CPS - Based manufacturing and Industries 4.0 , Application of CPS in Machine tools, Digital production - Introduction to big data and machine learning and condition Monitoring, Plant Automation, Case studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Develop product ideas into viable products
- CO2: Apply fundamental engineering design principles and procedures.
- CO3: Analyze, design and optimization of parts using CAD/CAM/CAE technologies
- CO4: Apply the knowledge of rapid prototyping operation
- CO5: Utilize reverse engineering processes.
- CO6: Explain IIOT in Manufacturing Sectors.

TEXT BOOKS:

- 1 Radhakrishnan P, Subramanyan S. and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.
- Mikell. P. Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.

REFERENCES:

1 Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufacturing management " Second Edition, Pearson Education, 1999.

2	Donald	l I	Нea	rn	ar	nd	M.	. F	'aul	ine	Ва	ker	"C	om	put	er			
	Graphics"'. Prentice Hall, Inc., 1992.																		
3	Foley,	W	an	Da	am,	F	ein	er	an	d :	Hug	hes,	"C	om	put	er			
	graphic	cs p	rin	cip	les	& p	rac	tice	" P	ears	son l	Educ	catio	n, 2	2003	3 .			
4	Ibrahim Zeid, "Mastering CAD CAM", Tata McGraw-Hill										ill								
	Publishing, 2007.																		
			,																
COs																Os			
	TO _s]	PO	S					F	PSC	s			
C	COs	1	2	3	4	5	6	PO:	8	9	10	11	12	1 1	PSC 2)s 3			
C	COs	1 3	2	3	4	5				9	10	11	12 1			_			
C		_			_	_				9 -	10 -	11 -		1	2	_			
(1	3	2	1	1	1				9	10 - -	11 - -	1	1 3	2	_			
(1 2	3	2	1 1	1	1				9	10 - - -	11 - - -	1	1 3 3	2 1 1	_			
	1 2 3	3 3	2 2 3	1 1 2	1 1 2	1 1 1				9	10 - - - -	11 - - - -	1 1 1	1 3 3 3	1 1 1	_			
(1 2 3 4	3 3 3 3	2 2 3 2	1 1 2 1	1 1 2 1	1 1 1 1				9	10 - - - -	11 - - - -	1 1 1 1	3 3 3 3	1 1 1 1	_			

Correlation

