

REGULATIONS - 2023

CURRICULUM AND SYLLABI

(2023-2024)

B.E. AERONAUTICAL ENGINEERING

KCG College of Technology was founded in 1998 to fulfill the Founder-Chairman, Dr. KCG Verghese's vision of "To Make Every Man a Success and No Man a Failure". It is a Christian minority institution, affiliated to Anna University (Autonomous), Chennai and approved by AICTE, New Delhi.

VISION OF KCG

KCG College of Technology aspires to become a globally recognized centre of excellence for science, technology & engineering education, committed to quality teaching, learning and research while ensuring for every student a unique educational experience which will promote leadership, job creation, social commitment and service to nation building.

MISSION OF KCG

- Disseminate knowledge in a rigorous and intellectually stimulating environment.
- Facilitate socially responsive research, innovation and entrepreneurship.
- Foster holistic development and professional competency.
- Nurture the virtue of service and an ethical value system in the young minds.

VISION OF AERONAUTICAL ENGINEERING

The Department envisions becoming a center of excellence, equipping the students with value and skill based education, pursuing globally relevant research and producing professionals committed to nation building.

MISSION OF AERONAUTICAL ENGINEERING

- Impart quality technical education and unique interdisciplinary experiences
- Develop the analytical, computational and design capabilities to provide sustainable solutions
- Expose the students to the current trends and opportunities in the global Aerospace industry
- Inculcate professional responsibility based on an innate ethical value system

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

The graduates will:

PEO 1	Apply knowledge in emerging and varied areas of
	Aeronautical Engineering for higher studies,
	research, employment and product development.

PEO 2	Communicate their skills and have a sense of					
	responsibility to protect the environment and have ethical conduct towards their profession and					
	commitment to serve the society.					
PEO 3	Exhibit managerial skills and leadership qualities					
	while understanding the need for lifelong learning to					
	be competent professionals.					

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

PO 01	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO 02	Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							
PO 03	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.							

PO 04	Use research based knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 05	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 07	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 08	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 09	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.
	U

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 01	Design and investigate complex problems in Aircraft						
	structures, Aerodynamics, Flight dynamics and						
	Aircraft materials						
PSO 02	Use FLUENT/GAMBIT and ANSYS tools for design						
	simulation and analysis of Aeronautical and						
	Mechanical systems						
PSO 03	Follow the AIAA Code of Ethics in their future						
	career.						

INDEX

S1.No	Description	Page No.
1	Curriculum	1
2	I Semester Syllabus	16
3	II Semester Syllabus	46
4	III Semester Syllabus	77
5	IV Semester Syllabus	99
6	V Semester Syllabus	120
7	VI Semester Syllabus	135
8	VII Semester Syllabus	154
9	VIII Semester Syllabus	176
10	Vertical 1 : Avionics And Drone Technology	179
11	Vertical 2 : Computational Engineering	202
12	Vertical 3 : Aerodynamics And Propulsion	227
13	Vertical 4 : Aerospace Structures	250
14	Vertical 5 : Aircraft Maintenance And Practices	274
14	Vertical 6 : Diversified Courses	298

KCG COLLEGE OF TECHNOLOGY (AUTONOMOUS)

REGULATIONS 2023

B.E. AERONAUTICAL ENGINEERING CHOICE BASED CREDIT SYSTEM CURRICULUM FOR SEMESTERS I TO VIII

SEMESTER - I

SL. NO	COURSE CODE	COURSE TITLE Induction Programme	CATE GORY		RIC PEF VEE T	ι.	TOTAL CONTACT PERIODS	CREDITS
		Ü	HEORY					
1	23HS101	Essential Communication	HSMC	3	0	0	3	3
2	23MA101	Matrices and Calculus	BSC	3	0	0	3	3
3	23AD101	Programming in Python	ESC	3	0	0	3	3
4	23HS102	Heritage of Tamils	HSMC	1	0	0	1	1
	The same	THEORY AN	ID PRA	CT	[CA	LS	CHNOL	agy.
5	23PH111	Engineering Physics	BSC	3	0	2	5	4
6	23CY111	Engineering Chemistry	BSC	3	0	2	5	4
		PRA	CTICAI	S				
7	23AD121	Python Programming Laboratory	ESC	0	0	4	4	2
8	23HS121	Communication Skill Laboratory	HSMC	0	0	2	2	1
9	23HS122	General Clubs / Technical Clubs / NCC / NSS / Extension Activities	HSMC	0	0	2	2	1*
		TOTAL		16	0	12	28	21

SEMESTER - II

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY	PE	RIC PEI VEI T		TOTAL CONTACT PERIODS	CREDITS
		,	HEORY			1	T	Γ
1	23HS201/ 23HS202	Professional English /Foreign Language	HSMC	3	0	0	3	3
2	23MA201	Vector Calculus And Complex Functions	BSC	3	1	0	4	4
3	23PH207	Applied Physics	BSC	3	0	0	3	3
4	23AE201	Elements of Aeronautical Engineering	PCC	3	0	0	3	3
5	23HS203	Tamils & Technology	HSMC	1	0	0	1	1
	WO.	THEORY A	ND PRAC	CTI	CA	LS	9	
6	23EE281	Basic Electrical and Electronics Engineering	ESC	2	0	2	4	3
7	23ME211	Engineering Graphics	ESC	3	0	2	5	4
	PRACTICALS							
8	23ME221	Engineering Practices Laboratory	ESC	0	0	4	SITY AUTON	2
9	23AE221	Aero Modelling Lab	PCC	0	0	4	4	2
10	23HS291	Soft Skills	EEC	0	0	2	2	1*
	TOTAL 18 1 14 33 25							

SEMESTER - III

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK		K	TOTAL CONTACT PERIODS	CREDITS
		7	TIFODA	L	T	P		
	T	T	HEORY		1		T	ı
1	23MA302	Transforms and Partial Differential Equations	BSC	3	1	0	4	4
2	23AE301	Solid Mechanics	PCC	3	0	0	3	3
3	23HS301	Universal Human Values and Ethics	HSMC	3	0	0	3	3
		THEORY A	ND PR	ACT	ICA	LS		
4	23ME312	Fluid Mechanics and Hydraulic Machinery	PCC	3	0	2	5	4
5	23AE311	Aero Engineering Thermodynamics	PCC	3	0	2	5	4
7	PRACTICALS							
6	23AE321	Strength of Materials Laboratory	PCC	0	0	4	4	2
7	23ES391	Presentation skills	EEC	0	0	2	CH2OL	1*
		TOTAL AFFI	JATED TO	15	1	10	26 TON	0/1/20

SEMESTER - IV

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK L T P		K	TOTAL CONTACT PERIODS	CREDITS
		Γ	HEORY	,				
1	23MA403	Numerical and Statistical Methods	BSC	3	1	0	4	4
2	23AE401	Low-speed Aerodynamics	PCC	3	0	0	3	3
3	23AE402	Air Breathing Propulsion	PCC	3	0	0	3	3
4	23AE403	Aircraft Structures	PCC	3	0	0	3	3
5		Department Elective 1	DEC	3	0	0	3	3
6	OWE	Department Elective 2	DEC	3	0	0	3	3
	(3)	PRA	ACTICA	LS	1			
7	23AE421	Aerodynamics Laboratory	PCC	0	0	4	4	2
8	23AE422	Propulsion Laboratory	PCC	0	0	4	4	2
9	23ES491	Aptitude and Logical Reasoning 1	EEC	0	0	2	RSITY 2	1*
10	23AE423	Mini Project	EEC	0	0	2	2	1
	TOTAL					12	31	24

SEMESTER - V

				PF	RIO	DS	TOTAL	
SL.	COURSE	COURSE TITLE	CATE	E PER WEEK				CREDITS
NO	CODE	COURSE TITLE	GORY	L	T	P	PERIODS	CKEDIIS
			THEOD		1	1	TERIOD5	
			THEOR	Y	1			ı
		Research						
1	23RE501	Methodology and	ESC	2	0	0	2	2
		Intellectual					_	_
		Property Rights						
2	23AE501	Advanced	PCC	3	0	0	3	3
2	23AE301	Aerodynamics	rcc	3	U	U	3	3
	20 4 5502	Advanced Aircraft	DCC	_	0	0	2	2
3	23AE502	Structures	PCC	3	0	0	3	3
4		Department	DEC	3	0	0	3	3
4		Elective 3	DEC	3	U	U	3	3
5		Department	DEC	3	0	0	3	3
3	,00W	Elective 4	DEC	3	U	U	3	
	(3)	Open Elective 1		- /	Y			
6	16	(Emerging	OEC	3	0	0	3	3
ĺ	V.	Technology)	- 100	. 1				
1	18	PR	ACTIC	ALS				
7	23AE521	Aircraft Structures	DCC	0	0	4	4	2
7	23AE321	Laboratory	PCC	0	0	4	CHI4OL	DGY
		Computational	LIATEDT	DAN	NA.U	NIVE	ISITY AUTON	DMOUS .
8	23AE522	Analysis	PCC	0	0	2	2	1
		Laboratory						
9	23ES591	Aptitude and	EEC	0	0	2	2	1*
)	23E3391	Logical Reasoning 2	EEC	U	U	_		1
	TOTAL				0	8	25	20

SEMESTER - VI

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK L T P		K	TOTAL CONTACT PERIODS	CREDITS		
	THEORY									
1		Department Elective 5	DEC	3	0	0	3	3		
2		Department Elective 6	DEC	3	0	0	3	3		
3		Open Elective 2 (Management /Safety Courses)	OEC	3	0	0	3	3		
		THEORY A	ND PR	ACT	ICA	LS				
4	23CE611	Environmental Science and Engineering	ESC	3	0	2	5	4		
5	23AE611	Flight Dynamics and Simulation	PCC	3	0	2	5	4		
6	23AE612	Avionics	PCC	3	0	2	5	4		
A	18	PRA	ACTICA	LS						
7	23AE621	Project Work - Phase 1	EEC	0	0	4	CH4IOL	<u> </u>		
8	23AE622	Technical Training	EEC	0	0	2	ISITY 2 UTON	OMO(15		
9	23AE623	Technical Seminar- 1	ESC	0	0	2	2	1		
		TOTAL		18	0	14	32	25		

SEMESTER - VII

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY	V	RIO PER VEE	K	TOTAL CONTACT PERIODS	CREDITS
		7	HEORY	L	T	P		
1		Open Elective 3 (Management Courses)	OEC	3	0	0	3	3
2	23AE701	Helicopter Aerodynamics	PCC	3	0	0	3	3
3	23AE702	Finite Element Method	PCC	3	0	0	3	3
4	23AE703	Comprehension	EEC	2	0	0	2	2
5	23AE704	Total Quality and Continuing Airworthiness	PCC	3	0	0	3	3
		THEORY A	ND PRA	\C T	ICA	LS		
6	23AE711	Composite Materials and Structures	PCC	3	0	2	5	4
	N.	PRA	ACTICA	LS				
7	23AE721	Aircraft Design Project	EEC	0	0	4	4	2
8	23AE722	Project Work - Phase 2	EEC	0	0	6	ISITY 6 _{AUTON}	3
9	23AE723	Technical Seminar - 2	ESC	0	0	4	4	2
	TOTAL				0	16	33	25

SEMESTER - VIII

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY	V L	RIO PER VEE T		TOTAL CONTACT PERIODS	CREDITS
		PRA	ACTICA	LS				
1	23AE8217	Capstone Project / Internship cum Project	EEC	0	0	20	20	10
	TOTAL				0	20	20	10

TOTAL CREDITS: 170

VERTICAL 1: AVIONICS AND DRONE TECHNOLOGY

SL.	COURSE CODE	COURSE TITLE	CATE GORY	_	IOI PER EEI		TOTAL CONTACT PERIODS	CREDITS
				L	T	P	TERIODS	
		Drone rules and						
1	23AE031	Aviation	DEC	3	0	0	3	3
		Regulations						
2	23AE032	Control	DEC	3	0	0	3	3
	23AE032	Engineering	DEC	3	U	U	3	3
3	23AE033	Guidance and	DEC	3	0	0	3	3
3	23AE033	Control	DEC	3	0	U	3	3
		Navigation and						
4	23AE034	Communication	DEC	3	0	0	3	3
		System						
5	23AE035	Design of UAV	DEC	3	0	0	3	3
3	23AE033	Systems	DEC		0	U		
6	23AE036	Aerodynamics of	DEC	3	0	0	3	3
0	23AE030	Drones	DEC	3	U	U	3	3
7	23AE037	Drone Avionics	DEC	3	0	0	3	3
8	23AE038	Digital Image	DEC	3	0	0	3	3
0	23/AE030	Processing in Drone	DEC	,	U	U		3
COLLEGE OF TECHNOLOGY								

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

VERTICAL 2: COMPUTATIONAL ENGINEERING

SL. NO	COURSE CODE	COURSE TITLE	LE CATE GORY		IOI PER EEI		TOTAL CONTACT PERIODS	CREDITS
				L	T	P	Linobs	
1	23AE039	Numerical Methods in Fluid Dynamics	DEC	3	0	0	3	3
2	23AE040	Computational Heat Transfer	DEC	3	0	0	3	3
3	23AE041	Basics of Computational Fluid Dynamics	DEC	3	0	0	3	3
4	23AE042	Computer Aided Design and Analysis	DEC	3	0	0	3	3
5	23AE043	Grid Generation Techniques	DEC	3	0	0	3	3
6	23MT042	Computer Integrated Manufacturing	DEC	3	0	0	3	3
7	23AE044	Boundary Layer Theory	DEC	3	0	0	CH ³ IOL	0 G 3
8	23AE045	Programming Tools in Aerospace Engineering	DEC	3	0	0	3	3

VERTICAL 3: AERODYNAMICS AND PROPULSION

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK L T P		Κ.	TOTAL CONTACT PERIODS	CREDITS
1	23AE046	Experimental Aerodynamics	DEC	3	0	0	3	3
2	23AE047	High-speed Aerodynamics	DEC	3	0	0	3	3
3	23AE048	Industrial Aerodynamics	DEC	3	0	0	3	3
4	23AE049	Rocket Propulsion	DEC	3	0	0	3	3
5	23AE050	Advanced Propulsion Systems	DEC	3	0	0	3	3
6	23AE051	Hypersonic Aerodynamics	DEC	3	0	0	3	3
7	23AE052	Wind Tunnel Techniques	DEC	3	0	0	3	3
8	23AE053	Fundamental of Combustion	DEC	3	0	0	3	3

COLLEGE OF TECHNOLOGY
AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

VERTICAL 4: AEROSPACE STRUCTURES

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY		PERIODS PER WEEK L T P		TOTAL CONTACT PERIODS	CREDITS
1	23AE054	Fatigue and Fracture Mechanics	DEC	3	0	0	3	3
2	23AE055	Experimental Stress Analysis	DEC	3	0	0	3	3
3	23AE056	Vibrations and Aeroelasticity	DEC	3	0	0	3	3
4	23ME031	Additive Manufacturing	DEC	3	0	3	3	3
5	23ME036	Non-Destructive Testing and Evaluation	DEC	3	0	0	3	3
6	23AE057	Aerospace Materials	DEC	3	0	0	3	3
7	23AE058	Theory of Elasticity	DEC	3	0	0	3	3
8	23AE059	Spacecraft Structures	DEC	3	0	0	3	3

VERTICAL 5: AIRCRAFT MAINTENANCE AND PRACTICES

SL.	COURSE CODE	COURSE TITLE	CATE GORY		RIO R WI		TOTAL CONTACT	CREDITS
140	CODE		GORI	L	T	P	PERIODS	
1	23AE060	Airframe Maintenance	DEC	3	0	0	3	3
1	237111000	and Repair	DLC	J	0	U	3	3
		Aircraft General						
2	23AE061	Engineering and	DEC	3	0	0	3	3
		Maintenance Practices						
3	23AE062	Civil Aviation	DEC	3	0	0	3	3
	25AE002	Regulations	DEC	9	U	0	3	3
		Aircraft Engine						
4	23AE063	Maintenance and	DEC	3	0	0	3	3
		Repair						
5	23AE064	Air Traffic Control	DEC	3	0	0	3	3
6	23AE065	Airport Management	DEC	3	0	0	3	3
7	23AE066	Aircraft Safety and	DEC	3	0	0	3	3
	25AE000	Operations	DEC	3	O	U	3	3
8	23AE067	Crisis Management in	DEC	3	0	0	3	3
	207 11007	Aircraft Industry	BEC					

VERTICAL 6: DIVERSIFIED COURSES

SL.	COURSE CODE	COURSE TITLE	CATE GORY		PERIODS PER WEEK		PER		PER CONTA		TOTAL CONTACT PERIODS	T CREDITS
				L	T	P	TERIODO	3 3 3 3 3 3				
		Foundation of										
1	23AE068	Manufacturing	DEC	3	0	0	3	3				
		Technology										
2	23AS701	Rockets and launch	DEC	3	0	0	3	3				
	23/13/01	vehicles	DLC)	0	U	3	3				
3	23AE069	Drone Technologies	DEC	3	0	0	3	3				
4	23AE070	Helicopter	DEC	3	0	0	3	3				
4	25AE070	Maintenance	DEC	5	0	U	3	3				
5	23AS601	Space Mechanics	DEC	3	0	0	3	3				
6	23AE071	Fundamentals of	DEC	3	0	0	3	3				
0	257111071	Machine Theory	DEC		U	U						
7	23 A F072	High Temperature	DEC	3	0	0	3	3				
,	123AE0721	Materials	DLC)	U	U	3					
8	23AE073	Rockets and Missiles	DEC	3	0	0	3	3				

OPEN ELECTIVE 1 - EMERGING TECHNOLOGY

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY		RIO PER VEE	-	TOTAL CONTACT PERIODS	CREDITS
				L	T	P	TERRODS	
		Artificial Intelligence						
1	230AD971	and Machine Learning	OEC	3	0	0	3	3
		Fundamentals						
2	23OCE971	IoT concepts and	OEC	2	0	2	3	3
_		applications	OLC	_	0	_	3	3
3	23OCS971	Augmented Reality	OEC	3	0	0	3	3
3		and Virtual Reality	OLC	3	U	0	3	3
4	23OCS972	Data Science and	OEC	3	0	0	3	3
4		Fundamentals	OEC	3	U	0	3	3
5	23OE990	Foundation of Big	OEC	3	0	0	3	3
3	WOO	Data Analytics	OEC	3	U	U	3	3
6	23OIT971	Block Chain	OEC	3	0	0	3	3
0	18	Technology	OEC	3	U	U	3	3
7	23OPH971	Quantum Technology	OEC	3	0	0	3	3

OPEN ELECTIVE - MANAGEMENT COURSES

Sl. No.	Course Code	Course Title	Category		rio Pei Vee	ſ	Total Contact Periods	Credits
				L	T	P	2 0220 025	
1	23OMG971	Total Quality Management	OEC	3	0	0	3	3
2	23OMG972	Engineering Economics and Financial Accounting	OEC	3	0	0	3	3
3	23OMG973	Engineering Management and Law	OEC	3	0	0	3	3
4	23OMG974	Knowledge Management	OEC	3	0	0	3	3
5	23OMG975	Industrial Management	OEC	3	0	0	3	3

6		Entrepreneurship and Business Opportunities	OEC	3	0	0	3	3
7		Modern Business Administration and Financing	OEC	3	0	0	3	3
8	23OMG978	Essentials of Management	OEC	3	0	0	3	3

OPEN ELECTIVE - SAFETY RELATED COURSES

Sl. No.	Course Code	Course Title	Category]	rio Pei /ee		Total Contact Periods	Credits
				L	T	P	1 ciious	
1	23OAU981	Automotive Safety	OEC	3	0	0	3	3
2	23OCE981	Disaster Management	OEC	3	0	0	3	3
3	23OME981	Industrial Safety	OEC	3	0	0	3	3

SEMESTER-WISE CREDIT DISTRIBUTION

SEMESTER	HSMC	BSC	ESC	PCC	DEC	OEC	EEC	Total
Semester I	5	11	5	TE	CHI	IOL	0G	21
Semester II	FF 4	7	9	N5E	SITY	AUTON	OMO	25
Semester III	3	4		13				20
Semester IV		4		13	6		1	24
Semester V			2	9	6	3		20
Semester VI			5	8	6	3	3	25
Semester VII			2	13		3	7	25
Semester VIII							10	10
B. E – Aeronautical Engineering	12	26	23	61	18	9	21	170

SEMESTER -I

23IP101	INDUCTION PROGRAMME	L	T	P	С
		1	1	ı	0

COURSE OBJECTIVES:

- mandatory 2 weeks Programme to This is a be conducted the students the as soon as enter institution. Normal classes the start only after induction program is over.
- The induction Programme has been introduced by AICTE with the following objectives
- Engineering colleges were established graduates well in the branch/department admission, have a holistic outlook, and have a desire to work for national needs and beyond. graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.
- One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character
- Hence, the purpose of this Programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and

understanding of the self, people around them, society at large, and nature

• Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.,

• Life skills

Every student would choose one skill related to daily needs such as stitching, accounting, finance management, etc.,

Universal human values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through dos and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real-life activities rather than lecturing.

Club Activity

Students will be introduced to more than 20 Clubs available in the college-both technical and non-technical. The student can choose as to which club the student will enroll in.

Value Based Communication

This module will focus on improving the communication skills of students

Lectures by Alumni

Lectures by alumni are arranged to bring in a sense of belonging to the student towards the institution and also to inspire them to perform better

Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or

orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged

Familiarization to Dept/Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities

Address by different heads

Heads of Placement, Training, Student affairs, counsellor, etc would be interacting with the students to introduce them to various measures taken in the institution for the betterment of students.

Induction Programme is totally an activity-based Programme and therefore there shall be no tests/assessments during this Programme.

REFERENCES:

Guide to Induction program from AICTE

23HS101	ESSENTIAL COMMUNICATION	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from short and simple correspondence
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, short paragraphs and essays
- To enable learners to use language efficiently while expressing their opinions via various media.

UNIT I FORMATION OF SENTENCES

9

Reading- Read pictures-notices- short comprehension passages and recognize main ideas and specific details. Writing- framing simple and compound sentences, completing sentences, developing hints, writing text messages. Language development- Parts of Speech, Wh- Questions, yes or no questions, direct and indirect questions. Vocabulary development- prefixes- suffixes- articles - countable and uncountable nouns

UNIT II | NARRATION AND DESCRIPTION

9

Reading – Read short narratives and descriptions from newspapers, dialogues and conversations. Reading strategies and practices. Language development – Tenses- simple present, present continuous, present perfect, simple past, past continuous, past perfect, simple future, future continuous, past participle, pronouns. Vocabulary development- guessing meanings of words in context. Writing – Write short narrative paragraphs, biographies of friends/relatives - writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures.

UNIT III COMPARING AND CONTRASTING

9

Reading- short texts and long texts -understanding different

types of text structures, -coherence-jumbled sentences. Language development- degrees of comparison, concord-Vocabulary development – single word substitutes- discourse markers- use of reference words Writing - comparative and contrast paragraphs writing- topic sentence- main idea, free writing, compare and contrast using some suggested vocabulary and structures.

UNIT IV | SOCIAL MEDIA COMMUNICATION

9

Reading-Reading blogs, social media reviews, posts, comments, process description, Language development - relative clause, Vocabulary development- social media terms-words, abbreviations and acronyms Writing- -e-mail writing-conventions of personal email, descriptions for simple processes, critical online reviews, blog, website posts, commenting to posts.

UNIT V ESSAY WRITING

9

Reading- Close reading non-technical longer texts Language development - modal verbs, phrasal verbs- Vocabulary development - collocation. Writing- Writing short essays-brainstorming - developing an outline- identifying main and subordinate ideas.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Summarize simple, level-appropriate texts of around 300 words recognizing main ideas and specific details.
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing.
- CO3: Use appropriate expressions to describe, compare and contrast people, things, situations etc., in writing.
- **CO4:** Establish the ability to communicate effectively through emails.
- CO5: Determine the language use appropriate for different social media platforms.

CO6:	Use a	opr	opri	iate	ex	pre	ssic	ns	for	na	rrat	ive	des	crip	otio	ns
	and pr	-	-			-								•		
TEXT	BOOK															
1	Susan	Pı	roct	or,	Ia	ck	C.	F	Rich	ard	S,	Iona	atha	n	Ηυ	11.
	Interch				•						•	-			aı	nd
	Assess	`							O			•	,			
2	Susan	Pı	roct	or,	Ia	ck	C.	F	Rich	ard	S,	Iona	atha	n	Ηυ	11.
					•						•	-			_	-
		Interchange Level 3. Cambridge University Press and Assessment														
REFE	RENCE	S:														
1		Outt P. Kiranmai and Rajeevan Geeta. Basic														
	Communication Skills, Foundation Books: 2013															
2																
_	Means, L. Thomas and Elaine Langlois. English & Communication for Colleges. Cengage Learning, USA:															
	2007			0111	.01	COII	ege	<i>3.</i> C	ع ۲۱۰	sage	LC	A1111	iig,	CO		
- /	2007				-		P	'Os	A		7	-	Y	I	SC)c
C	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	1	2	3	7	3	1	1	0	2	3	11	2	_	_	3
- A	2	-	18	-7/	-	_	1		_	2	3	_	2	_	_	_
	3 CV/VEED			7	-	OI	1	91	-0	2	3	HN	2	Ō.	şΨ	-
	A STATE	REP		-	-7	FILE	NIED	10/	NNA	UNI	3	YIA	2	IOM	005	-
	4	-	-	-	-	_	_	-	-	_		-			-	-
	5	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	6	-	-	-	-	-	1	1	-	3	3	-	2	-	-	-
	erall	_	_	_	_	_	1	1	_	3	3	_	2	_	_	_
	elation	<u> </u>														
Reco	nmende			_	of S	tud	ies			2023			1			225
l	Α	nni	ove	d				1s	t AC	'M		Date		()9-(19-2	023

23MA101	MATRICES AND CALCULUS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications

UNIT I MATRICES

9

Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms - Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III | FUNCTIONS OF SEVERAL VARIABLES

9

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multiplier.

UNIT IV | INTEGRAL CALCULUS

9

Definite and Indefinite integrals - Substitution rule - Techniques of

Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V | MULTIPLE INTEGRALS

9

Double integrals - Change of order of integration - Double integrals in polar coordinates - Area enclosed by plane curves - Triple integrals - Volume of solids - Change of variables in double and triple integrals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply the matrix algebra techniques and applications in Engineering Problems.
- CO2: Make use of the concept of limits and rules of differentiation to differentiate functions
- CO3: Find the derivative of functions of several variables
- CO4: Examine the application of partial derivatives
- CO5: Compute integrals by different techniques of Integration.
- CO6: Apply the concept of integration to compute multiple integrals.

TEXT BOOKS:

- 1 Kreyszig. E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2 James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.

REFERENCES:

- 1 Dr.P.Sivaramakrishnadas, Dr.C.Vijayakumari., Matrices and Calculus Pearson Publications Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2 Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016

- Bali. N., Goyal. M. and Watkins. C., —Advanced Engineering Mathematics Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 4 Narayanan. S. and Manicavachagom Pillai.T. K., —Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.

		1					T	Os						T	PSO	C
COs								U ₃						1	30	5
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
2		3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
3		3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
4		3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
5		3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
6		3	2	1	1	_	-	-	-	-1	-	1	1	3	1	-
Overa Correlat		3	2	1	1	-	4	-	-/	-	-	_	1	3	1	-
Recomme	ende	d by	Во	ard	of S	tud	ies	02-	08-2	023						

Approved

COLLEGE OF TECHNOLOGY

Date

09-09-2023

1st ACM

23AD101	PROGRAMMING IN PYTHON	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To know the basics of Programming.
- To convert an algorithm into a Python program.
- To construct Python programs with control structures.
- To structure a Python Program as a set of functions.
- To use Python data structures-lists, tuples, dictionaries and files.

UNIT I COMPUTATIONAL THINKING 9

Introduction to Computing and Problem Solving: Fundamentals of Computing –Computing Devices – Identification of Computational Problems – Pseudo Code and Flowcharts – Instructions – Algorithms – Building Blocks of Algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion).

UNIT II INTRODUCTION TO PYTHON 9

Introduction to Python Programming: Python Interpreter and Interactive Mode- Variables and Identifiers - Arithmetic Operators - Values and Types - Statements, Reading Input, Print Output, Type Conversions, type () Function and Is Operator, Dynamic and Strongly Typed Language. Control Flow Statements: if, if...else, if...else Decision Control Statements, Nested if Statement, while Loop, for Loop, continue and break Statements.

UNIT III FUNCTIONS AND STRINGS 9

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the Function, The return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments. Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String

by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

UNIT IV LISTS, TUPLES, DICTIONARIES AND FILES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list Parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension. Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages.

UNIT V OBJECT-ORIENTED AND FUNCTIONAL PROGRAMMING

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, Polymorphism. Functional Programming: Lambda. Iterators, Generators, List Comprehensions.

TOTAL: 45 PERIODS

9

9

COURSE OUTCOMES:

- **CO1:** Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs using Control Statements
- CO3: Develop simple Python programs for solving problems using Functions and Strings
- **CO4:** Build a Python program using lists, tuples, dictionaries and files.
- CO5: Construct a code related to Object-Oriented Programming Concept
- CO6: Construct a code related to Functional Programming.

TEX	T BOOKS:
1	Allen B. Downey, "Think Python: How to Think Like a
	Computer Scientist", 2nd edition, Updated for Python 3,
	Shroff/O'Reilly Publishers, 2016
	(http://greenteapress.com/wp/think-python/).
2	Karl Beecher, "Computational Thinking: A
	Beginner's Guide to Problem Solving and
	Programming", 1st Edition, BCS Learning & mp;
	Development Limited, 2017.
REFI	ERENCES:
1	Learning To Program with Python. Richard L. Halterman.
	Copyright © 2011
2	Python for Everybody, Exploring Data Using Python 3.
	Dr. Charles R. Severance. 2016.
3	Paul Deitel and Harvey Deitel, "Python for
1	Programmers", Pearson Education, 1st Edition, 2021.
4	G Venkatesh and Madhavan Mukund, "Computational
1	Thinking: A Primer for Programmers and Data Scientists",
	1st Edition, Notion Press, 2021.
5	John V Guttag, "Introduction to Computation and
	Programming Using Python: With Applications to
	Computational Modeling and Understanding Data",
	Third Edition, MIT Press , 2021
6	Eric Matthes, "Python Crash Course, A Hands - on Project
	Based Introduction to Programming", 2nd Edition, No
7	Starch Press, 2019.
7	https://www.python.org/
8	Martin C. Brown, "Python: The Complete Reference", 4th
	Edition, Mc-Graw Hill, 2018.

COs						P	Os						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	1	1	1	-	-	-	-	1	3	1	-
2	3	2	1	1	1	-	-	_	-	-	-	1	3	1	-
3	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
4	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
5	3	2	1	1	1	-	-	-	-	-	-	1	3	1	-
6	3	2	1	1	1	-	-	1	1	1	1	1	3	1	1
Overall Correlation	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
Recommended	d by	во Во	ard	of S	tud	ies	26-	07-2	2023	}					
A	ppı	ove	d	•	•		1st ACM Date					9	09-09-2023		

23HS102	HERITAGE OF TAMILS	L	T	P	С
		1	0	0	1

- Explain the classical literature of Tamil and highlight notable Tamil poets.
- Explain the creation of traditional Tamil musical instruments.
- Explain the sports and games associated with Tamil heritage.
- Explore the education and literacy practices during the Sangam period.
- Explain the contributions of Tamils to the Indian freedom struggle.
- Explain the development and history of printing in Tamil
 Nadu.

UNIT I LANGUAGE AND LITERATURE 3

Language Families in India – Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature – Management Principles in Thirukural – Tamil Epics and Impact of Buddhism & Jainism in Tamil Land – Bakthi Literature Azhwars and Nayanmars – Forms of minor Poetry – Development of Modern literature in Tamil – Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART - SCULPTURE

Hero stone to modern sculpture – Bronze icons – Tribes and their handicrafts – Art of temple car making – – Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments – Mridhangam, Parai, Veenai, Yazh and Nadhaswaram – Role of Temples in Social and Economic Life of Tamils.

UNIT III FOLK AND MARTIAL ARTS 3 Karagattam, Villu Pattu, Therukoothu, Kaniyan Koothu, Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance -Sports and Games of Tamils. UNIT IV THINAI CONCEPT OF TAMILS 3 Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age -Overseas Conquest of Cholas UNIT V CONTRIBUTION OF TAMILS TO INDIAN 3 NATIONAL MOVEMENT AND INDIAN **CULTURE** Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine - Inscriptions & Manuscripts - Print History of Tamil Books. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1 Explain the evolution of Tamil language and literature, focusing on its cultural, ethical, and secular themes. CO2Outline the making of musical instruments related to Tamil heritage. CO3Discuss the sports and games of Tamils CO4 Explain the education and literacy during Sangam age. CO5 Express the importance and contribution of Tamils to Indian Freedom Struggle

CO6 Outline the print history of books in Tamil Nadu

TEXT B	OC	K	S:													
1 தமி	ிழக	ഖ	ரலா	тறு-ц	மக்க(ளும்	பன்	пшт	டும்-	கே.ே	கபிஎ்	ாளை	(வெ	វា្ជាព្រំ(<u></u> թ։	
தமி	ழ்நா	гG	பாட	நூல்	மற்	றும்	கல்	விய	பியல்	് பൽ	ரிகள்	கழ	கம்).			
2 გი	തിര	ரித்	தமி) jý –	மு	ത്തെ	வர்	Q	ல. சு	ந்தர	ம் (வ	பிகட	ன் ப	ிரசு	ரம்).	
REFER	EN	CE	S:													
_	_				-					சங்க			நகர	Ţ		
				_					_	ഖെ						
				ஆ	ற்றா	ப்க6	றர	நு	கர்	ிகம்	(ရ	தால்	່ນຝາເ	பல்	து	ത്യ
രെ	பளி	ឃឹ	டு)											i		
COs]	PO	S]	PSO	s
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		-	-	-	-	-	2	2	-	-	-	-	-	-	-	-
2		-	-	-	-	-	2	2	-	-	1	-	1	-	-	-
3	100	-		-	-		2	2	Ė	-	-	-	-	ā	-	-
4	0	7	Bide	25.	_	-	2	2	-	A	-	V	1	-	_	-
5	Y US	-	7	P	-	-	2	2	-	-	1	-	-	-1	-	-
6	V	-	-	- 8	-	-	2	2	-		1		1	H	1	ı -
Overa Correlat	70.	4) 6		4	2	-	2	2	EGI	- 01	-	ĊН	NC	I C	GY	* -
Recom	mer	ıde	d by	у Во	ard o	of St	udi	es	02-	08-20	23	RSITY	AUT	ONO	MOUS	
		F	\pp	rove	d				1st A	CM		Date	•	09-	-09-2	023

23PH111	ENGINEERING PHYSICS	L	T	P	C
		3	0	2	4

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of optics and lasers.
- To equip the students successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS 9

Types of stress, Stress-strain diagram and its uses- factors affecting elastic modulus- tensile strength- Bending of beams, bending moment – theory and experiment: Uniform and non-uniform bending, Center of mass (CM) – CM of continuous bodies –rod, motion of the CM. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of rod, disc, solid sphere – M.I of a diatomic molecule - torque -rotational energy state of a rigid diatomic molecule – M.I of disc by torsional pendulum

UNIT II | ELECTROMAGNETIC WAVES 9

Concept of field-introduction to gradient, divergence and curl of field – Stokes theorem (No proof)-Gauss divergence theorem (No proof) - The Maxwell's equations in integral form and differential form - wave equation; Plane electromagnetic waves in vacuum - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Energy and momentum in EM waves-Poynting's vector - Cell-phone reception.

UNIT III OPTICS AND LASERS

9

Reflection and refraction of light waves - total internal reflection – types of optical fiber, Numerical Aperture and acceptance angle - interference –Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients(Qualitative) - population inversion - CO2 laser, semiconductor laser (Homo junction) - Applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V ADVANCED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential -Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

PRACTICAL EXERCISES: (Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects
- 2. Simple harmonic oscillations of cantilever
- 3. Non-uniform bending- Determination of Young's modulus
- 4. Uniform bending-Determination of Young's modulus
- 5. Laser-Determination of the wavelength of the laser using grating

- 6. Airwedge- Determination of thickness of a thinsheet / wire
- 7. a) Optical fibre-Determination of Numerical Aperture and acceptance angle
 - b) Compact disc-Determination of width of the groove using laser.
- 8. Acoustic grating-Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer–determination of the velocity of sound and compressibility of liquids
- 10. Post office box-Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Determine the mechanical properties of materials.
- CO2: Apply the principles of electromagnetic waves to real world system.
- CO3: Determine the thickness of thin wire and the characteristic parameter of an optical fiber.
- CO4: Apply the principles of lasers to real world application.
- CO5: Organize the quantum mechanical properties of particles and waves.
- **CO6:** Utilize the quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1 D.Kleppner and R.Kolenkow, "An Introduction to Mechanics", McGraw Hill Education (Indian Edition), 2017.
- **2** Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, "Concepts of Modern Physics", McGraw-Hill (Indian

	Edition)	, 20)17.													
REFI	ERENCE	S:														
1	R.Wolf	son	," E	Esse	ntia	ıl U	niv	ers	ity	Phy	sics	", V	olur	ne î	1 &	2.
	Pearson	Ed	luca	tio	n (Ir	ndia	ın E	dit	ion)	, 20	09.					
2	Paul A	. T	iple	er, '	"Ph	ysic	: -	Vo	lun	ne 1	l &	2",	CBS	5, (1	ndi	an
	Edition)	, 20	004.													
3	K.Thya	gar	ajar	n ai	nd	A.C	Gha	tak,	"La	ser	s: F	unda	ame	ntal	s a	nd
	Applica	tion	ns,"	La	xmi	Pu	blic	atic	ns,	(In	dian	Edi	tion), 20)19.	
4	D.Hallio	day	, R.	Res	nicl	k an	ıd J.	Wa	lke	r, "]	Prin	ciple	es of	Phy	ysic	s",
	Wiley (1	ndi	ian i	Edi	tion	1), 2	015									
5	N.Garc	ia,	A	.Da	ma	sk	ar	ıd	S.S	Schv	varz	·, '	'Phy	sics	3 1	for
	Compu	ter S	Scie	nce	Stı	ıdeı	nts"	,Sp	ring	ger	Verl	ag, 2	2016			
	COs	3:27	100				I	POs		A				I	SO	s
	COS ON	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1/6	3	2	1	1	-	Δ	1	-\	-	-	-	1	3	-	-
	2	3	2	1	1	-	-	9	-	9	-	-	1	3		J./-
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	4	3	2	1	1	CC)Ll	E(iΕ	OF	TE	CH	No	3	G)	-
	5	3	2	1	1	ATE	LIFAT	ED T	ÞÆΝ	VÆ U	NI∀ER	SITY	A1 TO	3	AGU	-
	6	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
_	verall	3	2	1	1	_	_	_	_	_	_	_	1	3	-	-
(Or	relation	l	1													
		J 1	. D	المسم	~ ((L. 1	:	02	00.2	0000						
	mmende		Bo ove		of S	tud	ies		08-2			Date	,	<u> </u>	09-2	2023

23CY111	ENGINEERING CHEMISTRY	L	T	P	C
		3	0	1	4

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage batteries.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Sewage treatment primary treatment and disinfection (UV, Ozonation, break-point chlorination). Hardness-Estimation of Hardness of water by EDTA-numerical Problems-Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process

UNIT II NANOCHEMISTRY 9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials (Metal oxide and Metal) Synthesis and Characterization of nanomaterials: sol-gel, solvothermal, laser ablation, chemical

vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, energy, sensor, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; CO₂ system; Reduced phase rule; Two component system: lead-silver system -Pattinson process. Composites: Definition & Need composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix and Polymer composites. Hybrid composites matrix composites - definition and examples.

UNIT IV | FUELS AND COMBUSTION

9

Fuels: Fossil Fuels, Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking – octane number, diesel oil – cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value – higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis – ORSAT Method. CO₂ emission and carbon sequestration, Green Hydrogen.

UNIT V | ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission and fusion- light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery – dry cell, Secondary battery – lead acid

battery and lithium-ion battery; Electric vehicles – working principles; Fuel cells: H_2 - O_2 fuel cell, microbial fuel cell and its advanced technology, supercapacitor.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

TOTAL: 30 PERIODS

- 1. Determination of hardness causing salts in water sample by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Determination of strength of given Barium chloride using conductivity meter.
- 5. Determination of strength of Acid using pH meter.
- 6. Determination of strength of FAS by potentiometer
- 7. Determination of strength of acids in a mixture using conductivity meter.
- 8. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 9. Estimation of Nickel in steel

COURSE OUTCOMES:

- CO1: Interpret the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- CO2: Illustrate the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- CO3: Estimate the knowledge of phase rule and composites for material selection requirements
- CO4: Choose a suitable fuel for engineering processes and applications
- CO5: Relate the different forms of energy resources and apply them for suitable applications in energy sectors.
- CO6: Explain the different types of batteries, fuel cells and

	working	g p1	inc	iple	es of	f Ele	ectr	ic v	ehio	cles						
TEX	Г ВООК			Ι -												
1	P. C. Ja Edition, Delhi, 2	in a	han			-			_		_			-		
2	Sivasar Publish	ıkaı	В.,										McC	Grav	w-F	Hill
3	S.S. Da Chand Enginee 44 th Edi	ra, Put erin	"A olish g M	Te ning Iath	ext g, 1: nem	boo 2th	ok Ed:	of itio	Eng n, 2	gine :018	erin .Gre	g C wal	.B.S.,	, "F	High	ner
REF	ERENCE	S:														
1	B. S. M Murday Univers Science,	itie	Гех s Р	t bo	ook	of	nar	osc	cien	cé a	and	nan	otecl	nno	log	y",
2	O.G. P Educati	alaı	nna												T	Iill
3	Fried <mark>ric</mark> Internat	h ion	Em al F	nich VT	, ' , LT	"En D,	gin Nev	eeri w D	ng elh	C i, 2(hem)14N	istry Iew	,", Delŀ	Sci ni, 2	enti 018	fic
4	ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019															
5	O.V. Ro Book fo Busines	ouss or]	ak Eng	anc ine	l H ers	.D. an	Ges d T	sser Tech	, A	ppl logi	ied (sts,	Chei Spr	nistı	y-A	A Te	ext
	COs						1	POs	}					I	PSO	s
'	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	2	2	1	-	-	-	-	2	-	-	-	ı	1	2	ı	-
	3	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
	4	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	5	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
	6	2	1	-	-	-	-	2	-	-	-	-	1	2	-	-
Cor	verall relation	3	2	1	1	-	-	3	-	-	-	-	2	3	-	-
Reco	mmended	d by	Bo	ard	of S	itud	ies	28-	07-2	023						

pproved	1st ACM	Date	!	09-	09-2	2023
PYTHON PRO	IING	L	T	P	C	
LABOR	ATORY		0	0	4	2
	PYTHON PRO	r	PYTHON PROGRAMMING	PYTHON PROGRAMMING L	PYTHON PROGRAMMING L T	PYTHON PROGRAMMING L T P

The main objective of this laboratory is to put into practice computational thinking. The students will be expected to write, compile, run and debug Python programs to demonstrate the usage of:

- Operators and Conditional Statements
- Control Structures and Functions (both recursive and iterative) and Recursion.
- String functions
- Lists, Sets, Dictionaries, Tuples and Files.
- Object-Oriented Programming

Exercise 1 Programs to demonstrate the usage of operators and conditional statements.

- 1. Write a program that takes two integers as command line arguments and prints the sum of two integers.
- 2. Program to display the information:
 Your name, Full Address, Mobile Number,
 College Name, Course Subjects
- 3. Program that reads the URL of a website as input and displays contents of a webpage.

Exercise 2 Programs to demonstrate usage of control structures.

- 4. Program to find the sum of all prime numbers between 1 and 1000.
- 5. Program to find the product of two matrices.
- 6. Program to find the roots of a quadratic equation.

Exercise 3 Programs to demonstrate the usage of Functions and Recursion

- 7. Write both recursive and non-recursive functions for the following:
 - a. To find GCD of two integers
 - b. To find the factorial of positive integer

- c. To print Fibonacci Sequence up to given number _n' d. To convert decimal number to Binary equivalent
- 8. Program with a function that accepts two arguments: a list and a number _n'. It should display all the numbers in the list that are greater than the given number _n'.
- 9. Program with a function to find how many numbers are divisible by 2, 3,4,5,6 and 7 between 1 to 1000.

Exercise 4 Programs to demonstrate the usage of String functions.

- 10. Program that accepts two strings S1, S2, and finds whether they are equal are not.
- 11. Program to count the number of occurrences of characters in each string.
- 12. Program to find whether a given string is palindrome or not.

Exercise 5 Programs to demonstrate the usage of lists, sets, dictionaries, tuples and files.

- 13. Simple sorting, Histogram, Students marks statement, Retail bill preparation
- 14. Write a program that combines lists L1 and L2 into a dictionary.
- 15. Program to display a list of all unique words in a text file and word count, copy file, Voter's age validation, Marks range validation (0-100).

Exercise 6 Programs to demonstrate the usage of Object-Oriented Programming

- 16. Program to implement the inheritance.
- 17. Program to implement polymorphism

TOTAL: 60 PERIODS

COURSE OUTCOMES:

- **CO1:** Develop algorithmic solutions to simple computational problems.
- **CO2:** Develop and execute simple Python programs.

CO3: C	Constru	ct p	orog	gran	ns i	n P	yth	on ı	ısin	g co	ondi	tion	als a	nd	looj	ps
fo	or solvi	ing	pro	ble	ms.											
CO4: U	Jtilize f	uno	ctio	ns t	o de	ecoı	npo	ose	а Ру	ytho	on p	rogr	am.			
CO5: A	nalyse	co	mp	oun	d d	ata	usi	ng l	Pytl	non	data	a str	uctu	res.		
CO6: I1	nterpre	et da	ata :	fror	n/t	o fil	les i	in P	yth	on l	Prog	ram	s			
CC) c						I	POs						I	PSO	s
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															3
1	1 3 2 1 1 1 1 1 1 3 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															-
2	2 3 2 1 1 1 1 3 1 -															-
3	3 3 2 1 1 1 1 3 1 -															-
4	4 3 2 1 1 1 1 3 1 -															-
5	;	3	3	2	2	1	-	-	-	-	-	-	1	3	1	-
6	,	2	1	-	-	1	-	-	1	1	1	1	1	3	1	1
	verall relation 3 2 1 1 1 1 1 1 1 1 1 3 1 1															
Recom	mended	d by	Во	ard	of S	tud	ies	02-	08-2	023				100		ri -
4	A	ppr	ove	d	V	100		1st	AC	M		Date	V W	09-	09-2	2023

COURSE OBJECTIVES: • To enable the students to comprehend the main idea and specific information of the listening passage • To help students express themselves clearly, and communicate effectively with others. • To introduce authentic language use and context-specific vocabulary that might not be encountered in textbooks. Exercise:1 Listening to conversations set in everyday social context and complete gap-filling exercise Exercise:2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise:3 Listening to a group conversation in academic setting and answer MCQ Exercise:4 Listening to a lecture and answer MCQ or gap filling exercise:5 Listening to Ted Talks, podcasts, documentaries discussion Exercise:6 Listening to a lecture and reading a text on the same subject-compare and contrast Exercise:7 Speaking Introducing oneself Exercise:8 Answering questions based on the introduction Exercise:9 Speaking on a given prompt for 2 mins. Exercise:10 Answering questions based on the topic spoken Exercise:11 Role play- Engaging in conversation	23HS121	COMMUNICATION SKILLS	L	Т	P	\overline{C}
 To enable the students to comprehend the main idea and specific information of the listening passage To help students express themselves clearly, and communicate effectively with others. To introduce authentic language use and context-specific vocabulary that might not be encountered in textbooks. Exercise: 1 Listening to conversations set in everyday social context and complete gap-filling exercise Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries discussion Exercise: 6 Listening to a lecture and reading a text on the same subject-compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation 						1
 To enable the students to comprehend the main idea and specific information of the listening passage To help students express themselves clearly, and communicate effectively with others. To introduce authentic language use and context-specific vocabulary that might not be encountered in textbooks. Exercise: 1 Listening to conversations set in everyday social context and complete gap-filling exercise Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries discussion Exercise: 6 Listening to a lecture and reading a text on the same subject-compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation 	COURSE O	BIECTIVES:		_		
 specific information of the listening passage To help students express themselves clearly, and communicate effectively with others. To introduce authentic language use and context-specific vocabulary that might not be encountered in textbooks. Exercise: 1 Listening to conversations set in everyday social context and complete gap-filling exercise Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic settin and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries - discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation 		•	ide	a ar	ıd	
 To help students express themselves clearly, and communicate effectively with others. To introduce authentic language use and context-specific vocabulary that might not be encountered in textbooks. Exercise: 1 Listening to conversations set in everyday social context and complete gap-filling exercise Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation 		<u> -</u>	1010			
communicate effectively with others. • To introduce authentic language use and context-specific vocabulary that might not be encountered in textbooks. Exercise: 1 Listening to conversations set in everyday social context and complete gap-filling exercise Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling exercise: 5 Listening to Ted Talks, podcasts, documentaries discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	-		d			
vocabulary that might not be encountered in textbooks. Exercise: 1 Listening to conversations set in everyday social context and complete gap-filling exercise Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling and answer MCQ or gap filli		<u> </u>				
Exercise: 1 Listening to conversations set in everyday social context and complete gap-filling exercise Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries discussion Exercise: 6 Listening to a lecture and reading a text on the same subject-compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	• To in	troduce authentic language use and contex	t-sp	ecif	ic	
context and complete gap-filling exercise Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries - discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	vocab	oulary that might not be encountered in tex	(tbo	oks	•	
Exercise: 2 Listening to a monologue in everyday social context Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling and Exercise: 5 Listening to Ted Talks, podcasts, documentaries discussion Exercise: 6 Listening to a lecture and reading a text on the same subject-compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	Exercise : 1	Listening to conversations set in everyday	y soc	cial		
Diagram labelling and MCQ Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries - discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation		context and complete gap-filling exercise				
Exercise: 3 Listening to a group conversation in academic setting and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries - discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	Exercise : 2	Listening to a monologue in everyday soo	cial o	conf	text	
and answer MCQ Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries - discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation		Diagram labelling and MCQ				
Exercise: 4 Listening to a lecture and answer MCQ or gap filling Exercise: 5 Listening to Ted Talks, podcasts, documentaries - discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	Exercise : 3	Listening to a group conversation in acad	emi	c se	ttin	g
Exercise: 5 Listening to Ted Talks, podcasts, documentaries - discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	(PO)	and answer MCQ				
discussion Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	Exercise : 4	Listening to a lecture and answer MCQ or	r ga	p fil	ling	7
Exercise: 6 Listening to a lecture and reading a text on the same subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	Exercise : 5	Listening to Ted Talks, podcasts, docume	ntai	ries	_	
subject- compare and contrast Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	18	discussion	-			
Exercise: 7 Speaking Introducing oneself Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	Exercise : 6	Listening to a lecture and reading a text of	n th	e sa	ame	;
Exercise: 8 Answering questions based on the introduction Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation		subject- compare and contrast			II II	
Exercise: 9 Speaking on a given prompt for 2 mins. Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	Exercise : 7	Speaking Introducing oneself	Pallerie	-2.1023		
Exercise: 10 Answering questions based on the topic spoken Exercise: 11 Role play- Engaging in conversation	Exercise : 8	Answering questions based on the introd	ucti	on		
Exercise : 11 Role play- Engaging in conversation	Exercise : 9	Speaking on a given prompt for 2 mins.				
	Exercise : 10	Answering questions based on the topic s	spok	en		
Exercise: 12 Engaging in Podcast Discussion	Exercise : 11	Role play- Engaging in conversation				
	Exercise : 12	Engaging in Podcast Discussion				

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Demonstrate fluency in speaking in variety of situations

CO2: Express their knowledge by talking continuously for more than two minutes on a topic

CO3:	Develop a	activ	ve l	iste	ning	g fo	r m	ore	me	aniı	ngfu	l int	erac	tion	ıs aı	nd
	conversat	ion	s													
CO4:	Use a full	rar	ige	of s	truc	ctur	es r	natu	ırall	ly a	nd a	ppro	pria	itely	y	
CO5:	Identify t	he s	pec	ific	inf	orm	atio	on i	n co	nve	ersat	ions	, int	ervi	iew	s,
	talks and	lect	ure	:S												
CO6:	Develop t	Develop the ability to compare and analyse different forms of														
	informati	nformation, identifying key similarities and differences.														
	POs PSOs															s
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 1 1 1 1 - 2 3 - 2															3
	1	ı	-	-	-	-	1	1	-	2	3	-	2	-	-	-
	2 2 3 - 2															-
	3	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
	4	-	-	-	-	-	-	-	-	-	3	-	2	-	-	-
	5	-	-	-	- ,	-	1	1	<u>-</u>	3	3	_	2	-	1	-
	6 COWE	R De	25	-	-	-	1	1	74	2	3	N- /	-	1	<u></u>	-
	verall relation		12	-	-	1	1	1	-	3	3	-	2	_	-	-
Dogg	mmended	hv	Ros	rd o	of S	hudi	ioc	02-	NR_2	023			A. Carrie	-	W.	

Approved

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

1st ACM

09-09-2023

SEMESTER - II

23HS201	PROFESSIONAL ENGLISH	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To help learners extract information from longer, technical and scientific texts
- To familiarize learners with different text structures by engaging them in reading, writing and grammar learning activities
- To help learners write coherent, extensive reports and essays.
- To enable learners to use language efficiently while expressing their opinions in professional and business situations

UNIT I WORKPLACE COMMUNICATION

9

9

Reading - Reading brochures (technical context), advertisements, telephone messages, gadget reviews social media messages, digital communication relevant to technical contexts and business. Writing - Writing emails -emails on professional contexts including introducing oneself, writing checklist, writing single sentence definition, product description- advertising or marketing slogans, Language Development- Tenses, Concord, Question types: Wh/ Yes or No/ and Tags, imperative sentences, complex sentences. Vocabulary - One-word substitutes; Abbreviations & Acronyms as used in technical contexts and social media.

UNIT II EXPRESSING CAUSE AND EFFECT

Reading - Reading longer technical texts- Cause and Effect Essays, and emails of complaint. Writing - writing complaint emails (raising tickets) and responses to complaints, writing Cause and effect paragraphs and essays. Language Development- Active, Passive and Impersonal Passive Voice

transformations, Infinitive and Gerunds Vocabulary – Synonyms-contextual meaning of words, Same word acting as different parts of speech, causal expressions.

UNIT III | PROVIDING SOLUTIONS TO PROBLEMS

9

Reading - Case Studies, editorials, news reports etc. Writing - Letter to the Editor, Writing instructions and recommendations, Problem solution essay / Argumentative Essay, Language Development - Error correction; If conditional sentences Vocabulary - Compound Words, discourse markers.

UNIT IV | INTERPRETATION OF GRAPHICS

9

Reading - Reading newspaper articles, nonverbal communication (charts and graphs) Writing -Transferring information from nonverbal (chart, graph etc, to verbal mode) Process- description. Language development-Possessive & Relative pronouns, numerical adjectives Vocabulary Homonyms and Homophones, sequence words.

UNIT V REPORT WRITING AND RESUME WRITING

9

Reading - Company profiles, journal reports. Language Development- Reported Speech Vocabulary-reporting words and phrases. Writing - Writing accident report, survey report and progress report, project proposal, minutes of the meeting, writing statement of purpose, internship application and resume

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- CO1: Summarize long technical and scientific text of not less than 500 words recognizing main ideas and specific details
- CO2: Demonstrate the understanding of more complex grammatical structures and diction while reading and writing
- CO3: Use appropriate expressions to describe process and product, compare and contrast data, analyze problems, provide

	solution	ıs aı	nd p	orov	ve a	n a	rgu	mei	nt ir	ı w	ritin	g				
CO4:	Establis	h	the	а	bili	ty	to	С	om	muı	nicat	te (effec	ctive	ely	in
	professi	ona	ıl er	vir	onr	nen	t th	rou	gh	ema	ails a	and 1	repo	rts		
CO5:	Determ	ine	the	lar	ngu	age	us	e ap	pro	pri	ate	for c	diffe	ren	t so	cial
	media p	olatí	orn	ns t	isec	l fo	r di	gita	1 m	ark	eting	5				
CO6:	Conver	t ski	ills	to a	sse	ts a	nd j	posi	itioı	n th	ems	elve	s in	job	maı	rket
	through	the	eir c	wr	pr	ofes	ssio	nal	nar	rati	ves					
TEX	Г ВООК															
1	V. Che	llan	nma	al,	Dee	epa	Ma	ary	Fra	anci	s, k	N	Sh	oba	, P	R
	Sujatha	•	•								•	-				
	Technol									•						
2	V. Che					-		-								
	Sujatha	•	•								`	_				
	Technol		ΙI,	Ca	mbı	ridg	ge U	niv	ersi	ity l	Pres	s and	d As	sess	sme	nt
REF	ERENCE		REA	-			- 2	9		9		9			4	
1	Business Correspondence and Report Writing by Prof. R.C.															
	- W.	Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd.,														
	2001, N		187							A					- Carrie	
2	Develop											Kri		ı M	Ioh	an,
	Meera I	Banı	nerj	i- N	1acı	mill				td.	1990	, De	lhi.	LU BRÜ		
	COs		_	_	I -	_		POs		_	i Malata				PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	-	-	-	-	-	1	1	-	2	3	-	2	-	-	-
	2	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
	3	-	-	-	-	-	-	1	-	2	3	-	2	-	-	-
	4	-	-	-	-	-	-	-	-	2	3	-	2	-	-	-
	5	-	-	-	-	-	-	1	-	2	3	-	2	-	-	-
	6	-	-	-	-	-	-	-	-	2	3	-	3	-	-	-
	verall	- - - - - 1 1 1 - 2 3 - 3 - - - -														
	relation	11		1	- ((02	00.5	0000						
Keco	mmende				ot S	tud	nes		08-2			D (00	00.5	1000
1	Approved							$\mathbf{I}^{\mathbf{s}}$	AC	M		Date	2	09-	U9-2	2023

23MA201	VECTOR CALCULUS AND	L	T	P	C
	COMPLEX FUNCTIONS	3	1	0	4

- To acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines. To acquaint the student with Fourier Transform techniques used in wide variety of situations.
- To develop an understanding of the standard techniques of complex functions theory so as to enable the student to apply them with confidence, in application areas. To introduce the basic concepts of probability and random variables
- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS

9+3

Gradient and directional derivative – Divergence and curl - Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green's, Gauss divergence and Stoke's theorems (excluding proofs)–Verification and simple application involving cubes and rectangular parallelopipeds.

UNIT II ANALYTIC FUNCTION

9+3

Functions of complex variable -Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties– Harmonic conjugates–Construction of analytic function- Conformal mapping– w=z+c, cz, 1/z, z2, Bilinear Transformation

UNIT III COMPLEX INTEGRATION

9+3

Line integral-Cauchy's integral theorem (exclude proof)—Cauchy's integral formula—Taylor's and Laurent's series—

Singularities – Residues – Residue theorem (exclude proof) – Application of residue theorem for evaluation of real definite integrals as contour integrals around contour and semi circular contour (with poles NOT on real axis).

UNIT IV ORDINARY DIFFERENTIAL EQUATIONS 9+3

Higher order linear differential equations with constant coefficients-Method of variation of parameters – Linear Differential equations with variable coefficients - Homogenous equation of Euler's and Legendre's type – System of simultaneous linear differential equations with constant coefficients.

UNIT V LAPLACE TRANSFORMS

9+3

Existence conditions – Transforms of elementary functions – Transform of unit step function and unit impulse function – Basic properties – Shifting theorems. Transforms of derivatives and integrals-Initial and final value theorems – Inverse transforms – Convolution theorem (exclude proof) – Transform of periodic functions – Application to solution of linear second order ordinary differential equations with constant coefficients.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

- CO1: Utilize the concept of Vector Calculus needed in different Engineering disciplines.
- CO2: Apply the concepts of analytic functions in solving engineering problems
- **CO3:** Examine the problems of conformal mappings and Bilinear Transformation
- CO4: Apply the complex integration techniques in solving engineering problems
- CO5: Solve Ordinary Differential Equations that model some Engineering Problems.

CO	6: Make u	se o	of th	ne I.	apl	ace	trai	nsfo	orm	tec	hnic	ues	in r	hv	sica	1
	problen)	.c _	~- T-	ucc			/111	•••		10.00	т. г		010	
TEX	XT BOOK	S:														
1	Kreyszig	j.E,	"A	dv	anc	ed	En	gin	eeri	ing	Ma	athe	mat	ics'	', J	ohn
	Wiley an	nd	Sor	ıs,	10th	Ed	litic	n, l	New	v De	elhi,	201	6.			
2	Grewal.I	3.S.,	, "]	Hig	her	Er	ngir	neer	ing	M	lathe	ema	tics'	′,]	Kha	nna
	Publishe	rs,	Nev	v D	elh	i <u>, 44</u>	th E	diti	on,	201	8.					
REI	FERENCE	ES:														
1	P.Sivara	mal	kris]	hna	D	as	and	l C	.Vij	aya	kun	nari	"E	ngi	nee	ring
	Mathema	atic	s - I	Ι" -	Pea	arso	n	Puk	olica	atio	ns					
2	Narayan	an.		S.,		Maı	nica	ivac	hag	gon	1	Pill	ay.T	ī.K		and
	Ramanaiah.G "Advanced Mathematics for Engineering															
	Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd,															
	Chennai, 1998.															
3	Ramana.		"Rut. F. P.		_							ema	tics"	, N	1cG	raw
	Hill Edu	cati	on I	Pvt	. Lt	d, N	Iew	De	lhi,	201	18.					ř.
1	COs		3			Y	P	Os	V			1	1		PSC	
A	COS	1	2	3	4	5	6	7	8	9	10	11	12		2	3
10	1	3	2	,1	1	-	-	-	-	-	-	-	1	3	-	-
	2 CINEER	3	2	1	1	.0	-LI	مات) E	E	.171	1	3	5	-
	3	3	2	1	1	PETE	A Lite	110	N. N. D.U	CUN	VERD	<u>-</u>	1	3	100	_
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	6	3	2	1	1	-	1	1	-	-	1	1	1	3	ı	•
_	Overall rrelation	3	2	1	1	-	-	-	-	-	1	-	1	3	-	-

26-07-2023

1st ACM

09-09-2023

Date

Recommended by Board of Studies

Approved

23PH207	APPLIED PHYSICS	L	T	P	C
		3	0	0	3

- To make the students understand the basics of Mechanics and using vectors to analyse them
- To make use Newton's laws of motion for simple systems
- To make students calculate orbital velocity and variation of g
- To help students gain knowledge in biomaterials
- To help the students gain knowledge in metallic glasses, shape memory alloys and nanomaterials.
- To make students comprehend the various types of magnetic materials and superconductors

UNIT I STATICS OF PARTICLES

9

Introduction – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – Vectorial representation of forces – Vector operations of forces -additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – rigid bodies in 2D - Free body diagram –Action and reaction forces – stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis

UNIT II NEWTON'S LAWS OF MOTION

Ç

Centroids and centre of mass - Centroids of lines and areas - Rectangular, circular, triangular areas by integration - Area moments of inertia of plane areas - Rectangular, circular, triangular areas by integration . Newton's laws of motion-Impulse and Momentum-impact of elastic bodies- law of conservation of momentum- frictional forces-motion in an inclined plane.

UNIT III GRAVITATION

9

Newtons law of gravitation - Mass and density of Earth -

Deduction of Newton's law of gravitation from Kepler's law - Boy's method of determination of G - Gravitation potential and field due to spherical shell and solid sphere - Variation of 'g' with altitude, depth - Variation of "g' with rotation of Earth - orbital velocity - Escape velocity.

UNIT IV | MAGNETISM AND SUPERCONDUCTIVITY | 9

Classification of magnetic materials: diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism ferrimagnetism - Domain theory of ferro magnetism - Energies involved in the process of domain growth - M versus H behavior - soft and hard magnetic materials - Superconductivity - Zero resistance and the Meissner effect - critical current density - Type I and Type II superconductors - - BCS theory of superconductivity High temperature superconductor (YBa2Cu3 O7), magnetic levitation.

UNIT V NEW ENGINEERING MATERIALS 9

Metallic glasses: types, glass forming ability of alloys, melt spinning process, applications — shape memory alloys: phases, shape memory effect, pseudoelastic effect, NiTi alloy, applications — nanomaterials: preparation ball milling method, pulsed laser deposition, properties and applications — carbon nanotubes: types.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- **CO1:** Apply the laws of mechanics to equilibrium of particles.
- CO2: Apply the laws of motion and solve problems related to the motion of objects.
- CO3: Apply the law of gravitation to calculate escape velocity.
- CO4: Make use of the knowledge of magnetization versus magnetic field behavior to identify different magnetic materials
- CO5: Explain various types of superconductors and their applications.

CO6:	Illustra	te v	ari	ous	me	etho	ds	of p	orep	oari	ng 1	new	eng	gine	erir	ng
	materia	ıls.														
TEX	ГВООК	S:														
1	D.Halli	day	7,	R.R	esn	ick	ar	nd	J.V	Valk	ær.	Pr	inci	ples	. (of
	Physics	, W	'iley	ı (Ir	ndia	n E	diti	on)	, 20	15.						
2	Beer, F	.P	and	Jo	hns	ton	Jr.	E.I	R., '	"Ve	ctor	Me	echa	nics	s fo	r
	Engine	ers	(Ir	ı S	I U	nits	s):	Sta	tics	an	d I	Dyna	amio	cs",	8t	h
	Edition	, T	ata	Mo	Gr	aw-	Hil	1 P	ubli	ishi	ng (com	pan	y, :	Nev	V
	Delhi (2	2004	4)													
3	R.Balas	ubı	am	ania	am,	Ca	allis	ter'	s l	Mat	eria	ls S	Scier	ice	an	d
	Engine	ngineering. Wiley (Indian Edition), 2014														
REFI	ERENCE	S:														
1	Introdu	ntroduction to Physical Metallurgy, Sidney Avner,														
	McGrav	McGraw Hill 2017														
2	Wende	lin	Wı	igh	t a	nd	Do	nal	d A	Ask	elan	d, I	Esse	ntia	ls	of
1	Materia	Materials Science and Engineering, CL Engineering, 2013.														
3	Ben R	loge	ers,	Je	sse	A	dar	ns	an	d	Sun	nita	Pe	nna	thu	ır,
A	Nanote	chr	olo	gy:	U	nde	rsta	nd	ing	Sn	nall	Sy	sten	ıs,	CF	RC
	Press, 2	2017		2												5
(COs	REA	TITLE S		-	.OI	P	Os	: U)- I	EC	HIN	OL	.11.95	SC	s
	205	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	2	3	2	1	1	-	-	-	-	-	•	-	-	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	4	3	2	1	1	-	-	-	ı	-	ı	1	ı	3	ı	ı
	5	2	1	-	-	-	-	-	ı	-	ı	1	ı	2	ı	ı
	6	2	1	-	-	-	-	-	ı	-	ı	-	-	2	ı	-
_	verall	3	2	1	1	_	_	_	_	_	_	_	_	3	_	_
	elation												_	_		
Reco	mmende				of S	tud	ies			2023		_	1			
	Approved							1st ACM Date 09-				09-(9-09-2023			

23AE201	ELEMENTS OF AERONAUTICAL	L	1	I	_
	ENGINEERING	3	0	0	3
COURSE OBJ	ECTIVES:				
• To a	cquire the knowledge on the Historical	eva	llua	tion	of
Airp	lanes.				
	arn the different component systems an				
	now the concepts of basic properties a	ınd	prii	ncip	oles
	nd the flight.				
	arn the basics of different structures & c				
	earn the various types of power pl	ants	3 us	sed	in
unit HI	STORY OF FLIGHT				_
		. 1. 1	D	11	9
U	e-ornithopter-Early Airplanes by Wrig	_			
-	monoplanes- Developments in ac	eroc	lyna	ımı	cs,
	ctures and propulsion over the years.	_			
	RCRAFT CONFIGURATIONS AND I	ΓS	7		9
DEST 46	ONTROLS				
Different type	s <mark>o</mark> f flight vehicles, Classifications-Comp	one	ents	of a	an
T 18 20 A 18 A 1	their functions- Conventional contr		-		
control- Basic	instruments for Flying-Typical system				ol
actuation.	COLLÉGÉ OF TECHNO				
UNIT III BA	SICS OF AERODYNAMICS	ONO	MOU	15	9
Physical Pro	operties and structures of the	Atn	nost	ohe	re,
Temperature,	pressure and altitude relationships, N	ewt	on's	s La	ıw
-	pplied to Aeronautics-Evolution of li				
	foils- Mach number- Manoeuvres.			,	
UNIT IV BA	SICS OF AIRCRAFT STRUCTURES				9
General types	of construction- Monocoque, semi-mo	noce	oqu	e aı	nd
	structions- typical wing and fuselag				
	non-metallic materials- Use of Alum				-
	nless steel and composite materials.				
	's law- Stress-strain diagrams- Elasti	c C	cons	tan	ts-
Factor of Safet	у.				

ELEMENTS OF AERONAUTICAL | L | T | P | C

23AE201

Basic ideas about piston, turboprop and jet engines - Use of propeller and jets for thrust Production - Comparative merits,

UNIT V BASICS OF PROPULSION

Principle of operation of rocket, types of rocket and typical applications- Exploration into space. TOTAL: 45 PERIODS																
ирри	cations	LAL	7101	atio	11 11	110	эри	cc.			TC)TA	L: 4	5 P	ERI	ODS
COU	RSE OU	JTC	ON	1ES	:											
	After co	mp	leti	on (of th	ne c	our	se,	the	stu	dent	ts w	ill be	e ab	ole t	o:
CO1:	Illustra	te tl	he l	nisto	ory	of a	ircı	aft	& d	leve	lop	men	ts o	ver	the	
	years.										-					
CO2:	Identify	y th	e ty	pes	& (clas	sific	catio	ons	of o	com	pon	ents	an	d cc	ntrol
	system															
CO3:	Make u	Make use of the basic concepts of flight & Physical properties of Atmosphere.														
		of Atmosphere. Identify the types of fuselage and constructions														
	Identify the types of fuselage and constructions. Classify and distinguish the different types of Engines															
	Classify and distinguish the different types of Engines.															
	Analyze the atmospheric air properties.															
-	T BOOKS:															
1	1 Anderson, J.D., "Introduction to Flight", McGraw-Hill; 8th															
	edition, 2015.															
2																
D = -			aple	es o	f Fli	ıght	", J	ohr	ı W:	ıley	, NJ	, 202	21.			
	RENCE		12	"	T .		1		1		100					
1	Sadhu Turbin															Gas
2	Kermo															ised
	edition															
3	Stepher	n.A	. B1	ranc	lt,	Intr	odı	acti	on	to	aerc	nau	tics:	: A	de	sign
	perspec	ctiv	e, 2	nd e	edit	ion,	, AI	AA	Ed	uca	tion	Ser	ies,	200	4.	
	COs						P	Os							PS	Os
	.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	2	2	1	-	-	-	-	-	-	-	-	2	-	-
	2	3	2	2	2	2	-	-	-	-	-	1	-	2	2	-
	3	3	2	2	2	2	-	-	-	-	-	1	-	2	2	-
	4	3	2	2	2	2	-	-	-	-	-	1	-	2	2	-
	5	3	2	2	2	2	-	-	-	-	-	1	-	2	2	-
	6 3 2 2 2 2 1 - 2 2 -															
	Overall 3 3 2 2 2 1 - 2 2 -															
	Correlation															
Recommended by Board of Studies 26-07-2023 Approved 1st ACM Date 09-09-2023																

23HS203	TAMILS AND TECHNOLOGY	L	T	P	C
		1	0	0	1

- To summarize the weaving industry and ceramic technology during Sangam Age
- To explain the design and construction of houses during Sangam Age and the sculptures and temples of Chola, Pallava and Pandya period
- To Explain about the water bodies of Sangam age and relate it to the agricultural usage
- To Outline to students the agriculture and irrigation technology during the Chola Period
- To help students Interpret and explain the digitalization of Tamil books and development of Tamil software

3

UNIT I WEAVING AND CERAMIC TECHNOLOGY

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION 3 TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY 3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads - Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION 3 **TECHNOLOGY** Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea -Fisheries - Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society. UNIT V | SCIENTIFIC TAMIL & TAMIL COMPUTING 3 Development of Scientific Tamil - Tamil computing Digitalization of Tamil Books -Development of Tamil Software - Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project. **TOTAL: 15 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Summarize the weaving industry and ceramic technology during Sangam Age CO2: Explain the design and construction of houses during Sangam Age CO3: Explain the sculptures and temples of Chola, Pallava and Pandya period. **CO4:** Explain about the water bodies of Sangam age and relate it to the agricultural usage CO5: Outline the agriculture and irrigation technology during the Chola Period. CO6: Interpret and explain the digitalization of tamil books and development of Tamil software **TEXT BOOKS:**

58

TNTB & ESC and RMRL

Dr.K.K.Pillay ,"Social Life of Tamils", A joint publication of

DEEEDENICEC																
REF.	ERENCE	S:														
1	Dr.S.Sin	gar	ave	lu,	"So	cial	Lif	e of	the	e Ta	mils	s - T	he C	las	sica	1
	Period"	, Pu	ıblis	shec	d by	: In	terr	nati	ona	l In	stitu	ite o	f Ta	mil		
	Studies.															
2	Dr.S.V.S	Suba	atar	nan	ian		,	Dr	.K.1	D.	Tl	niru	nav	ukk	ara	su,
	"Histori	cal	Н	[erit	tage	e o	of	the	T	am	ils",	P	ublis	she	d	by:
		International Institute of Tamil Studies														
	POs PSOs												s			
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-
	2	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-
	3	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-
	4	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-
	5	-	-	-		-7	1	1	1	-	-	-	-	-	-	-
	6 POWER	ĐΩ	1	1	-	-	1	1	1	-	1	-	-	-	7	-
	verall relati <mark>o</mark> n	// - - - - - 1 1 1 - -														
Reco	mmende	d by	во Во	ard	of S	tud	ies	26-	07-2	2023	332		1		100	24
1	Approved						1 st	AC	M		Date	2	09-0)9-2	023	

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

23EE281	BASIC ELECTRICAL AND	L	T	P	C
		2	0	2	3
COURSE OB					
• To in	ntroduce the basics of electric circuits and	d aı	nal	ysis	 3
	mpart knowledge in the basics of workin		•	,	
	ciples and application of electrical machi	_	s		
_	ntroduce analog devices and their charac			cs	
• To e	ducate on the fundamental concepts of d	ligi	tal		
	tronics, functional elements and working	_			
	suring instruments				
• To d	lemonstrate the load test on DC machine	s, v	vor	kin	ıg
of Pl	N Junction diodes, Zener diodes and rect	tifie	ers.		
UNIT I EL	ECTRICAL CIRCUITS				6
DC Circuits: C	Circuit Components: Conductor, Resistor	r, Ir	ndu	cto	r,
Capacitor- C	Ohm 's Law-Kirchhoff's Laws -Nodal	A	nal	lysi	S,
Mesh analysi	s with independent sources only (Stea	ady	St	ate)-
Introduction	to AC Circuits -Steady state analysis o	of I	RL,	R	Ξ,
and RLC circu	uits (Simple problems only).				
UNIT II EL	ECTRICAL MACHINES		-		6
Construction	and Working principle of DC Genera	tor	s,	EM	F
equation, Typ	pes and Applications- Working Princi	ple	of	D	C
motors, Tor	que Equation, Types and Applic	cati	ons	3.	-
Construction,	Working principle and Applications	of	Siı	ngl	e -
Phase Transfo					
UNIT III AN	NALOG ELECTRONICS				6
PN Junction	n Diodes, Zener Diode-Character	rist	ics		&
	Bipolar Junction Transistor, JFET, SCR,		OS	FE	Γ,
- Types, I-V C	Characteristics and Applications – Rectific	er.			
UNIT IV DI	GITAL ELECTRONICS				6
	umber systems, Combinational logic (a				
	representation of logic functions-SOP				
_	representations and minimization usir	ng I	K-r	nap	os
(up to 3 varial	bles).				

UNIT V MEASUREMENTS AND	6
INSTRUMENTATION	
Functional elements of an instrument, Standards an	nd
calibration, Operating Principle, types- Moving Coil as	nd
Moving Iron meters, Instrument Transformers- CT and F	T,
DSO-Block Diagram	
Total: 30 PERIO	DS
LAB COMPONENT	
1. Verification of Ohms and Kirchhoff's Laws.	
2. Load test on DC Shunt Motor.	
3. Characteristics of PN and Zener Diodes	
4. Design and analysis of Half wave and Full Wave rectifi	ers
5. Implementation of Binary Adder and Subtractor	
6. Study of DSO	
Total: $30 + 30 = 60$ Period	ods
COURSE OUTCOMES:	
After completion of the course, the students will be able t	to:
CO1: Apply fundamental laws to DC electric circuits and	66
demonstrate it experimentally.	65
CO2: Explain the steady state AC circuits with RL, RC, and RI	
circuits AFFILIATED TO ANNA UNIVERSITY I AUTONOMOUS	
CO3: Identify the working principle and applications of	
electrical machines with experimental results	
CO4: Demonstrate the characteristics of various analog	
electronic devices	
CO5: Experiment with the basic concepts of digital electronics	
and demonstrate the implementation of Binary Adder	
and Subtractor	
CO6: Illustrate the operating principles of measuring	
instruments and demonstrate DSO for the basic	
measurements.	
TEXT BOOKS:	
1 Kothari D P and I.J Nagrath,—Basic Electrical and	
Electronics Engineering , Second Edition, McGraw Hill	

	Educat	ion	,202	20												
2	Sedha I	R. S	.,—/	A te	xtb	ook	bo	ok o	of A	ppl	ied	Elec	tron	ics	, S.	
	Chand	& (Co.,	2008	3											
3	A.K. Sa	wh	ney	7, Pı	ıne	et S	Saw	hne	y _	A C	our	se ir	ı Ele	ctri	cal	&
	Electro	nic	Me	asu	rem	ent	s &	Ins	tru	mer	ıtati	on',	Dha	np	at	
	Rai and	l Co	o, 20)15.												
REFI	ERENCE	S:														
1	Kothari D P and I.J Nagrath, —Basic Electrical Engineering, Fourth Edition, Mc Graw Hill Education,															
	2019. S.K. Bhattacharva —Basic Electrical and Electronics															
2	S.K. Bhattacharya —Basic Electrical and Electronics Engineering Pearson Education Second Edition 2017															
	Engineering, Pearson Education, Second Edition, 2017. Thomas L. Floyd. Digital Fundamentals.															
3	Thomas L. Floyd, Digital Fundamentals',															
	11thEdition,Pearson Education,2017.															
4	Albert Malvino, David Bates, _Electronic Principles,															
	McGraw Hill Education; 7th edition, 2017.															
5	Mahmood Nahvi and Joseph A. Edminister, —Electric															
	Circuits, 86 Schaum 'Outline Series, McGraw Hill, 2002.															
6	H.S. Kalsi, _Electronic Instrumentation', Tata McGraw-															
	Hill, No						ALLE		UNINIA	UNI	ZERSI	<i></i>	UTO	UDM.	JI II 0105	
7	James A									·,—	Dor	f's lı	ntro	duc	tion	1
	to Elect	rıc	Cir	cuit	s∥, \	/V1I6	-							Т	100	
(COs	1	2	2	1	-		Os		0	10	11	12		SO	
	1	3	2	3	4	5	6	7	8	9 1	10	11	12	3	2	3 1
	2	2	1	1	1	_	-	-	1	1	1	-	1	2	_	1
	3	3	2	1	1	_	1	1	1	1	1	_	1	3	_	1
	4	2	1	1	1	_	1	1	1	1	1	_	1	2	_	1
	5	3	2	1	1		_	_	1	1	1	_	1	3	_	1
	6	2	1	_	_	_	_	_	1	_	_	_		3	_	1
Oz	zerall															1
	elation	3	2	1	1	-	1	1	1	1	1	-	1	3	-	1
	mmende	d by	Bo	ard	of S	Stud	ies	26-	-07-2	2023	,					l
	Approved						1s	t AC	CM		Date	9	09-()9-2	023	

23ME211	ENGINEERING GRAPHICS	L	T	P	С
		3	0	2	4

- Gain a solid foundation in the fundamental principles and concepts of engineering graphics, including conic sections, orthographic projection, isometric projection, section views and development of surfaces, perspective projection, and dimensioning.
- Develop graphic skills for communication of concepts, ideas and design of engineering products.
- Gain knowledge on drafting software to construct part models.
- Familiarize with existing national standard practices and conventions related to technical drawings.
- Enhance the ability to visualize objects in three dimensions and translate them into 2D representations.

UNIT I PLANE CURVES 9+6

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves.

LIST OF EXERCISES:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola

UNIT II	PROJECTION OF POINTS, LINES AND	9+6
	PLANE SURFACE	

Orthographic projection - principles - Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method. Projection of planes (hexagonal and pentagonal

planes only) inclined to both the principal planes by rotating object method.

LIST OF EXERCISES:

- 1. Draw the projection of points when it is placed in different quadrants
- 2. Draw the projection of lines when it is placed in first quadrant
- 3. Draw the planes when it is placed in first quadrant.

UNIT III	PROJECTION OF SOLIDS AND FREE HAND	9+6
	SKETCHING	

Projection of simple solids - hexagonal prism, pentagonal pyramid and cone inclined to the horizontal plane by rotating object method. Free Hand sketching: Visualization principles - Representation of Three Dimensional objects - Layout of views - Free hand sketching of multiple views from pictorial views of objects

LIST OF EXERCISES:

- 1. Practicing three dimensional modelling of simple objects.
- 2. Drawing of orthographic views from the given pictorial diagram

UNIT IV	PROJECTION OF SECTIONED SOLIDS AND	9+6
	DEVELOPMENT OF SURFACES	

Sectioning of hexagonal prism, pentagonal pyramid and cone when the cutting plane is inclined to the horizontal plane, Development of lateral surfaces of simple and sectioned solids – hexagonal prism and cone cut by a plane inclined to horizontal plane only.

LIST OF EXERCISES:

- 1. Draw the sectioned views of prisms and pyramids
- 2. Draw the development of hexagonal prism cut by a section plane inclined to the horizontal plane

UNIT V ISOMETRIC PROJECTION 9+6

Principles of isometric projection - Isometric scale - Isometric view - Isometric projections of simple solids and truncated solids

- Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions.

LIST OF EXERCISES:

- 1. Drawing Isometric view and projection of simple solids.
- 2. Drawing three dimensional modeling of isometric projection of combination of solids.

TOTAL: 75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Construct the conic curves, involutes and cycloids.
- CO2: Develop and Sketch the orthographic projections of points, lines and plane surfaces.
- CO3: Develop and Sketch the orthographic projections of simple solids.
- **CO4:** Construct the projections of sectioned solids and development of the lateral surfaces of solids.
- CO5: Develop and Sketch the isometric sections of solids.
- **CO6:** Develop and Sketch the orthographic projection 2D and 3D objects using Auto CAD.

TEXT BOOKS:

- 1 Bhatt N.D. and Panchal V.M., —Engineering Drawingl, Charotar Publishing House, 53rd Edition, 2019.
- 2 Basant Agarwal and Agarwal C.M.,—Engineering Drawingl, McGraw Hill, 2nd Edition, 2019

REFERENCES:

- 1 Natrajan K.V., —A Text Book of Engineering Graphicsl, Dhanalakshmi Publishers, Chennai, 2018.
- 2 Gopalakrishna K.R., —Engineering Drawing (Vol. I and II combined), Subhas Publications, Bangalore, 27th Edition, 2017.

- 3 Luzzader, Warren.J. and Duff, John M., —Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 4 Parthasarathy N. S. and Vela Murali, —Engineering Graphics, Oxford University, Press, New Delhi, 2015. 5. Shah M.B., and Rana B.C., —Engineering Drawing, Pearson Education India, 2nd Edition, 2009.
- Venugopal K. and Prabhu Raja V., —Engineering Graphics", New Age International (P) Limited, 2008.

COs						1	POs	3						PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	2	-	-2	1	-	3	2	2	2	2	-
2 00W	3	2	1	1	2	- ,	4	1	A	3	2	2	2	2	<u> </u>
3	3	2	1	1	2	4	4	1	_	3	2	2	2	2	i-
4	3	2	1	1	2	-		1	(-/	3	2	2	2	2	-
5	3	2	1	1	2	_	-	1	_	3	2	2	2	2	_
6	3	2	1.	1	2	-	1	1	-	3	2	2	2	2	
Overall Correlation	3	2	1	1	2)L	LE	1_{\wedge}	O	3	2	2	2	2	Y 15

Recommended by Board of Studies | 14-08-2023 | Approved | 1st ACM | Date | 09-09-2023

23ME221	ENGINEERING PRACTICES	L	T	P	C
	LABORATORY	0	0	4	2

- Familiarize students with basic engineering tools and equipment.
- Educate students on the importance of safety practices, including proper handling of equipment, adherence to safety protocols, and understanding potential hazards in the laboratory environment. Develop basic manufacturing and fabrication skills.
- Provide hands on training to the students in plumbing and woodworking.
- Provide hands on training to the students in welding various joints in steel plates using arc welding work;
 Machining various simple processes like turning,
 drilling, tapping in parts; Assembling simple mechanical assembly of common household equipment;
 Making a tray out of metal sheet using sheet metal work.
- Demonstrate the wiring and measurement methods in common household electrical applications.
- Study the basic electronic components, gates and provide hands on training in soldering.

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in households.
- b) Preparation of plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK

- a) Sawing
- b) Planning
- c) Making of T-Joint, Mortise joint and Tenon joint and Dovetail joint.

WOOD WORK STUDY

- a) Study of joints in door panels and wooden furniture
- b) Study of common industrial trusses using models.

PART II MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK

- a) Study of Welding and its tools.
- b) Welding of Butt Joints, Lap Joints and Tee Joints by metal arc welding.
- c) Study of Gas Welding.

BASIC MACHINING PRACTICE

- a) Facing and Plain Turning
- b) Taper Turning
- c) Drilling and Tapping

SHEET METAL WORK

- a) Forming and Bending
- b) Making of a square Tray

MACHINE ASSEMBLY WORK

- a) Study of Centrifugal Pump
- b) Study of Air Conditioner

FOUNDRY PRACTICE

Demonstration on Foundry operations like mould preparation.

TOTAL: 30 PERIODS

COL	RSE OU	тс	<u>'O</u> 1	/TCC												
COU	After co					b o o	0111	100	tho	otu	doni	C TAT	:11 b	, ah	10 to	
CO1.																
COI:	Plan the	e pi	peli	ne l	layo	out	tor	con	nmo	on r	ious	enol	a pi	um	bing	3
	work.															
CO2:	Make u			eld	ing	equ	ıipı	ner	ıt aı	nd c	arpe	entry	y toc	ol fo	r	
	making	•														
CO3:	Demons					rifu	gal	pui	np,	air	con	ditic	oner	anc	1	
	foundry operations. Demonstrate the electrical wiring connections for															
CO4:	9															
	household applications and study the working of iron box and fan regulator															
	and fan regulator.															
CO5:	Identify the basic electronic components and explain the															
	gates and soldering methods.															
CO6:	Examine the performance and operation of CRO, LED TV															
	and Smart phone.															
	COs		1	(0)				POs	- (]	PSC)s
Ì	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	-	1	2	2	2	2	1	-
	2 NGINE	3	2	1	1	1	1	1	5Ē	OF	2	2	2	2	1	(-
	3	3	2	1	1	1	1	1	D AN	NAL	2	2	2	2	1	5_
	4	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
	5	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
	6	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
	verall	3	2	1	1	1	1	1	-	-	2	2	2	2	1	-
	elation															
Reco	mmende				of S	Stuc	lies									
	Α	ppr	ove	d				1st	AC	M		Date	9	09	-09-2	2023

23AE2	21	AERO MODELLING	L	T	P	C
		LABORATORY	0	0	4	2
COUR	SE OBJ	ECTIVES:				
•	To learr	the theories behind flight.				
•	To learr	n the art of making model airplanes.				
•	To learn	n problem solving skills related to flig	ht p	rino	cipl	es
	and inte	erpretation of experimental data.				
•	To dete	ermine error in experimental measur	eme	ents	ar	ıd
	techniq	ues used to minimize such error.				
•	To mak	e the student as an active participant	in e	each	ра	rt
	of all la	b exercises.			-	
IST C	F EXPE	RIMENTS:				_
1.	Introdu	ction to wing plan forms and Aerofoil				
2.	Introdu	ction to Gliders & its Design calculation	n.			
3.	Fabricat	tion of Un-powered Gliders.				
4.	Flight S	imulation of RC plane using simulator	rs			
5.	Fabricat	tion of aerofoil				
6.	Connec	tion test on RC Plane electronics				
7.	Design	calculation of RC plane			_	
8.	Fabrica	tion of powered RC plane			3Y	
9.	Progran	nming a flight control system				
10.	Progran	nming an autonomous drone mission				
		TOTAL:	60 F	PER	IOI	DS

TOTAL: 60 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Explain the principles of flight. CO2: Explain the importance of c.g location in an aircraft. CO3: Design airplane models. CO4: Model airplane prototypes CO5: Demonstrate the flying of model airplanes. CO6: Explain the importance of flight control systems.

COs						P	Os						F	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	2	1	-	1	-	-	2	-	1	3	1	-
2	3	3	3	2	1	1	1	1	-	2	-	2	3	1	1
3	3	3	3	2	1	2	-	-	-	1	-	1	3	1	-
4	3	2	2	1	1	-	1	-	-	2	-	1	3	1	-
5	2	2	1	2	1	1	1	1	-	2	-	2	3	1	1
6	3	3	3	2	1	2	-	-	-	1	-	1	3	1	-
Overall Correlation	3	3	3	2	1	2	1	1	-	2	-	1	3	1	1
Recommended	ies	26-	07-2	2023	,										
Approved								t AC	M		Date	9	09-0)9-2	023

23HS221	SOFT SKILLS	L	T	P	С
		0	0	2	1

- To help learners improve their interpersonal skills and critical thinking
- To familiarize learners with the attributes of a leader to enhance team performance
- To prepare students to face job interviews
- To help learners to know the importance of ethics in work place

UNIT I INTERPERSONAL COMMUNICATION

Basic communication- verbal and non-verbal communication; passive, assertive and aggressive communication; presentation skills; giving feedback and responding to feedback.

UNIT II | TEAM WORK AND LEADERSHIP

Vision- setting realistic goals and objectives, collaboration, cooperation, dependability, empathy, sympathy, motivation, delegation of responsibilities, open mindedness, creativity, flexibility, adaptability, cross cultural communication and group dynamics.

UNIT III TIME MANAGEMENT AND STRESS MANAGEMENT

Effective Planning, Planning activities at macro and micro levels, setting practical deadlines and realistic limits/targets, punctuality, prioritizing activities, spending the right time on the right activity, positive attitude, emotional intelligence, self-awareness and regulation.

UNIT IV CRITICAL THINKING AND WORK ETHICS

Questioning, analysing, inferencing, interpreting, evaluating, solving problems, explaining, self-regulation, open-mindedness, conflict management- ethical dilemmas, appearance, attendance, attitude, character, organizational skills, productivity, respect.

UNIT V INTERVIEW SKILLS AND RESUME BUILDING TECHNIQUES

Telephonic interview, online interviews, f2f interviews, FAQ soft skills interview questions, drafting error-free CVs/ Resumes and Cover Letters, selecting the ideal format for resume, content drafting along with sequencing, art of representing one's qualifications and most relevant work history, video resume, website resume.

TOTAL: PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Express their thoughts, opinions and ideas confidently to one or more people in spoken form
- CO2: Develop evolving competences required for professional success
- CO3: Demonstrate knowledge and skills in a group as team player and leader
- CO4: Compose a comprehensive resume reflecting qualifications, exposure and achievements
- CO5: Exhibit knowledge and skills confidently during job interviews
- CO6: Demonstrate ethical and professional behaviour at workplace in all situations

TEXT BOOKS:

1 Soft Skills: Key to Success in Workplace and Life by Meenakshi Raman & Shalini Upadhyay. Cengage

REFERENCES:

- 1 English for Job Seekers (Language and Soft Skills for the Aspiring) by Geetha Rajeevan, C.L.N. Prakash) Cambridge University Press pvt, Ltd.
- Business Benchmark by Norman Whitby. Cambridge University Press pvt, Ltd

COs						I	POs						F	SC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	-	-	-	-	-	-	2	2	-	-	-	-	-
2	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2
3	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-
4	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-
5	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-
6	-	-	-	-	-	-	-	3	3	3	-	1	-	-	3
Overall Correlation	-	-	-	-	-	2	2	2	3	3	2	2	-	-	2
Recommended	d by	Во	ard	of S	tud	ies	14-	08-2	023						
Approved								1st ACM Date 09-0					09-0	09-2023	

SEMESTER -III

23MA302	TRANSFORMS AND PARTIAL	L	T	P	C
	DIFFERENTIAL EQUATIONS	3	1	0	4

COURSE OBJECTIVES:

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems

UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+3

Formation of partial differential equations -Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

9+3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

9+3

Classification of second order Quasi Linear PDE - Method of separation of variables - Fourier series solutions of one dimensional wave equation - One dimensional equation of Heat conduction - Steady state solution of two dimensional equation

- C 1		- 1(: (I(::									
		nduction (Infinite) (Cartesian coordinates only)	0 . •								
		FOURIER TRANSFORMS	9+3								
		of Fourier integral theorem- Fourier transform p									
		ne and cosine transforms - Properties - Transform									
		unctions - Convolution theorem (Without productions)	of) -								
		identity.									
UNI	$\Gamma \mathbf{V}$	Z-TRANSFORMS AND DIFFERENCE	9+3								
		EQUATIONS									
		ms - Elementary properties - Convergence o									
trans	form	s - Initial and final value theorems - Invers	e Z-								
trans	form	using partial fraction and convolution theore	em -								
Form	natior	n of difference equations - Solution of difference	rence								
equa	tions	using Z - transforms.									
	TOTAL: 45 PERIODS										
COU	COURSE OUTCOMES:										
	After completion of the course, the students will be able to:										
CO1:	Solv	e the given standard partial differential equations.									
CO2:	Con	npute the general Fourier series which plays a vital	l role								
	in er	ngineering applications.									
CO3:	Exai	nine the half range Fourier series and harm	nonic								
	anal	ysis AFFILIATED TO ANNA UNIVERSITY I AUTONOM	005								
CO4:	Find	the physical significance of Fourier series technic	ques								
	in s	olving one and two dimensional heat flow problems	lems,								
	one	dimensional wave equations.									
CO5:	App	ly the mathematical principles on Fourier transform	ns to								
	solv	e some of the physical problems of engineering.									
CO6:	App	ly the effective mathematical tools for the solution	ns of								
	diffe	erence equations by using Z transform technique	s for								
	disc	rete time systems.									
TEX	ГВО	OKS:									
1	Krey	szig.E, "Advanced Engineering Mathematics",	John								
	Wile	ey and Sons, 10th Edition, New Delhi, 2016.									
2	Grev	wal.B.S., "Higher Engineering Mathematics", Kh	anna								

	Publish	ers	, Ne	ew]	Del	hi, 4	44tł	ı Ec	litic	n, 2	2018					
3	P.Sivara	ama	akri	shr	a I	Das	and	d C	.Vij	aya	kun	nari	"A	Tex	ct Bo	ook
	on TPD	E"	Pea	rso	n P	ubl	icat	ion	s							
REFI	ERENCE	S:														
1	Narayaı	nan	. S.,	Ma	anic	ava	acha	ago	m F	illa	v. T	.K. a	nd l	Ran	nana	iah.
	_							_			-					
		G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998														
																TA7
	Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.															
	niii Eau	cat	ion	PV	. Lī	.a, 1		Os		, ZU	110.				DOO	
(COs									_					PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-
	2	3	2	1	1	ı	ı	ı	-	ı	ı	ı	1	3	1	-
	3	3	2	1	1	1	1	1	1	1	-	1	1	3	1	-
	4 LOOW	3	2	1	1	-	-,	9	-	A	-	-	1	3	-0	⁸ -
	5	3	2	1	1	-	4	1	-	1	1	1	1	3	-	-
	6	3	2	1	1	-	-		-	9	7	1	1	3	-	-
O	verall	3	2	1	1			1		1		1	1	3	1000	
	relation	27	=	6	1/	-	-		,,,,	_	_		1000	×1.4	-	
Reco	mmended	l by	Во	ard	of S	Stud	lies	08-	04-2	2024	211		IIN	JL	JU	T
	A	ppr	ove	d			ILIA	2nd	AC	CM		Date	AU	25	-05-2	2024

23AE301	SOLID MECHANICS	L	T	P	C
		3	0	0	3

- To think, Analyse and solve Engineering Problems expected from the course
- To understand stress and strain concepts related to deformable bodies
- To enable understanding of the behaviour and response of materials and to allow the student to carry out easy and moderate level structural analysis of basic structural members
- To familiarize with the different methods used for beam deflection analysis
- To impart knowledge to the students on how structural elements are sized and to enable the student to gain knowledge in how stresses are developed and distributed internally

UNIT I SIMPLE STRESS AND STRAIN

Mechanical properties of materials; Stresses and strains; Hooke's law, elastic constant, relation between moduli, working stress, factor of safety, poisons ratio; bars of varying cross section; Thermal stresses.

UNIT II	TRANSFORMATION OF STRESS AND	9
	STRAIN	

Plane stress and strain, Principal stresses, Mohr's circle and Hooke's law for plane stresses. Application of plane stress: Spherical and Cylindrical pressure vessel

UNIT III SHEAR FORCE AND BENDING MOMENT 9

Types of loads- Types of Supports, Shear force and bending moment diagrams for simply supported and cantilever beams with concentrated, uniformly distributed and variable loads. Relation between load, shear force and bending moment.

UNIT IV STRESSES IN BEAMS 9 Theory of Simple Bending, Section modulus, Distribution of

Bending stresses and Shear stress variation in beams of symmetric and unsymmetric sections; Beams of uniform strength; Flexural stresses: Bending equations, calculation of bending stresses for different sections of beams like I, L, T, C, angle section.

UNIT V | TORSION

9

Torsional shear stress in solid, hollow and stepped circular shafts, angular deflection and power transmission capacity, Strain energy in torsion, Stresses in members subjected to combined axial, bending and torsional loads.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Determine the stress and strain for deformable bodies
- CO2: Calculate stresses developed internally in the bodies due various loading conditions
- CO3: Evaluate the behaviour of beams under different loading conditions
- CO4: Apply the suitable method to identify the stress in the body
- CO5: Evaluate the shear force and bending moment for the beams
- **CO6:** Estimate the stresses in shafts due to torsion.

TEXT BOOKS:

- Beer Jr FP. E. Russell Johnston, John T. Dewolf, and David F. Mazurek. Mechanics of Materials. McGraw-Hill, New York. 2020.
- Hibbeler RC. Statics and Mechanics of Materials in SI Units. Pearson Higher Ed; 2018.

REFERENCES:

- 1 | Egor P Popov, Mechanics of Materials, Pearson, 2015
- **2** James M. Gere, Mechanics of Materials, Sixth Edition, Thomson Learning, 2004.
- 3 William F. Riley, Leroy D. Sturges, Don H. Morris,

	Mecha	nics	of	Ma	teri	als,	Jol	nn '	Wil	ey 8	& So	ns,	2006	ó .			
4	Arthur	Arthur P. Boresi, Richard J. Schmidt, Advanced Mechanics								nics							
	of Materials, 6th Edition, Wiley India Pvt. Limited.2002.																
COs							I	Os						PSOs			
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-	
	2	3	2	1	1	-	1	1	1	-	-	-	-	3	-	-	
	3	3	2	1	1	-	-	-	1	-	-	-	-	3	-	1	
	4	3	2	1	1	-	1	1	1	-	-	-	-	3	-	-	
	5	3	2	1	1	1	1	1	1	1	-	-	-	3	-	-	
	6	3	2	1	1	-	-	-	1	-	-	-	-	3	-	1	
O	erall	3	2	1	1									3			
Corr	elation	3	4	1	1	•	1	•	1	•	_	•		3	_	_	
Recon	Recommended by Board of Studies								01-04-2024								
Approved							2 nd ACM Date 25-05-202							2024			

COLLEGE OF TECHNOLOGY

23HS301	UNIVERSAL HUMAN VALUES	L	T	P	C
	AND ETHICS	3	0	0	3

- To develop a holistic perspective based on selfexploration about themselves (human being), family, society and nature/existence.
- To understand (or developing clarity) the harmony in the human being, family, society and nature/existence.
- To strengthen the self-reflection.
- To develop commitment and courage to act.

UNIT I COURSE INTRODUCTION

9

Need, Basic Guidelines, Content and Process for Value Education - Understanding the need, basic guidelines, content and process for Value Education -Self Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration - Continuous Happiness and look basic Human Prosperity- A at Aspirations -Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority -Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario -Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

UNIT II UNDERSTANDING HARMONY IN THE 9 HUMAN BEING

Harmony in Myself- Understanding human being as a coexistence of the sentient 'I' and the material 'Body' - Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer) -Understanding the characteristics and activities of 'I' and harmony in 'I' -Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity.

UNIT III UNDERSTANDING HARMONY IN THE

9

FAMILY AND SOCIETY

Harmony in Human-Human Relationship -Understanding Harmony in the family - the basic unit of human interaction - Understanding values in human-human relationship; meaning of Nyaya and program for its fulfilment to ensure satisfaction; Trust(Vishwas) and Respect as the foundational values of relationship -Understanding the meaning of Vishwas; Difference between intention and competence -Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship -Understanding the harmony in the society (society being an extension of family)-Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order- from family to world family.

UNIT IV ENGINEERING ETHICS

9

Senses of _Engineering Ethics,, - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self-interest - Customs and Religion - Uses of Ethical Theories.

UNIT V SAFETY, RESPONSIBILITY AND RIGHTS

9

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination-Moral Leadership -Code of Conduct - Corporate Social Responsibility.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the need of value education.
- CO2: Interpret the difference between self and body.
- CO3: Demonstrate the need to exist as a unit of Family and society.
- **CO4:** Classify Harmony at all levels.

COS	Apply the values acquired in the professional front.
CO6:	Identify appropriate technologies for ecofriendly
	production systems.
	T BOOKS:
1	R R Gaur, R Sangal, G P Bagaria, Human Values and
	Professional Ethics, Excel Books, New Delhi, 2010 3.
2	Mike W. Martin and Roland Schinzinger, -Ethics in
	Engineering , Tata McGraw Hill, New Delhi, 2003.
3	Govindarajan M, Natarajan S, Senthil Kumar V. S,
	-Engineering Ethics, Prentice Hall of India, New Delhi,
	2004
REFI	ERENCES:
1	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya
	Prakashan, Amarkantak, 1999.
2	Human Values, A.N. Tripathi, New Age Intl. Publishers,
	New Delhi, 2004.
3	The Story of Stuff (Book).
4	The Story of My Experiments with Truth - by Mohandas
	Karamchand Gandhi AICTE Model Curriculum in
	Humanities, Social Science and Management Courses (UG
	Engineering & Technology) 169 Page .
5	Small is Beautiful - E. F Schumacher.
6	Slow is Beautiful - Cecile Andrews.
7	Economy of Permanence - J C Kumarappa 8. Bharat Mein
	Angreji Raj - Pandit Sunderlal.
8	Rediscovering India - by Dharampal.
9	Hind Swaraj or Indian Home Rule - by Mohandas K.
	Gandhi.
10	India Wins Freedom - Maulana Abdul Kalam Azad.
11	Vivekananda - Romain Rolland (English) 13. Gandhi -
	Romain Rolland (English).
12	Charles B. Fleddermann, —Engineering Ethics, Pearson
	Prentice Hall, New Jersey, 2004.
	•

13	Charles	E. I	Har	ris,	Mio	chae	el S	. Pri	itch	ard	and	Mic	hae	1 J.					
	Rabins,	— Е:	ngiı	nee	ring	g Etl	hics	s – C	Con	cep	ts ar	nd C	ases	∥,					
	Cengag	Cengage Learning, 2009.																	
WEE	SOURC	ES	:																
1	www.oi	nlin	eetl	nics	.org	5													
2	www.ns	www.nspe.org																	
3	www.gl	www.globalethics.org																	
	60						1	POs						I	PSOs				
· '	COs		2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	1	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3			
	2	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3			
	3	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3			
	4	-	-	-	-	-	3	3	3	3	3	-	-	-	-	3			
	5	-	-	-	-	-	3	3	3	3	3	-	- 5	_	1	3			
	6 POW	ER L	RE4	30	-	-	3	3	3	3	3	7	67	-	4	3			
)	verall relation	Ā	1	7	-	-	3	3	3	3	3	-	E	_	J	3			
Recor	nmended	by l	Boa	rd o	f St	udi	es	08-	04-2	024					12422				
Approved								2 nd ACM Date					25-05-2024						

23ME312	FLUID MECHANICS AND	L	T	P	C
	HYDRAULIC MACHINERY	3	0	2	4

- Study about the properties of the fluids and behavior of fluids under static conditions.
- Gain basic knowledge of the dynamics of fluids and boundary layer concepts.
- Study the applications of the conservation laws to flow measurements, flow through pipes and forces on pipe bends.
- Learn the significance of boundary layer theory and its thicknesses.
- Study the basic principles of working and design of Pelton wheel, Francis and Kaplan turbine.
 Acquire knowledge on working principles of centrifugal, reciprocating and rotary pumps.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS 9+3

Fluid Definition and Classification – Properties of fluids, Fluid statics - Pressure Measurements - Buoyancy and floatation - forces on submerged bodies, stability of floating bodies, Flow characteristics - Concept of control volume and system – Velocity potential and stream functions, Continuity equation, energy equation and momentum equation - Applications.

UNIT II	FLOW THROUGH PIPES AND BOUNDARY	9+3
	LAYER	

Reynold's Experiment - Laminar flow through circular conduits - Darcy Weisbach equation - friction factor - Moody diagram - Major and minor losses - Hydraulic and energy gradient lines - Pipes in series and parallel - Boundary layer concepts - Types of boundary layer thickness.

,		
UNIT III	DIMENSIONAL ANALYSIS AND MODEL	9+3
	STUDIES	

Fundamental dimensions - Dimensional homogeneity - Rayleigh's method and Buckingham Pi theorem - Dimensionless

parameters - Similitude and model studies - Distorted and undistorted models.

UNIT IV | TURBINES

9+3

Impact of jets - Velocity triangles - Theory of rotodynamic machines - Classification of turbines - Working principles - Pelton wheel - Modern Francis turbine - Kaplan turbine - Work done - Efficiencies - Draft tube - Specific speed - Performance curves for turbines - Governing of turbines.

UNIT V PUMPS

9+3

Classification of pumps - Centrifugal pumps - Working principle - Heads and efficiencies - Velocity triangles - Work done by the impeller - Performance curves - Reciprocating pump working principle - Indicator diagram and it's variations - Work saved by fitting air vessels - Rotary pumps.

LIST OF EXPERIMENTS:

- 1. Determination of coefficient of discharge of a venture meter.
- 2. Determination of coefficient of discharge of an orifice meter.
- 3. Determination of friction factor for flow through pipes.
- 4. Determination of metacentric height.
- 5. Characteristics of centrifugal pumps.
- 6. Characteristics of reciprocating pump.
- 7. Characteristics of gear pump.
- 8. Characteristics of Pelton wheel turbine.
- 9. Flow measurement using Rotameter
- 10. Characteristics of Francis turbine.

TOTAL: 45 +15 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Apply the conservation laws applicable to fluids and its application through fluid kinematics and dynamics and also to understand the properties and behavior of fluids in static conditions.

CO2: Estimate the losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in

	series a	nd	par	alle	1.											
CO3:	Apply the concept of boundary layer and its thickness on															
	the flat solid surface.															
CO4:	Formulate the relationship among the parameters															
	involve	involved in the given fluid phenomenon and to predict														
	the performances of prototype by model studies.															
CO5:	Calcula	ite t	he	pov	ver	dev	elo	pec	l by	the	e tur	bin	es.			
CO6:	Calcula	te t	he	effic	cier	сy	of t	he o	diffe	erer	ıt pı	ımp	s.			
TEXT	BOOK	S:														
1	Modi P	.N.	and	d Se	eth,	S.N	1. H	[yd:	rau	lics	and	Flu	id			
	Mechar			and	ard	Во	ok i	Ho	use,	Nε	ew I	Delh	i, 22	nd		
_	edition															
2	R K Bar													11		
	Hydrau														1.	
3	Kumar Publish			_			\sim						uras	sıa		
REFE	RENCE		, 110	Juse	e (Þ) Li	u. 1	vev	V D	21111	, 20.	10.	A		-	
1																
-	Streeter, V. L. and Wylie E. B., Fluid Mechanics, McGraw Hill Publishing Co., 2010.															
2	Cengel Y A and Cimbala J M, Fluid Mechanics, McGraw															
1	Hill Ed												,			45
3	S K Son	_	-	-		_		_	S Cl	nak	rabo	rty,	Inti	rod	ucti	on
	to Fluid	l M	ech	ani	cs a	nd	Flu	id I	Mac	hin	es, T	Γata	Mc	Gra	w	9
	Hill Ed	uca	tio	ı Pı	t. I	ւtd.	, 20	12.								
(Os						P	Os				PSOs				
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	2	2	1	-	2	2	2	1	1	1
	2	3	3	3	3	1	2	2	1	-	2	2	2	1	1	1
	3	3	2	1	1	1	2	2	1	ı	2	2	2	1	1	1
	4	3	3	3	3	1	1	2	1	1	2	2	2	1	1	1
	5	3	2	1	1	1	1	2	1	-	2	2	2	1	1	1
	6	3	2	1	1	1	1	2	1	-	2	2	2	1	1	1
Ov	erall	2	2	2	2	1	1	2	1		2	2	2	1	1	1
Corr	elation	3	3	3	3	1	1	2	1	-	2	2	2	1	1	1
Recom	mended				of S	tudi	es		-04-2		Ļ					
	A	ppr	ove	d				2 nd ACM Date 25-05-					2024			

23AE311	AERO ENGINEERING	L	T	P	C
	THERMODYNAMICS	3	0	2	4

components

- To understand the basic concepts of thermodynamics systems and the application of first law of thermodynamics to open and closed systems.
- To understand the concept of second law of thermodynamics and entropy.
- To derive fundamental relations between thermodynamic properties.
- To comprehend the operational principles of piston engines and jet engines, as well as their air standard cycles.
- To understand the behavior of pure substances and its application to produce power.
- To understand the basic of heat transfer and the application on real time problem.

Concept of continuum, macroscopic approach, thermodynamic systems – closed, open and isolated. Property, state, path and process, quasi-static process, work, internal energy, enthalpy, specific heat capacities and heat transfer, Zeroth law of thermodynamics, First law of thermodynamics, relation between pressure, volume and temperature for various processes, SFEE, application of SFEE to jet engine

UNIT II SECOND - LAW AND ENTROPY

Second law of thermodynamics – Equivalence between Kelvin Planck and Clausius statements. Reversibility and Irreversibility, Thermal reservoir, Carnot theorem. Carnot cycle, Reversed Carnot cycle, efficiency, COP, Thermodynamic temperature scale - Clausius inequality, Concept of entropy, Entropy changes for various processes.

UNIT III	AIR STANDARD CYCLES	9

Otto, Diesel, Dual and Brayton cycles – - Air standard efficiency – Mean effective pressure.

UNIT IV FUNDAMENTALS OF VAPOUR POWER CYCLES 9

Properties of pure substances – solid, liquid and vapour phases, phase rule, p-v, p-T, T- v, T-s, h-s diagrams, p-v-T surfaces, thermodynamic properties of steam - standard Rankine cycle, Reheat and Regeneration cycle. Heat rate, Specific steam consumption, Tonne of refrigeration.

UNIT V BASICS OF PROPULSION AND HEAT TRANSFER 9

Classification of jet engines - basic jet propulsion arrangement - Engine station number, thrust equation - Specific thrust, SFC, TSFC, specific impulse, conduction in parallel, radial and composite wall, Basics of convective and radiation heat transfer.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS

- 1. Draw the Valve timing diagram of 4-Stroke engine and the Port timing diagram of 2-Stroke engine
- 2. Performance test on a 4-Stroke diesel engine.
- 3. Determination of specific heat of solid by Bomb calorimeter.
- 4. Determine the COP of a Refrigeration System.
- 5. Determine the COP of an Air-conditioning System.
- 6. Determination of effectiveness of a parallel flow and counter flow heat exchanger and calculate the overall heat transfer coefficient (u) in the parallel flow heat exchanger.
- 7. Determination of effectiveness of a counter flow heat exchanger and calculate the overall heat transfer coefficient (u) in the counter flow heat exchanger.

- 8. Determination of convective heat transfer coefficient during free and forcedconvection.
- 9. Determination of thermal conductivity of a metal.
- 10. Determination of thermal conductivity of a composite

wall. **TOTAL: 30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply first law of thermodynamics to solve problems related to open and closed systems CO2: Apply the second law of thermodynamics to Engineering devices. CO3: Identify the efficiency and performance of various air standard cycles CO4: Identify efficiency and performance of vapor power cycle. CO5: Solve thermodynamics problems related to conduction, convection and radiation CO6: Identify the jet engine performance by applying thermodynamics properties. **TEXT BOOKS:** Nag. P. K., "Engineering Thermodynamics", 6th Edition, 1 Tata McGraw-Hill, New Delhi, 2017. Cengel, Y, M. Boles and M. Kanoğlu, Thermodynamics -2 An Engineering Approach, Tata McGraw Hill, 8th Edition, 2015. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-3 Hill, 2007. **REFERENCES:** Rathakrishnan E., "Fundamentals of Engineering 1 Thermodynamics", 2nd Edition, Prentice-Hall India, 2011. Arora C.P, "Thermodynamics", Tata McGraw-Hill, 2 New Delhi, 2017.

									-	-						
3	R.K.Raj	put	, "1	A t	ext	bo	ook	of	E	ngi	neeı	ring				
	Thermo	Thermodynamics", Fifth Edition, Lakshmi														
	Publicat	tion	s, N	Jew	7 De	elhi	, 20	16.								
4	Merala	Merala C, Pother, Craig W, Somerton,														
	"Therm					_						m C	utli	ne		
	Series, Tata McGraw-Hill, New Delhi, 2004.								PSOs							
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
					_		U		0	9	10			_	_	3
	1	3	2	2	1	1	-	1	-	ı	1	1	2	3	1	-
	2	3	2	2	1	1	1	1	-	-	-	1		3	1	-
	3	3	2	2	1	1	1	1	1	-	1	-	2	3	1	1
	4	3	2	2	1	1	-	-	-	-	-	1	1	3	1	-
	5	3	2	2	1	2	-	1	-	-	-	1	2	3	2	-
	6	3	2	2	1	1	1	1	-,	-	1	1	2	3	1	-
- /	verall relation	3	3	3	2	2	1	1	1	-	1	1	2	3	2	1
Reco	mmended	l by	Boa	ırd (of S	tudi	es	01-	04-2	2024		1				
	Approved						2 nd ACM Date 25-05-2024									

23AE321	STRENGTH OF MATERIALS	L	T	P	C
	LABORATORY	0	0	4	2

- To determine experimental data, include universal testing machines and torsionequipment.
- To understand experimental data for spring testing machine, compression testing machine, impact tester, hardness tester.
- To study stress analysis and design of beams subjected to bending and shearing loadsusing several methods.
- To make use of Flexural strength of a beam.
- To understand experimental stress with compression tests.

LIST OF EXPERIMENTS:

- 1. Tension test on a mild steel rod & Plastics.
- 2. Compression on UTM.
- 3. Double shear test
 - Mild steel rods
 - Aluminum rods.
- 4. Torsion test on mild steel rod.
- 5. Impact test on metal & Composite specimen.
 - Charpy Test
 - Izod Test
- 6. Hardness test on metals
 - Brinell Hardness Number.
 - Rockwell Hardness Number.
- 7. Deflection test on beams
 - Cantilever Hardness Number.
 - Simply supported beams.
- 8. Compression test on helical springs.
 - Open coil Spring
 - Closed coil spring
- 9. Effect of hardening-Improvement in hardness

10. Microscopic Examination of Hardened samples and Tempered samples

TOTAL: 60 PERIODS

COURSE OUTCOMES:																
	After co	After completion of the course, the students will be able to:														
CO1:	Analys	Analyse and design structural members subjected to														
	tension	ı, cc	mp	res	sior	, to	rsic	n, l	oeno	din	g an	d co	mbi	nec	1	
	stresses	s us	ing	the	fur	nda	mei	ntal	cor	ncep	ots o	f str	ess,	stra	ain	
	and ela	stic behaviour of materials.														
CO2:	Examir	ne tl	he b	asi	с со	nce	pts	of s	stres	ss, s	traiı	n, de	efori	nat	ion	,
	and ma	ater	ial ł	eha	avic	ur	unc	ler (diff	erer	nt ty	pes	of lo	oadi	ing	
	(axial, t	tors	ion	, be	ndi	ng).										
CO3:	Examir	ne s	tres	s ar	naly	sis,	des	sigr	of	bea	ms s	subj	ecte	d to		
	bendin	bending and shearing loads using several methods.														
CO4:	Examir	ne tl	he s	tres	sses	and	d st	rain	ıs in	axi	ially	loa	ded			
	9.7	members subject to flexural loadings.														
	A 10.00	nspect the compression strength of the cast iron and steel.														
CO6:	Secretary Company	alyse the changes that occur during the hardening of														
	the ma	teri	erial													
C	Os											PSOs				
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	1	2	2	2	2	3	1	-	1	2	2	2
	2	3	3	2	1	2	2	2	2	3	1	-	1	3	2	2
	3	3	3	2	1	2	2	2	2	3	1	-	1	3	2	2
	4	3	3	2	1	2	2	2	2	3	1	-	1	3	2	2
	5	3	3	2	1	2	2	2	2	3	1	-	1	3	2	2
	6	3	3	2	1	2	2	2	2	3	1	-	1	3	2	2
	erall	3	3	2	1	2	2	2	2	3	1	_	1	3	2	2
Correlation																
			L													
	nmende		Bo ove		of S	Stud	ies		04-2 AC			Date	_ [0F (05-2	004

23ES391	PRESENTATION SKILLS	L	T	P	С
		0	0	2	1*

- To help learners use brainstorming techniques for generating, organizing and outlining ideas.
- To familiarize learners with different speech structures by engaging them in watching speeches with great opening and closing
- To give practice on voice modulation and use of body language and eye contact for making captivating presentations
- To give hands on training on preparing presentation slides and using remote presentation tools
- To train students on responding to question and feedback with confidence.

UNIT I BRAINSTORMING AND OUTLINING

6

Mind Mapping based on prior knowledge, collecting additional information from external resources, giving prompts to Generative AI tools seeking information, organizing ideas generated, knowing your audience.

UNIT II | STRUCTURING THE PRESENTATION

6

3 Ts of a presentation, writing effective introduction- Beginning the introduction with a hook (question, data, storytelling) and closing the introduction with the objective of the presentation. Structuring the body paragraphs -Choosing key ideas from the list of ideas generated during brainstorming. Substantiating ideas with examples, data, reasons and anecdotes. Summarizing the ideas for conclusion.

UNIT III DELIVERY TECHNIQUES

6

Vocal variety, intonation, reducing filler words and improving articulation, inflection, engaging the audience. Body language-

eye contact, gestures, movement on stage.
UNIT IV USE OF TECHNOLOGICAL AIDS 6
Use of presentation software like MS Power Point, Google Slides
etc, incorporating images, graphs, charts and videos, using
interactive tools like quizzes and polls, using remote presentation
tools like zoom, MS Teams, WebEx for screen sharing, virtual
whiteboards and chat functionalities, incorporating AR/VR for
more immersive presentations.
UNIT V HANDLING QUESTIONS AND FEEDBACK 6
Audience engagement through questions, PAR (Point, Answer,
Redirect) strategy for structuring responses to questions.
Understanding feedback process - Receiving, interpreting and
evaluating constructively, active listening techniques for
processing feedback, responding to feedback- acknowledging,
clarifying and appreciating, Dealing with challenging feedback.
TOTAL: 30 PERIODS
COURSE OUTCOMES:
After completion of the course, the students will be able to:
CO1: Construct ideas for presentation through mind mapping
techniques
CO2: Organize ideas and structure the presentation with
captivating introduction, body paragraphs illustrated with
examples and reasons and compelling conclusion
CO3: Apply vocal variety and body language techniques to enhance delivery
CO4: Prepare engaging presentations by integrating multimedia
elements
CO5: Demonstrate proficiency in delivering presentations in
remote platforms utilizing various technological tools and
strategies to engage audience in Virtual environments
CO6: Exhibit active listening skills by responding to questions
with clarity and confidence and incorporating constructive
feedback for professional development

TEXT BOOKS:

- 1 Nancy Duarte "Slide:ology: The Art and Science of Creating Great Presentations" O' Reilly Media.
- 2 Garr Reynolds "The Naked Presenter: Delivering Powerful Presentations with or Without Slides" New Riders.

REFERENCES:

Approved

1 Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds" by Carmine Gallo.

COs						I	POs	,					I	PSC)s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
2	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
3	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
4	2	2	1	1	-	-	-	1	1	1	-	1	2	2	1
5	2	2	1	1	-	- 8	A	1	1	1	-	1	2	2	1
6	2	2	1	1	-	A	/_	1/	1	1	-	1	2	2	1
Overall Correlation	2	2	1	1	-	4	-	1	1	1	-	1	2	2	1
Recommended by Board of Studies						ies	es 04-04-2024							-	

AFEILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

25-05-2024

2nd ACM

SEMESTER -IV

23MA403	NUMERICAL AND	L	T	P	С
	STATISTICAL METHODS	3	1	0	4

COURSE OBJECTIVES:

- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems
- To provide the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.

UNIT I SOLUTION OF EQUATIONS AND 9+3 EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a square matrix by Power method

INTERPOLATION, NUMERICAL	9+3
DIFFERENTIATION AND NUMERICAL	
INTEGRATION	

Interpolation - Newton's forward and backward difference interpolation -Lagrange's and Newton's divided difference interpolations -- Approximation of derivative using interpolation polynomials - Numerical single integration and

doubleintegrations using Trapezoidal and Simpson's 1/3rules.
UNIT III NUMERICAL SOLUTION OF 9+3
ORDINARY DIFFERENTIAL
EQUATIONS
Single step methods: Taylor's series method - Euler's method -
Modified Euler's method - Fourth order Runge-Kutta method
for solving first order differential equations - Multi step
methods: Milne's and Adam's Bashforth method.
UNIT IV TESTING OF HYPOTHESIS 9+3
Sampling distributions - Standard error - Large sample test
for single mean, proportion, difference of means - Small
sample Tests- t Test for single mean and difference of means -
F test for equality of variance - Chi square test for single
variance- Independence of attribute-Goodness of fit (Binomial
Distribution, Poisson Distribution).
UNIT V DESIGN OF EXPERIMENTS 9+3
One way and two way classifications - Completely
randomized design - Randomized block design - Latin square
design
TOTAL: 60 PERIODS
COURSE OUTCOMES: APPLIATED TO ANNA UNIVERSITY AUTONOMOUS
After completion of the course, the students will be able to:
CO1: Find numerical solutions for nonlinear (algebraic or
transcendental) equations, large system of linear
equations and Eigen value problem of a matrix, when
analytical methods fail to give solution.
CO2: Determine the intermediate values of the experimental
data using Newton's forward, backward, divided
difference and Lagrange's method.
CO3: Find the solution of the problems using numerical
differentiation and integration.
CO4: Solve numerically, ordinary differential equations which
is used to solve different kinds of problems occurring in
engineering and technology.
1

CO5:	Examine the given data for large and small samples. Examine the problems involving design of experiments.																
				_												S.	
	г воок			-													
1	Grewal	l, B	.S.,	an	d (Gre	wa	1, J.	S.,	"N	ume	erica	al M	leth	ods	in	
	Engine	erii	ng	an	d	Sci	enc	e",	K	nan	na	Pul	blish	ers	, 1	0th	
	Edition	ı, N	ew	De	lhi,	, 20	15.										
2	Johnson	n,	R.A	۱.,	Mi	ller	, I	an	d	Fre	und	J.,	—N	4ille	er a	ınd	
	Freund	l's	Pı	rob	abil	lity	a	nd	Sta	tisti	ics	for	E	ngi	nee	rs",	
	Pearson	n E	duc	ati	on,	As	ia, 8	3th	Edi	itio	n,20	15.					
REFI	ERENCE	S:															
1	Dr.P. Sivaramakrishnadas, Dr. C. Vijayakumari, —Statistics and Numerical Methods Pearson																
	—Statistics and Numerical Methods Pearson																
	Publications. Burden, R.L. and Faires, I.D. "Numerical Analysis", 9th																
2	Burden, R.L and Faires, J.D, "Numerical Analysis", 9th																
	20% 3.300	Edition, Cengage Learning, 2016.															
3	Devore.J.L. Probability and Statistics for Engineering																
1	and the Sciencesl, Cengage Learning, New Delhi, 8th																
	Edition,2014.																
4	Gerald. C.F. and Wheatley. P.O. "Applied Numerical																
	Analys				on	Ec							w I			J111 III	
	Edition	1, 20)07.			0.00	100000	H. Paragon	L1.00	111101	11111V	-0.111		di la constante	nave et e		
(COs			I _	_			Os					1		PSC		
		1	2	3	4	5	6	7	8	9	10	11			2	3	
	1	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-	
	2	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-	
	3	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-	
	4	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-	
	5	3	2	1	1	-	-	-	-	-	-	-	1	3	-	-	
	6 3 2 1 1												1	3	-	-	
	verall	3	2	1	1	_	_	_	_	_	_	_	1	3	_	_	
	Correlation																
Keco					ot S	otuc	nes	One	1 4 4	71.1					OE 1	2024	
1	Approved								2 nd ACM Date 25					23	25-05-2024		

23AE401	LOW - SPEED AERODYNAMICS	L	T	P	C
		3	0	0	3

- To make the students acquainted with the concepts of mass, momentum and energy conservation relating to aerodynamics.
- To familiarize the Navier Stroke equations and its application
- To make the student realize the concept of vorticity, irrotationality, theory of airfoil and wing sections.
- To familiarize the basics of viscous flow.
- To make the student to understand the different boundary layers and BlasiusSolution
- To acquaint the students the basics of turbulence flow

UNIT I INTRODUCTION TO LOW-SPEED FLOW

Euler equation, incompressible Bernoulli's equation. circulation and vorticity, green's lemma and Stoke's theorem, barotropic flow, kelvin's theorem, streamline, stream function, irrotational flow, potential function, Equipotential lines, elementary flows and their combinations.

UNIT II TWO-DIMENSIONAL INVISCID 9 INCOMPRESSIBLE FLOW

Ideal Flow over a circular cylinder, D'Alembert's paradox, magnus effect, Kutta - Joukowski's theorem, starting vortex, Kutta condition, real flow over smooth and rough cylinder.

UNIT III AIRFOIL THEORY 9

Cauchy-Riemann relations, complex potential, methodology of conformal transformation, Kutta-Joukowski transformation and its applications, thin airfoil theory and its applications.

UNIT IV SUBSONIC WING THEORY 9

Vortex filament, Biot and Savart law, bound vortex and

trailing vortex, horse shoe vortex, lifting line theory and its limitations. UNIT V INTRODUCTION TO BOUNDARY LAYER 9 **THEORY** Boundary layer and boundary layer thickness, displacement thickness, momentum thickness, energy thickness, shape parameter, boundary layer equations for steady, twodimensional incompressible flow, boundary layer growth over a flat plate, critical Reynolds number, Blasius solution, basics of turbulent flow. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply the basic physics for low speed flows. CO2: Apply the concept of 2D, inviscid incompressible flows in low speed aerodynamics. CO3: Solve lift generation problems using aerofoil theories. **CO4:** Make use of lifting line theory for solving flow properties. CO5: Solve the boundary layer equations for a steady, two dimensional incompressible flow CO6: Identify the properties of turbulent flow **TEXT BOOKS:** 1 Houghton, E.L., and Caruthers, N.B., "Aerodynamics for Engineering students", Edward Arnold Publishers Ltd., London, 1989 Anderson, J.D., "Fundamentals of Aerodynamics", McGraw Hill Book Co., 2010 E Rathakrishnan, "Theoretical Aerodynamics", John Wiley, NJ, 2013 **REFERENCES:** Clancey, L J.," Aerodynamics", Pitman, 1986 1

John J Bertin., "Aerodynamics for Engineers", Pearson

Education Inc, 2002

3	Kuethe, A.M and Chow, C.Y, "Foundations of															
3	·						•	•								
	Aerody	maı	mic	s",	Fift	hΕ	diti	on,	Joh	ın V	Vil€	ey &	So	ns,	200	0.
4	Milne T	hoi	nso	n, I	J.Н.	, "T	hec	ret	ical	Ae	rod	yna	mic	s",		
	Macmil	Macmillan, 1985														
	COs POs PSOs															
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	-	-	1	1	1	3	1	-
	2	3	2	1	1	2	-	-	-	-	1	1	1	3	2	-
	3	3	2	2	1	2	-	-	-	-	1	1	2	3	2	-
	4	3	2	1	1	2	-	-	-	-	1	1	1	3	2	-
	5	3	2	1	1	2	-	-	-	-	1	1	1	3	2	-
	6	3	3	2	2	2	1	1	2	-	1	1	2	1	2	2
О	verall	2	2	•	1	2	1	1	•		1	1	2	2	•	•
Cor	relation	3 3 2 1 2 1 1 2 - 1 1 2 3 2 2														
Rec	ommende	d b	y Bo	ard	of S	Stud	ies	01-	04-2	024	7	1	1		V	

COLLEGE OF TECHNOLOGY

2nd ACM

Date

25-05-2024

23AE402	AIR BREATHING PROPULSION	L	T	P	C
		3	0	0	3

- To establish fundamental approach and application of jet engine components.
- To learn about the analysis of flow phenomenon and estimation of thrustdeveloped by jet Engine
- To introduce about the application of various equations in Gas Turbine Engines.
- To learn the concepts of jet engine combustion chambers
- To acquire knowledge on compressors and turbines

UNIT I PRINCIPLES OF AIR BREATHING ENGINES 9

Operating principles of piston engines – thermal efficiency calculations – classification of piston engines – illustration of working of gas turbine engines – factors affecting thrust – methods of thrust augmentation – performance parameters of jet engines.

UNIT II JET ENGINE INTAKES AND EXHAUST 9 NOZZLES

Ram effect, Internal flow and Stall in subsonic inlets – relation between minimum area ratio and external deceleration ratio – diffuser performance – modes of operation – supersonic inlets – starting problem on supersonic inlets – shock swallowing by area variation – real flow through nozzles and nozzle efficiency – losses in nozzles – ejector and variable area nozzles – thrust reversal.

UNIT III JET ENGINE COMBUSTION CHAMBERS

Chemistry of combustion, Combustion equations, Combustion process, classification of combustion chambers – combustion chamber performance – effect of operating variables on performance – flame stabilization, Cooling process, Materials, Aircraft fuels, sustainable aviation and zero emission fuels.

UNIT IV | JET ENGINE COMPRESSORS

9

Euler's turbo machinery equation, Principle, operation of centrifugal compressor, Principle, operation of axial flow compressor— Work done and pressure rise—velocity diagrams—degree of reaction—free vortex and constant reaction designs of axial flow compressor—performance parameters axial flow compressors—stage efficiency.

UNIT V JET ENGINE TURBINES

9

Principle of operation of axial flow turbines– limitations of radial flow turbines- Work done and pressure rise – Velocity diagrams – degree of reaction – constant nozzle angledesigns – performance parameters of axial flow turbine– turbine blade cooling methods– stage efficiency calculations – basic blade profile design considerations – matching of compressor and turbine

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Outline the principles and working of the piston and gas turbine engines
- CO2: Utilize the working operation and effective application with the knowledge of performance and losses found in Inlets
- CO3: Outline the various functions of nozzle
- CO4: Compare the important concepts and working of combustion chambers
- CO5: Illustrate the concepts and working principles of compressor types and their velocity triangles
- CO6: Extend the concepts and working principles of turbine types and their velocity triangles

TEX	Т ВООК	S:														
1	Hill,	P.C	j.	&	I	Pete	rso	n,	С	.R.	"	Med	char	nics		&
	Thermo	ody	nan	nics	o :	f F	rop	ouls	sion	"]	Pear	son	e	duc	atio	on
	(2009).	•					-									
2	Cohen,	H.	Ro	ger	s, (G.F.	C.	anc	l Sa	arav	ana	mu	ttoc), F	I.I.I	Н.
	"Gas T	urb	ine	Th	eor	y",	Pea	arsc	n E	Edu	cati	on (Can	ada	ı; 6	th
	edition,	. 20	08.													
REF	ERENCE															
1	Mathur	, N	1.L.	ar	nd	Sha	arm	a,	R.F	٠,	"Ga	s T	urb	oine	, J	et
	and	Roo	cket		Pro	pu	lsic	'n",	St	anc	lard	Pι	abli	she	rs	&
	Distribu	atoı	rs, I	Dell	ni, 2	nd	edi	tior	2 01	14.						
2	Oates,								-							
	_			por	nen	ts",	A	IA.	A I	Edu	cati	on S	Seri	es,	Ne	W
	Engine Components", AIAA Education Series, New York, 1985.															
3	447.00	"Rolls Royce Jet Engine", Rolls Royce; 4th revised														
	Chapter Avyannan "Air Breathing Propulsion" C															
4	Shankar Ayyappan., "Air Breathing Propulsion", S															
	Lakshmi Publications., Mattingly, Jack D. Elements of propulsion: gas															
5	100 PM	, ,	1000									1 1 10 10	1			
	turbine and As	s ai	na	roc.	xets	6. A	me	erica	anıı	nsti	tute	OI .	Aer	ona	luti	CS
	and As	1101	iau	iics,	, 20	00.		Os							PSC	
	COs	1	2	3	4	5	6		8	9	10	11	12		2	3
	1	3	2	1	1	-	-	-	-	-	-	-	-	2	-	-
	2	3	2	1	1	_	_	_	_	_	_	_	_	3	-	-
	3	2	2	1	_	_	_	_	-	_	-	-	-	3	-	-
	4	3	2	1	1	_	-	-	_	-	-	-	-	3	-	-
	5	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	6	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
C	Overall 3 2 1 1 2															
	relation					_	_	_	_	-	_	_	_		_	_
Reco	mmended				of St	udi	es		04-2							
	A		2 nd	AC	M		Date	2	25-0	05-2	5-2024					

23AE403	AIRCRAFT STRUCTURES	L	T	P	C
		3	0	0	3

- To provide the students an understanding on the linear static analysis of determinate and indeterminate aircraft structural components.
- To provide the students an understanding on energy methods to statically determinate and indeterminate structures.
- To make the students to create a structure to carry the given load.
- To make the students to calculate the response of statically indeterminate structures under various loading conditions.
- To provide the design process using different failure theories.

UNIT I STATICALLY DETERMINATE & INDETERMINATE STRUCTURES

9

Plane truss analysis – method of joints – method of sections – method of shear – 3- D trusses – principle of super position, Clapeyron's 3 moment equation and moment distribution method for indeterminate beams.

UNIT II | ENERGY METHODS

9

Strain Energy in axial, bending, torsion and shear loadings. Castigliano's theorems and their applications. Energy theorems – dummy load & unit load methods – energy methods applied to statically determinate and indeterminate beams, frames, rings & trusses.

UNIT III COLUMNS

9

Euler's column curve – inelastic buckling – effect of initial curvature – Southwell plot – columns with eccentricity – use of energy methods – theory of beam columns – beam columns with different end conditions – stresses in beam columns.

UNIT IV FAILURE THEORIES Ductile and brittle materials - maximum principal stress theory - maximum principal strain theory - maximum shear stress theory - distortion energy theory - octahedral shear stress theory. UNIT V | INDUCED STRESSES Thermal stresses – impact loading – Fatigue – Creep - Stress Relaxation. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Analyse the determinate aircraft structural components using linear static analysis. CO2: Analyse the indeterminate structural methods using 3 moment equation and Moment distribution method CO3: Apply the energy methods to determine the reactions of structure. CO4: Calculate the response of Columns under various loading conditions CO5: Apply the different theories of failure to estimate the life of the component **CO6:** Examine the aircraft structure under induced stress **TEXT BOOKS:** James M. Gere & Barry J Goodno, " Mechanics of Materials ", Cengage Learning Custom Publishing; 8th edition, 2012. Megson T M G, 'Aircraft Structures for Engineering students' Butterworth- Heinemann publisher, edition, **REFERENCES:** Bruhn E F, 'Analysis and Design of Flight Vehicle Structures', Tri-State Off-setCompany, USA, 1985

2	Donald	lsoı	n, I	3.K.	, 'A	na	lysi	s o	f A	ircr	aft	Stru	ıctu	res	- A	۱n
	Introdu	acti	on'	C	aml	orid	lge	Ur	ive	rsit	у Р	ress	ρι	ıbli	she	rs,
	2nd ed	itio	n, 2	008												
3	Peery,	Peery, D.J., and Azar, J.J., Aircraft Structures, 2nd														
	edition, McGraw – Hill, N.Y.,1999.															
4	N.C.	N.C. Pandya, C.S. Shah, "Elements of Machine														
	Design	Design", Charotar Publishing House, 15th edition, 2009.														
,	POs PSOs															
•	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	1	-	-	-	-	-	ı	-	-	2	-	-
	2	3	2	1	1	-	-	-	-	-	ı	-	-	3	-	-
	3	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	4	3	3	2	1	-	-	-	-	-	1	1	-	3	-	-
	5	3	3	2	1	-	-	-	-	-	1	-	A	3	1/	-
	6 POWE	3	2	1	-	-	1	-	1	×-	7	P- /	9	3	<u> </u>	-
	verall relati <mark>o</mark> n	3	3	2	1	7		-	-	1	1	-	L	3	-	-
1	Recommended by Board of 01-04-2024															

AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

Date

2nd ACM

Approved

25-05-2024

23AE421	AERODYNAMICS LABORATORY	L	T	P	C
		0	0	4	2

- To understand pressure distribution and characteristic over an airfoil and bluffbodies due to airflow.
- To measure the forces and moments acting on the airfoil at different angle ofattack using wind tunnel balance set up.
- To visualize the flow pattern over an object by different method.

LIST OF EXPERIMENTS:

- 1. Calibration of a subsonic Wind tunnel.
- 2. Determination of lift for the given airfoil section.
- 3. Pressure distribution over a smooth circular cylinder.
- 4. Pressure distribution over a rough circular cylinder.
- 5. Pressure distribution over a symmetric airfoil.
- 6. Pressure distribution over a cambered airfoil.
- 7. Force measurement using wind tunnel balancing setup.
- 8. Force measurement and flow visualization of VTOL model at low speeds.
- 9. Flow visualization over a flat plate at different angles of incidence.
- 10. Flow visualization studies in low speed flows over cylinders.
- 11. Flow visualization studies in low speed flows over airfoil with different angle of incidence.
- 12. Flow visualization on bluff bodies using water flow channel.
- 13. Flow visualization using Hele-shaw apparatus

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Solve the aerodynamic forces and moments experienced by airfoils, wings and bluff bodies at different velocities.

CO2	Solve the aerodynamic forces and moments experienced															
CO2:				-									-			
	by airfo	ils,	wi	ngs	anc	d bl	uff	bod	lies	at d	liffe	rent	ang	gle c	of	
	attack															
CO3:	Evaluat	te tl	ne p	erf	orm	anc	ce o	f th	in a	irfo	ils v	vith	the	effe	ects	
	of angle	e of	att	ack	by (con	side	erin	g th	nin a	airfo	il th	eor	y		
CO4:	Survey	the	lin	nits	and	lus	efu	lnes	ss of	f the	eex	oerii	men	tal		
	approa	ch.									•	-				
CO5:	Explain	Explain the experimental findings in clear oral and														
	concise report															
CO6:	J I															
	approach on comparing with theoretical approach.															
	COs	POs											I	PSC	s	
	.08	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	2	1	1	2	3	3	2	2	3	2	2
	2 POWER	3	2	1	1	2	1	1	2	3	3	2	2	3	2	2
/	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2
	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2
A	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2
Ov	erall	3	3	2	2	2	10	11/	2	3	3	2	2	3	2	2
Corr	elation	J	J		4	4	110	11/		3	J	112		3	_	
Reco	Recommended by Board of Studies								-04-2	2024						
	Α	ומט	ove	d				2nd ACM Date				2	25-05-2024			

23AE422	PROPULSION LABORATORY	L	T	P	C
		0	0	4	2

- To explore practically components of aircraft piston and gas turbine engines andtheir working principles.
- To impart practical knowledge of flow phenomenon of subsonic and supersonicjets.
- To determine practically thrust developed by rocket propellants.

LIST OF EXPERIMENTS:

- 1. Study of aircraft piston & gas turbine engines and its components.
- 2. Determine the velocity profiles of free jets.
- 3. Determine Velocity profiles of wall jets.
- 4. Wall pressure measurements of a subsonic diffusers and ramjet ducts.
- Flame stabilization studies using conical and hemispherical flame holders.
- 6. Cascade testing of compressor blades.
- 7. Velocity and pressure measurements high speed jets.
- 8. Wall Pressure measurements of supersonic nozzle.
- 9. Wall pressure measurements on supersonic inlet.
- 10. Flow visualization of supersonic flow.
- 11. Performance test of propeller.
- 12. Orsat Apparatus.
- 13. Experiment on Plasma thruster under vacuum condition.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Identify components and information of piston and gas turbine engine.

COs 1 2 3 4 5 6 7 8 9 10 11 12 1	SOs												
CO3: Make use of flow phenomenon in supersonic flow. CO4: Analyze the testing of compressor blades CO5: Analyze the subsonic flow for engine components CO6: Test the performance of a Propeller. CO8 POS PS PS PS PS PS PS PS PS P													
CO4: Analyze the testing of compressor blades CO5: Analyze the subsonic flow for engine components CO6: Test the performance of a Propeller. CO8 POS PS PS PS PS PS PS PS PS P													
CO5: Analyze the subsonic flow for engine components CO6: Test the performance of a Propeller. COs POs PS 1 2 3 4 5 6 7 8 9 10 11 12 1													
CO6: Test the performance of a Propeller. COs POs POs PS PS PS PS PS PS PS P													
COs POs PS													
COs 1 2 3 4 5 6 7 8 9 10 11 12 1													
1 2 3 4 5 6 7 8 9 10 11 12 1													
1 3 2 1 1 1 2	2 3												
	1 -												
2 3 3 2 2 1 3	1 -												
3 3 2 1 2 2 3 .	2 -												
4 3 3 2 1 1 2	1 -												
5 3 3 2 2 1 3	1 -												
6 3 3 2 2 2 3	2 -												
Overall 3 3 2 2 2 - 3	2 -												
Recommended by Board of Studies 01-04-2024													
Approved 2 nd ACM Date 25-05	2 nd ACM Date 25-05-2024												
COLLEGE OF TECHNOLOG	COLLEGE OF TECHNOLOGY												

23ES	491	Al			D LOGIC	AL	L	T	P	C
				SONIN	[G - 1		0	0	2	1
COU	RSE OB	,								
•	_		-	lem solv	ing and lo	gical th	inki	ng a	abil	ity
		tudents								
•	_				quently as	-				
		s in qua	antitativ	ve aptit	ude and lo	gical re	easor	ning	5.	
UNI										4
l l		M, HC	F, Aveı	rages, R	Ratio & Pr	oportio	n, M	lixtı	ares	; &
	gation.									
UNI										4
		Гime an	ıd work	k, Pipes	and Cister	rn, codi	ng a	nd		
	ding.									
UNI										4
)istance	, Train,	, Boats a	and Strean	ns, Anal	logy			
UNI				_						4
		tation (l	BAR,PI	E,LINE), Seating	arrange	mer	t.	400	
UNI			0							4
		st and C	Compo	und Inte	erest, Prof	it loss a	nd I)isc	oun	t,
Partr	nership.	V						7		M.
- 1	18	12			7	OTAL	2 0 l	PER	IO	DS
COU	RSE OU			COLLI	CE OF	TECHI	VO.	0	GV	G.
					e, the stud					
CO1:	•			-	problem	s, and	fost	er o	criti	cal
	thinking									
CO2:					atical pro			er	ıhaı	ıce
					l numerica					
CO3:	Develop	strate	gies for	r tacklii	ng a varie	ty of p	robl	em	typ	es,
				use of	multiple	approa	ches	to	so	lve
	problen									
CO4:	-				data analy	-				me
					ata analysi					
CO5:					phs, and s					
			-		s such as	ratios,	pro	opo	rtio	ns,
					stimation.					
CO6:			s in a	fractio	n of a m	inute u	ısing	sh	ort	cut
	method	s								

TEX	TEXT BOOK: 1 Smith, John. "APTIPEDIA." 2nd ed., Wiley Publishers, 2020.																	
1	Smith,	Joh	n. ".	AP1	TPI	EDL	A."	2nd	led	., W	iley	Pub	lish	ers,	202	20.		
2	Agarv	val,	R.S	5. "Ç)uaı	ntita	ativ	e A	ptit	ude	." 2r	ıd ed	1., S.	Ch	anc	l		
	Publish	iing	<u>,</u> .															
REFI	REFERENCES:																	
1	Agarwal, R.S. "A Modern Approach to Verbal & Non-Verbal																	
	Reasoning." 2nd ed., S. Chand Publishing																	
	POs PSOs																	
,	Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1 3 3 2 2 1 1 2 1 2 3 1 - 3												3					
	2	2	3	3	-	-	2	-	1	3	2	2	3	2	1	3		
	3	3	3	3	-	-	2	-	1	2	2	2	3	2	-	3		
	4	2	3	2	3	-	2	1	2	3	3	2	3	1	2	3		
	5	3	2	2	-	1	3	-	2	2	3	3	3	3	1	3		
	6	3	3	3	3	2	3	1	3	3	2	3	3	3	1	3		
O	verall	ER.	3	No.			1								400			
Corr	Correlation 3 3 3 1 1 3								2	3	3	3	3	2	1	3		
Reco	8 08-04-2024																	
	Approved									2nd ACM Date 25-					5-05-2024			

23AE423	MINI PROJECT	L	T	P	C
		0	0	2	1

- Encourage students to apply foundational theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork and effective communication.
- Train students in basic research methodology, technical documentation, and presentation techniques to articulate project outcomes clearly.
- Enhance students' ability to systematically design, analyze, and evaluate simple prototypes or models.
- Prepare students for real-world engineering challenges and lay the foundation for multidisciplinary teamwork and problem-solving in advanced projects.

COURSE DESCRIPTION:

This course serves as an introductory platform for students to apply the foundational knowledge acquired from their core and interdisciplinary subjects in a practical setting. This course enables students to work on small-scale, department-relevant projects that focus on problem identification, basic design, and preliminary prototype development. With limited prior expertise, students will explore the process of translating theoretical concepts into tangible solutions, fostering creativity, teamwork, and critical thinking. The course emphasizes handson learning, communication, and project documentation, laying a strong foundation for advanced projects and professional challenges in later semesters.

PROJECT OUTLINE: Week 1 Course Orientation and Topic Selection Week 2 Problem Definition and Objective Setting Week 3 Literature Review and Research Week 4 First Review and Feedback

Week 5	Problem Refinement and Research Gap Identification
Week 6	Conceptual Design and Initial Approach
Week 7	Methodology and Project Planning
Week 8	Second Review and Project Evaluation
Week 9	Design Refinement and Testing
Week 10	Resource Identification and Budget Estimation
Week 11	Report Writing and Presentation Preparation
Week 12	Third Review Presentation and Submission of Thesis
TTT / A T T I A T	ELONI

EVALUATION:

- The progress of the mini project will be evaluated through three reviews, conducted by a committee appointed by the Head of the Department. A final project report must be submitted at the end of the semester. Evaluation will be based on oral presentation and the written report, assessed by internal examiners designated by the Head of the Department.
- The project should focus on topics from first three or four semester (whichever is applicable) subjects / industry demand topics, or futuristic technologies. It is recommended for Faculty of Aeronautical Engineering, Civil Engineering, and Mechanical Engineering students, the project should demonstrate an understanding of first principles of engineering.
- Similarly for students of Faculty of Computer Science Engineering, the project may involve programming using Python or C language. For Faculty of Electronics and Communication Engineering, the student project shall incorporate appropriate techniques and systems relevant to the field. For the students of Faculty of Fashion Technology, the project based on material innovations, or technology in fashion is recommended.
- The evaluation will focus on how well the project is structured, including clarity and logical flow in both oral presentations and written texts.
- The relevance and innovation of the project will be assessed, particularly its potential to contribute to sustainability, innovation, and SDG-aligned goals.

The accuracy of English usage, including grammar, clarity, and coherence, will be reviewed in both oral and written communication to ensure effective delivery of technical content. **TOTAL: 30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: Apply basic engineering principles to solve simple CO1: problems. Choose relevant sources to understand the current CO2: knowledge and identify areas to improve. Utilise basic tools and techniques to test simple CO3: solutions. Interpret the impact of engineering solutions on society CO4: and the environment. Combine in teams to plan and complete projects within CO5: given constraints. Develop comprehensive technical reports and deliver CO6: structured presentations to effectively convey project outcomes. ACCULATE POS AMA UNIVERSITY I AUTO **PSOs** COs 6 7 12 1 Overall Correlation

01-04-2024 2nd ACM

Date

25-05-2024

Recommended by Board of Studies

Approved

SEMESTER -V

23RE501	RESEARCH METHODOLOGY	L	T	P	C
	AND INTELLECTUAL PROPERTY	2	0	0	2
	RIGHTS				

COURSE OBJECTIVES:

- To provide an overview on selection of research problem based on the Literature review
- To enhance knowledge on the Data collection and Analysis
- To outline the importance of ethical principles to be followed in Research work and IPR

UNIT I	INTRODUCTION TO RESEARCH	6
	FORMULATION	

Meaning of research problem, Sources of research problem, Criteria- good research problem, and selecting a research problem, Scope and objectives of research problem. Defining and formulating the research problem - Necessity of defining the problem - Importance of literature review in defining a problem

UNIT II LITERATURE REVIEW

6

Literature review – Primary and secondary sources – reviews, treatise, monographs-patents – web as a source – searching the web - Critical literature review – Identifying gap areas from literature review - Development of working hypothesis

UNIT III DATA ANALYSIS

6

6

Execution of the research - Data Processing and Analysis strategies - Data Analysis with Statistical Packages - Generalization and Interpretation

UNIT IV REPORT, THESIS PAPER, AND RESEARCH PROPASAL WRITING

Structure and components of scientific reports - Types of report - Technical reports and thesis - Significance - Different steps in the preparation - Layout, structure and Language of typical reports - Illustrations and tables - Bibliography, types of

referencing, citations- index and footnotes, how to write report-Paper Developing,- Plagiarism- Research Proposal- Format of research proposal- a presentation - assessment by a review committee

UNIT V INTELLECTUAL PROPERTY AND PATENT 6 RIGHTS

Ethical principles- Plagiarism, Nature of Intellectual Property - Patents, Designs, Trade and Copyright- patent search, Process of Patenting and Development: technological research, innovation, patenting, and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of Patent Rights – Scope of Patent Rights, Geographical Indications

TOTAL: 30 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the literature to identify the research gap in the given area of research.
- CO2: Identify and formulate the research Problem
- CO3: Analyze and synthesize the data using research methods and knowledge to provide scientific interpretation and conclusion.
- CO4: Prepare research reports and proposals by properly synthesizing, arranging the research documents to provide comprehensive technical and scientific report
- CO5: Conduct patent database search in various countries for the research problem identified.
- CO6: Apply ethical principles in research and reporting to promote healthy scientific practice

TEXT BOOKS:

- 1 Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An Introduction to Research Methodology, RBSA Publishers.
- 2 Kothari, C.R., 1990. Research Methodology: Methods and

	Techni	ique	es. Ì	Nev	v A	ge I	nte	rnat	tion	al.	118p).				
3	Sinha,	S	S.C.	a	nd	D	hin	ıan,	, 1	4.K	.,	2002	2.]	Res	earc	ch
	Metho															
4	Trochi													co	nci	se
	knowl															
5	Wadel															
	Marks							and	d G	eog	rapl	nical	lind	lica	tior	ıs.
	Unive		La	w P	ubl	ishi	ng									
	ERENCE						4 3	_	1.		1.		20			
1	Anthon	-														
	Researc															
2	Carlos, C.M., 2000. Intellectual property rights, the WTO and developing countries: the TRIPS agreement and															
	policy options. Zed Books, New York.															
3	policy options. Zed Books, New York. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal															
	Writing", Sage Publications.															
4		Day, R.A., 1992.How to Write and Publish a Scientific														
	Paper, Cambridge University Press.															
5	Fink, A., 2009. Conducting Research Literature Reviews:															
	From the Internet to Paper. Sage Publications															
6	Leedy,										actic	al R	esea	ırch	:	
	Plannir								_	_	EC	LIK		01	TV.	ī
7	Satarka						llec	tual	pro	ope	rty 1	ight	ts an	ıd c	ору	7
	right. E	SS I	Pub	lica	tio	ns.	-	-		-711.000	(market)	1.45.49.39	Calleria	_	•	
(COs	1	2	2	1	-		Os 7	0	0	10	11	10	1	SC	
	1	3	2	3 1	4	5	6	/	8 1	9	10 2	11	12 1	3	2	3 1
	2	3	2	1	1	1		_	1	1	2	_	1	3	2	1
	3	3	2	1	1	1	_	_	1	1	2	_	1	3	2	1
	4	3	2	1	1	1	_	_	1	1	2	_	1	3	2	1
	5	3	2	1	1	1	_	_	1	1	2	_	1	3	2	1
	6	2	2	1	1	1	-	-	1	1	2	-	1	3	2	1
Ov	erall	2	2	1	1	1			1	1	2		1	2	_	1
	elation	3	2	1	1	1	_	_	1	1	2	_	1	3	2	1
Reco	mmended	d by	Во	ard	of S	tud	ies			2024						
	A	Approved							3 rd ACM Date				30-11-2024			

23AE501	ADVANCED AERODYNAMICS	L	T	P	C
		3	0	0	3
COLIDGE OF					

- To make familiar with the concepts of compressibility.
- To make the students acquainted with the theory behind the formation of shocks and expansion fans in Supersonic flows.
- To acquaint the methodology of measurements in Supersonic flows.
- To familiarize on high-speed flow over airfoils, wings and airplane configuration.
- To acquaint the concepts of Transonic flow.

UNIT I ONE DIMENSIONAL COMPRESSIBLE FLOW 10

Energy, Momentum, continuity and state equations - Velocity of sound, adiabatic steady state flow equations- Flow through convergent- Divergent passage- Performance under various back pressures.

UNIT II NORMAL AND OBLIQUE SHOCKS

12

Prandtl equation and Rankine - Hugonoit relation- Normal shock equations- Pitot static tube corrections for subsonic and supersonic flows- Oblique shocks and corresponding equations- Hodograph and pressure turning angle- Shock polar- Flow past wedges and concave corners- strong, weak and detached shocks.

UNIT III EXPANSION WAVES AND METHOD OF CHARACTERISTICS

o

Flow past convex corners-Expansion hodograph- Reflection and interaction of shocks and expansion waves -Method of Characteristics - Two-dimensional supersonic nozzle contours-Rayleigh and Fanno Flows.

UNIT IV DIFFERENTIAL EQUATIONS OF MOTION FOR STEADY COMPRESSIBLE FLOWS

7

Small perturbation potential theory, solutions for supersonic flows, Mach waves and Mach angles, Prandtl-Glauert rule - Affine transformation relations for subsonic flows, linearized

two-Dimensional supersonic flow theory - Lift, drag, pitching moment and Center of pressure of supersonic profiles. TRANSONIC FLOW OVER WING UNIT V 8 Lower and upper critical Mach numbers- Lift and drag divergence- Shock induced separation- Characteristics of swept wings- Effects of thickness, camber and aspect ratio of wings-Transonic area rule. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Solve the compressible flow through a duct of varying cross section. **CO2:** Apply quasi one-dimensional theory to analyse compressible flow problems. CO3: Estimate fluid properties in Rayleigh and Fanno type flows. **CO4:** Estimate the properties across normal and oblique shock waves. CO5: Apply various techniques and methods for solving differential equations of motion for steady compressible flows. **CO6:** Identify the properties of transonic flows. **TEXT BOOKS:** John D. Anderson Jr. - "Modern Compressible Flow With 1 Historical Perspective", McGraw-Hill Book Co., New York, 2020. Kuethe, Arnold M., and Chuen-Yen Chow. "Foundations of aerodynamics: bases of aerodynamic design". John Wiley & Sons, 2009. **REFERENCES:** Rathakrishnan, Ethirajan. "Gas Dynamics". New Delhi: 1 PHI Learning Pvt. Ltd., 2020.

2 Clancy, L.J. "Aerodynamics". New Delhi: Sterling Book																
2			-	At	eroc	lyna	amı	cs .	INE	2W	Den	11: 5	teri	ıng	DO	ΟK
	House															
3	Shapir	Ю,	Asc	her	H.	"D	yna	mic	cs a	nd	The	rmo	odyr	nam	ics	of
	Comp	ress	sible	e Fl	uid	Flo	w"	. Re	pri	nt e	ed.,	with	n co	rrec	tior	ıs.
	New \	orl	k: R	obe	rt E	. Kr	ieg	er P	ubl	ishi	ng (Com	pan	y, 1	983	
4	Collice	ott,	St	eve	n l	Н.,	Da	nie	l T	· \	Vale:	ntin	e, a	and	Ε.	L.
	Houghton. "Aerodynamics for Engineering Students". 6th															
	ed. Oxford: Butterworth-Heinemann, 2012.															
POs PSOs																
COs			_			-	_		_	_						
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	-	-	-	-	1	1	1	3	1	-
	2	3	2	1	1	2	-	-	-	-	1	1	1	3	2	-
	3	3	3	2	2	2	-	-	-	-	1	1	2	3	2	-
	4	3	3	2	2	2	-	-	-	-	1	1	1	3	2	-
_3	5 POWE	3	2	1	1	2	A	/-	4	-	1	1	1	3	2	-
- /	6	3	2	1	1	2	1	1	2	-	1	1	2	1	2	2
Overall 3 3 2 2 2 1									2	1	1	1	2	3	2	2
Recommended by Board of Studies							ies	s 07-11-2024								
	Approved									3rd ACM Date 30-11-2						024

23AE502	ADVANCED AIRCRAFT	L	T	P	C
	STRUCTURES	3	0	0	3

- To familiarize the student, the generalized theory of pure bending and work out problems in the calculation of bending stress involving different methods.
- To gain knowledge in the concept of shear flow in thinwalled sections.
- To carry out shear flow analysis involving different types of sections.
- To impart theoretical knowledge on the behaviour of thin plates and thin-walled columns.
- To carry out basic stress analysis procedures involving aircraft structural components.

UNIT I UNSYMMETRICAL BENDING OF BEAMS

Unsymmetrical bending of beams – Different methods of analysis stresses and deflections in beams under unsymmetrical bending.

UNIT II SHEAR FLOW IN OPEN SECTIONS 9

Definition and expression for shear flow due to bending- Shear flow in thin-walled Open sections with and without stiffening elements- Torsion of thin-walled Open sections- Shear center of symmetric and Unsymmetrical open sections-Structural idealization

UNIT III SHEAR FLOW IN CLOSED SECTIONS 9

Shear flow due to bending and torsion in single-cell and multicell structures- Shear center of symmetric and unsymmetrical closed sections- Effect of structural idealization- Shear flow in a tapered beam- Wagner's theory.

UNIT IV BUCKLING OF PLATES 9

Behaviour of a rectangular plate under compression- Governing equation for plate buckling- Buckling analysis of sheets and stiffened panel under compression- Concept of the effective

sheet	width- Buckling due to shear and combined loadi	ng-
Cripp	pling	
UNI	TV AIRCRAFT STRESS ANALYSIS	9
Load	ing and analysis of aircraft wing, fuselage, and tail u	nit-
Use o	of V-n diagram for sizing the aircraft wing, fuselage, a	and
tail u	nit.	
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Analyse and investigate the normal stress variation on	
	unsymmetrical sections, subjected to bending momen	ts.
CO2:	Construct the shear flow variation in thin-walled open	
	sections with skin effective and ineffective in bending.	
	Also to find out the shear centre of sections.	
CO3:	Examine the shear flow variation in single cell and	
	multicell tubes subjected to shear and torque Loads.	ri -
CO4:	Model the behaviour of buckling of simply supported	
	plates and also to calculate the effective width of sheet	
	stringers combination.	
CO5:	Analyse the shear and bending moment variation of	1
	aircraft wing and fuselage and also to know the	
	characteristics of thin webbed beams.	
CO6:	Solve the response of wing sections under bending and	
	torsion.	
TEXT	BOOKS:	
1	Bruhn. E.H., "Analysis and Design of Flight Vehice	cles
	Structures", Tri-state off-set company, USA, 1985.	
2	Megson T M G, "Aircraft Structures for Engineer	ing
	students" Butterworth-Heinemann publisher, 7th editi	ion,
	2021.	

REFI	ERENCE	S:														
1	Donald	son	ı, B	.K.,	"A	\na	lysi	s of	f A	ircr	aft	Stru	ctur	es	- A	ın
	Introduction", Cambridge University Press publishers,															
	2nd edition, 2008.															
2	Peery,	Peery, D.J., and Azar, J.J., "Aircraft Structures", 2nd														
	-	edition, McGraw - Hill, N.Y., 1999.														
3	N.C. Pa	N.C. Pandya, C.S. Shah, "Elements of Machine Design",														
	Charotar Publishing House, 15th edition, 2009.															
							P	POs PSOs							s	
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	2	1	-	-	-	-	-	-	-	3	1	-
	2	3	2	1	1	1	-	-	-	-	-	1	-	3	1	-
	3	3	3	2	2	1	-	-	1	-	-	ı	-	3	1	1
	4	3	2	1	1	1	- 2	_	1	÷	1	-	A	3	1	1
	5 POWER	3	3	2	2	1	A	_	A	-	7	-/	-	3	1	-
	6	3	2	1	1	1	K	-	-	-	-	-	(-	3	1	-
	veral <mark>l</mark> relation	3 3 2 2 1 - - 1 - - - - 3 1 1							1							
Reco	mmended	d by	Во	ard	of S	Stud	lies	07-	11-2	2024						
	Approved					3rd ACM Date 30-11-2024										

23AE5	521	AIRCRAFT STRU	ICTURES	L	T	P	C		
		LABORATO	ORY	0	0	4	2		
COUR	RSE OBJ	ECTIVES:			· ·				
•	To ex	erimentally study the	unsymmetrica	al b	end	ing	of		
	beams								
•	To fin	l the location of shear o	centre.						
•	To ob	ain the stresses in circ	ular discs and	bea	ms	usi	ing		
	photo	elastic techniques.							
•	To ca	ibration of photo-elas	tic materials a	nd	stu	dy	on		
	vibrat	on of beams.							
•	Exam	ne the behavior of bear	ms under comb	oine	d lo	oadi	ing		
	condi	ons.							
LIST (OF EXPI	RIMENTS							
1.	Unsyn	metrical bending of be	ams.	N		7			
2.	Find tl	e shear centre location	for open section	ns.		1			
3.	Find tl	e shear centre location	for closed sect	ions	•				
4.	Experi	<mark>n</mark> ent the constant strer	gth beam.						
5.	Draw	ne flexibility matrix for	cantilever bea	m.					
6.		vith combined loading	and the same of the same of the same of the same of			- 1			
7.		tion of Photo-elastic m	ateriais.						
8.	Stresse	s in circular discs and	beams using	pho	oto-	elas	stic		
	techni								
9.		ons of beams.							
10.	Experi	nent with the Wagner	beam – Tensio	n fie	ld l	oeaı	m.		
11.	Buckli	g load for column- Va							
			TOTAL:	60 F	PER	IOI	DS		
COURSE OUTCOMES:									
		pletion of the course, t							
CO1:	Evaluate	the effects of bending	in the aerospac	e st	ruct	ture	es.		

CO2: Develop the shear center of the aerospace structures.
CO3: Compare the photo-elastic techniques on the aerospace

129

structures.

CO4:	Interpret the experimental findings in clear oral and															
	concise	rep	report.													
CO5:	Evalua	Evaluate the deflection of the beams.														
CO6:	Make use of the beams for vibration studies.															
	Os						P	Os						F	SC	s
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2
	2	3	2	1	1	2	1	1	2	3	3	2	2	3	2	2
	3	2	1	1	-	2	1	1	1	3	3	1	1	3	2	2
	4	2	1	1	-	1	1	2	2	3	3	2	1	3	2	2
	5	3	3	3	2	1	1	1	2	2	2	2	2	3	1	2
	6	3	2	1	1	1	1	1	2	2	2	2	2	3	1	2
Ov	erall	3	2	2	1	2	1	1	2	3	3	2	2	3	2	2
Corr	elation	elation 3 2 2 1					- 2		_	3	3		4	3	_	_
Recommended by Board of Studies						07-11-2024										
Approved					3rd ACM Date 30-				30-1	-11-2024						

COLLEGE OF TECHNOLOGY

23AE5	22 COMPUTATIONAL ANA	ALYSIS	L	T	P	C
	LABORATORY		0	0	2	1
COUR	SE OBJECTIVES:					
•	To acquaint with the stress distribut	tion.				
•	To gain experience with meshing of	f various ย	geor	net	ries	
•	To understand the variation of	mechanic	al p	orop	ert	ies
	under different load conditions.					
•	To explore flow analysis.					
•	To study thermal analysis.					
LIST (OF EXPERIMENTS:					
1.	Grid independence study and conv	ergence to	est ı	ısin	ıg a	ny
	simple case like cylinder.					
2.	Simulation of flow over backward f	acing step).			
3.	Simulation of Karman vortex tra	ail (vorte	x s	hec	ldir	ıg)
	using circular cylinder.				~	
4.	External flow simulation of aer	ofoil at	sul	OSO1	nic	&
	supersonic speeds.					
5.	Internal flow simulation of s		so	nic	a	nd
	supersonic flow through a CD nozz				- 1/	
6.	Structural analysis of bar and beam	TECHN				
7.	Structural analysis of truss.					
8.	Structural analysis of tapered wing.					
9.	Analysis of composite laminate stru					
10.	Heat transfer analysis of structures.					
		TOTAL:	60 F	PER	IOI)S
	SE OUTCOMES:					
	After completion of the course, the stu				le t	э:
	Make use of solid modelling and simu		ols f	or		
I.C.	obving CED and Structural problems					

CO1: Apply the analysis type for CFD and Structural Analysis. CO4: Analyse the aerofoil and fluid dynamics problems. CO5: Analyse and validate the computational results.

CO6: Analyse	CO6: Analyse structural and CFD problems related to the														
Aerospa	ace industry														
COs		POs								F	PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	2	2	2	2	3	1	-	1	2	2	2
2	3	2	1	1	2	2	2	2	3	1	-	1	3	2	2
3	3	2	1	1	2	2	2	2	3	1	-	1	3	2	2
4	3	3	2	2	2	2	2	2	3	1	-	1	3	2	2
5	3	3	2	2	2	2	2	2	3	1	-	1	3	2	2
6	3	3	2	2	2	2	2	2	3	1	-	1	3	2	2
Overall	3	3	2	2	2	2	2	2	3	1		1	3	2	2
Correlation	3	•	4	_	4			_	3	1	1	1	,	4	_
Recommende	Recommended by Board of Studies							-11-2	2024				•		
Approved					3rd ACM Date 30-				30- 1	-11-2024					

COLLEGE OF TECHNOLOGY
AFFILIATED TO ANNA UNIVERSITY | AUTONOMOUS

23ES	591	APTITUDE AND LOGICAL	L	T	P	C				
		REASONING -2	0	0	2	1				
COU	RSE OF	BJECTIVES:	ı							
•	To im	prove the problem solving and logi	cal	thin	king	<u> </u>				
		of the students.								
To acquaint the student with frequently asked patterns										
in quantitative aptitude and logical reasoning during										
various examinations and campus interviews										
UNIT I										
Prob	ability, I	Permutation & Combination, Algebra, 1	Prob	lem	s or	l				
ages										
UNI	ΓII					4				
Mens	suration	, Logarithms, inequalities and modulu	s, Sy	llog	ism					
UNI	ΓIII					4				
Dire	ctions, l	ogical sequence words, number ser	ies,	Ana	alyt	ical				
Reas	oning				4	34				
UNI	ΓΙΥ	37		- 1		4				
Bloo	d relatio	n, Clock and Calendar, Picture puzzles	3							
UNI	ГУ	N. C.	- 1	9		4				
Data	sufficie	ncy, cube and cuboids, odd man out								
	CINE	FR REPUTOTA	L: 20	PE	RIO	DS				
COU	RSE OU	JTCOMES: AFFILIATED TO ANNA UNIVERSITY	AU	TONO	MOU	5				
		empletion of the course, the students w		e ab	le to):				
CO1:		concepts of probability, permutation, a	nd							
		nation to solve real-world problems.								
CO2:		lgebraic problems and age-related pro	blen	ns us	sing					
		approaches and techniques.								
CO3:	-	e and solve problems in mensuration,	loga	rith	ms,					
		equalities.								
CO4:	_	et and solve problems related to direct	ions	, log	ical					
00=	_	ce, and number series.		1						
CO5:		y and solve problems in logical reasoni	_	uch	as					
COL)	sm, blood relations, clock and calendar		1						
CO6:		y and solve problems in logical reasoni	_	uch	as					
	syllogis	sm, blood relations, clock and calendar	•							

TEX	Г ВООК	:														
1	Smith,	Joh	n. ".	AP	ΓIPΕ	EDIA	A." 2	2nd	ed.	, W	iley	Pub	lish	ers,	202	20.
2	Agarw	Agarwal, R.S. "Quantitative Aptitude." 2nd ed., S. Chand														
	Publish	ning	5.													
REFI	ERENCE	RENCES:														
1	Agarw													on-		
	Verbal	Verbal Reasoning." 2nd ed., S. Chand Publishing.														
,	COs	POs										I	PSC	s		
`	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	3	2	2	2	1	3	1	2	3	2	2
	2	3	2	2	2	3	2	3	2	1	2	1	2	3	2	3
	3	3	3	2	2	2	2	2	2	1	3	1	2	3	3	2
	4	2	3	2	1	2	3	1	2	3	3	2	3	2	2	3
	5	2	3	3	2	2	2	2	3	2	2	2	3	3	3	3
	6	3	3	2	2	3	2	3	3	2	2	1	2	3	3	2
O	erall 📉	er .	8	2	•	2	•	0		2	0		1		~	0

COLLEGE OF TECHNOLOGY

3 3

3

3 2

3rd ACM

3 2 3

13-11-2024

Date

3 3

30-11-2024

3

3

Recommended by Board of Studies
Approved

Correlation

3 2

SEMESTER -VI

23CE611	ENVIRONMENTAL SCIENCE	L	T	P	C
	AND ENGINEERING	3	0	1	4

COURSE OBJECTIVES:

- To provide basic knowledge on environment impact assessment
- To create an awareness on the pollutants in the environment
- To familiarize the student with the technology for restoring the environment.
- Applying the technology for producing ECO safe products

9

 To develop simple climate models and evaluate climate changes using models

UNIT I INTRODUCTION TO ENVIRONMENT IMPACT ASSESSMENT

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework

UNIT II	MOVEMENT OF POLLUTANTS IN	9
	ENVIRONMENT LIATED TO ANNA UNIVERSITY AUTOROMO	US

Concepts of diffusion and dispersion, point and area source pollutants, pollutant dispersal; Gaussian plume model, hydraulic potential, Darcy's equation, types of flow, turbulence. Concept of heat transfer, conduction, convection; concept of temperature, lapse rate (dry and moist adiabatic); mixing heights, laws of thermodynamics; concept of heat and work, Carnot engine, transmission of electrical power, efficiency of turbines, wind mills and hydroelectric power plants.

UNIT III	ECOL	OG	ICAL R	ESTORAT	TION	1			9
Wastewate	er t	rea	tment:	anaerob	ic,	aerob	ic p	roc	ess,
methanog	enesis,	tre	eatment	schemes	for	waste	water:	da	airy,
distillery,	tanner	ry,	sugar,	antibiotic	inc	dustries;	solid	w	aste

treatment: sources and management (composting, vermiculture and methane production, landfill. hazardous waste treatment).

UNIT IV ECOLOGICALLY SAFE PRODUCTS AND PROCESSES 9

Biofertilizers, microbial insecticides and pesticides, bio-control of plant pathogen, Integrated pest management; development of stress tolerant plants, biofuel; mining and metal biotechnology: microbial transformation

UNIT V CLIMATE CHANGE MODELS

9

Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming –climate change observed to date

TOTAL: 60 PERIODS

LIST OF EXPERIMENTS

- 1. Determination of Bio fuel parameters such as flash point and fire point.
- 2. Determination of density of biofuels.
- 3. Determination of BOD/COD in water.
- 4. Simulating the RCM and GCM model for different geographic conditions.
- 5. Measurement of Pollutant in environment by Gaussian Plume model.

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the importance of the process of Environmental impact assessment and its types.
- CO2: Illustrate the chemical processes and pollutant chemistry
- CO3: Identify the methods to solve environmental problems
- **CO4:** Apply the knowledge to develop ecofriendly products.
- CO5: Construct the various simple climate models for simulation

CO6:	6: Apply the climate model simulation to monitor climate								atio	n to	mo	nitoı	r clir	nate	2	
	change															
TEX	Г ВООК	S:														
1	David .l		eeli	n "(Clin	nate	· Cł	nang	ze a	nd	Mod	lellir	ng",			
	Cambri							•	_				0,			
2	Evans, 0															
		Biotechnology: Theory and Application (2nd edition).														
	Wiley-B					-					`					
3	Pani, B.	200	7. 7	[ext	boc	ok o	f Eı	nvir	onr	nen	tal C	Chen	nistr	y. I	K	
	internat	ion	al P	ubl	ishi	ng	Но	use						-		
4	N.S. Raı	N.S. Raman , A.R. Gajbhiye & S.R. Khandeshwar,														
	Environ	Environmental Impact Assessment, 2014, IK International														
	Pvt Ltd.															
REF	RENCES:															
1	Carson (1907-1964). Environment Conservation-book															
2	Encyclopaedia of Environmental Issues by Craig W. Allin															
	&Probe.															
3	Encyclo	Encyclopaedia of Environmental studies by William														
	Ashwor	th.	4	62											_	
4	Climate	Ch	ang	ge a	nd (Clir	nat	e M	ode	ling	g- Ki	ndle	e Edi	itio	n.	
5	Environ	me	nta	lly-	Frie	end	ly I	roc	luct	de	velo	pme	nt -I	Ebei	rhai	nd
	Abile ,R	lein	er A	And	erl,	200	5									
	COs		1	1				POs					1		PSC)s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	-	2	1	-	-	-	-	-	2	-	-
	2	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	3	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
	4	3	2	1	1	-	3	2	-	-	-	-	1	3	-	-
						3	2	-	-	-	-	1	3	-	-	
	- - -				3	2	-	-	-	-	1	3	-	-		
	Overall Correlation 3 2 1 1 - 3			3	2	_	-	-	-	1	3	_	_			
	mmended	l hv	Bo.	ard :	of S	tud.	ioc	07	 11 - 2	n24						<u> </u>
Neco					01 3	ıuu	162					Date	,	30-	11-3	2024
l	73	rr	3,4	Approved					3 rd ACM Date				30-11-2024			

23AE611	FLIGHT DYNAMICS AND	L	T	P	C				
	SIMULATION	3	0	2	4				
COLIDGE ODIECEDIEC									

- To know about the forces and moments acting on aircraft, the different types of drag, drag polar, ISA, variation of thrust, power, SFC with velocity and altitude.
- To have understanding about performance in level flight, minimum drag and power required, climbing, gliding and turning flight, v-n diagram and load factor.
- To knowledge about degrees of stability, stick fixed and stick free stability, stability criteria, effect of fuselage and CG location, stick forces, aerodynamic balancing.
- To understanding about lateral control, rolling and yawing moments, static directional stability, rudder and aileron control requirements and rudder lock.
- To understanding about dynamic longitudinal stability, stability derivatives, modes and stability criterion, lateral and directional dynamic stability.

UNIT I CRUISING FLIGHT PERFORMANCE 9

Forces and moments acting on a flight vehicle - Equation of motion of a rigid flight vehicle - Different types of drag - estimation of parasite drag co-efficient by proper area method-Drag polar of vehicles from low speed to high speeds - Variation of thrust, power with velocity and altitudes for air breathing engines. Performance of airplane in level flight - Power available and power required curves. Maximum speed in level flight - Conditions for minimum drag and minimum power required

UNIT II MANEUVERING FLIGHT PERFORMANCE 9

Range and endurance - Climbing and gliding flight -Maximum rate of climb and steepest angle of climb, minimum rate of sink and shallowest angle of glide -Turning performance -Turning rate turn radius. Bank angle and load factor – limitations on turn - V-n diagram and load factor

UNIT II STATIC LONGITUDINAL STABILITY

Degree of freedom of rigid bodies in space - Static and dynamic stability - Purpose of controls in airplanes - Inherently stable and marginal stable airplanes - Static, Longitudinal stability - Stickfixed stability - Basic equilibrium equation - Stability criterion - Effects of fuselage and nacelle - Influence of CG location - Power effects - Stick-fixed neutral point - Stick-free stability-Hinge moment coefficient - Stick-free neutral points Symmetric maneuvers - Stick force gradients - Stick force per 'g' - Aerodynamic balancing.

UNIT IN LATERAL AND DIRECTIONAL STABILITY

Dihedral effect - Lateral control - Coupling between rolling and yawing moments - Adverse yaw effects - Aileron reversal - Static directional stability - Weather cocking effect - Rudder requirements - One engine inoperative condition - Rudder lock.

UNIT V DYNAMIC STABILITY

9

Introduction to dynamic longitudinal stability: - Modes of stability, effect of freeing the stick - Brief description of lateral and directional. dynamic stability - Spiral, divergence, Dutch roll, auto rotation and spin

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. C.G. determination.
- 2. Calibration of ASI and Altimeter.
- 3. Calibration of special instruments.
- 4. Cruise and climb performance.
- 5. Determination of stick fixed and stick free neutral points.
- 6. Determination of stick fixed and stick free maneuver points.
- 7. Verification of Lateral-directional equations of motion for a steady state side slip maneuver.
- 8. Verification of Lateral-directional equations of motion for a steady state coordinated turn.
- 9. Flight determination of drag polar of a glider.

10	Demonstration of stall, Phugoid motion and Dutch roll.
	TOTAL: 30 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Examine the forces & moments of an aircraft, types of
	drag, drag polar, and performance in level flight.
CO2:	Develop an understanding about basic maneuvering
	performance (range, endurance, climbing, gliding &
	turning flight), v-n diagram and load factor.
CO3:	Make use of degrees of stability, stick fixed & stick free
	stability, stability criteria, effect of fuselage & CG location,
	stick forces, aerodynamic balancing.
CO4:	Apply the lateral control, rolling & yawing moments,
	static directional stability, rudder & aileron control
	requirements and rudder lock.
CO5:	Make use of dynamic longitudinal stability, stability
	derivatives, modes & stability criterion, lateral and
A.	directional dynamic stability to determine the stability of
	the aircraft.
	Apply practical experience on the dynamics of the aircraft.
TEXT	BOOKS:
1	McCormick, Barnes W. "Aerodynamics, Aeronautics, and
	Flight Mechanics". 2nd ed. New York: John Wiley & Sons,
	1994.
2	Nelson, Robert C. "Flight Stability and Automatic Control",
	McGraw-Hill Book Co., 2004.
REFE	RENCES:
1	Babister, A.W. "Aircraft Dynamic Stability and Response"
	Pergamon International Library of Science, Technology,
	Engineering, and Social Studies. Oxford: Pergamon Press,
	1980.

2	Domn	naso	ch, 1	Dan	iel	O.,	Syc	lney	y S.	Sh	erby	, an	d T	hon	nas	F.
	Conno	olly.	. "A	erop	olan	e Ae	erod	yna	mic	s" 3	rd e	d. L	ond	lon:	Isa	ac
	Pitma	Pitman, 1981.														
3	Etkin,	Ber	ernard, and Lloyd Duff Reid. "Dynamics of Flight:													
	Stabili	ability and Control". 3rd ed. New York: John Wiley &														
	Sons,	ns, 1995.														
COs							P	Os						I	PSO	s
C	Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	1	2	1	1	1	-	1	1	-	3	2	1
	2	3	2	1	1	2	1	1	1	-	1	1	-	3	2	1
	3	3	2	1	1	2	1	1	1	-	1	1	-	3	2	1
	4	3	2	1	1	2	1	1	1	-	1	1	-	3	2	1
	5	3	2	1	1	2	1	1	1	-	1	1	-	3	2	1
	6	3	2	1	1	2	1	1	1	-	1	1		3	2	1
Ov	erall	R D	2	1	1	2	1	1	1	·	1	1/	1	3	2	1
Course	lation		- 16	11			17	1 -		l	_			_	_	_

Correlation

Recommended by Board of Studies

Approved

Date

30-11-2024

07-11-2024

3rd ACM

23AE612	AVIONICS	L	Т	P	C				
25AL012	AVIONICS	3	0	2	4				
COURSE OB	JECTIVES:								
	oduce the basics of avionics and its nee	d fo	r ci	vil a	and				
militar	y aircraft.								
• To im	part knowledge about the avionic arc	hite	ctu	re a	and				
various avionics data buses.									
• To gain	n more knowledge on various avionics s	ubs	yste	ems					
• To stud	dy the concepts of navigation systems.								
To introduce the basics of the autopilot system.									
To introduce the basics of Airdata systems.									
UNIT I IN	TRODUCTION TO AVIONICS				9				
Need for avid	onics in civil and military aircraft and s	pace	e sy	ster	ns				
- Integrated	avionics systems - Typical avionics	sul	osys	sten	ıs,				
design, techi	nologies - Introduction to digital co	mp	uteı	aı	nd				
memories	11/2								
	GITAL AVIONICS ARCHITECTURE			V.	9				
1 1 1 1 1 1 1 1	tem architecture – Data buses – MIL-	STE)-15	53B	-				
	- ARINC- 629	<u> </u>		1.6					
	IGHT DECKS AND COCKPITS	OL	70		9				
	display technologies: CRT, LED, LO								
-	l – Touch screen – Direct voice input ((DV	I) –	Ci	vil				
	Cockpits: MFDS, HUD, MFK, HOTAS								
	TRODUCTION TO NAVIGATION SY				9				
O	ation - ADF, DME, VOR, ILS, ML								
	ystems (INS) - Inertial sensors, INS blo	ck d	liag	ram	ı –				
Satellite navig	gation systems – GPS.								

UNIT V AIR DATA SYSTEMS AND AUTOPILOT

Air data quantities – Altitude, Airspeed, Vertical speed, Mach Number, Mach warning, Altitude warning – Auto pilot – Basic principles, Longitudinal and Lateral autopilot.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. 8-bit Addition/ subtraction using 8085 microprocessor kit.
- 2. 16-bit Addition/ subtraction using 8085 microprocessor kit.
- 3. Sum of a given series with and without carry using 8085 microprocessor kit.
- 4. Design PID controller using MATLAB.
- 5. Compute Arithmetic and logical operations using MATLAB.
- 6. Compute Arithmetic operations on matrices using MATLAB.
- 7. Check the response of the control system by applying different types of input signals.
- 8. Design of the PID controller using MATLAB.
- 9. Stability Analysis by using ROOT LOCUS techniques.
- 10. Stability Analysis by using BODE PLOT techniques.

TOTAL: 30 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Design and study various Avionic systems present in the aircraft. **CO2:** Build the Digital avionics architecture and integrate the avionics systems using data buses. CO3: Analyze the performance of various cockpit display technologies. **CO4:** Design the Navigation system and find out the position. CO5: Design autopilot and study various air data systems. **CO6:** Apply integration to the systems present in the aircraft. **TEXT BOOKS:** Helmreich, Albert D. "Principles of Avionics". 7th ed. Leesburg, Avionics Communications, 2018. Collinson, R. P. G. "Introduction to Avionics". 4th ed. 2 London: Chapman and Hall, 2023.

REFERENCES:																
						- 1							,, ,			
1	Middle										,				0	
	Scientif	ic a	and	Τe	chr	nical	l. E	ngl	and	: L	ong	man	ı Gı	rouj	рU	JΚ
	Ltd., 19	89.														
2	Pallett,	E.H	I.J. '	"Ai	rcra	ft Ir	nstr	ume	ents	an	d In	tegr	atec	l Sy	ster	ns
	", Pears	", Pearsons, Indian edition 2011.														
3	Spitzer,	, Ca	ary	R.,	Ur	na	Fer	rell,	an	ıd 🛚	Thor	nas	Fer	rell	, ec	ls.
	_	"Digital Avionics Handbook". 3rd ed. Boca Raton, FL: CRC														
	Press, 2	Press, 2014.														
4	Spitzer	Spitzer, Cary R., ed. "The Avionics Handbook". Boca														
		Raton, FL: CRC Press, 2000.														
	60	POs PSOs											s			
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	3	2	-	÷	-	-	1	-	Į.	2	2	-
	2 POWE	3	3	3	3	2	zi	/-	-1	-	7	P.,	-	3	2	-
- /	3	3	3	2	1	1	K	-	- 1	-	-	-/	V-	3	1	-
Ý	4	3	3	3	3	1	-	K	Y	1	N	-	1	3	1	-
Λ	5	3	3	3	3	2	-		-	1	- 33	-	7	3	2	-
	6	3	2	<u>-1</u>	1	1	-	-	-	-	-	-	- (3	1	-
_	Overall 3 3 2 2 1						ATE	2 E	L NEW	LI T NI	VERS	.E1E	IUI Ma	3	(1) (1)	-
Reco	Recommended by Board of Studies						ies	s 07-11-2024								
	Approved							3rd ACM			Date 3			30-11-2024		

23AE621	PROJECT WORK - PHASE 1	L	T	P	C
		0	0	4	2

COURSE DESCRIPTION:

This course provides an opportunity for students to apply their engineering knowledge to solve real-world problems through project-based learning. Students, working in groups with maximum of 4 under faculty supervision, undertake a comprehensive project addressing an approved topic. The course focuses on fostering collaboration, research, and practical skills, culminating in a detailed Phase 1 project report and oral presentations. Regular reviews ensure consistent progress and adherence to academic standards.

COURSE OBJECTIVES:

- Encourage students to apply theoretical knowledge to practical engineering problems.
- Develop collaborative and project management skills through teamwork.
- Train students in research methodology, technical documentation, and presentation skills.
- Enhance students' ability to design, analyze, and evaluate solutions systematically.
- Prepare students for real-world engineering challenges and multidisciplinary teamwork

PROJECT OUTLINE:

j	
Week 1	Orientation and course overview. Formation of project
	teams and approval of topics by HoD.
Week 2	Initial meeting with supervisors. Define problem
	statement and objectives
Week 3	Literature review: Research methodologies and topic-
	specific studies.
Week 4	Zeroth Review.
Week 5	Refinement of literature review and identification of
	research gaps.

Week 6	Identification of Base Paper.
Week 7	First Review.
Week 8	Conceptual design discussions and brainstorming
	solutions.
Week 9	Narrowing done on the exact work.
Week 10	Completion of first stage of the Project.
Week 11	Development of detailed conceptual design and
	methodology.
Week 12	Incorporation of feedback and refinement of design
	and methodology.
Week 13	Second Review.
Week 14	Compilation of Phase 1 results, report writing, and
	presentation preparation.
Week 15	Final Viva Voce Presentations.
Individua	l meetings will be set up on a need's basis in
conjunction	n with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A phase 1 project report is required to be submitted at the end of the semester. Evaluation is based on oral presentation and the phase 1 project report jointly by internal examiners constituted by the Head of the Department.
- Evaluate how effectively the project is structured and communicated in both oral presentations and written texts, emphasizing logical flow and coherence.
- Evaluate the relevance and innovation of practical resources or prototypes developed, focusing on their potential to support sustainability, innovation, and SDGaligned goals.
- Review the accuracy of English usage, including grammar, clarity, and coherence in oral and written

communication, ensuring effective delivery of technical																
	conten	t.														
COU	RSE OU	TC	ON	1ES	5:											
	After co	mp	leti	on o	of th	ne c	our	se,	the	stu	dent	s w	ill be	e ab	le t	o:
CO1:	Develo	p fe	easil	ble :	solu	ıtio	ns t	у а	nal	yzir	ıg co	omp	lex			
	engine	erin	g p	rob	lem	s us	sing	g for	und	atic	nal	kno	wle	dge	,	
	mathen	nati	ics,	and	l sci	enc	e.									
CO2:	Survey	lit	tera	ture	es to	id	enti	fy §	gaps	s, de	efine	e res	earc	ch		
	questio	ns,	and	l pr	opc	se o	desi	gns	an	d m	etho	ods	for s	olv	ing	
	engine															
CO3:	Make u	ıse (of n	nod	ern	too	ls to	o ch	ieck	the	e fea	sibi	lity (of t	ne	
	solution															
CO4:	Evaluate societal and environmental impacts of solutions															
	while incorporating sustainability and ethical practices.															
CO5:	Combine in teams to plan, manage, and lead projects															
	within professional and economic constraints.															
CO6:	Formul					•			-70			P .				
	engage	in	lifel	ong	g lea	ırni			dap	t to	nev	v ted	chnc			
	Os	C.		2/4		-		Os			16		i nu	-	SC	
	VEER	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	3	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3
	5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	erall elation	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
Recor	nmende	d by	Во	ard	of S	tud	ies	07-	11-2	2024	:		l .			<u> </u>
	Approved								A(CM		Date	9	30-2	11-2	024

23AE622	TECHNICAL TRAINING	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Training' is intended to enable a B.E./B.Tech. graduate to practice, learn, apply and prepare report about the training undergone. The learner shall be trained in the latest technology in relevant Industry preferably in computer-oriented platform. This course can help the learner to experience training and learn practical skills for the relevant domain. Learner should also be able to present his learning through PPT and report articulating his level of learning about the specific training.

COURSE OBJECTIVES:

- To equip students with practical skills and real-world experience in technical domains, enabling them to effectively apply theoretical knowledge to hands-on applications.
- To develop competencies in working with industryrelevant tools and software technologies.
- To foster teamwork, problem-solving, and technical skills through innovative technologies

COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Identify specific domain from the enrolled branch and to get training preferable in computer-oriented platform. CO2: Survey and apprehend the learning modules in the training program and to become expert in the specific domain. CO3: Apply theoretical learning in the practical environment and enhance the skillset of learner. CO4: Estimate the learning using available data. CO5: Defend a presentation about the learning done in the specified skillset.

CO6: Construct a technical report about the training.

GUIDELINES:

- More than one training program may be given depending on availability and interest of the students.
 One training coordinator may be appointed for the same.
- Training coordinator shall provide required input to their students regarding the selection of training topic.
- Choosing a Training topic: The topic for a Technical Training should be current and broad based rather than very specific area of interest. It should also be outside the present syllabus. It's advisable to choose a training topic to be computer oriented as the resources for the same may be readily available. Every student of the program should be involved and assessed.
- Head of Department shall approve the selected training topic by the second week of the semester. Training may be assessed based on the ability to apply the skillset in a practical domain.

EVALUATION PATTERN:

Training Coordinator:

50 marks (Training Manual – 40 (Each student shall maintain a Training Manual and the Coordinator shall monitor the progress of the training work on a weekly basis and shall approve the entries in the Training Manual during the weekly meeting with the student), Attendance – 10,).

Presentation of Application:

Candidate should apply the skillset attained in training. 20 marks to be awarded by the Examiners (Clarity of presentation – 5, Interactions – 10, Quality of the slides – 5).

Report about Application:

30 marks to be awarded by the Examiners (check for technical content, overall quality, templates followed, adequacy of application of the skillset etc.).

	ırati	ation - 30 Hour													
COs						I	POs						1	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	-	2	1	-	ı	1	-	3	3	-	-
2	3	3	2	1	-	2	1	-	-	-	-	3	3	-	-
3	3	3	3	3	3	-	-	1	-	2	-	3	3	3	1
4	3	3	3	2	2	-	-	1	-	3	-	3	3	2	1
5	3	3	3	2	1	2	-	2	-	2	•	2	3	1	2
6	3	3	3	3	2	2	-	2	-	3	-	3	3	2	2
Overall Correlation	3	3	3	3	2	2	1	2	-	3	-	3	3	2	2
Recommende	d b	y Bo	ard	of S	Stud	ies	07-	11-2							
Α	pp	rove	ed				3rd ACM Date					30-11-2024			

23AE623	TECHNICAL SEMINAR - 1	L	T	P	C
		0	0	2	1

PREAMBLE:

The course 'Technical Seminar' is intended to enable a B.E./B. Tech graduate to read, understand, present and prepare report about an academic document. The learner shall search in the literature including peer reviewed journals, conference, books, project reports etc., and identify an appropriate paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.
- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very

specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.

- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Report:

20 marks to be awarded by the IAC (check for technical

content, overall quality, templates followed, adequacy of																	
1	referenc	es e	etc.)														
										-	ГОТ	AL:	30 1	PER	RIO:	DS	
COU	RSE O	UTO	COI	ME	S:												
	After c	omj	plet	ion	of t	he o	cou	rse,	the	stu	den	ts w	ill b	e al	ole t	o:	
CO1:	Identif	fy a	cad	emi	ic d	ocu:	mei	nts f	ron	n th	e lite	erat	ure v	whi	ch		
	are rel				•												
CO2:	Survey	y an	id a	ppr	ehe	nd	an a	acac	lem	ic d	locu	mer	it fro	om t	the		
	literature which is related to her/ his areas of interest.																
	O3: Compile a presentation about an academic document.																
	Estimate the Contents using available literature.Defend a presentation about an academic document.																
CO5:	Defen	d a	pre	sen	tatio	on a	bou	ıt aı	n ac	ade	mic	doc	ume	ent.			
CO6: Construct a technical report.																	
C	Os						P								PSOs		
-3	OWE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1/6	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2	
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2	
A	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2	
100	4	3	3	2	1	1	1	2	2	3	3	2	1	3	2	2	
	5 WEE	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2	
6 3 3 2 1 1									2	2	2	2	2	3	1	2	
	erall	3	3	2	1	1	1	1	2	3	3	2	2	3	2	2	
	elation							s 07-11-2024									
Recom	mended				of S	tud	ies					D (1	20	14.6	22.4	
	Approved							3rd ACM Date 30-11					11-2	J24			

SEMESTER - VII

23AE701	HELICOPTER AERODYNAMICS	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To understand the fundamental features, design, and operation of helicopters, including the generation of lift and rotor systems.
- To analyze the aerodynamics of rotor blades in various flight conditions and evaluate factors influencing performance.
- To gain knowledge of helicopter power plants, flight performance parameters, and autorotation principles.
- To study the stability and control characteristics of helicopters and their differences from airplanes.
- To explore rotor vibrations, measurement techniques, and rotor blade design considerations, including material selection and stress analysis.

UNIT I INTRODUCTION

9

Helicopter as an aircraft, Basic features, Layout, Generation of lift, Main rotor, Gearbox, tail rotor, Power plant, Considerations on blade, flapping and feathering, Rotor controls and various types of rotor, Blade loading, Effect of solidity, Profile drag, Compressibility etc., Blade area required, Number of Blades, Blade form, Power losses, Rotor efficiency.

UNIT II | AERODYNAMICS OF ROTOR BLADE

9

Aerofoil characteristics in forward flight, Hovering and Vortex ring state, Blade stall, maximum lift of the helicopter calculation of Induced Power, High speed limitations; Parasite drag, Power loading, Ground effect.

UNIT III POWER PLANTS AND FLIGHT PERFORMANCE

9

Piston engines, Gas turbines, Ramjet principle, Comparative performance, Horsepower required, Range and Endurance, Rate of Climb, Best Climbing speed, Ceiling in vertical climb,

Autorotation. UNIT IV STABILITY AND CONTROL 9 Physical description of effects of disturbances, Stick fixed Longitudinal and lateral Dynamic stability, Lateral stability characteristics, Control response. Differences between stability and control of airplane and helicopter. UNIT V | ROTOR VIBRATIONS Dynamic model of the rotor, Motion of the rigid blades, flapping motion, lagging motion, feathering motion, Properties of vibrating system, Phenomenon of vibration, Fuselage response, Vibration absorbers, Measurement of vibration in flight. Rotor Blade Design: General considerations, Airfoil selection, Blade construction, Materials, Factors affecting weight and cost, Design conditions, Stress analysis **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Apply the Aerodynamics calculation of Rotor blade. CO2: Explain the stability and control characteristics for Helicopters. CO3: Evaluate control Rotor vibration and its effect on Helicopters. **CO4:** Evaluate the power plant requirements for Helicopters. CO5: Explain the performance characteristics for design of Helicopters. CO6: Apply the basics of Aerodynamics for design helicopters **TEXT BOOKS:** John Fay, "The Helicopter and How It Flies", Himalayan 1 Books 1995. Venkatesan, C. "Fundamentals of helicopter dynamics". 2

CRC Press, 2014.

REFE	REFERENCES:															
1	Joseph	ı Sc	haf	er, ˈ	'Bas	sic I	Teli	cop	ter	Ma	inte	nan	ce",	Jep	pes	en
	1980.															
2	RWP	R W Prouty, "Helicopter Aerodynamics" PJS Publ.,1984.														
3	Seddo	Seddon, John M., and Simon Newman. "Basic helicopter														
	aerody	aerodynamics". Vol. 35. John Wiley & Sons, 2011.														
	COs PSOs PSOs															
C	Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 3 2 1					-	-	-	-	1	1	-	2	ı	-	
	2	3	2	1	-	-	-	-	-	-	-	-	-	3	-	-
	3	3	2	1	-	-	-	-	-	-	-	-	-	3	-	-
	4	3	2	1	-	-	-	-	-	-	-	1	-	3	-	1
	5	3	2	1	-	-	-	-	-	-	-	-	-	3	-	1
	6	3	2	1	- 1	-		_	- 0	ŀ	1	1	- 1	3	1/	1
	erall 3 2 1 3															
Recon	ımen <mark>d</mark> e	d by	Во	ard	of S	tud	ies	s 07-11-2024								
	Approved						1	3rd ACM Date 30-11-2					1-20	024		

23AE702	FINITE ELEMENT METHOD	L	T	P	C
		3	0	0	3

- To give exposure to various methods of solution, in particular the finite element method.
- To expose the student to a wide variety of problems involving discrete and continuum elements. z
- To impart knowledge in the basic theory of finite element formulation.
- To allow the student to learn and understanding how element characteristic matrices are generated.
- To impart knowledge in assembly of finite element equations, and solve for the unknowns.

UNIT I | INTRODUCTION

9

Review of various approximate methods – Variational approach and Weighted residual approach application to structural mechanic's problems. Finite Difference Methods- Governing equation and convergence criteria of Finite Element Method.

UNIT II DISCRETE ELEMENTS

9

Bar elements, uniform section, mechanical and thermal loading, varying section, 2D and 3D truss element. Beam element - Problems for various loadings and Boundary conditions - 2D and 3D Frame elements - Longitudinal and lateral vibration. Use of local and natural coordinates. Higher order elements for bar problem.

UNIT III | CONTINUUM ELEMENTS

9

Plane stress, Plane strain and Axisymmetric problems. Derivation of element matrices for constant and linear strain triangular elements and axisymmetric element. Force matrix for CST and LST element under uniform and varying loads.

UNIT IV ISOPARAMETRIC ELEMENTS

9

Definitions, Shape function for 4, 8 and 9 nodal quadrilateral elements, Stiffness matrix and Consistent load vector,

	nation of element matrices using numerical integration.	
UNIT		9
	SOLUTIONS	
	transfer problems, steady state fin problems, Derivation	
	ent matrices for two dimensional problems, tors	
	ems. Bandwidth- Elimination method and method	
	rization for solving simultaneous algebraic equations	s -
Featu	res of software packages, sources of error.	
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Construct the flow chart of finite element steps and	
	understand the convergence of the problem.	
CO2:	Solve stiffness matrix for bar, beam and frame problem	s
	using suitable boundary condition.	
CO3:	Analyze 2d structures using Plane stress and plane stra	in
, i	conditions.	
	Solve 2d and 3d structures using isoparametric element	
CO5:	Apply the concepts of Numerical integration and finite	-
	element methods to solve fluid flow and heat transfer	
	problems. AFFILIATED TO ANNA UNIVERSITY! AUTONOMOU	7
CO6:	Test for autonomous navigation in UAV Analyze	
	structures using the software packages and analytical	
	techniques.	
TEXT	BOOKS:	
1	Reddy J.N., "An Introduction to Finite Element Method	od",
	McGraw Hill, fourth edition, 2020.	
2	Tirupathi. R. Chandrapatha and Ashok D. Belegun	
	"Introduction to Finite Elements in Engineering", Pren	tice
	Hall India, Fifth edition, 2021.	
REFE	RENCES:	
1	P. Seshu "Finite Element Analysis", PHI Learning	Pvt
	Ltd., 2012.	

2	Bathe, l	K.J.	and	1 W	ilso	n, E	E.L.,	. "N	um	eric	al N	ſeth	ods	in l	Fini	te	
	Elemen	-															
3	Krishna	amı	ırth	y,	C.S	5., '	'Fin	ite	Ele	eme	ent	Ana	alysi	s",	Та	ta	
	McGra	w F	Iill,	200	0.												
4	Rao. S	.S.,	"F	init	e I	Eler	nen	t N	/let	hod	s ii	n E	ingir	nee	ring	, ")	
	Butterworth and Heinemann, 2001.																
(POs PSOs																
	208	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	2	1	1	1	-	-	1	0	0	1	1	2	2	1	
	2	3	2	1	1	2	-	-	1	1	1	1	1	2	2	1	
	3	3	3	2	2	2	-	-	1	1	1	1	1	3	2	1	
	4	3	2	1	1	2	-	-	1	1	1	1	1	3	2	1	
	5	3	2	1	0	2	-	-	1	1	1	1	1	3	2	1	
	6	3	3	2	2	2	1	1	2	1	1	1	2	3	3	2	
1/2	verall relation 3 3 2 2 2 1 1 2 1 1 1 3 3 2																
Reco	Recommended by Board of Studie																
	Approved							3rd ACM Date 30-11-2024									

23AE	703	COMPREHENSION	L	T	P	C
			2	0	0	2
PUR	POSE:				· ·	
Тс	provide	e a complete review of the topics cov	vere	d i	n tl	ne
pr	evious	semesters, to ensure that a cor	npr	ehe	nsi	ve
ur	nderstand	ling of the subjects is achieved. The stu	ıder	ıt w	rill 1	be
tes	sted as	per the guidelines given by na	tion	al	lev	rel
ex	aminatio	ns like GATE, TANCET etc. It wi	ll a	lso	he	lp
stı	adents to	face job interviews and competitive ex	kam	ina	tion	ıs.
COU	RSE OU	TCOMES:				
	After co	mpletion of the course, the students wi	11 be	ab	le t	o:
CO1:	Analyse	e the phenomena involved in the conce	rne	d		
	problen	n and solve them.				
CO2:	Apply p	principles to new and unique circumsta	nce	s.		
CO3:	Estimat	e concepts and principles of concerned	bra	ncł	of	
/	enginee	ring.	ľ			
CO4:	Disting	$uish$ between facts and opinion in the ϵ	engi	nee	ring	g
A	field.					
CO5:	Deduct	cause-and-effect relationships of any r	elat	ions	ship	٥.
CO6:	Interpre	et data from charts and graphs and jud	ge t	he	зΥ	
	relevan	ce of information.				
CIIII	DELINES	3.				

GUIDELINES:

- The Department shall form an Internal Assessment Committee for the Comprehension with Academic coordinator for that class as the Comprehension Instructor and Class coordinator as member.
- Instructor shall provide required input to their students regarding the overview of all topics covered in the previous semesters.
- Periodic tests can be conducted to assess students.

COs						P	Os						PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2	1	-	2	1	-	-	-	-	1	3	-	-	
2	3	2	1	1	-	1	1	-	-	-	-	1	3	-	-	
3	3	3	3	3	3	-	-	3	-	3	-	3	3	3	3	
4	3	2	1	1	2	-	-	1	-	3	-	3	3	2	1	
5	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2	
6	3	3	3	2	1	2	-	2	-	2	-	2	3	1	2	
Overall Correlation	3	3	3	3	3	2	1	2	-	3	-	3	3	3	2	
Recommended	07-11-2024															
Α	3rd ACM Date					9	30-11-2024									

23AE704	TOTAL QUALITY AND	L	T	P	C
	CONTINUING AIRWORTHINESS	3	0	0	3

- To understand the principles, historical evolution, and key concepts of Total Quality Management (TQM) in the aviation industry.
- To explore international aviation regulations, certification processes, and the role of regulatory authorities in ensuring airworthiness.
- To study Quality Management Systems (QMS) and continuing airworthiness management, including maintenance planning and regulatory compliance.
- To learn the procedures outlined in CAR-M and CAR-66 for AME licensing, mandatory inspections, and modifications.
- To examine CAR Series T and X, covering flight testing, weight and balance, aircraft documentation, and type approval processes.

UNIT I INTRODUCTION

8

Definition - principles of Total Quality Management-Historical development and evolution of TQM in the aviation industry-Importance of TQM in ensuring airworthiness-Key concepts: customer focus, continuous improvement, employee involvement.

UNIT II REGULATORY FRAMEWORK FOR AIRWORTHINESS 11

Overview of international aviation regulations (e.g., FAA, DGCA, EASA, ICAO)-Regulatory requirements for maintaining airworthiness-Certification and Compliance processes-Role of regulatory authorities in ensuring quality and Airworthiness.

UNIT III	QU	JAL	ITY MAI	NAGEMENT S	YSTEMS	(QMS)		8		
	AN	ND (CONTIN	UING AIRWO	RTHINES	S				
	M	AN	AGEMEN	NAGEMENT SYSTEMS (QMS) 8 UING AIRWORTHINESS NT Management Systems (ISO 9001,						
Introducti	on	to	Quality	Management	Systems	(ISO	90	01,		

AS9100)-Implementation of QMS in aviation organizations-Auditing and assessment of QMS-Case studies on successful QMS implementations in aviation-Definition and importance of continuing airworthiness-Components of a continuing airworthiness management system-Maintenance planning and execution-Airworthiness directives, service bulletins, and regulatory compliance.

UNIT IV | CAR - M and CAR - 66

9

Procedure and Issue of AME License - classification and experience requirements, Mandatory Modifications / Inspections.

UNIT V | CAR SERIES T and X

9

Flight testing of aircraft for issue of C of A - Registration Markings of aircraft -Weight and balance control of an aircraft - Provision of first aid kits and Physician's kit in an aircraft - Aircraft furnishing practices - Aircraft log books -Document to be carried on board on Indian registered aircraft - Procedure for issue of tax permit - Procedure for issue of type approval of aircraft components and equipment including instruments.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the Foundations of Total Quality Management (TQM) in Aviation.
- CO2: Explain Proficiency in Regulatory Compliance for Airworthiness.
- CO3: Summarize Quality Management Systems (QMS) in Aviation.
- CO4: Outline the Competence in Continuing Airworthiness Management.
- CO5: Interpret on CAR M & CAR -66 Type certificate and Noise certificate.

CO6:	Explain	01	n C	AR	se	ries	F	air	W01	thi	ness	an	d c	onti	nue	ed		
	airwort	hin	ess.															
TEXT	BOOK	S:																
1	Bijan V	asię	gh, :	Ker	Fle	emi	ng,	The	oma	as T	acke	er, "	Intr	odu	ıcti	on		
	to Ai	r	Tra	nsp	ort]	Eco	non	nics	:	Fro	m	The	eory	7	to		
	Applica	tio	ns"	, Th	ird	Edi	itioı	n, N	Iew	De	lhi,	2018	3.					
2	Airwor	thir	ness	A	dvi	sory	v C	ircı	ılar	s fr	om	DC	GCA	20	03	&		
	2015.																	
REFE	EFERENCES:																	
1	"Aeronautical Information Circulars (relating to																	
	Airworthiness) from DGCA 7 AAI", 2000 and 2006.																	
2	Civil aviation requirements with latest amendment																	
	(section 2 airworthiness) – published by DGCA, the																	
	English book store, 17-l, Connaught circus, New Delhi.																	
3	Aerona	utio	cal	i	nfoi	rma	tion	Υ .	cir	cul	ars	(1	elat	ing	4	to		
	airworthiness) from DGCA.																	
4	Aircraft				,		′ "	100	- 700			b .				he		
Α.	English	bo	ok s	stor	e, 1'	7-1,			ugh	ıt ci	rcus	Ne	w D	elh	i.			
	COs	4		2/			P	Os							PSC)s		
	WEER	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	1	2	1	1	1	Ella	VIEW	198	DIDLA	0.50	ENDI	0216	1	2	003	-		
	2	2	1	1	-	-	1	-	-	-	-	-	1	2	-	-		
	3	2	1	1	-	-	-	-	-	-	-	-	-	2	-	-		
	4	2	1	1	-	ı	-	-	-	-	-	-	-	2	-	-		
	5	2	1	1	-	ı	1	1	1	1	ı	ı	1	2	ı	1		
	6 2 1 1								1	-	-	-	1	2	-	1		
Overall 2 1 1						1	1	1	1	-	-	1	2	-	1			
Recor	Recommended by Board of Studies										<u> </u>							
	Approved 3 rd ACM												Date 30-11-2024					

23AE711	COMPOSITE MATERIALS AND	L	T	P	C
	STRUCTURES	3	0	2	4

- To provide the students an understanding on classification and applications of composite materials and its micromechanical study.
- To provide the students an understanding on Macromechanics and engineering constants required to relate stress and strain.
- To make the students to learn about laminate coding and its governing equations.
- To familiarize the students with the various methods of composite materials fabrication.
- To explore the knowledge about the sandwich construction and failures.

UNIT I MICROMECHANICS

10

Introduction - Advantages and application of composite materials - Types of reinforcements and matrices - Micro mechanics - Mechanics of materials approach, elasticity approach- Bounding techniques - Fiber volume ratio - Mass fraction - Density of composites- Effect of voids in composites.

UNIT II | MACROMECHANICS

10

Generalized Hooke's Law - Elastic constants for Anisotropic, Orthotropic and Isotropic materials - macro mechanics - Stress-Strain relations with respect to natural axis, arbitrary axis - Determination of in plane strengths of a lamina - Experimental characterization of lamina. Failure theories of a lamina. Hygrothermal effects on lamina.

UNIT III | LAMINATED PLATE THEORY

10

Governing differential equation for a laminate- Stress – Strain relations for a Laminate. Different types of laminates in plane and flexural constants of a laminate- Hygrothermal stresses and Strains in a laminate. Failure analysis of a laminate- Impact resistance and Interlaminar stresses-Netting analysis.

UNIT IV FABRICATION PROCESS AND REPAIR 8 **METHODS** Various open and closed mould processes, Manufacture of fibers, Importance of repair and Different types of repair techniques in composites - Autoclave and Non-autoclave methods. UNIT V | SANDWICH CONSTRUCTIONS Basic design concepts of sandwich construction - Materials used for sandwich construction - Failure modes of sandwich panels -Bending stress and Shear flow in composite beams **TOTAL: 45 PERIODS** LIST OF EXPERIMENTS: Tensile testing of composite specimens. 1. 2. Compression testing of composite specimens. Impact testing of composite specimens. 3. Flexure Tests of Composite Specimens. 4. 5. Acoustic and Ultrasonic Testing of Composites. Fatigue testing of Composite specimens. 6. 7. Shear testing of composite specimens. Fracture toughness testing of composite specimens. 8. Bearing and pull-out testing of composite specimens. 9. Peel test of composite specimens 10. **TOTAL: 30 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Apply the micromechanics for the analysis of composite materials. CO2: Apply the macromechanics for the analysis of composite materials. **CO3:** Identify the governing equation of composite laminate. **CO4:** Demonstrate the manufacturing of composites. **CO5:** Explain the applications and uses of composites in various

CO6: Test for composite under different loading conditions.

fields.

TEX	Г ВООК	S:															
1	Autar I	ΚK	aw,	, "N	1ecl	nan	ics (of C	Com	ipos	site	Mat	eria	ls",	CF	RC	
	Press, 2	nd	edi	tior	ı, 20	05.											
2	Jones,	Rol	ert	M	. "]	Med	char	nics	of	со	mpo	osite	m	ateı	ials	s".	
	CRC pr	ess	, 20	18													
3	Madhu	jit	Mι	ıkh	opa	dhy	ay,	, "	Me	chai	nics	of	Co	omp	oosi	ite	
	Materia	als a	and	Str	uctı	ıres	", L	Jniv	vers	ity	Pres	s, 20	004.				
REFI	REFERENCES:																
1	Agarwal, B.D., and Broutman, L.J., "Analysis and																
	Performance of Fibre Composites," John Wiley & Sons,																
	3rd edition, July 2006.																
2	Allen Baker, "Composite Materials for Aircraft																
	Structures", AIAA Series, 2 nd Edition, 2004.																
3	Calcote, L R. "The Analysis of laminated Composite																
	Structures", Von – Nostrand Reinhold Company, New																
	York 1998.																
4	Lubing						- 70		- 70			D '			Fib	re	
A.	Glass,	Vor	ı N	ostr	an	Rei			Co.	Ne	ewY	ork,	198				
	COs	-		2/		_		Os		_	-		PSOs				
	VINEER	,1	2	3	4	5	6	7		9	10			1	2	3	
	1	3	2	1	1	2	1	1	2	2	2	2	2	3	2	2	
	2	3	2	1	1	2	1	1	2	2	2	2	2	3	2	2	
	3	3	2	1	1	2	1	1	2	3	2	2	2	3	2	2	
	4	2	2	1	-	2	1	1	2	3	2	2	2	3	2	2	
	5	2	1	1	-	2	1	1	2	3	1	1	2	3	2	2	
	6	3	3	2	1	2	1	1	2	3	2	2	2	3	2	2	
	verall	3	2	1	1	2	1	1	2	3	2	2	2	3	2	2	
	elation						<u> </u>										
Recommended by Board of Studies 07-11-2024 Approved 3rd ACM Date 30-11-2											004						
	Approved								· A(_I VI		Date	2	30-	11-2	.024	

23AE721	AIRCRAFT DESIGN PROJECT	L	T	P	C
		0	0	4	2

- To make the student work in groups and effectively improve their team work.
- To understand the Concepts involved in Aerodynamic design, Performance analysis and stability aspects of different types of airplanes.
- To carry out the structural design part of the airplane.
- To focus on both aerodynamic design and structural design, guiding students through the initial stages of design.
- To equip students with the skills to generate detailed CAD models and reports.

LIST OF EXPERIMENTS:

AERODYNAMIC DESIGN:

- 1. Comparative studies of different types of airplanes and their specifications and performance details with reference to the design work under taken.
- 2. Preliminary weight estimation, Selection of design parameters, power plant selection, aerofoil selection, fixing the geometry of Wing, tail, control surfaces Landing gear selection.
- 3. Preparation of layout drawing, construction of balance and three view diagrams of the airplane under consideration.
- 4. Drag estimation, Performance calculations, Stability analysis and V-n diagram.

STRUCTURAL DESIGN:

- 1. Preliminary design of an aircraft wing Shrenck's curve, structural load distribution, shear force, bending moment and torque diagrams.
- 2. Detailed design of an aircraft wing Design of spars and stringers, bending stress and shear flow calculations –

- Buckling analysis of wing panels.
- 3. Preliminary design of an aircraft fuselage Load distribution on an aircraft fuselage.
- 4. Detailed design of an aircraft fuselage Design of Bulkheads and Longerons Bending stress and Shear flow calculations Buckling analysis of fuselage panels.
- 5. Design of control surfaces Balancing and Maneuvering loads on the tail plane and aileron, rudder loads.
- 6. Design of wing-root attachment.
- 7. Landing gear design.
- **8.** Preparation of a detailed design report with CAD drawings

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Evaluate the weight estimation, drag estimation and selection of design parameters of the aircraft.
- **CO2:** Estimate the performance of the aircraft design.
- CO3: Design the aircraft wings, fuselage, landing gear etc., in structural point of view.
- CO4: Estimate the Shear force and Bending Moment diagram for the wing and fuselage.
- **CO5:** Design the Control surface of the aircraft.
- **CO6:** Design the CAD drawings of the aircraft.

U						O									
COs						F	Os						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	2	1	-	1	-	-	2	-	1	3	1	1
2	3	3	3	2	1	1	1	1	-	2	-	2	3	1	1
3	3	3	3	3	1	2	-	-	-	1	-	1	3	1	1
4	3	3	3	2	1	-	1	-	-	2	-	1	3	1	1
5	3	3	3	3	1	1	1	1	-	2	-	2	3	1	1
6	3	3	3	3	1	2	-	-	-	1	-	1	3	1	1
Overall Correlation	3	3	3	3	1	2	1	1	-	2	-	1	3	1	1
Recommended by Board of Studies								07-11-2024							
А	3rd ACM Date						30-11-2024								

23AE722	PROJECT WORK - PHASE 2	L	T	P	C
		0	0	6	3

COURSE DESCRIPTION:

Project Phase 2 is a continuation of Project Phase 1, focusing on implementing the proposed methodology through fabrication, simulation, or experimental validation. Students will refine their designs, validate test problems, and commission setups for final testing. This phase emphasizes hands-on application, calibration, and demonstration of results, culminating in a final presentation and report submission.

COURSE OBJECTIVES:

- Implement the proposed methodology to address engineering problems identified in Phase 1.
- Develop and fabricate prototypes or simulate solutions for the selected project integrating theoretical knowledge with practical application across hardware and software systems.
- Validate solutions through testing ensuring reliability and performance in both physical and virtual environments.
- Enhance problem-solving and critical thinking skills by troubleshooting and optimizing either experiment setups or software code to improve results.
- Prepare a research manuscript or applying for patent grant either for design or research.

PROJECT (OUTLINE:
-----------	-----------------

Week 1	Review of Phase 1 outcomes and refinement of
	proposed methodology.
Week 2	Material procurement/ software setup for
	simulation, and initiation of fabrication/simulation
	work.
Week 3	Intermediate fabrication/simulation work and initial
	testing or calibration, troubleshooting challenges.

Week 4	Second Review.
Week 5	Validation of test problem or refinement of
	prototype/simulation
Week 6	Optimisation of the test setup or solution trials, Data
	curation / uncertainty analysis
Week 7	Final testing of setup or simulation outcomes,
	Validation of Data .
Week 8	Third Review
Week 9	Demonstration of the solution with high level of data
	accuracy and precision.
Week 10	Compilation of Phase 2 results, report writing, and
	presentation preparation.
Week 11	Preparing or publishing of research article/ Filing or
	Grant of Patent
Week 12	Final Viva Voce Presentations.
Individua	meetings will be set up on a need's basis in
conjunction	n with developing work

EVALUATION:

- The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.
- Assess the depth of understanding demonstrated in the project's conceptualization and the ability to answer questions during public presentations.
- Publication of Research article in indexed journal or Patent award is necessary at the end of completion of the project.

TOTAL: 90 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1:	Apply a	app	rop	riat	te n	neth	odo	olog	gies	to	impl	eme	ent s	olu	tior	ns
	for com	ıple	x e	ngiı	nee	ring	gpr	oble	ems	ide	entif	ied i	in pl	has	e - 1	
	using h	ard	wa	re/	so	ftw	are	or l	ootl	ı sy	sten	ns.				
CO2:	Develo	p ex	xisti	ing	fun	ctic	nal	pro	otot	уре	es or	sim	ıulat	ion	s	
	models	by	int	egra	atin	g th	neor	etio	cal a	and	pra	ctica	al			
	knowle	dge	€.													
CO3:	Evaluat	te s	olut	tion	s eı	ารนา	ring	co	mp	lian	ce w	ith	desi	gn		
	specific	atio	ons.													
CO4:	Apprai	Appraise the performance of solutions by refining														
	designs or improving algorithms for enhanced outcomes.															
CO5:	Collaborate effectively with team members to plan,															
	manage, and execute engineering projects adhering to															
	ethical principles and professional standards.															
CO6:	Prepare	Prepare technical reports, impactful presentations that														
	commu	ınic	ate	solı	utic	ns e	effe	ctiv	ely		7	١,			4	
(COs		11				F	Os	A Y				V.	I	PSC)s
	\(\frac{1}{3}\)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	2	1	2	2	3	3 3 3 3 3					1	3
	2	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	3 CINEER	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	4	3	2	2	2	1	1	2	3	3	3	3	3	3	1	3
	5	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
	6	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
Ov	erall	3	2	2	2	1	2	2	3	3	3	3	3	3	1	3
Correlation																,
Recor	Recommended by Board of Studies Approved							07	-11-	2024	Į.					
IXCCOL							_		1 A(Date			11-2	

23AE723	TECHNICAL SEMINAR - 2	L	T	P	C
		0	0	4	2

PREAMBLE:

The course 'Technical Seminar 2' is intended to be continuation of Technical Seminar 1. It enables a B.E./B. Tech graduate to read, understand, present and prepare report about higher level academic document. The selected topic should be outside the given syllabus. The learner shall search in the literature / current affairs including mass media, print media, peer reviewed journals, conference, books, project reports etc., and identify an appropriate topic/paper/thesis/report in her/his area of interest, in consultation with her/his seminar coordinator. This course can help the learner to experience how a higher-level presentation can be made about a selected academic document and empower her/him to prepare a technical report.

COURSE OBJECTIVES:

- To do Literature surveys in a selected area of study
- To understand an academic document from the literature and to give a presentation about it
- To prepare a technical report.

GUIDELINES:

- The Department shall form an Internal Assessment Committee (IAC) for the seminar with academic coordinator for that program as the Chairperson and seminar coordinator as member. During the seminar presentation of a student, all members of IAC shall be present.
- Formation of IAC shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Seminar Coordinator shall provide required input to their students regarding the selection of topic/ paper.

- Choosing a seminar topic: The topic for a UG seminar should be current and broad based rather than very specific research work, beyond the syllabus. Every member of the project team could choose or be assigned Seminar topics that covers various aspects linked to the Project area.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IAC. The IAC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

EVALUATION PATTERN

Seminar Coordinator:

40 marks (Background Knowledge – 10 (The coordinator shall give deserving marks for a candidate based on the candidate's background knowledge about the topic selected), Relevance of the paper/topic selected – 10). (Seminar Diary – 10 (Each student shall maintain a seminar diary and the coordinator shall monitor the progress of the seminar work on a weekly basis and shall approve the entries in the seminar diary during the weekly meeting with the student), Attendance – 10).

Presentation:

40 marks to be awarded by the IAC (Clarity of presentation – 10, Interactions – 10 (to be based on the candidate's ability to answer questions during the interactive session of her/his presentation), Overall participation – 10 (to be given based on her/his involvement during interactive sessions of presentations by other students), Quality of the slides – 10).

Repo																	
4	20 mark	s to	be	aw	ard	led	by	the	IA	C (d	chec	k fo	r te	chn	ical		
(content,	ove	erall	l qu	alit	y, t	emj	olat	es f	ollo	wec	d, ad	dequ	ıacy	y of		
1	eference	es e	tc.).														
COU	RSE OU	JTC	ON	1ES	:												
	After completion of the course, the students will be able to:																
CO1:	Identify academic documents from the literature which																
	are related to her/his areas of interest.																
CO2:	Survey and apprehend an academic document from the																
	literature which is related to her/ his areas of interest.																
CO3:	Compile a presentation about an academic document.																
	Estimate the Contents using available literature.																
	Defend													nt.			
	Constru																
	OWE	DR	3			- 1	- 4	Os						I	PSC	s	
	Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	1	3	3	3	2	2	1	1	2	3	3	2	2	3	2	2	
	2	3	3	3	1	2	1	1	2	3	3	2	2	3	2	2	
-	3	3	3	2	2	2	1	1	1	3	3	1	1	3	2	2	
	4 SINEED	3	3	2	1	9	1	2	2	3	3	2	91	3	2	2	
	5	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2	
	6	3	3	2	1	1	1	1	2	2	2	2	2	3	1	2	
Ot	erall	9	9		_	1	1	1	_	_			_	5	1		
	elation	3	3	2	1	1	1	1	2	3	3	2	2	3	2	2	
		, Bo	ard	of S	Hud	ios	07 11 2024										
Recommended by Board of Studies (07-11-2024								

Approved

3rd ACM

Date

30-11-2024

SEMESTER-VIII

23AE821	CAPSTONE PROJECT	L	T	P	C
		0	0	20	10

COURSE DESCRIPTION:

Prerequisites:

- i) Team segregation.
- ii) Identification of Project Guide.
- iii) Identification of Area of Interest.
- iv) Literature Review on the chosen area of interest.

Zeroth Review needs to be completed in the previous semester by the project coordinator

The *Capstone Project* (*CP*) provides an opportunity for students to engage in high-level inquiry focusing on an area of specialization within the engineering field. Capstone projects will be investigative, practice-centered. All capstones aim to bridge theory and practice and are aimed to have an impact on the professional life of students

The aim of the course is to facilitate the development of your *Capstone Projects*. Students are encouraged to apply and expend knowledge gained on teaching and learning throughout the Bachelor of Engineering Education program as part of this process

COURSE OBJECTIVES:

The Capstone Project should demonstrate the depth and extent of knowledge of students

During this course, students will

- Investigate and evaluate prominent literature connected to your CP.
- Present a clearly articulated investigative framework, while situating projects within established academic practices and/ or ideas.
- Develop and create practical resources (either computational or experimental) for the concerned area of

- interest in engineering field.
- Offer inquiry-based argumentation for development in the concerned area within engineering field.
- Summarize the findings in the form of report, documentation and presentation

		1
PRO	ECT	OUTLINE:
Weel	ς 1	Identification problem.
Weel	ς 2	Literature review.
Weel	ς 3	Preliminary work.
Weel	4	First review.
Weel	ς 5	Completion of first stage of the Project methodology.
Weel	ς 6	Development.
Weel	ς 7	Testing & Validation.
Week	8	Second review.
Weel	9	Repeatability.
Weel	c 10	Report correction and Documentation
Weel	c 11	Third review-Submission of paper for
Λ	18	conference/journal
Weel	12	Thesis Correction and Submission
Indiv	vidua	al meetings will be set up on a need's basis in
conju	nctio	on with developing work
COU	RSE	OUTCOMES:
		er completion of the course, the students will be able to:
CO1:	Tak	e part in challenging practical problems and find
	solu	itions by formulating proper methodology.
CO2:	Plaı	n research methodology to tackle a specific problem.
CO3:	Cor	nstruct extensive study on particular research projects.
CO4:	Dev	velop experimental and computational studies on
		ovative research projects.
		mate incremental study on existing research projects.
CO6:	Tak	e part in real life engineering challenges and propose
	app	propriate solutions.

COs						P	Os]	PSC)s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	3	2	3	3	2	3	2	3	2	3	2	3	3	2	3
3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3
4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
5	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3
6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Overall Correlation	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Recommende	d by	y Bo	ard	of S	tud	ies	07	-11-	202	4					
Α	3rd ACM Date 30-11					11-2	024								

VERTICAL -1 -AVIONICS AND DRONE TECHNOLOGY

23AE031	DRONE RULES AND AVIATION	L	T	P	C
	REGULATIONS	3	0	0	3

COURSE OBJECTIVES:

- To gain knowledge of Indian Drone rules and regulations.
- To acquire an understanding of Aircraft Rules 1937 and related publications.
- To learn about CAR Series B and C, including MEL, cockpit and emergency checklists, and defects rectification and analysis.
- To understand CAR Series E for the approval of organizations in various categories and CAR Series M for maintenance.
- To gain knowledge of CAR 145, CAR-21 Type
 Certification, and Noise Certification processes.
- To understand CAR Series F, focusing on airworthiness, continued airworthiness, aircraft registration/deregistration, and special certificate of airworthiness procedures.

UNIT I INDIAN AIRCRAFT RULES

9

Indian Drone Rules and Knowledge of aircraft act, 1934 -aircraft rules, 1937-airworthiness and safety of aircraft -Knowledge of Civil Airworthiness requirements-Aeronautical information circulars-Aeronautical information publications- (relating to airworthiness), advisory circulars- AME notices (NOTAMS) by DGCA

UNIT II | CAR SERIES"B "and "C"

9

CAR series "B" – Minimum Equipment List (MEL), preparation and use of cockpit check list and emergency check list- CAR series 'C' – Defect recording, reporting, investigation, rectification and analysis.

UNIT III CAR SERIES "E"

9

CAR Series E - approval of organizations: Approval in

categories E & G; CAR M- Objective, Definitions, Continuing Airworthiness Requirement.

UNIT IV | CAR SERIES

9

CAR145- Terms of Approval- Facility Requirement- Personnel Requirement- Certifying Staff- Safety and Quality policymaintenance procedures and quality system. CAR -21, Type certificate- Noise certificate.

UNIT V | CAR SERIES "F"

9

CAR Series "F" airworthiness and continued airworthiness: Procedure relating to Registration / deregistration of aircraft-Issue/validation and suspension of Certificate of Airworthiness-Special Flight permits, Airworthiness requirements for Gliders - Design, Manufacture, Registration and Operation of Micro light Aircraft- Requirements for manufacture- registration and airworthiness control of hot air balloon - Age of Aircraft to be imported for Scheduled / Non-Scheduled including Charter-General Aviation and other Operations-Issue/Renewal and Suspension of Special Certificate of Airworthiness.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Interpret Indian Aircraft Rules.
- **CO2:** Explain MEL and its preparation and its use.
- CO3: Outline airworthiness requirements.
- **CO4:** Outline quality policy and maintenance procedure.
- **CO5:** Relate airworthiness requirements.
- **CO6:** Summarize registration and deregistration of aircrafts.

TEXT BOOKS:

- Aircraft manual (India) volume latest edition, the English book store, 17-l, Connaught circus, New Delhi.
- 2 Civil aviation requirements with latest amendment (section 2 airworthiness) published by DGCA, the English book store, 17-1, Connaught circus, New Delhi.

REFI	FERENCES:															
1	Aerona	utio	cal	i	nfo	rma	tior	1	cir	cula	ars	(r	elati	ing		to
	airwort	airworthiness) from DGCA.														
2	Adviso	dvisory circulars from DGCA														
(COs	POs PSOs														
•	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	-	2	2	2	2	1	3	1	2	3	2	2
	2	2	1	1	-	2	1	1	1	1	1	3	1	3	2	1
	3	2	1	1	-	2	1	2	1	2	3	2	1	3	2	1
	4	2	1	1	-	2	1	2	1	2	3	1	1	3	2	1
	5	2	1	1	-	2	1	1	1	2	3	1	2	3	2	1
	6	2	1	1	-	2	1	1	1	2	3	1	2	3	2	1
	verall relation	2	1	1	-	2	2	2	2	2	3	2	2	3	2	2

23AE032	2	L	T	P	C					
			3	0	0	3				
COURS	E OBJI	ECTIVES:								
•	To int	roduce the mathematical modelling	of s	yste	ms.					
•	To an	alyse open-loop and closed-loop sys	tem	s.						
•	To an	alyse the control system in the time	e do	mai	n ar	nd				
	freque	ency domain.								
•	To ar	alyse stability in both the time a	nd f	req	uen	су				
	doma	in.								
•	To im	part knowledge on the concept of	stal	oility	y ai	nd				
	various methods to explain the concept of stability.									
•	To an	alyse digital controllers.								
UNIT I	INTR	ODUCTION				9				
Simple pneumatic- hydraulic and thermal systems- Series and										
parallel	syste	ms- Analogies- mechanical ar	nd	ele	ctric	cal				
compon	ents.									
UNIT	OPEN	AND CLOSED LOOP SYSTEMS				9				
II		No.				ih				
Feedbac	k contr	ol systems – Control system compo	nen	ts -	Blo	ck				
diagram	repres	entation of control systems, Reduc	tion	of	blo	ck				
diagram		al flow graphs, Output to input ratio	s.	NOW	ious					
UNIT		RACTERISTIC EQUATION AND				9				
III	FUNC	TIONS								
Laplace	transfo	rmation, Response of systems to di	ffere	nt i	npu	ıts				
viz., Ste	p impu	lse-pulse- parabolic and sinusoidal	inp	uts-	Tir	ne				
respons	e of firs	st and second order systems- stead	y-Sta	ate	errc	rs				
and erro	r const	ants of unity feedback circuit.								
UNIT	CON	CEPT OF STABILITY				9				
IV										
	Necessary and sufficient conditions- Routh-Hurwitz criteria of									
_		locus and Bode techniques-	Cond	cept	aı	nd				
construc										
UNIT	SAMI	PLED DATA SYSTEMS				9				
\mathbf{V}										

Z-Transforms-Introduction to digital control system-Digital Controllers and Digital PID controllers.

TOTAL: 45 PERIODS

COL	DOE OVECOVEO
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Apply mathematical modeling to systems, open loop and
	closed loop systems
CO2:	Apply mathematical knowledge to develop mechanical
	and electrical component analogies-based problems.
CO3:	Develop the knowledge on response of systems with
	different inputs
CO4:	Solve stability and its analysis in both time and frequency
	domain
CO5:	Apply Z-transform in sampled data control system
CO6:	Model Digital controllers and digital PID controllers
TEXT	BOOKS:
1	A. Nagoor Kani, "Control system Engineering", RBA
	publications, Second edition, 2017
2	OGATO, "Modern Control Engineering", Prentice-Hall of
	India Pvt. Ltd., New Delhi, 1998.
REFE	RENCES:
1	Houpis, C.H. and Lamont, G.B. "Digital Control Systems",
	McGraw Hill Book co., New York, U.S.A. 1995
2	Kuo, B.C. "Automatic control systems", Prentice-Hall of
	India Pvt. Ltd., New Delhi, 1998.
3	Naresh K Sinha, "Control Systems", New Age
	International Publishers, New Delhi, 1998.
4	Azzo, J.J.D. and C.H. Houpis, "Feedback control system
	analysis and synthesis", McGraw-Hill. International 3rd
	Edition, 1998.

COs						P	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	-	-	-	-	1	-	-	2	1	-	
2	3	2	1	1	1	_	-	-	-	-	-	-	3	1	-	
3	3	3	2	2	1	-	-	-	-	ı	-	-	3	1	-	
4	3	3	2	2	1	-	-	-	-	1	-	-	3	1	-	
5	3	3	2	2	1	-	-	-	-	-	-	-	3	1	-	
6	3	3	2	2	1								1	1		
Overall Correlation	3	3	2	2	1	-	-	-	-	ı	1	ı	3	1	-	

23AE033	GUIDANCE AND CONTROL	L	T	P	(
		3	0	0	3
COURSE OB	JECTIVES:				
• To lea	arn about the aircraft equations of a	mot	ion	ar	ıd
metho	d of linearization.				
• To lear	rn about the operating principle of guid	lanc	e la	w.	
• To stu	dy about the augmentation systems.				
• To st	udy longitudinal stability and to	des	ign	tł	ıe
longit	udinal autopilot.				
• To st	udy lateral stability and to design	the	e la	iter	al
autopi					
• To leas	rn about missile launching and guidanc	e sy	ste	ms.	
UNIT I IN	TRODUCTION				9
Introduction	to Guidance and control - Definition	ı, E	Iisto	oric	al
background	- Coordinate Frame - Equations of	fm	otio	on	_
Linearization.					
UNIT II AU	JGMENTATION SYSTEMS				9
Need for a	automatic flight control systems	-	Stal	bili	ty
10///THE	systems - control augmentation syst			_ , ,	_
of Limited au	thority and Full Authority Augmentat	ion	sys	ten	าร
	ling concepts.	2 FUIN	(Unat	105	
	ONGITUDINAL AUTOPILOT				9
-	Autopilot -Pitch Orientation Contr		-		
	Control System- Glide Slope Coupler -				
	- Flight path stabilization, Longitud	inal	со	ntr	ol
_	ing back stepping algorithm.				
	TERAL AUTOPILOT				9
	f the Dutch Roll, Methods of	O	btai	inir	ıg
Coordination	J	tem		tuı	
•	ı, - Automatic lateral Beam Guidance- I				
to Fly-by-wire	e flight control systems, Lateral control	lav	v de	esig	ζn
. 11.	• 1 •.1				

9

MISSILE AND LAUNCH VEHICLE

using back stepping algorithm.

UNIT V

GUIDANCE

Operating principles and design of guidance laws-Homing guidance laws- Short range, Medium range - BVR missiles, Launch Vehicle- Introduction-Mission requirements, Implicit guidance schemes-Explicit guidance, Q guidance schemes.

TOTAL: 45 PERIODS

COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Analyze the equations governing the aircraft dynamics
	and the process of linearizing them
CO2:	Apply the principle of stability and control augmentation
	systems.
CO3:	Analyze the longitudinal autopilot system.
CO4:	Analyze the oscillatory modes and methods of
	suppressing them in the lateral autopilot system.
CO5:	Classify the various guidance schemes and requirements
	for aircraft and missiles
CO6:	Identify the controller for lateral, and longitudinal control
	of aircraft.
TEXT	BOOKS:
1	Blakelock, J. H., "Automatic Control of Aircraft and
	Missiles", 2nd Ed., John Wiley & Sons, 1990.
2	Collinson R.P.G, "Introduction to Avionics", Chapman
	and Hall, India, 1996.
3	Garnel. P. & East. D. J, "Guided Weapon control systems",
	Pergamon Press, Oxford, 1977.
REFE	RENCES:
1	Michael V. Cook "Flight Dynamics Principles: A Linear
	Systems Approach to Aircraft Stability and Control",
	Elsevier, 2010
2	Nelson R.C, "Flight stability & Automatic Control",
	McGraw Hill, 1989.

3	Pierre T. Ka	ibamba, Anot	ıck R.	Girard. "Fund	damentals of
	Aerospace	Navigation	and	Guidance",	Cambridge
	University I	Press, 2014.			

COs						P	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2	2	1	-	-	-	-	-	-	-	2	1	-	
2	3	2	2	2	1	-	-	-	-	-	-	-	3	1	-	
3	3	3	2	2	2	-	-	-	-	-	-	-	3	2	-	
4	3	3	2	2	1	-	-	-	-	-	-	-	3	1	-	
5	2	2	1	-	1	-	-	-	-	-	-	-	3	1	-	
6	3	2	1	1	2								3	2		
Overall Correlation	3	3	2	2	2	-	-	-	-	-	-	-	3	2	_	

23AE034	NAVIGATION AND	L	T	P	C
	COMMUNICATION SYSTEM	3	0	0	3

COURSE OBJECTIVES:

- To introduce various types of navigation systems.
- To understand the dead reckoning navigation system and its error correction.
- To know satellite navigation and hybrid navigation system integration.
- To learn the concepts of radio transmitters and receivers.
- To acquire knowledge about weather radar systems and DME.
- To understand the need of Radome in an aircraft.

UNIT I INERTIAL NAVIGATION SYSTEM

Introduction to navigation – Types -INS components- transfer function and errors - Earth in inertial space - Coriolis Effect – INS Mechanization. Platform and Strap down – Navigation algorithms - INS system block diagram, Different co-ordinate systems – Transformation Techniques - Schuler Tuning – compensation errors - Gimbal lock - Initial calibration and Alignment Algorithms.

UNIT II	RADIO NAVIATION & SATELLITE	9
	NAVIGATION	

Different types of radio navigation- ADF, VOR, DME - Doppler - Hyperbolic Navigations -LORAN, DECCA and Omega - TACAN. Introduction to GPS -system description - Basic principles -Position and velocity determination signal Structure -DGPS, Introduction to Kalman filtering-Estimation and mixed mode navigation Integration of GPS and INS-Utilization of navigation systems in aircraft.

UNIT III RADIO TRANSMITTERS AND RECEIVERS 9 Functions of a Radio transmitter- Microphones, types, Block diagram explanation of a Radio transmitter- Modulation and its types - Antenna, Antenna couplers- Qualities of a good

Radio receiver-Block diagram of a simple radio receiver and

super	r heterodyne receiver.	
UNI	T IV AIRCRAFT COMMUNICATION SYSTEMS	9
Basic	s of aircraft communication system- types -Very Hig	h
Frequ	uency Communication system: Description, Principle	e,
Oper	ation of VHF - High Frequency communication system	n:
Desc	ription, Principle and operation - Satellite communicatio	n
syste	m: Description, Operation.	
UNI	TV WEATHER RADAR SYSTEM AND DME	9
Intro	duction-Description and types of Radar- Primary an	d
Secon	ndary Radar- Weather Radar Description- Analog rada	ır
Princ	ipal units of Analog radar system-Aircraft weather rada	r-
trans	mitter-receiver- Indicator- Control panel- Antenna	a,
Rado	me and wave guide- Radome maintenance and rada	ır
safety		
	TOTAL: 45 PERIOR)S
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able to):
	Explain the concept of Aircraft Navigation.	
CO2:	Develop the modelling the navigation process and	
	methods.	
CO3:	Explain the various Navigation systems such as Inertial	
	Measurement systems, Radio Navigation Systems, Satelli	te
	Navigation - GPS.	
CO4:	Illustrate the landing aids and will be able to deploy these	e
	skills effectively in the analysis and understanding of	
	navigation systems in an aircraft.	
	Apply the principles of Radar and its related components	
CO6:	Construct the importance of weather RADAR systems in	
	an aircraft	
	BOOKS:	
1	John H Blakelock, "Automatic control of Aircraft of	
	Missiles", Wile -Inter Science Publication, 2 nd edition	n,

May 1990.

M. Kayton and W. Fried, "Avionics Navigation System", Wiley Interscience, 1997.

REFERENCES:

VEER REA

- 1 Eismin, Thomas K. "Study guide for aircraft electricity and electronics". McGraw-Hill Education, 2014.
- 2 James Powell, "Aircraft Radio system", Sterling book house, Mumbai, Indian edition 2006
- 3 Tooley, Mike, and David Wyatt. "Aircraft communications and navigation systems". Routledge, 2017.

					P	Os						PSOs			
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
2	2	1	-	2	2	2	2	1	3	1	2	3	2	2	
3	2	2	1	2	1	1	1	1	1	3	1	3	2	1	
2	2	1	-	2	1	2	1	2	3	2	1	3	2	1	
2	2	1	-	3	1	2	1	2	3	1	1	3	3	1	
3	2	1	1	2	1	1	1	2	3	1	2	3	2	1	
3	2	1	1	2	1	1	1	2	3	1	2	3	2	1	
3	2	2	1	2	2	2	1	2	2	2	1	3	2	1	
	2 3 2 2 3 3	2 2 3 2 2 2 2 2 2 2 3 2 3 2	2 2 1 3 2 2 2 2 1 2 2 1 3 2 1 3 2 1	2 2 1 - 3 2 2 1 - 2 2 1 - 2 2 1 - 3 2 1 1 3 2 1 1	2 2 1 - 2 3 2 2 1 - 2 2 2 1 - 2 2 2 1 - 3 3 2 1 1 2 3 2 1 1 2	1 2 3 4 5 6 2 2 1 - 2 2 3 2 2 1 2 1 2 2 1 - 2 1 2 2 1 - 3 1 3 2 1 1 2 1 3 2 1 1 2 1	2 2 1 - 2 2 2 3 2 2 1 2 1 1 2 2 1 - 2 1 2 2 2 1 - 3 1 2 3 2 1 1 2 1 1 3 2 1 1 2 1 1	1 2 3 4 5 6 7 8 2 2 1 - 2 2 2 2 2 3 2 2 1 2 1 1 1 2 2 1 - 2 1 2 1 3 2 1 1 2 1 1 1 3 2 1 1 2 1 1 1	1 2 3 4 5 6 7 8 9 2 2 1 - 2 2 2 2 1 3 2 2 1 2 1 1 1 1 2 2 1 - 2 1 2 1 2 2 2 1 - 3 1 2 1 2 3 2 1 1 2 1 1 1 2 3 2 1 1 2 1 1 1 2	1 2 3 4 5 6 7 8 9 10 2 2 1 - 2 2 2 2 1 3 3 2 2 1 2 1 1 1 1 1 2 2 1 - 2 1 2 1 2 3 2 2 1 - 3 1 2 1 2 3 3 2 1 1 2 1 1 1 2 3 3 2 1 1 2 1 1 1 2 3	1 2 3 4 5 6 7 8 9 10 11 2 2 1 - 2 2 2 2 1 3 1 3 2 2 1 2 1 1 1 1 1 3 2 2 1 - 2 1 2 1 2 3 2 2 2 1 - 3 1 2 1 2 3 1 3 2 1 1 2 1 1 1 2 3 1 3 2 1 1 2 1 1 1 2 3 1	1 2 3 4 5 6 7 8 9 10 11 12 2 2 1 - 2 2 2 2 1 3 1 2 3 2 2 1 2 1 1 1 1 3 1 2 2 1 - 2 1 2 1 2 3 2 1 2 2 1 - 3 1 2 1 2 3 1 1 3 2 1 1 2 1 1 1 2 3 1 2 3 2 1 1 2 1 1 1 2 3 1 2 3 2 1 1 2 1 1 1 2 3 1 2	1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 1 - 2 2 2 2 1 3 1 2 3 3 2 2 1 2 1 1 1 1 3 1 3 2 2 1 - 2 1 2 1 2 3 2 1 3 3 2 1 1 2 1 1 2 3 1 2 3 3 2 1 1 2 1 1 1 2 3 1 2 3 3 2 1 1 2 1 1 1 2 3 1 2 3 3 2 1 1 2 1 1 1 2 3 1 2 3	1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 2 1 - 2 2 2 2 1 3 1 2 3 2 3 2 2 1 2 1 1 1 1 3 1 3 2 2 2 1 - 2 1 2 1 2 3 2 1 3 3 2 1 1 2 1 1 2 3 1 1 3 3 3 2 1 1 2 1 1 2 3 1 2 3 2 3 2 1 1 2 1 1 2 3 1 2 3 2 3 2 1 1 2 1 1 2 3 1 2 3 2 3 2 1 1 2 1 1 2 3 1 2 3 2 3 2 1 1 2 1 1 2	

ACELIATED TO ANNA UNIVERSITY | ALTONOMOUS

23AE035	DESIGN OF UAV SYSTEMS L	Т	P	C				
23AE033	BESIGN OF CAV STSTEMS E	0	0	3				
COURSE OB		Ů	U					
	ose students to concepts needed in modellin	σar	nd					
analysing an unmanned system.								
 To expose students to the design and development of UAV 								
	ose students to the type of payloads used in			•				
-	y path planning	011	٧.					
	erstand the avionics hardware used in the U	Τ Δ \ /	,					
	erstand autonomous navigation.)						
	TRODUCTION TO UAV			9				
	JAV –classification – Introduction to U	nma	nne					
•	emsmodels and prototypes, System Com							
applications.	enismodels and prototypes, System Con	ipos	ortio	11-				
	IE DESIGN OF UAV SYSTEMS			9				
49.10	to Design and Selection of the	C _{V7}	ster					
	cs and Airframe Configurations- Charact	5						
	pes- Design Standards and Regulatory							
110000 121	d Europe- Design for Stealthcontrol	-	-					
specifications	COLLEGE OF TECHNIOL	0G	Y	.0				
	/IONICS HARDWARE	OMO	U:	9				
	AGL-pressure sensors-servos-Accelero	met	ter	_				
Gyros-Actua	-			n.				
3	Configuration, and Testing.	0		,				
	OMMUNICATION PAYLOADS AND			9				
	ONTROLS							
Payloads-Tel	emetry-tracking-Aerial photography-Cor	trol	s-Pl	D				
•	dio control frequency range -Modems							
	lation-ground test-analysis-Trouble shoot			•				
	EVELOPMENT OF UAV SYSTEMS			9				
Waypoints	navigation-ground control software-	S	yste	m				
		-						

Ground Testing-System In-flight Testing-Future Prospects and

Challenges-Case Studies - Mini and Micro UAVs.

TOTAL: 45 PERIODS																
COU	RSE OU	JTC	ON	1ES	5:											
	After co	mp	leti	on o	of th	ne c	our	se,	the	stu	dent	s wi	ill be	e ab	le t	0:
CO1:	Build L	JAV	7 sy	ster	n.											
CO2:	Develo	p p	reli	min	ary	des	sigr	ı rec	quir	em	ents	for	an			
	unman	nec	l ae	rial	veh	icle	2.									
CO3:	Identify	y di	ffer	ent	har	dw	are	for	UA	V.						
CO4:	Make u	Make use of system testing for unmanned aerial vehicles.														
CO5:	Design	Design micro aerial vehicle systems by considering														
	practical limitations.															
CO6:	Plan A	Plan Autonomous missions for MAVs.														
TEXT	BOOK	S:														
1	Paul G Fahlstrom, Thomas J Gleason, "Introduction to															
	UAV Systems", UAV Systems, Inc, 1998.															
2	Reg Austin "Unmanned Aircraft Systems UAV design, development and deployment", Wiley, 2010.															
REFE	RENCE	_	ent	anc	ı ae	pic	уш	ient	, V	VIIE	2y, Z	010.			-11	
1	Dr. Arı		nd I	. C	hap	ut.	"De	esig	n o	f U	nma	nne	d A	ir V	/eh	icle
1	System		0.76		-											
2	Kimon															
	Vehicle				f th	ne z	Art	and	d tl	ne l	Road	d to	Αι	ıtor	om	y",
	Springe														W 0.3	1//
3	Robert McGra					0	ונ או	abı	пту	anc	ı At	iton	ıatıc	Co	ntro	31 ,
		VV -1	1111,	IIIC	, 17	<i>7</i> 0.	P	'Os							PSC)s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	-	-	-	-	-	-	-	1	1	-	-
	2	3	2	1	1	_	1	_	_	-	-	_	_	2	_	-
	3	3	2	1	1	-	1	-	-	-	-	-	1	1	-	-
	4	4 3 2 1 1 - 1 1 1														
	5	3	3	2	2	3	-	-	-	1	-	-	1	-	3	-
	6	3	2	1	1	3	-	-	-	1	-	-	1	-	3	-
Ov	erall	2	3	2	2	2	1	1		1			1	2	2	
Corr	elation	3	3	2	2	3	1	1	_	1	_	_	1	2	3	-

23AE036	AERODYNAMICS OF DRONES	L	T	P	C
		3	0	0	3

COURSE OBJECTIVES:

- To introduce students to the basic concepts of payloads in UAV.
- To understand the various sensor systems of a UAV.
- To introduce the concepts of data algorithms.
- To introduce the concepts of artificial neural networks.
- To expose the students to the concepts of fuzzy logic.
- To understand the concepts of data architectures.

UNIT I PAYLOAD FOR UAV

9

Introduction - Types - Non-dispensable Payloads - Electrooptic Payload Systems - Electro-optic Systems Integration -Radar Imaging Payloads - Other Non-dispensable Payloads -Dispensable Payloads - Payload Development.

UNIT II | SENSOR

Ľ

Data fusion applications to multiple sensor systems – Selection of sensors – Benefits of various sensor systems – Influence of wavelength on atmospheric attenuation – Fog characterization – Effects of operating frequency on MMW sensor performance – Absorption of MMW energy in rain and fog – Backscatter of MMW energy from rain – Effects of operating wavelength on IR sensor performance – Visibility metrics – Atmospheric and sensor system computer simulation models.

UNIT III DATA FUSION ALGORITHMS AND ARCHITECTURE

-

Definition of data fusion – Level 1 processing – Detection, classification and identification algorithms for data fusion – State estimation and tracking algorithms for data fusion – Level 2,3 and 4 processing – Data fusion processor functions – Definition of an architecture – Data fusion architectures – Sensor- level fusion – Central level fusion – Hybrid fusion.

UNIT IV ARTIFICIAL NEURAL NETWORKS

9

Applications of artificial neural networks – Adaptive linear combiner – Linear classifiers – Capacity of linear classifiers – Nonlinear classifiers – Madaline – Feedforward network – Capacity of nonlinear classifiers – Supervised and unsupervised learning – Supervised learning rules – Voting Logic Fusion.

UNIT V FUZZY LOGIC AND FUZZY NEURAL 9 NETWORKS 9

Conditions under which fuzzy logic provides an appropriate solution – Illustration of fuzzy logic in an automobile antilock braking system – Basic elements of a fuzzy system – Fuzzy logic processing – Fuzzy centroid calculation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Classify the payloads in UAV.
- **CO2:** Explain the concepts of sensor systems.
- CO3: Outline the data fusion algorithms.
- **CO4:** Infer the basics neural network systems.
- CO5: Summarise the various network schemes.
- **CO6:** Explain the concept of data architecture.

TEXT BOOKS:

- 1 Reg Austin Aeronautical consultant, A John, "Unmanned aircraft systems UAV design, development and deployment", Wiley & Sons Ltd publications, 2010.
- David L. Hall, Sonya A.H. McMullan, "Mathematical Techniques in Multisensor Data Fusion", Artech, 2004.

REFERENCES:

- 1 Lawrence A. Klein, "Sensor and Data Fusion: A Tool for Information Assessment and Decision Making", Second Edition, SPIE Press, 2013.
 - 2 Jitendra R. Raol, "Multi-Sensor Data Fusion with MATLAB", CRC Press, 2010
 - 3 Martin Liggins II Davis Hall, "Handbook of Multisensor

Data Fusi	on: Theory	and	Preactice	", seco	nd edition,
(Electrical	Engineerin	g &	Applied	signal	Processing
Series), 200	08.				

COs						P	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	-	-	-		-	-	-	2	1	-	
2	2	1	-	-	1	_	-	-		-	-	-	2	1	-	
3	2	1	-	-	1	-	-	-		-	-	-	2	1	-	
4	2	1	-	-	1	-	-	-		-	-	-	2	1	-	
5	2	1	-	-	1	_	-	-		-	-	-	2	1	-	
6	2	1	-	-	1	-	-	-		-	-	-	2	1	-	
Overall Correlation	2	1	-	-	1	-	-	-	-	-	-	-	2	1	-	

			-	-		
23AE03	7	DRONE AVIONICS	1 3	T	P	$\frac{C}{2}$
COLIDO	TO	DIFCTN/FC	3	0	0	3
		BJECTIVES:		4 4.		
		troduce students to the basic concept	S O	t di	ffer	ent
,	-	of Drones.				
		alyze the various payloads of Drone .				
		ıdy various types of sensors used for Dı				
• T	o ex	pose various types of electronic compor	nen	ts u	sed	for
Γ	ron	es.				
• T	o a	nalyze the Controllers and electronic	cc	mp	one	nts
u	sed	for Drone electronics.				
UNIT I	IN	TRODUCTION				9
Definiti	on (of Drones- History - Classification- A	ppli	cati	on	of
Drones.	DC	GCA Regulations-Basic Air Regulations	s- N	lo I	Oro	ne
Zones, (Ope	rations/Procedural Requirements.				
UNIT	DR	ONE ELECTRONICS	7	40		9
II 🕢			1			
Drone	elect	ronics introduction- Motors-Controlle	rs-A	ctu	atoı	rs-
Servo-E	lecti	onic Speed Controllers-Arduino- Raspb	erry	Pi.		
UNIT	SE		IUI	-01	JY	9
III					OUS	
Differer	nt ty	pes of sensors- Data fusion application	s to	mu	ıltip	le
sensor	syst	ems - Selection of sensors - Benefits	of	mu	ıltip	ole
sensor	syste	ems - IR sensors, Electromagnetic ser	nsoı	s, I	ma	ge
sensors,	. Ma	gnetometer, Gyroscope, Accelerometer	rs -	We	eath	er
sensors.						
UNIT	PA	YLOAD FOR DRONE				9
IV						
Introdu	ction	n - Types - Non-dispensable Payloads -	Ele	ctro	-op	tic
Payload	l Sy	stems - Electro-optic Systems Integra	tion	-]	Rad	ar
Imaging	g P	ayloads - Other Non-dispensable	Pa	yloa	ds	-
Dispens	sable	Payloads - Payload Development.				
UNIT		ONE CONTROL				9

Oper	ating principles and control of Drone- Basic controllers-
Diffe	rent types of controllers-PID controllers-Adaptive PID
contr	ollers-Stability analysis -Bode plot and Root Locus.
	TOTAL: 45 PERIODS
	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Analyze the potential applications of the Drones.
CO2:	Analyze the operation of various electronic devices used
	for Drones.
CO3:	Explain the procedure for sensor calibration and study
	various types of sensors.
CO4:	Outline the Various payloads used for Drone.
CO5:	Design the controller for Drone and Analyze the
	performance using Root Locus and Bode plot.
	Design and Analyze the performance of controllers.
TEXT	BOOKS:
1	Austin, Reg. "Unmanned aircraft systems: UAVS design,
	development and deployment". John Wiley & Sons, 2011.
2	Hall, David Lee, and Sonya AH McMullen.
	"Mathematical techniques in multisensor data fusion",
	Artech House, 2004.
3	Liggins II, Martin, David Hall, and James Llinas, eds.
	"Handbook of multisensor data fusion: theory and
	practice". CRC press, 2017.
	RENCES:
1	Nelson R.C, 'Flight stability & Automatic Control',
	McGraw Hill, 1989.
2	Sensor and Data Fusion: "A Tool for Information
	Assessment and Decision Making", Second Edition (SPIE
	Press Monograph PM222) Lawrence A. Klein
3	Raol, Jitendra R. "Multi-sensor data fusion with
	MATLAB". CRC press, 2009.

4			C. "Automatic control systems", Prentice-Hall of rt. Ltd., New Delhi, 1998.													
			POs PSOs													
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	1	1	-	-	-	-	-	-	-	2	1	-
	2	3	3	2	1	-	-	-	-	-	-	-	-	3	1	-
	3	2	2	1	1	-	-	-	-	-	-	-	-	3	-	-
	4	2	2	1	-	-	-	-	-	-	-	-	-	3	-	-
	5	3	3	2	2	1	-	-	-	-	-	-	-	3	1	-
	6	3	3	2	2	1								3	1	
	erall elation	3	3	2	2	1	1	1	ı	1	ı	ı	ı	3	1	-

23AE038	DIGITAL IMAGE PROCESSING	L	T	P	C
	IN DRONE	3	0	0	3
COLIDGE OR	IECTIVEC.				

COURSE OBJECTIVES:

- To understand the basic elements of visual perception and the key steps in image processing systems.
- To explore techniques for spatial domain gray level transformations, histogram processing, and spatial filtering in image enhancement.
- To develop skills in detecting image discontinuities, applying edge operators, and understanding thresholding for image segmentation.
- To learn the principles of multi-resolution analysis, image pyramids, and wavelet transforms.
- To explore the principles of digital aerial photography, sensors for aerial photography, and applications in aerospace.

UNIT I FUNDAMENTALS OF IMAGE PROCESSING 9 Introduction - Elements of visual perception, Steps in Image

Processing Systems – Image Acquisition – Sampling and Quantization – Pixel Relationships – Colour Fundamentals and Models- File Formats Introduction to the Mathematical tools.

UNIT II IMAGE ENHANCEMENT 9

Spatial Domain Gray level Transformations Histogram Processing Spatial Filtering – Smoothing and Sharpening-Frequency Domain: Filtering in Frequency Domain – DFT, FFT, DCT, Smoothing and Sharpening filters – Homomorphic Filtering.

UNIT III IMAGE SEGMENTATION AND FEATURE 9 ANALYSIS 9

Detection of Discontinuities - Edge Operators - Edge Linking and Boundary Detection - Thresholding - Region Based Segmentation - Motion Segmentation, Feature Analysis and Extraction.

UNIT IV MULTI RESOLUTION ANALYSIS	9
-----------------------------------	---

Multi Resolution Analysis: Image Pyramids - Multi resolution expansion - Wavelet Transforms-Fast Wavelet transforms-Wavelet Packets.

UNIT V | UAV DATA PROCESSING

9

Orthomosaic Maps- 3D Point Cloud- Digital Surface Models (DSM) - Digital Terrain Models (DTM) - Contour Maps-3D textured mesh.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply mathematical tools for image processing and understand their role in image enhancement and analysis.
- CO2: Compare the advanced frequency domain techniques like DFT, FFT, and DCT for filtering and processing images in the context of aerospace applications.
- CO3: Apply image segmentation techniques, edge linking, and feature analysis to solve real-world problems in aerospace applications.
- CO4: Analyze multi-resolution techniques, including image pyramids, wavelet transforms, and related methods, with specific applications to aerospace imagery.
- CO5: Apply digital image processing skills to solve problems specific to aerospace applications, including digital aerial photography, image recognition, classification, and video motion analysis.
- CO6: Apply principles of vision-based navigation and control by studying real-world aerospace case studies and practical examples.

TEXT BOOKS:

1

Gorbachev, Sergeĭ Viktorovich, S. G. Emelyanov, Dmitry S. Zhdanov, S. Yu Miroshnichenko, Vladimir I. Syryamkin, Dmitry V. Titov, and Dmitriy V. Shashev. "Digital processing of aerospace images". Red

	Square	Sci	enti	ific,	Ltc	1., 2	018	•								
2	Solomo	n,	Ch	ris,	an	d [Гов	y E	3rec	kor	ı. "F	und	lame	enta	ls	of
	Digital	In	nag	e F	roc	essi	ing:	A	рі	ract	ical	ap	proa	ch	wi	th
	examp	examples in MATLAB". John Wiley & Sons, 2011.														
REFI	RENCES:															
1	Gonzalez, Rafael C. "Digital image processing". Pearson															
		education India, 2009.														
2		Blackledge, Jonathan M. "Digital image processing:														
		mathematical and computational methods". Elsevier,														
	2005.	*														
	2000.						P	Os						I	SO)c
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		_	_	_	_	_	O		0	9				_	_	3
	1	3	2	1	1	1	-	-	-	-	1	1	1	1	1	-
	2	2	1	1		1	- 1	_	-	-	1	1	1	1	1	-
	3 OWE	3	2	1	1	1	A	/-	A	-	1	1	1	1	1	-
	4	3	3	2	2	1	K	-	-	-	1	1	1	1	1	-
Ĭ	5	3	2	1	1	1	7	-	-	-	1	1	1	1	1	-
	6	3	2	1	1	1	-		- 7		1	1	1	1	1	-
O	verall	3	2	2	10	1					10	1-11	1	10	1	

VERTICAL -2 COMPUTATIONAL ENGINEERING

23AE039	NUMERICAL METHODS IN	L	T	P	C
	FLUID DYNAMICS	3	0	0	3

COURSE OBJECTIVES:

- To make students understand the complexity of general fluid dynamic equations in partial differential form in the mathematical nature of the equations.
- To make students understand the complexity of general fluid dynamic equations under different flow conditions.
- To impart knowledge to students on the basic aspects of finite differences and finite volume methods.
- To impart knowledge to students on the basic aspects of finite element methods.
- To expose the students on obtaining solutions for a set of a large number of algebraic equations using the panel methods as examples and to train them to obtain numerical solutions for steady supersonic flows.

UNIT I MATHEMATICAL NATURE OF FLUID DYNAMIC EQUATION 9

Governing equations of fluid dynamics and modelling of fluid flow – Eulerian and Legrangian approaches – Mathematical nature of fluid dynamic equations – Classification of partial differential equations – General behaviour of different classes of fluid dynamic equations – Practical examples of fluid dynamic problems governed by different classes of partial differential equations – Ill posed and well posed problems.

UNIT II BOUNDARY CONDITIONS AND CHOICE OF 9 NUMERICAL SCHEMES

Importance of boundary conditions in obtaining the numerical solution of fluid dynamic equations. Types of boundary conditions- Boundary conditions for momentum equations for viscous and inviscid flows – Boundary conditions for energy equation for different flow conditions – Practical examples – Symmetry and cyclic boundary conditions – Stability of

numerical solution and the choice of numerical schemes for different classes of fluid dynamic equations.

UNIT III | INTRODUCTION TO FDM

9

Introduction to finite difference methods and their areas of application- Explicit and Implicit approaches. A brief description of implementing methodologies for finite difference method – Illustration of the methods using simple one dimensional fluid dynamic problems – Advantages and limitations of these methods.

UNIT IV | PANEL METHODS

9

A brief description of source, sink and vortex flows – Application of panel methods – Methodology involved in implementing panel methods – Source panel method and its implementation – Solution methods for solving a set of large number of algebraic equations and their applications for panel methods – Solution example of flow over a circular cylinder – Vortex panel method and its implementation – Vortex lattice method.

UNIT V NUMERICAL METHODS FOR STEADY SUPERSONIC FLOW

9

Two dimensional irrotational flow – Method of characteristics – Numerical methodology to obtain solution using method of characteristics for supersonic inviscid flows – Supersonic nozzle design using method of characteristics – Application of method of characteristics for axisymmetric irrotational flows – Description of Mc. Cormack's Predictor-corrector technique – Shock capturing and shock fitting techniques.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Develop the importance of numerical methods in finding solutions to complex engineering flow problems.
- CO2: Develop interest in lifelong learning on numerical methods and apply the knowledge for the solution of aerospace related fluid dynamic problems.

	3: Explain modern engineering tools such as CFD software															
CO3:																
	tools t		solv	e a	ınd	an	aly	se	the	flo	W	field	ds c	ove	r tl	ne
	airplan															
CO4:	Apply	pan	el n	netl	nod	s to	sol	ve l	oasi	c flı	ıid 1	flow	s.			
CO5:	Apply	ski	lls ¹	to c	leve	elop	al	gor	ithr	ns	for	the	solu	ıtio	ns	of
	inviscio	l su	per	son	ic fl	low	pro	ble	ms	per	tain	ing	to a	ero	spa	ce
	field.															
CO6:	Apply	nev	v c	om	puta	atio	nal	tec	hni	que	es ir	n co	mpi	utat	tion	al
	method	Apply new computational techniques in computational methods such as FDM using the imparted knowledge														
TEXT	BOOK	BOOKS:														
1	Fletcher, Clive AJ. "Computational techniques for fluid															
	dynamics: Specific techniques for different flow															
		categories". Springer Science & Business Media, 2012.														
2	Fletche	Fletcher, Clive AJ. "Computational techniques for fluid														
		lynamics 2: Specific techniques for different flow														
	-	categories". Springer Science & Business Media, 2012.														
REFE	categories". Springer Science & Business Media, 2012.															
1	Chung	Γ	18	J.,	"(Con	npu	tati	ona	1	Flu	id	Dy	nar	nics	,",
	Chung T. J., "Computational Fluid Dynamics", Cambridge University Press; 2nd edition, 2010.															
2	Gary A													vna	mio	cs:
A	Initial a															
	Univers														- 1	9
3	John F	W	end	t,	"Co	omi	outa	tio	nal	Flu	iid	Dyn	ami	cs	- A	۱n
	Introdu															
	Heidell							,	- I	C) -		- 0			
4	Verstee				nd I	Mal	alse	ker	a V	V. "	'An	Int	rodu	ıcti	on	to
	Compu	_														
	-							Os	,						PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	-	-	_	-	-	-	_	-	2	-	_
	2	3	2	1	1	1	_	_	_	_	_	_	_	3	1	_
	3	3	3	2	2	_	_	_	_	_	_	_	_	3	-	_
	4															
	5	3	2	1	1	1	-	-	-	-	-	-	-	3	1	-
	6	6 3 2 1 1 1 3 1 -														
Ov	erall	2	9	2	2	1								2	1	
Corr	elation	3	3	2	2	1	-	-	-	-	-	-	-	3	1	_

23AE040	COMPUTATIONAL HEAT	L	T	P	С	1
	TRANSFER	3	0	0	3	1

COURSE OBJECTIVES:

- To impart knowledge to students in the fundamental principles of various numerical methods which are useful to obtain numerical solutions to heat transfer problems.
- To make the students learn numerical methods to obtain solution to 1-D, 2-D and 3-D conductive heat transfer problems.
- To introduce both implicit and explicit methods for numerical solution of transient heat conduction problems to students.
- To make the students familiarize with the numerical treatment of convective heat transfer problems to compute velocity and temperature profiles in boundary problems.
- To acquaint students with the use of finite volume method in radiative heat transfer problems.

UNIT I INTRODUCTION 9

Finite Difference Method-Introduction-Taylor's series expansion

- Discretization Methods Forward, backward and central differencing scheme for first order and second order Derivatives
- Types of partial differential equations-Types of errors. Solution to algebraic equation-Direct Method and Indirect Method-Types of boundary condition. FDM - FEM - FVM

UNIT II | CONDUCTIVE HEAT TRANSFER 9

General 3D-heat conduction equation in Cartesian, cylindrical and spherical coordinates. Computation (FDM) of One – Dimensional steady state heat conduction with Heat generation-without Heat generation- 2D-Heat conduction problem with different boundary conditions-Numerical treatment for extended surfaces – Numerical treatment for 3D- Heat conduction -Numerical treatment to 1D-Steady heat conduction using FEM.

UNIT III TRANSIENT HEAT CONDUCTION 9

Introduction to Implicit, explicit Schemes and crank-Nicolson Schemes Computation(FDM) of One – Dimensional un-steady heat conduction –With heat Generation-Without Heat generation - 2D-transient heat conduction problem with different boundary conditions using Implicit, Explicit Schemes. Importance of Courant number - Analysis for I-D,2-D transient heat Conduction problems.

UNIT IV CONVECTIVE HEAT TRANSFER

9

Convection- Numerical treatment (FDM) of steady and unsteady 1 -D and 2-D heat convection-diffusion steady-unsteady problems- Computation of thermal and Velocity boundary layer flows -Upwind scheme - Stream function-vorticity approach-Creeping flow.

UNIT V | RADIATIVE HEAT TRANSFER

9

Radiation fundamentals-Shape factor calculation-Radiosity method- Absorption Method – Montacalro method-Introduction to Finite Volume Method- Numerical treatment of radiation enclosures using finite Volume method – Developing a numerical code for 1D, 2D heat transfer problems.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the basic concepts on the applications of numerical methods for the heat transfer problem solutions.
- CO2: Compare the role of boundary conditions in defining the complexities and the methodology for numerical solutions of heat transfer problems.
- CO3: Solve implicit and explicit schemes for transient heat conduction problems.
- **CO4:** Solve the temperature profiles in thermal boundary layer.
- CO5: Apply finite volume methods for radiative heat transfer problems and the role of Montecarlo methods in radiative heat transfer.

	CO6: Develop a new code for 1D, 2D heat transfer problems															
CO6:	Develo	p a	nev	v cc	ode	for	1D,	2D	hea	at tr	ansi	fer p	rob	lem	ıs	
TEXT	ГВООК	S:														
1	Sachde	va,	S.C	·, "	Fur	nda	mer	ntal	s of	f En	gine	eerii	ng F	lea	t ar	nd
	Mass T	ran	sfer	", N	NEV	۷A	GE	pul	olis	hers	,201	0.				
2	Yunus												l Ar	opro	oacl	h"
	Tata M			_										1		
REFE	ERENCES:															
1			zisi	k.	"Fi	nite	, I	Diffe	erer	nce	Me	etho	d i	in	He	at
_	Necati Ozisik, "Finite Difference Method in Heat Transfer", CRC Press, 2nd edition, 2017.															
2		resh Jaluria, Kenneth E Torrence, "Computational Heat														
_	0	er", CRC Press, 3rd Edition, 2017.														
3		Majumdar, "Computational Methods for Heat &														
3	Mass T		,				-			ai i	neu	ious	101	110	eat	Œ
	IVIASS 1	Ian	siei	, (INC	, I I (<i>.</i>						200	\ _
(COs			_			- 4	Os			10		4		PSC	
	COWIER	42	2	3	4	5	6	7	8	9	10	11		1	2	3
/	1/4	2	2	1	1	2		-	-	-	-	-	1	3	2	-
	2	3	3	2	2	2	1	-	(-)	-		-	1	3	2	-
	3	3	2	2	2	2	- 1		-	_	200	-	1	3	2	-
1	4	3	2	2	2	2	-	-	-	-	1	-	1	3	2	-
	5 SINEER	3	3 2 2 2 2 1 3 2 -													
	6	3	2	2	2	2	AT ED	10/	-	UNIT	ERSI	17.16	1	3	2	-
Ov	erall	2	2	2	2	2							1	2	2	
Corr	elation	3	2	2	2	2	_	_	_	_	-	-	1	3	2	_

23AE041	BASICS OF COMPUTATIONAL	L	T	P	C
	FLUID DYNAMICS	3	0	0	3

- To understand the governing equations of fluid dynamics and their application in CFD.
- To develop proficiency in finite difference and finite volume methods for solving diffusion problems.
- To apply advanced discretization techniques for convection-diffusion problems using various numerical schemes.
- To analyze flow fields using algorithms like SIMPLE and PISO for pressure and velocity corrections.
- To explore turbulence models and mesh generation techniques, including structured and unstructured grids.

UNIT I GOVERNING EQUATIONS AND BOUNDARY CONDITION 9

Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations – Chemical species transport – Physical boundary conditions – Time-averaged equations for Turbulent Flow – Turbulent–Kinetic Energy Equations – Mathematical behaviour of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations.

UNIT II FINITE DIFFERENCE AND FINITE VOLUME 9 METHODS FOR DIFFUSION 9

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy – Finite volume formulation for steady state One, Two and Three-dimensional diffusion problems –Parabolic equations – Explicit and Implicit schemes – Example problems on elliptic and parabolic equations – Use of Finite Difference and Finite Volume methods.

UNIT III	FINITE VOLUME METHOD FOR	9
	CONVECTION DIFFUSION	
Steady or	ne-dimensional convection and diffusion - Cent	ral,

upwind differencing schemes , properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

UNIT IV | FLOW FIELD ANALYSIS

9

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

UNIT V TURBULENCE MODELS AND MESH GENERATION

9

Turbulence models, mixing length model, Two equation (k-€) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Construct governing differential equations for CFD.
- CO2: Make use of FDM for discretizing PDE.
- CO3: Analyze the pure diffusion type fluid flow and heat transfer problems using numerical modeling.
- **CO4:** Analyze convection diffusion problems using FVM..
- CO5: Analyze fluid flow and heat transfer problems using SIMPLE, SIMPLEC and PISO schemes.
- CO6: Apply turbulence modeling techniques for solving fluid flow and to develop grid for the domain

TEXT BOOKS:

1 Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd., 2017.

2 Versteeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The finite volume Method", Pearson Education Ltd, Second Edition, 2007

REFERENCES:

- **1** Anil W. Date "Introduction to Computational Fluid Dynamics" Cambridge University Press,2005.
- 2 Chung, T.J. "Computational Fluid Dynamics", Cambridge University, Press, 2002.
- Ghoshdastidar P.S., "Heat Transfer", Oxford University Press, 2005
- 4 Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 2014.
- 5 Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, 2004

COs		11		Т	I A	P	Os	П				7	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	1	1	1	- 1	1	-	1	1	-	-	1	1	-	
2	3	2	1	1	1	-	1	-	1	1	-	-	1	1	-	
3 GINEER	3	3	2	2	1	. L_E	1	<u>. U</u>	1	1	HIN	QL.	1	1	-	
4	3	3	2	2	1	FF	1	ninia	1	1	7.16	0.0	1	1	-	
5	3	3	2	2	1	-	1	-	1	1	-	-	1	1	-	
6	3	2	1	1	1	-	1	-	1	1	-	-	1	1	ı	
Overall Correlation	3	3	2	2	1	-	1	-	1	1	ı	-	1	1	-	

23AE042	COMPUTER AIDED DESIGN	L	T	P	C
	AND ANALYSIS	3	0	0	3

- To understand the concepts of modelling of 2D and 3D geometrical elements
- To gain the knowledge of concepts of computer graphics
- To explore the CAD Packages and its features.
- To explain the Indian standards on drawing practices and standard components.
- To learn the effects of real-world conditions on a part or assembly.

UNIT I INTRODUCTION

9

Introduction to CAD – I/O devices – various graphics standards – Coordinate systems – Geometric Modelling: Introduction – Types of geometric modelling – Wire frame – surface and solid modelling. Wireframe entities – Types of curves and its mathematical representation - Line- Circle- Ellipse-Parabola-Cubic spline- Bezier and B-spline (Only Basic treatment). Solid modelling entities - Solid modelling techniques- CSG and BREP - Operations performed in CSG and BREP - Extrude- Sweep - Linear and Nonlinear- Revolve.

UNIT II GRAPHIC CONCEPTS (2D and 3D)

9

Transformations - translation- scaling- reflection- rotation. Concatenated transformation. Inverse transformation. Hidden line removal - Z-Buffer algorithm- brief description of shading and Colour rendering techniques. Manipulation and editing of entities - Selection methods - Dragging - Clipping-Trimming-Stretching- Offsetting- Pattern- Copying- Deleting - Regenerating- Measuring. Brief description of animation- Types and Techniques.

UNIT III | SOFTWARE PACKAGES AND RECENT TECHNOLOGY

9

All about popular commercial solid modelling packages — Their salient features- technical comparison- Modules and Tools

available- Brief outline of Data exchange standards. Brief outline of feature technology - Classification of features- Design by features- Applications of features- Its advantages- and Limitations.

UNIT IV FEM FUNDAMENTALS

9

Introduction to finite element method - Principle- Steps involved in FEA - Nodes- element and their types- shape function-constraints, forces and nodal displacements-stiffness matrix- solution techniques. Analysis of spring element. Simple problems involving stepped bars subjected to axial loading and simple structural members for triangular element.

UNIT V | ANALYSIS

9

Stages of FEA in a CAD environment - Pre-processor- solver and postprocessor. Pre-processing - FEA modelling - Geometry generation- Node generation- Element generation- Boundary constraints-Load constraints- - Mesh generation and refining. Solving - Performing the actual analysis. Post processing - Types of 0/P available- interpretation of results. Demonstration of the above using any one popular commercial package. Other types of analysis: Brief outline of kinematical analysis-manufacturability analysis and simulation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Plan and read engineering drawings.
- CO2: Identify engineering objects and components from drawings.
- CO3: Utilize solid models created in computer.
- **CO4:** Analyze convection diffusion problems using FVM..
- CO5: Compare the relation between 2D drafting and 3D models.
- CO6: Choose the graphical models for further engineering applications

TEXT	г воок	S:														
1	Chairs	Mo	cma	hor	n ar	nd	Jim	mie	Bı	ow	ne,	"CA	ΑD	/ (CAl	M:
	Princip	les,	Pı	act	ice	an	d N	Mar	ufa	ctu	ring	M	anag	gen	nent	t",
	Prentice	е Н	all,	2nc	l Ed	l., 1	999									
2	Ibrahin	n Z	Zoid	l., '	'CA	D	/ (CA]	M,	The	eory	an	d F	rac	tic€	?",
	McGrav	w-F	Hill	Hig	her	Ed	uca	tior	n, 20	001						
REFI	RENCES: Padhalrichnan Parhingattil S Subramanyan and V															
1	Radhakrishnan, Pezhingattil, S. Subramanyan, and V.															
	Raju., "Cad/Cam/Cim", New Age International, 2008.															
2	Chandupatla and Bolagundu., "Introduction to Finite															
	Element Methods in Engineering", Pearson Education															
	India, 4	India, 4th Ed., 2015.														
3	Mikell P. Groover, "CAD/CAM: Computer-Aided Design															
	and Manufacturing", PHI, 2003.															
4	Govil-Pai, Shalini. "Principles of Computer Graphics:															
	Theory	an	d P	ract	ice	Usi	ng	Op	enC	GL a	nd I	May	'n".	Spi	ing	er
	Science	&	Bus	ines	ss N	led:	ia, 2	2004	A).					П		
	70-		N				P	Os	7		339			I	PSC)s
1	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 SINEER	3	2	2	2	2	LE	2	: 0	2	3	HIN	QL	3	2	-
	2	3	2	2	1	2	VIED.	2	NNA	2	3	Y	UIO	2	2	-
	3	3	2	2	1	2	-	2	-	2	3	-	-	2	2	-
	4	3	3	2	2	2	-	2	-	2	3	-	-	2	2	-
	5	3	3	2	2	2	-		-	2	3	-	-	2	2	-
	6	3	2	1	1	3	-	2	-	2	3	-	-	2	3	-
Ov	erall	2	2	2	2	2		2		2	2			2	2	
Corr	elation	3	3	2	2	3	-	2	-	2	3	_	-	2	3	-

23AE043	GRID GENERATION	L	T	P	C
	TECHNIQUES	3	0	0	3

- To make students understand the need for grid generation for numerical solutions.
- To impart the exposure to both structured and unstructured grid generation methods.
- To impart knowledge on the areas of application and on the implementation methods for structured and unstructured grid generation techniques.
- To expose the students on the benefits of adaptive meshing and its methodology
- To impart training to students on the control of grid quality.
- To apply Best Practices in Grid Generation techniques for steady flows.

UNIT I BASIC ASPECTS IN GRID GENERATION

Methodology of grid generation- classification of grid generation techniques – Structured, Unstructured and Hybrid grids and their characteristic features – Areas of application – Geometry related issues for grid generation – Grid or mesh topology – Conformal Mapping-Domain decomposition with multi blocking.

UNIT II | STRUCTURED GRID GENERATION 9

Algebraic methods for structured grid generation – Use of blending functions for grid generation- Use of partial differential equations for structured grid generation – Elliptic schemes for structured grid generation – Implementation of boundary conditions for smooth grid generation – Variational methods – Applications – A brief introduction to hyperbolic schemes for grid generation.

UNIT III UNSTRUCTURED GRID GENERATION 9 Use of triangular, quadrilateral and tetrahedral grids/meshes - Concept of dual mesh - Connectivity

Information and data structure in unstructured grid generation – Hierarchy in unstructured grid Generation – Composite grid schemes in unstructured grid generation – Moving front technique- Delaunay base method – Octree approach.

UNIT IV ADAPTIVE MESHING

9

Description of adaptive mesh refinement – Adaption control – Strategies for mesh adaption- Solution gradient based adaption – Discretization error and Recovery based adaption – r adaption, h adaption and p adaption methods – Elementary concepts in dynamic meshing and mesh motion – Role of adaptive meshing in solution accuracy and convergence.

UNIT V GRID QUALITY AND QUALITY CONTROL

9

A brief description of metrics for grid quality – Aspect ratio – Orthogonality – Skewness – Warpage- Jacobian- Best practices for grid quality and grid control – mesh/grid quality aspects in surface meshing – Volume meshing and quality check – Grid quality aspects in boundary layer flows – Prismatic layers – Quality control in hybrid mesh transition – guideline for checking mesh quality and control.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the basic principles of grid generation and its application in aerospace industry.
- CO2: Solve multi-block grid designs of computational domain in aerospace related problems.
- CO3: Solve structured grid designs and be able to take decisions on selection of suitable grid blocks for the computational domains in aerospace applications.
- CO4: Solve unstructured grid designs and be able to take decisions on selection of suitable grid blocks for the computational domains in aerospace applications.

- CO5: Apply adaptive meshing methods for better management of computer resources and cost effective solutions in aerospace engineering.
- CO6: Apply skills in ensuring the good quality of grid that is essential to get reasonably accurate numerical solutions for complex aerospace engineering problems

TEXT BOOKS:

- 1 Fletcher, Clive AJ. "Computational techniques for fluid dynamics: Specific techniques for different flow categories". Springer Science & Business Media, 2012...
- **2** Liseikin, Vladimir D. "Grid generation methods". Vol. 1. Berlin: Springer, 1999.

REFERENCES:

- 1 Chung T. J., "Computational Fluid Dynamics", Cambridge University Press; 2nd edition, 2010.
- 2 Patrick Knupp & Stanly Steinberg, "Fundamentals of Grid Generation" CRC Press 1st edition 1993.
- Wersteeg H.K. and Malalsekera W. "An Introduction to Computational Fluid Dynamics, The Finite Volume Method", PHI; 2nd edition 2007.
- 4 John F Wendt, "Computational Fluid Dynamics An Introduction", 3rd Edition, Springer- Verlag, Berlin Heidelberg, 2009.

COs						P	Os						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	1	1	-	1	-	1	1	1	ı	2	1	1
2	3	2	1	1	1	-	-	1	1	1		ı	3	1	1
3	3	2	1	1	1	-	1	-	2		1	1	3	1	1
4	3	2	2	1	1	1	-	1	1	1	1	1	3	1	1
5	3	2	1	1	1	-	-	-	1	-	-	1	3	1	1
6	3	2	1	1	1	1	1	-	1	1	-	1	3	1	1
Overall Correlation	3	2	2	1	1	1	1	1	2	1	1	1	3	1	1

23MT042	COMPUTER INTEGRATED	L	T	P	C
	MANUFACTURING	3	0	0	3

- To provide the overview of evolution of automation, CIM and its principles.
- To learn the various Automation tools, include various material handling system.
- To train students to apply group technology and FMS.
- To familiarize the computer aided process planning in manufacturing.
- To introduce to basics of data transaction, information integration and control of CIM.

UNIT I | INTRODUCTION

9

Introduction to CAD, CAM, CAD/CAM and CIM - Evolution of CIM - CIM wheel and cycle - Production concepts and mathematical models - Simple problems in production models - CIM hardware and software - Major elements of CIM system - Three step process for implementation of CIM - Computers in CIM - Computer networks for manufacturing - The future automated factory - Management of CIM - safety aspects of CIM- advances in CIM.

UNIT II | AUTOMATED MANUFACTURING SYSTEMS |

Automated production line - system configurations, work part transfer mechanisms - Fundamentals of Automated assembly system - System configuration, Part delivery at workstations -Design for automated assembly - Overview of material handling equipments - Consideration in material handling system design - The 10 principles of Material handling. Conveyor systems - Types of conveyors - Operations and features. Automated Guided Vehicle system Types &applications - Vehicle guidance technology - Vehicle management and safety. Storage system performance - storage location strategies - Conventional storage methods and equipments - Automated storage/Retrieval system and Carousel storage system Deadlocks in Automated manufacturing systems – Petrinet models – Applications in Dead lock avoidance – smart manufacturing – Industry 4.0 - Digital manufacturing – Virtual manufacturing.

UNIT III | GROUP TECHNOLOGY AND FMS

9

Part families – Visual – Parts classification and coding – Production flow analysis – Grouping of parts and Machines by rank order clustering method – Benefits of GT – Case studies. FMS – Components – workstations – FMS layout configurations – Computer control systems – FMS planning and implementation issues – Architecture of FMS – flow chart showing various operations in FMS – Machine cell design – Composite part concept, Holier method, Key machine concept – Quantitative analysis of FMS – Bottleneck model – Simple and complicated problems – Extended Bottleneck model – sizing the FMS – FMS applications, Benefits.

UNIT IV PROCESS PLANNING

9

9

Process planning – Activities in process planning, Informations required. From design to process planning classification of manufacturing processes – Selection of primary manufacturing processes – Sequencing of operations according to Anteriorities – various examples – forming of Matrix of Anteriorities – Case study. Typical process sheet – case studies in Manual process planning. Computer Aided Process Planning – Process planning module and data base – Variant process planning – Two stages in VPP – Generative process planning – Flow chart showing various activities in generative PP – Semi generative process planning- Comparison of CAPP and Manual PP.

UNIT V PROCESS CONTROL AND DATA ANALYSIS

Principle, Interaction of X-Ray with matter, Imaging, Film and Film less techniques, types and use of filters and screens, Geometric factors, Inverse square law, characteristics of films - Graininess, density, Speed, Contrast, Characteristic curves. Penetrameters, Exposure charts, Radiographic equivalence.

Fluor	oscopy- Xero-Radiography, Digital Radiography.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Interpret the basics of computer aided engineering.
CO2:	Choose appropriate automotive tools and material
	handling systems.
CO3:	Summarize the overview of group technology, FMS and
	automation identification methods.
CO4:	Apply the concepts of computer aided process planning
	for manufacturing of various components.
	Interpret computer process control techniques.
	Illustrate the overview of data identification methods.
TEXT	BOOKS:
1	Shivanand H K, Benal M M and Koti V, Flexible
	Manufacturing System, New Age, 2016.
2	August-Wilhelm Scheer, "CIM: Computer Integrated
Δ.	Manufacturing: Computer Steered Industry", Springer-
	Verlag, Second edition, 2012.
REFE	RENCES:
1	A lavudeen and Venkateshwaran, Computer Integrated
	Manufacturing, PHI Learning Pvt. Ltd., New Delhi, 2013.
2	Gideon Halevi and Ronald D. Weill, Principles of Process
	Planning ^I , Chapman Hall, 1995.
3	James A. Retrg, Herry W. Kraebber, Computer Integrated
	Manufacturing, Pearson Education, Asia, 3rdEdition,
	2004.
4	Mikell P. Groover, Automation, Production system and
	Computer integrated Manufacturing, Prentice Hall of
	India Pvt. Ltd., 4thEdition, 2014.
5	Radhakrishnan P, Subramanian S and Raju V,
	CAD/CAM/CIM, New Age International Publishers, 3rd
	Edition, 2008.

COs						P	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	-	-	1	1	-	1	-	-	-	1	2	1	1	
2	2	1	-	-	1	1	-	1	-	-	-	1	2	1	1	
3	2	1	-	-	1	1	-	1	-	-	-	1	2	1	1	
4	3	2	1	-	1	1	-	1	-	-	-	1	2	1	1	
5	2	1	-		1	1	-	1	-	1	-	1	2	1	1	
6	2	1	-	-	1	1	-	1	-	-	-	1	2	1	1	
Overall Correlation	3	2	1	-	1	1	-	1	-	-	ı	1	2	1	1	

23AE044	BOUNDARY LAYER THEORY	L	T	P	C
		3	0	0	3

- To acquaint students with the fundamental concepts in boundary layer flow and with the governing equations of viscous flow
- To make students familiarize with obtaining analytical solutions for low speed viscous flow problems commonly found in engineering applications
- To introduce the basic concepts in laminar boundary layer theory and its applications in engineering to students
- To elucidate students on the complex phenomenon in turbulent boundary layer theory and turbulence modelling
- To make students knowledgeable on the techniques used for boundary layer control.

UNIT I FUNDAMENTAL EQUATIONS OF VISCOUS 9 FLOW

Fundamental equations of viscous flow- Conservation of mass, momentum equations- Navier-Stokes equations- Energy equation- Mathematical character of basic equations- Dimensional parameters in viscous flow- Non - dimensional the basic equations and boundary conditions- Vorticity considerations-Creeping flow and Boundary layer flow.

UNIT II	SOLUTIONS OF VISCOUS FLOW	9
	EQUATIONS	

Solutions of viscous flow equations- Couette flows- Hagen-Poisuelle flow- Flow between rotating concentric cylinders-Combined Couette-Poiseuille Flow between parallel plates-Creeping motion- Stokes solution for an immersed sphere-Development of boundary layer- Displacement thickness, Momentum and Energy thickness.

l	UNIT III	LAMINAR BOUNDARY LAYER	9
I	Laminar 1	ooundary layer equations- Flat plate Integral anal	ysis

of Karman – Integral analysis of energy equation – Laminar boundary layer equations – Boundary layer over a curved body-Flow separation- Similarity solutions, Blasius solution for flat-plate flow, Falkner-Skan wedge flows, Boundary layer temperature profiles for constant plate temperature –Reynold's analogy –Pohlhausen method.

UNIT IV TURBULENT BOUNDARY LAYER

9

Turbulence-physical and mathematical description, Two-dimensional turbulent boundary layer equations — Velocity profiles – The law of the wall – The law of the wake – Turbulent flow in pipes and channels – Turbulent boundary layer on a flat plate – Boundary layers with pressure gradient, Eddy Viscosity and mixing length.

UNIT V | BOUNDARY LAYER CONTROL

9

Boundary layer control in laminar flow-Methods of Boundary layer control: Acceleration of the boundary layer-Suction-Injection of a different gas-Prevention of transition - Cooling of the wall Boundary layer suction- Practical examples of Boundary Layer Control.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Apply fundamental equations of the viscous flow for practical examples.
- **CO2:** Analyze the viscous flow problems for solutions.
- CO3: Explain the importance of viscosity and shear flow adjacent to the airframe of the aerospace vehicles.
- CO4: Analyze the phenomena of flow separation and the solutions for laminar boundary layers, such as Blasius solutions and Falkner–Skan wedge flows.
- CO5: Examine turbulent flow behavior in pipes, channels, and flat plates to understand the effects of different flow conditions.

CO6	CO6: Analyze the Boundary layer control in laminar flow													w		
	F BOOK		ic D	oui	iaai	y IC	i y Ci			/1 11	I	iiiu	1 110			
1			1 .	3.1		. 1	T	1.	N 1	. 1 .	1 !	// \	7:		ď	: 1
1	White,					-		-		,			'ISCC	ous	flu	1a
	flow".															
2	A.J. R	eyn	old	s, "	'Tuı	rbul	lent	flc	ws	in	Eng	gine	erin	g",	Joh	ın
	Wiley &	Wiley & Sons, 1980.														
REFE	ERENCES:															
1	Schlichting, Hermann, and Klaus Gersten. "Boundary-															
	layer th	layer theory". Springer, 2016.														
2	Panton	Panton, Ronald L. "Incompressible flow". John Wiley &														
	Sons, 2	Sons, 2024.														
3	Tuncer			i an	ıd P	ete	r Br	ads	hav	v, "	Moı	men	tum	tra	nsf	er
	in bour															
	1977.		-) -)	,			F				0	1			/
	OWER	Do					P	Os		-				I	SO)c
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
-/-	1	3	2	1	1	1		1	J	1	1		14	1	1	-
	2	3	3	2	2	1	-	1	4	1	1	-		1	1	
	123	_	17/		2	_	-		-	-		-	-	_	_	-
	3	2	1	7	-	1	i.	1	- 0	1	1		Ō.	1	1	-
	4 NEER	3	3	2	2	1	- 1	1	. <u>.</u>	1	1		7	1	1	-
	5	3	3	2	2	1	VIII-ESC	1	<u>-</u>	1	1			1	1	-
	6	3	3	2	2	1	_	1	_	1	1	_		1	1	-
Ov	erall	3	3	2	2	1		1		1	1			1	1	
Corr	elation	3	3	_	_	1	-	1	-	1	1	_	_	*	*	-

23AE045	PROGRAMMING TOOLS IN	L	T	P	C
	AEROSPACE ENGINEERING	3	0	0	3

- To grasp the basics of programming languages commonly used in aerospace engineering.
- To acquire knowledge of numerical methods essential for aerospace applications, such as root finding, numerical integration, and differential equations solving.
- To learn data analysis techniques and libraries, enabling them to process and interpret aerospace-related datasets effectively.
- To gain an understanding of computational fluid dynamics (CFD) principles and their applications in aerospace engineering.
- To earn the importance of high-performance computing (HPC) in aerospace engineering simulations and understand the basics of parallel computing.
- To enhance their problem-solving abilities and analytical thinking in the context of aerospace engineering.

UNIT I INTRODUCTION

9

Overview of programming languages, Basics of programming: Variables, Data Types, Operators, Control Structures - Loops, Conditionals, Functions, and Arrays. Basic Aerodynamics in Python.

UNIT II NUMERICAL METHODS

9

Introduction to numerical methods - Root finding, Numerical integration, Differential equations solving , Aerospace applications such as Orbit determination, Flight dynamics, and Propulsion system analysis, Case studies in aerospace engineering.

UNIT III DATA ANALYSIS AND VISUALIZATION

Ç

Data analysis techniques and libraries in programming languages - NumPy, Pandas, Visualization techniques for aerospace engineering data - Plotting trajectories, 3D

visualization of aircraft models, Statistical analysis methods commonly used in aerospace engineering - Regression analysis, hypothesis testing.

UNIT IV COMPUTATIONAL FLUID DYNAMICS (CFD) 9

Introduction to computational fluid dynamics, Basics of CFD: governing equations, discretization methods-Finite difference, Finite volume, finite element, Turbulence modeling, CFD software packages-ANSYS Fluent, Open FOAM- Case studies aerospace-related fluid flow problems -Airfoil analysis, Aircraft aerodynamics.

UNIT V INTRODUCTION TO HIGH-PERFORMANCE 9 COMPUTING (HPC)

Importance of high-performance computing (HPC) in aerospace engineering simulations, Basics of parallel computing: Parallel architectures, Parallel programming models-MPI, OpenMP, HPC resources - Supercomputers, Cloud computing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Demonstrate Proficiency in Programming Fundamentals.
- CO2: Apply Numerical Methods to Aerospace Engineering Challenges.
- **CO3:** Analyze and Visualize Aerospace Data Effectively.
- CO4: Develop Computational Fluid Dynamics (CFD) Simulations.
- CO5: High-Performance Computing (HPC) Techniques for Aerospace Simulations.
- CO6: Solve Complex Aerospace Engineering Problems

TEXT BOOKS:

1 Kenan A. "Python for Mechanical and Aerospace Engineering". Alex Kenan; 2021.

2 Dorfman M, Anderson C, "Aerospace software engineering: a collection of concepts". American Institute of Aeronautics and astronautics; 1991.

REFERENCES:

- Computational tools and facilities for the next-generation analysis and design environment. Vol. 3346. National Aeronautics and Space Administration, Langley Research Center, 1997.
- Rizzi A, Oppelstrup J. Aircraft aerodynamic design with Computational Software. Cambridge University Press; 2021.
- 3 Matthews C. Aeronautical engineer's data book. Elsevier; 2001.
- 4 Cummings RM, Mason WH, Morton SA, McDaniel DR. Applied computational aerodynamics: A modern engineering approach. Cambridge University Press; 2015.

COs					7	P	Os			-	. \		I	PSC)s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	. 1	-	2	-	-	-	-	1	1	2	2	2	-
2 GINEER	3	2	1	1	1	LE	le).	: 0	-1	1	HIN	2	2	1	-
3	3	3	2	2	2	1	1	NNA	OND	EHSI	1	1	2	2	-
4	3	2	1	1	1	-	-	2	-	ı	1	1	2	1	2
5	3	2	1	1	2	1	-	2	1	1	2	2	2	2	2
6	3	2	2	1	2	1	1	-	-	-	1	1	2	2	-
Overall Correlation	2	2	1	1	2	1	1	1	1	1	1	2	2	2	1

VERTICAL 3- AERODYNAMICS AND PROPULSION

23AE046	EXPERIMENTAL	L	T	P	C
	AERODYNAMICS	3	0	0	3

COURSE OBJECTIVES:

- To learn the basic measurement technique in Fluid mechanics.
- To provide extensive treatment of the operating principles and limitations of pressure and temperature measurements.
- To cover both operating and application procedures of hot wire anemometer.
- To describe flow visualization techniques and to highlight in depth discussion of analog methods.
- To understand the importance of special flows and error analysis

UNIT I BASIC MEASUREMENTS IN FLUID 9 MECHANICS 9

Objective of experimental studies – Fluid mechanics measurements – Properties of fluids – Measuring instruments – Performance terms associated with measurement systems – Direct measurements - Analogue methods – Flow visualization – Components of measuring systems – Importance of model studies.

UNIT II WIND TUNNEL MEASUREMENTS 9

Characteristic features, operation and performance of low speed, transonic, supersonic and special tunnels - Power losses in a wind tunnel - Instrumentation and calibration of wind tunnels - Turbulence- Wind tunnel balance - Wire balance - Strut-type - Platform-type - Yoke-type - Pyramid type - Strain gauge balance - Balance calibration.

UNIT	FLOW VISUALIZATION AND ANALOGUE	9
III	METHODS	

Visualization techniques – Smoke tunnel – Hele-Shaw apparatus - Interferometer – Fringe- Displacement method – Schlieren system – Shadowgraph - Hydraulic analogy – Hydraulic jumps – Electrolytic tank.

UNIT PRESSURE, VELOCITY AND TEMPERATURE 9 IV MEASUREMENTS

Pitot - static tube characteristics - Velocity measurements - Hotwire anemometry - Constant current and Constant temperature Hot-Wire anemometer - Pressure measurement techniques -Pressure transducers - Temperature measurements.

UNIT V SPECIAL FLOWS AND UNCERTAINTY 9 ANALYSIS 9

Experiments on Taylor-Proudman theorem and Ekman layer – Measurements in boundary layers - Data acquisition and processing – Signal conditioning – Uncertainty analysis – Estimation of measurement errors – External estimate of the error – Internal estimate of the error – Uncertainty calculation – Uses of uncertainty analysis.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the knowledge on measurement techniques in aerodynamic flow.
- CO2: Analyse the Lift and drag measurements through various techniques in wind tunnel
- CO3: Apply the flow visualization technique to study flow pattern of aerodynamic model.
- CO4: Illustrate the Specific instruments for flow parameter measurement like pressure, velocity
- CO5: Apply the Wind tunnel boundary corrections and Scale effects
- **CO6:** Identify the internal errors and uncertainty calculation

TEXT BOOKS:

1 Rathakrishnan, E., "Instrumentation, Measurements, and Experiments in Fluids," CRC Press – Taylor & Francis, 2007.

2 Northrop, Robert B. "Introduction to instrumentation and measurements". CRC press, 2018.

REFERENCES:

- 1 Bradshaw, Peter. "Experimental Fluid Mechanics: Thermodynamics and Fluid Mechanics Division". Elsevier, 2016...
- 2 Pope, A., and Goin, L., "High Speed Wind Tunnel Testing", John Wiley, 1985.
- Jewel B. Barlow, William H. Rae, Jr. Alan Pope, "Low-Speed Wind Tunnel Testing", 3rd Edition, John Wiley & Sons, Inc, 1999.

COs						P	Os						PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	2	1	- ,	1	-		-	-	-	-	- 1	2	-	-	
2 POWE	3	3	2	1	3	zá	/-	-1	,=	~	D-	6	3	3	-	
3	3	2	1	1	1		-	-	_	-	- (-	3	1	-	
4	3	2	1	1	3	7	¥	7	1	-4	1	7	2	3	-	
5	3	2	1	1	_	-		1.	1	_333	-	1	3	-	-	
6	3	2	<u>-</u> 1/	1	1	-	-	-		÷	-	- (3	1	-	
Overall Correlation	3	2	2	1	2	ATE	2 E	U B	ul a ni	VERIS		50	3	2	-	

23AE047	HIGH-SPEED AERODYNAMICS	L	T	P	C
		3	0	0	3

- To get insight into the basic aspects of compressible flow.
- To arrive at the shock wave and expansion wave relations.
- To get exposure on potential equation for 2-dimensional compressible flow.
- To get knowledge on high-speed flow over aerofoils, wings and airplane configuration.
- To gain basic knowledge on low and high-speed gas properties.

UNIT I FUNDAMENTAL ASPECTS OF 9 COMPRESSIBLE FLOW

Compressibility, Continuity, Momentum and energy equation for steady one-dimensional flow- compressible Bernoulli's Equation-Calorically perfect gas, Mach Number, Speed of sound, Area – Mach number – Velocity relation, Mach cone, Mach angle, One dimensional Isentropic flow through variable area duct, Static and Stagnation properties, Critical conditions, Characteristic Mach number, Area-Mach number relation, Maximum discharge velocity.

UNIT II SHOCK AND EXPANSION WAVES

9

Normal shock relations, Prandtl's relation-Hugoniot equation, Raleigh Supersonic Pitot tube equation-Moving normal shock waves, Oblique shocks, θ - β -M relation, Shock Polar, Reflection of oblique shocks, left running and right running waves-Interaction of oblique shock waves, slip line, Rayleigh flow, Fanno flow, Expansion waves, Prandtl-Meyer expansion, Maximum turning angle, Simple and non-simple regions, operating characteristics of Nozzles, under expansion, over expansion.

UNIT III	TWO-DIM	IENS	IONAL COMPR	ESSIBLE FLOW	9
Potential	equation	for	2-dimensional	compressible	flow,

Linearization of potential equation, perturbation potential, Linearized Pressure Coefficient, Linearized subsonic flow, Prandtl- Glauert rule, Linearized supersonic flow, Method of characteristics.

UNIT IV HIGH-SPEED FLOW OVER AIRFOILS, WINGS AND AIRPLANECONFIGURATION

Critical Mach number, Drag divergence Mach number, Shock Stall, Supercritical Airfoil Sections, Transonic area rule, Swept wing, Airfoils for supersonic flows, Lift, drag, Pitching moment and Centre of pressure for supersonic profiles, Shock expansion theory, wave drag, supersonic wings, Design considerations for supersonic aircrafts.

UNIT V CHARACTERIZATION OF HIGH SPEED 9 FLOWS

Shock-Boundary layer interaction, Wind tunnels for transonic, Supersonic and Hypersonic flows, Shock tube, Gun tunnels, Supersonic flow visualization, Introduction to Hypersonic Flows.

TOTAL: 45 PERIODS

9

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the effect of compressibility at high-speeds and to make intelligent design decisions based on this understanding.
- **CO2:** Compare the shock waves and expansion waves.
- CO3: Solve 2D compressible flows.
- CO4: Analyze the method of characteristics of a supersonic 2 Dimensional CD nozzle design.
- CO5: Estimate the high speed flow over airfoils and wings for an aircraft.
- CO6: Classify different types of flows and their applications.

TEXT BOOKS:

Anderson, J. D, "Modern Compressible Flow: With Historical Perspective" McGraw-Hill Education; 3rd edition, 2003.

2	Rathak	rish	nar	1. E	, "(Gas	Dy	nar	nics	s",]	Pren	tice	-Ha	11 o	f In	dia
	Pvt., Lt	d, 2	2008													
REFI	REFERENCES:															
1	Oosthu	izeı	n,P.	Н.,	&	Car	sca	ller	ı,W.	E.,	"Co	mp	ress	ible	F1	uid
	Flow",	Flow", CRC Press; 2nd edition (July 22, 2013).														
2	Shapiro, A. H., "Dynamics and Thermodynamics of															
	Compressible Fluid Flow", Ronald Press, 1982.															
3	Zucrow, M. J. and Anderson, J. D., "Elements of Gas															
	Dynamics", McGraw- Hill &Co., 1989.															
	COs						P	Os							PSC	Os
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	2	1	1	1	1	1	-	1	1	2	3	1	1
	2	3	2	2	1	1	1	1	1	-	1	1	2	3	1	1
	3	3	2	1	-	1	- 2	-	-	1	1	ı	1	2	1	ı
	4 POWER	3	3	2	2	2	4	-	A	1	7	ř	1	2	2	ı
	5	3	3	3	2	3	1	1	1	-	1	1	2	2	3	1
Y	6	3	3	2	1	3	1	1	1	1	1	1	2	2	3	1
370	verall elation	3	3	2	2	2	1	1	1	-	1	1	2	3	2	1

ACERTATED TO ANNA UNIVERSITY | ALTONOMOUS

23AE048	INDUSTRIAL AERODYNAMICS	L	T	P	C
		3	0	0	3
COURSE OBJ	ECTIVES:				
• To lear	n the concepts of non-aeronautical usa	ages	of		
aerody	namics.				
• To intr	oduce the topic of wind energy collect	ors.			
• To imp	art concepts of analysing vibrations d	urin	ıg fl	ow	
• To lear	n the concepts of Atmospheric bound	ary l	laye	er.	
To intr	oduce the basics of Flow induced vibr	atio	ns.		
UNIT I AT	MOSPHERE				9
Types of wind	ds - Causes of variation of winds -	4tm	osp	her	ic
boundary laye	r- Effect of terrain on gradient height	-Strı	actu	ıre	of
turbulent flow	s.				
UNIT II WI	ND ENERGY COLLECTORS	-			9
Horizontal axi	s and vertical axis machines- Power	co	effic	cier	ıt-
Betz coefficien	t by momentum theory			-11	
UNIT III VE	HICLE AERODYNAMICS				9
Power requir	ements and drag coefficients of a	uto	mo	bile	s-
Effects of c	ut back angle-Aerodynamics of	trai	ns	ar	nd
Hovercraft.	COLLEGE OF TECHN	OL	U	3 Y	
UNIT IV BU	ILDING AERODYNAMICS	0101	e-Cont	102	9
Pressure distr	ibution on low rise buildings- Win	d fo	orce	es c	on
buildings- Env	ironmental winds in city blocks- Spec	ial p	orob	olen	ns
of tall buildi	ngs- Building codes- Building ven	tilat	ion	ar	nd
architectural a					
	OW INDUCED VIBRATIONS				9
	nolds number on wake formation of b		sh	ape	s-
Vortex induced	d vibrations- Galloping and stall flutte				
	TOTAL:	45 F	PER	IOI	DS
COURSE OUT					
	npletion of the course, the students wi				
	the aerodynamics for non- aerodynar vehicle, building.	nic s	stru	ctu	re
	the problems and able to analyza	e vi	ibra	tio	าร

	during	flo	w													
CO3:								our	ıdaı	y la	ayer	and	app	lica	atio	ns
	of wind															
CO4:	· · · · · · · · · · · · · · · · · · ·															
	of flow induced vibrations.															
CO5:																
		flow induced vibrations.														
CO6:		Analyse the aerodynamics of bluff shapes and problems														
	of vort		ndı	ıcec	d vi	brat	tion	S								
	BOOK		. 1\	// 4						_	1					
1	Sovran															
		bluff bodies and Road vehicles", Plenum press, New														
2		York, 1978.														
_	1978.	Sachs. P., "Winds forces in Engineering", Pergamon Press,														
REEL	REFERENCES:															
1	Blevins. R.D., "Flow Induced Vibrations", Van Nostrand,															
-	1990.	<i>,</i> 10	D.,		1011	1	duc	ca	10	Idti	OHO	' Y			.Iui.	α,
2	Calvent. N.G., "Wind Power Principles", Charles Griffin															
	& Co.,						1		1		-1	•				l.
3	Cook I	N J,	, "I)esi	gn	Gui	ides	to	wi	nd	loac	ling	of b	ouil	din	gs
	structu	res	. Pa	rt I	& I	I", I	3utt	erv	vort	hs,	don	, 199	90.		cv	
4	Tom	La	wso	on,	"I	Buil	din	g	Ae	rod	yna	mics	,",	Im	peri	al
	College	e Pr	ess	Lo	ndo	n, 1	st e	dit	ion,	200)1.		1010	* Crist	003	
(Cos			1	1	•		Os							PSC	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	-	2	-	-	-	-	-	-	-	2	2	-
	2	3	2	1	1	2	-	-	-	-	-	-	-	2	2	-
3		3	2	1	1	2	-	-	-	-	-	-	-	2	2	-
4		3	3	2	2	2	-	-	-	-	-	-	-	2	2	-
5		3	3	2	2	2	-	-	-	-	-	-	-	2	2	-
0-	6 verall	3	3	2	2	2	-	-	-	-	-	-	-	2	2	-
		3	3	2	2	2	-	-	-	-	-	-	-	2	2	-
Correlation		<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>							

23AE049	ROCKET PROPULSION	L	T	P	C
		3	0	0	3

- To make students understand the basic operating principle of rocket propulsion.
- To make students understand the parameter required to estimate the performance of Rockets.
- To impart knowledge to students on different types of rocket propulsion systems.
- To learn the concepts of rocket propulsion applications and disadvantages.
- To expose the students to the methods of multi-staging of rocket vehicles.
- To understand the technologies for rocket control using aerodynamic and jet control means.

UNIT I INTERNAL BALLISTICS OF ROCKETS 9

Reaction principle – Rocket performance parameters – specific impulse – Schematic diagrams of solid, liquid and hybrid rocket propulsion systems – Equilibrium chamber pressure – Thrust equation – Characteristic velocity and thrust coefficient – Rocket performance assessment.

UNIT II | SOLID ROCKET PROPULSION

9

Selection criteria of solid propellants – Types of solid propellants – Propellant ingredients – Solid propellant regression rate and factors influencing the regression rate – Solid propellant grain configurations – Progressive, regressive and neutral burning of grains- Solid rocket igniters – Basics of solid propellant combustion and combustion instability – Erosive burning – Pressure and regression rate relationship.

UNIT III | LIQUID ROCKET PROPULSION

9

Types of liquid propellant combinations - Gas pressure and turbopump fed pressurization systems for liquid propellant rockets - Liquid rocket injectors and water testing - Liquid rocket cooling methods – Basic aspects of thrust chamber design – Thrust control – Advantages of liquid rockets over solid rockets – Combustion instability – Cryogenic rocket engines – Propellant slosh.

UNIT IV HYBRID ROCKET PROPULSION

9

Standard and reverse hybrid systems – Combustion mechanism in hybrid rockets –Limitations and applications of hybrid rockets – Solid grain configurations in hybrid rockets-Solid grain regression rate behaviour along the grain length - Local regression rate estimation – Material combinations for hybrid rocket propellants- Estimation of hybrid rocket performance – Performance comparison with solid and liquid rocket systems.

UNIT V | STAGING AND STEERING OF ROCKETS

9

Need for multi-staging of rocket vehicles – Different types of multi-staging - Staging optimization methods – Estimation of staging performance – Stage separation methods in the atmosphere and in space -Steering methods for rockets – Aerodynamic control based steering – Types – Merits and limitations – Jet control based steering – Thrust vector control methods – Merits and Limitations of these methods.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the basic principles and develop an interest in joining the aerospace industry as a scientist/engineer.
- CO2: Develop skills and apply them for conceptual designs of rocket propulsion systems as a design team member.
- CO3: Evaluate the performance parameters of rocket propulsion systems and suggest alternate designs if needed.
- CO4: Describe the advanced technology concepts like cryogenic rocket technology and be able to create preliminary designs of solid-cryogenic multi-stage configurations.
- CO5: Summarize the acquired knowledge and apply the skills

	in the p	reli	imiı	narv	y de	esig	n of	f ro	cke	t su	bsys	tem	ıs.			
CO6:	Explain															
	EXT BOOKS:															
1	David	David H. Heiser and David T. Pratt., "Hypersonic Air														
		Breathing Propulsion", AIAA Education Series, 1999.														
2		Sutton, G.P., "Rocket Propulsion Elements", Wiley, New														
		York, 9th Ed., 2017.														
REFE	RENCE	S:														
1	Martin	J. C	Chia	ver	ini	anc	l Ke	enn	eth	K .	Kuo	, "F	und	amo	enta	als
	of Hyb	rid	Roo	cket	: Co	omb	ust	ion	an	d P	ropı	ılsic	on",	Pro	gre	ess
	in Astro	of Hybrid Rocket Combustion and Propulsion", Progress in Astronautics and Aeronautics, 2007.														
2	Ramam	urt	hi	K	,	"Ro	cke	et	Pro	opu	lsio	n",	Ma	acm	rillia	an
	publishers India Ltd, 1st edition, 2010.															
3	Mathur	Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and														
	Rocket Propulsion", Standard Publishers & Distributors,															
	Delhi, 2nd edition 2014.															
4	H. S. Mukunda " Understanding Aerospace Chemical															
	Propulsion", Krishan Makhijani Publishers Pvt. Ltd, 2017.															
	COs	1	1	./			F	Os						I	PSC)s
	WEER	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	-200	1	1	107	1	USU.	VERSI	10010	1010	2	1	1
	2	3	2	1	1	1	1	-	1	-	-	-	-	2	1	1
	3	3	3	3	2	1	1	-	1	-	-	-	-	2	1	1
	4	2	1	1	1	1	1	-	1	-	-	-	-	2	1	1
	5	2	1	1	1	1	1	-	1	-	-	-	-	2	1	1
	6	2	1	1	1	1	1	-	1	-	-	_	-	2	1	1
	erall	2	1	1	1	1	1	-	1	-	-	-	-	2	1	1
Corr	elation								•					_		_

23AE050	ADVANCED PROPULSION	L	T	P	C
	SYSTEMS	3	0	0	3

- To impart knowledge on the basic concepts of space propulsion.
- To learn about the physics of ionized gases.
- To get familiarize with the types of nuclear rockets and the basic concepts of nuclear propulsion systems.
- To study about the radioisotope propulsion.
- To realize the importance of advanced space propulsion concepts.

9

• To develop skills in Propulsion System Analysis.

UNIT I INTRODUCTION TO SPACE PROPULSION SYSTEMS

Historical outline- Scramjet Propulsion-Scramjet Inlets- Scramjet Performance- Chemical rocket Propulsion - Tripropellants - Metalized Propellants - Free Radical Propulsion- Electric Propulsion- Micro propulsion - Micro Propulsion Requirements- MEMS and MEMS- Hybrid Propulsion Systems.

UNIT	BASIC CONCEPTS OF IONIZED GASES	9
II	AFFILIATED TO ANNA UNIVERSITY AUTONOMO	15

Electromagnetic theory- electric charges and fields- currents and magnetic fields- and applications to ionized gases - Atomic structure of gases - Ionization processes - Particle collisions in an ionized gas - Electrical conductivity of an ionized gas - Kinetic Theory, Introduction to plasma physics-Electrode phenomena.

UNIT NUCLEAR ROCKET PROPULSION 9 III

Nuclear Rocket Engine Design and Performance - Types of Nuclear Rockets - Overall Engine Design- Nuclear Rocket Performance - Component Design - Nuclear Rocket Reactors -General Design Considerations - Reactor Core Materials -Thermal Design - Mechanical Design - Nuclear Design -Shielding, Nuclear Rocket Nozzles - General Design Considerations - Heat-Transfer Analysis - Over- all Problem - Hot-Gas Boundary - Cold-Gas Boundary.

UNIT	RADIOISOTOPE PROPULSION	9
IV		

Alternative Approaches - Direct Recoil Method - Thermal Heating Method - Basic Thruster Configurations - Propulsion System and Upper Stage - Relative Mission Capabilities - Primary Propulsion - Auxiliary Propulsion - Thruster Technology - Design Criteria - Performance, Safety - Heat Source Development - Radioisotope Fuel - Capsule Technology - General Considerations - Thermal Design - Fabrication and Non-Destructive Testing Techniques - Pressure Containment - Heat Source Simulation - Oxidation and Corrosion of Encapsulating Materials - Nozzle Performance.

UNIT V ADVANCED SPACE PROPULSION 9 CONCEPTS

Introduction - General Consideration for Propulsion in Space - Power Supply - Propellant Storage and Handling Facilities - Electrostatic and Electromagnetic Thrusters - Advanced Electric Propulsion Systems for Space Vehicles - Sputtering - A Thrust Generation Mechanism - Sputtering Phenomena - Possible Performance of Sputtering Thrusters - Energy Efficiency of the Sputtering Process - Analyses of an Elementary Mission with Different Electric Thrusters - General Consideration - Performance Formula for Electric Thrusters - Optimization with Electric Thrusters.

TOTAL: 45 PERIODS COURSE OUTCOMES: After completion of the course, the students will be able to: CO1: Illustrate the Scramjet engine design and performance. CO2: Explain about the chemical rocket propulsion and its classification. CO3: Explain the physics of ionized gases, including relevant theories and particle collision phenomena.

CO4: Explain the operation, various types, and performance characteristics of nuclear rockets, along with their design considerations. CO5: Explain the basics of radioisotope propulsion with their performance studies. CO6: Explain the core principles, operational mechanisms, and performance metrics of advanced propulsion systems. **TEXT BOOKS:** Czysz, Paul A., Bruno, Claudio, Chudoba, Bernd "Future Spacecraft Propulsion Systems and Integration", Springer, Praxis Publishing Ltd, 2018. W. "Engineering George Sutton, Magneto hydrodynamics", Dover Publications Inc., New York, 2006. REFERENCES: George P. Sutton & Oscar Biblarz, "Rocket Propulsion Elements, John Wiley & Sons Inc., NewYork, 9th Edition, 2016. Martin Tajmar, "Advanced Space Propulsion Systems" Springer Verlag GmbH, 2003. Robert G. Jahn, "Physics of Electric Propulsion", McGraw-Hill Series, New York, 1968. "Principles William Emrich, of Nuclear Rocket J. Propulsion" Elsevier Science, 2016. **POs PSOs COs** Overall

1 | 1

1 | 1 | 1 | 1 | 2

2 | 2 | 1 | 1

Correlation

23AE051	HYPERSONIC AERODYNAMICS	L	T	P	C
		3	0	0	3

- To get insight into the basic aspects of hypersonic flows and the shock wave interactions..
- To arrive at the surface inclination methods for hypersonic inviscid flows.
- To get exposure on an approximate method for inviscid hypersonic flows.
- To get knowledge on viscous hypersonic flow theory.
- To gain basic knowledge on viscous interactions in hypersonic flows.

UNIT I BASICS OF HYPERSONIC AERODYNAMICS 9

Thin shock layers – Entropy layers – Low density and Highdensity flows – hypersonic flight paths – Hypersonic flight similarity parameters – Shock wave and expansion wave relations of inviscid hypersonic flows.

UNIT SURFACE INCLINATION METHODS FOR 9 II HYPERSONIC INVISCID FLOWS

Local surface inclination methods – Modified Newtonian Law – Newtonian theory – tangent wedge or tangent cone and shock expansion methods – Calculation of surface flow properties.

UNIT APPROXIMATE METHODS FOR INVISCID 9 III HYPERSONIC FLOWS

Approximate methods – Hypersonic small disturbance equation and theory – Thin shock layer theory blast wave theory – Entropy effects – Rotational method of characteristics – Hypersonic shock wave, shapes and correlations.

UNIT	VISCOUS HYPERSONIC FLOW THEORY	9
IV		

Navier-Stokes equations – Boundary layer equations for hypersonic flow – Hypersonic boundary layer – Hypersonic boundary layer theory and non-similar hypersonic boundary layers – Hypersonic aerodynamic heating and entropy layers

effect	s on aerodynamic heating - Heat flux estimation.
UNI	VISCOUS INTERACTIONS IN HYPERSONIC 9
V	FLOWS
Stron	g and weak viscous interactions - Hypersonic shockwaves
and	boundary layer interactions - Estimation of hypersonic
boun	dary layer transition - Role of similarity parameter for
lamir	ar viscous interactions in hypersonic viscous flow.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain shock wave and expansion wave relations of
	inviscid hypersonic flows
CO2:	Explain the solution methods for hypersonic inviscid
	flows.
CO3:	Analyze the hypersonic boundary layers.
CO4:	Explain the viscous interaction in hypersonic flows.
CO5:	Analyze chemical and temperature effects in hypersonic
	flow.
CO6:	Compare the similarity parameter for a laminar viscous
	interaction in hypersonic flow.
TEXT	BOOKS:
1	Anderson J. D., "Hypersonic and High Temperature Gas
	Dynamics", AIAA Education Series, 2nd Ed., 2006.
2	Anderson J. D., "Modern Compressible Flow with
	Historical Perspective", TMH, 3rd Ed., 2012
REFE	RENCES:
1	Heiser, W. H. and Pratt, D. T., "Hypersonic Air Breathing
	Propulsion", AIAA, 1994.
2	John T. Bertin, "Hypersonic Aerothermodynamics",
	AIAA Inc., Washington DC, 1994.

COs		POs										PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1	1	-	-	-	-	1	1	1	3	1	-
2	2	2	1	1	2	-	-	-	-	1	1	1	3	2	-
3	3	3	2	2	2	-	-	-	-	1	1	2	3	2	-
4	2	2	1	1	2	-	-	-	-	1	1	1	3	2	-
5	3	3	2	1	2	ı	-	-	-	1	1	1	3	2	-
6	3	2	1	1	1	-	-	-	-	1	1	1	3	1	-
Overall Correlation	3	3	2	2	2	-	-	-	-	1	1	1	3	2	-

23AE052	WIND TUNNEL TECHNIQUES	L	T	P	С
		3	0	0	3

- To learn the Types of low speed Wind tunnels and non-dimensional numbers with itsapplications.
- To learn the Types of high speed Wind tunnels and with its calibration methods.
- To Understand the Special Wind tunnels and with its calibration methods with its designmethods.
- To describe flow visualization techniques and data acquisition methods.
- To understand the functions of various instruments associated with wind tunnel.
- To learn about the Imageprocessing methods.

UNIT I LOW SPEED WIND TUNNELS

9

Classification –non-dimensional numbers-types of similarities - Layout of open circuit and closed circuit subsonic wind tunnels – Design parameters-energy ratio - HP calculations - Calibration methods.

70,77	The same of the sa	
UNIT	HIGH SPEED WIND TUNNELS	9
II	AFFILIATED TO ANNA UNIVERSITY AUTONOMO	

Blow down, in draft and induction tunnel layouts and their design features -Transonic, and supersonic tunnels- Peculiar features of these tunnels and operational difficulties - sample design calculations and Calibration methods.

UNIT	SPECIAL WIND TUNNEL TECHNIQUES	9
III		

Types of Special Wind Tunnels – Hypersonic, Gun and Shock Tunnels – Design features and calibration methods- Intake tests – Store carriage and separation tests - wind tunnel model design for these tests.

UNIT	WIND	ΓUΝΙ	NEL INS	TRUMEN	TAT	ION		9
IV								
Instrum	entation	and	sensors	required	for	both	steady	and

unsteady measurements – Force measurements using three component and six component balances – calibration of measuring instruments – Error estimation and uncertainty analysis.

UNIT	FLOW VISUALIZATION AND NON-	9
\mathbf{V}	INTRUSIVE FLOW DIAGNOSTICS	

Smoke and Tuft grid techniques – Dye injection special techniques – Oil flow visualization and PSP techniques - Optical methods of flow visualization – PIV and Laser Doppler techniques – Image processing and data deduction.

COLIDGE OF THE COLUE

TOTAL: 45 PERIODS

COL	JRSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1	Explain the uses of various types of tunnels and its losses.
CO ₂	Test for calibration of different types of high speed
	tunnels.
CO ₃	Make use of various special tunnels and its applications.
CO ₄	Make use of various measurement techniques of
	instruments of wind tunnel.
CO5	Develop various techniques for aerodynamic data
	generation.
CO6	Explain various flow visualization techniques and flow
	diagnostics.
TEX	T BOOKS:
1	Ahmed, Noor, "Wind tunnel designs and their diverse
	engineering applications". Intechopen Publishers, 2013.
2	Rae, W.H. and Pope, A., "Low Speed Wind Tunnel
	Testing", John Wiley Publication, 1984.
REF	ERENCES:
1	Bradshaw, Peter. "Experimental Fluid Mechanics:
	Thermodynamics and Fluid Mechanics Division". Elsevier,
	2016.

2	Pope, A., and Goin, L., "High Speed Wind Tunnel Testing",
	John Wiley, 1985.

3	Rathakrishnan, E., "Instrumentation, Measurements, and
	Experiments in Fluids," CRC Press - Taylor & Francis,
	2007.

COs						P	Os						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	-	-	-	-	-	-	-	-	-	2	-	-
2	3	3	2	1	3	-	-	-	-	-	-	-	3	3	-
3	3	2	1	1	1	-	-	-	-	-	-	-	3	1	-
4	3	2	1	1	3	-	-	-	-	-	-	-	2	3	-
5	3	2	1	1	-	-	-	-	-	-	-	-	3	-	-
6	2	1	1	-	-	-	-	-	-	-	-	-	2	-	-
Overall Correlation	3	2	1	1	2	d	-	7	-	9	-		3	2	-

COLLEGE OF TECHNOLOGY

23AE053	FUNDAMENTAL OF	L	T	P	C
	COMBUSTION	3	0	0	3

- To impart knowledge to students on basic fuel and oxidizer characteristics.
- To impart the concept of various governing equation and role of chemical kinetic in combustion process.
- To make the students to understand various kinds flame and factors affecting flame.
- The concept of diffusion flames.
- Application of calculation in the field of Aerospace engineering.

UNIT I THERMODYNAMICS OF COMBUSTION 9

Combustion, types of fuels and oxidizers, calorific value measurements, flash point, fire point, smoke point, specific gravity, auto ignition temperature, Proximate analysis, ultimate analysis, Ideal gas law, gas mixture, sensible enthalpy, stoichiometry, equivalence ratio, heat of reaction, heat of combustion, heat of formation, adiabatic flame temperature, determination of equilibrium composition.

UNIT II TRANSPORT PHENOMENA AND 9 CHEMICAL KINETIC OF COMBUSTION

Mass Transfer Rate Laws, Species Conservation, Some Applications of Mass Transfer, Global Versus Elementary Reactions, Rates of Reaction for Multistep Mechanisms, Net Production Rates, Compact Notation, Relation Between Rate Coefficients and Equilibrium Constants, Steady-State Approximation, The Mechanism for unimolecular Reactions, Chain and Chain Branching Reactions, Chemical Time Scales, Partial Equilibrium, Reduced Mechanisms

UNIT III PREMIXED FLAMES

9

Physical Description, detonation and deflagration, Hugoniot curve, Determination of CJ points, Governing Equations, Boundary Conditions, Structure of CH4-Air Flame, Factors

Influencing Flame Velocity and Thickness, Flame Speed Correlations, Quenching, Flammability, and Ignition, Quenching by a Cold Wall Flammability Limits Ignition, Flame Stabilization.

UNIT IV LAMINAR DIFFUSION FLAMES

9

9

Non-reacting Constant-Density Laminar Jet, Physical Description, Conservation Laws, Boundary Conditions, Solution, Jet Flame Physical Description, Simplified Theoretical Descriptions, Flame Lengths for Circular-Port and Slot Burners, Roper's Correlations ,Flow rate and Geometry Effects, Factors Affecting Stoichiometry, Soot Formation and Destruction Counter flow.

UNIT V DROPLET EVAPORATION AND BURNING

Simple Model of Droplet Evaporation, Gas-Phase Analysis, Droplet, Simple Model of Droplet Burning, Burning Rate Constant and Droplet, Lifetimes, Extension to Convective Environments, Additional Factors, One-Dimensional Vaporization-Controlled Combustion.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Demonstrate knowledge of the fundamental characteristics of fuels and oxidizers, including their properties and significance in combustion processes.
- CO2: Apply the principles of governing equations and chemical kinetics to understand and analyze combustion phenomena.
- CO3: Analyze various types of flames and identify the factors influencing flame behavior and stability.
- **CO4:** Explain the concept of diffusion flames and their role in practical combustion applications.
- CO5: Utilize combustion theories to solve problems and perform calculations relevant to aerospace engineering

	applica	tio	ns.													
CO6:	Integra	te t	he (con	cep	ts o	f co	mb	ust	ion	che	mist	try a	ınd	flu	id
	dynam	ics	to	de	sign	n a	nd	ev	alua	ate	effi	cien	nt a	eros	spa	ce
	propul	sior	ı sy	ster	ns.											
TEXT	BOOK	S:														
1	Glassman, Irvin, Richard A. Yetter, and Nick G. Glumac.															
	Combustion. 5th ed. Amsterdam: Academic Press, 2014.															
2	Turns, Stephen R. An Introduction to Combustion:															
	Concepts and Applications. 3rd ed. New York: McGraw-															
	Hill Ed	uca	tio	n, 20	011.											
REFE	RENCE	S:														
1	Kenneth K.Kuo, "Principles of combustion", John Wiley &															
	sons Inc, 2nd edition, 2012.															
2	Mishra	,	DP,	,	"Fu	nda	ıme	nta	ls	of	C	oml	ousti	ion'	',PI	HI
,	publish	ers	, 20	08.			A		1		-	٠,			1	
3	Vasude	evai	ıRa	gha	var	١,	,	"Co	mb	usti	on		Tec	hnc	log	y:
	essenti	als	of f	lam	es a	and	bu	rne	rs",	An	е Во	ooks	Pvt	t.Lt	d, 1	st
	edition	, 20	16.				7		1							
	COs	-		./			P	Os						I	SC	s
	NEER	.1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	-/4/	FILL	3	3	NINA	n <u>wii</u>	EHSI	IY_I B	n lo	OM	305	-
	2	3	2	1	1	-	3	3	-	-	-	-	-	-	-	-
	3	3	3	2	1	-	3	3	-	-	-	-	-	-	-	-
	4	2	2	1	-	-	2	3	-	-	-	-	-	-	-	-
	5	2	2	1	-	-	2	3	-	-	-	-	-	-	-	-
	6	2	2	1	-	-	3	3	-	-	-	-	-	-	-	-
Ov	erall	3	2	2	1		3	3								
Corr	elation	3		_	1	_	3	3	_	_	_	_	_	_	_	_

VERTICAL 4 - AEROSPACE STRUCTURES

23AE054	FATIGUE AND FRACTURE	L	T	P	C
	MECHANICS	3	0	0	3

COURSE OBJECTIVES:

- To learn about mathematics and principles of fracture mechanics.
- To impart knowledge about the fundamental source of failure of mechanical components.
- To make students understand the fatigue design curve approaches and limitations.
- To make the students learn the characterization of variables in cyclic loads.
- To expand student's knowledge on testing of the material for fatigue failure.
- To examine real-world case studies.

UNIT I FATIGUE OF STRUCTURES 9

S.N. curves - Endurance limits - Effect of mean stress, Goodman, Gerber and Soderberg relations and diagrams - Notches and stress concentrations - Neuber's stress concentration factors - Plastic stress concentration factors - Notched S.N. curves - Fatigue of composite materials.

UNIT II STATISTICAL ASPECTS OF FATIGUE 9 BEHAVIOUR 9

Propulsion Elements for Solid Rocket Motors - Solid Propellant Grain Design - Prediction and Measurement of Specific Impulse - Solid Propellant Combustion and Internal Ballistics of Motors -Plume, Signal Interference and Plume Signature - Structural Analysis of Propellant Grains -Safety Characteristics of Solid Propellants and Hazards of Solid Rocket Motors.

-		
UNIT	PHYSICAL ASPECTS OF FATIGUE	9
III		

Phase in fatigue life - Crack initiation - Crack growth - Final Fracture - Dislocations - fatigue fracture surfaces.

UNIT	FRACTURE MECHANICS	9
IV		
Stren	gth of cracked bodies - Potential energy and surface ene	rgy
- Grif	fith's theory - Irwin - Orwin extension of Griffith's the	ory
to du	ctile materials - Stress analysis of cracked bodies - Effec	t of
thick	ness on fracture toughness- Stress intensity factors	for
typica	al geometries.	
UNIT	TV FATIGUE DESIGN AND TESTING	9
Safe	life and Fail-safe design philosophies -Importance	of
Fract	ure Mechanics in aerospace structures - Application	to
comp	osite materials and structures-Case Study of any accid	ent
due t	o fatigue load in Aircraft and spacecraft.	
	TOTAL: 45 PERIO	DDS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able	to:
CO1:	Apply the mathematical knowledge to define fatig	gue
	behaviours of the materials.	
CO2:	Explain the damage theory to predict life of the mate	rial
	under fatigue load.	-
	Explain the causes of the crack initiation & its growth.	
CO4:	Apply principles of fracture mechanics to analyze	the
	strength of cracked bodies.	
CO5:		and
	testing of aerospace structures.	
CO6:	Explain the importance of the fracture mechanics	in
	composite materials.	
TEXT	BOOKS:	
1	Barrois W, Ripely, E.L., "Fatigue of aircraft structu	re,"
	Pergamon press. Oxford, 1983.	
2	Kumar, Prashant. "Elements of fracture mechanic	cs".

McGraw-Hill Education LLC., 2009.

REFI	ERENC	ES:														
1	Kare	Kare Hellan ,'Introduction to Fracture Mechanics',														
	McGraw Hill, Singapore,1985															
2	Knott, J.F., "Fundamentals of Fracture Mechanics," -															
	Buterworth & Co., Ltd., London, 1983															
3	Sih C.G., "Mechanics of fracture." Vol - I, Sijthoff and w															
	Noordhoff International Publishing Co., Netherlands,															
	1989.															
4	Rene	Rene Alderliesten, "Fatigue and Fracture of Fibre Metal														
	Lamir	ate	s" ,	Spr	ing	er, 1	lst e	ed. 2	2017	ed ed	itior	١.				
	'Os						P	Os						I	PSO	s
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3															
	1	3	2	1	1	-	ı	-	ı	1	1	1	ı	3	-	-
	2	2 2 1 1 1 1 1 1 1 1 - 3 1 1														
	3 2 1 1 1 - 1 - 1 1 1 - 3															1
	3 POWE	2	1	1	1	-	1	7-	1	1		1	9	3		-
-	3 4 4	3	1	1 2	1	-	1	-	-	1		1 1	-	3	-	-
7				A		- - 1	1 -	-		Y	1	1.0	- - 1		- - 1	-
	4	3	2	2	1	- 1	1	- - - 1		1	1	1	- 1 1	3	1	

23AE055	EXPERIMENTAL STRESS	L	T	P	C
	ANALYSIS	3	0	0	3

- To be able to understand the various experimental techniques involved for measuring displacements, stresses, strains in structural components.
- To familiarize with the different types of strain gages used.
- To familiarize with the instrumentation system used for strain gauges.
- To be able to use photo elasticity techniques and methods for stress analysis.
- To be able to familiarize with the different NDT techniques.

UNIT I BASICS OF MECHANICAL MEASUREMENTS

Basic Characteristics and Requirements of a Measuring System – Principles of Measurements – Precision, Accuracy, Sensitivity and Range of Measurements – Sources of Error – Statistical Analysis of Experimental Data – Contact Type Mechanical Extensometers – Advantages and Disadvantages – Examples of Non -Contact Measurement Techniques.

UNIT	ELECTRICAL-RESISTANCE STRAIN GAUGES	9
II	AFFILIATED TO ANNA UNIVERSITY AUTONOMOUS	

Strain Sensitivity in Metallic Alloys – Gage Construction – Gage Sensitivities and Gage Factor–Corrections for Transverse Strain Effects – Performance Characteristics of Foil Strain Gages–Materials Used for Strain Gauges – Environmental Effects – The Three-Element Rectangular Rosette for Strain Measurement – Other Types of Strain Gages – Semiconductor Strain Gages Grid & Brittle Coating Methods of Strain Analysis.

UNIT	STRAIN-GAUGE CIRCUITS &	9
III	INSTRUMENTATION	

The Potentiometer Circuit and Its Application to Strain Measurement - Variations from Basic Circuit - Circuit Output -The Wheatstone Bridge Circuit - Current and Constant Voltage Circuits- Analog to Digital Conversion - Calibrating Strain-Gage Circuits - Effects of Lead Wires and Switches - Electrical Noise -- Strain Measurement in Bars, Beams and Shafts - Circuit Sensitivity & Circuit Efficiency.

UNIT IV PHOTOELASTIC METHODS OF STRESS ANALYSIS

Introduction to Photo elastic Methods – Stress-Optic Law – Effects of a Stressed Model in a Plane Polariscope – Effects of a Stressed Model in a Circular Polariscope - Tardy Compensation-Two-Dimensional Photo elastic Stress Analysis – Fringe Multiplication and Fringe Sharpening-Materials for Two-Dimensional Photo elasticity- Properties and Calibration of Commonly Employed Photo elastic Materials – Introduction to Three-Dimensional Photo elasticity.

UNIT V NON-DESTRUCTIVE TESTING

9

9

Different types of NDT Techniques - Acoustic Emission Technique - Ultrasonic - Pulse-Echo- Through Transmission -Eddy Current Testing - Magnetic Particle Inspection - X-Ray Radiography - Challenges in Non-Destructive Evaluation - Non-Destructive Evaluation in Composites - Image Processing Basics.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the various experimental techniques involved for measuring displacements, stresses, strains in structural components.
- CO2: Outline with the different types of strain gauges used.
- CO3: Relate with the instrumentation system used for strain gauges.
- CO4: Demonstrate the use of photo elasticity techniques and methods for stress analysis.
- **CO5:** Illustrate the different NDT techniques.
- CO6: Summarize the use of NDT in practical application

TEXT BOOKS:

1	Dally, J.	W.,	and	l Ri	iley	, W	.F.,	Ex	peri	me	ntal	Stre	ess <i>I</i>	4na	lys	is,
	McGraw	Hi	ll In	ıc.,]	Nev	v Y	ork?	1998	8.							
2	Sadhu	Sin	gh,	E	kpei	rim	enta	al	Stre	ess	An	alys	sis,	Kŀ	nanı	na
	Publishers, New Delhi, 2009.															
REFI	ERENCES	:														
1	Albert	S.	K	oba	yas	hi,'	Н	Iano	dbo	ok	or	ı I	Expe	rin	ent	tal
	Mechani	cs,	Prei	ntic	е Н	all l	Pub	lish	ers	. 20	08.					
2	Durelli,	A.J.	Ap	plie	d S	tres	s A	nal	ysis	s, P	rent	ice l	Hall	of	Ind	lia
	Durelli, A.J.Applied Stress Analysis, Prentice Hall of India Pvt Ltd., New Delhi, 1970															
3	Hetenyi,	Hetenyi, M., Hand book of Experimental Stress Analysis,														
	John Wil	ey a	and	Soı	ns I	nc.,	Nev	νY	ork,	. 19	72.					
4	James I	7. I	Doy	le	anc	1 J	ame	es	W.	Pł	illip	os,	'Ma	nua	1 0	on
	Experim	enta	al S	tres	s A	naly	ysis	',	5th	Edi	tion	, 19	89.			
	COs					1	P	Os						I	PSC)s
	OWER	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
/	1,	3	3	2	1	1	Ç-	1	Y-	-	-	-	-	3	1	-
Ÿ	2	3	2	1	1	1	-	2	1	1	-	T	1	3	1	-
	3	3	3	2	1	1	7	1	7		<u>-</u>	1	1	3	1	-
	4	3	3	2	1	1	-	1	-	-	-	-	-	3	1	-
	5 NEER R	3	2	1	1	1	-54	2	Ų.	11		HĀ	714	3	1	-
	6	3	2	1	1	1	150.17	1	-	NO V.	89111	160	LONG.	3	1	-

Overall

Correlation

1 1

23AE056	VIBRATION AND	L	T	P	C
	AEROELASTICITY	3	0	0	3

- To study the effect of time dependent forces on mechanical systems and to get the natural characteristics of system of single degree of freedom system.
- To study the solving methods of multi degree of freedom systems.
- To introduce approximates method to solve vibration problems.
- To make the student to understand the solving techniques of vibration of continuous system.
- To study the aeroelastic effects of aircraft wings.
- To study the coupling effect of vibration.

UNIT I SINGLE DEGREE OF FREEDOM SYSTEMS 9

Introduction to simple harmonic motion, D'Alembert's principle, Free vibrations – damped vibrations – Forced vibrations, with and without damping – Support excitation – Transmissibility - Vibration measuring instruments.

UNIT II MULTI DEGREE OF FREEDOM SYSTEMS

Two degrees of freedom systems - Static and dynamic couplings - Vibration absorber- Multi degree of freedom systems - Principal co-ordinates - Principal modes and orthogonal conditions - Eigen value problems - Hamilton's principle - Lagrangian equations and application.

UNIT III CONTINUOUS SYSTEMS

Vibration of elastic bodies - Vibration of strings - longitudinal, lateral and torsional vibrations.

UNIT IV APPROXIMATE METHODS

,

Approximate methods - Rayleigh's method - Dunkerley's method - Rayleigh-Ritz method - Matrix iteration method.

UNI	T V ELEMENTS OF AEROELASTICITY 9
Vibra	ation due to coupling of bending and torsion - Aeroelastic
probl	ems - Collars triangle - Wing divergence - Aileron control
rever	sal – Flutter – Buffeting. – Elements of servo elasticity.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Solve the free and forced vibration of single degree of
	freedom systems with and without damping.
CO2:	Apply the energy method and matrix method to multi
	degree of freedom system.
CO3:	Solve the frequency and displacement of the continuous
	system.
CO4:	Apply approximate methods to find natural frequency of a
	system. Dec.
CO5:	Explain the coupling effects of bending and torsion in
	vibration problems and their significance in aeroelastic
Å	phenomena.
CO6:	Explain the significance of Collar's triangle in aeroelasticity,
	identifying key regions of stability and instability.
TEXT	BOOKS:
1	Grover. G.K., "Mechanical Vibrations", 7th Edition, Nem
	Chand Brothers, Roorkee, India, 2003.
2	Leonard Meirovitch, "Elements of Vibration Analysis".
	McGraw Hill International Edition,2007.
REFE	ERENCES:
1	Thomson W T, 'Theory of Vibration with Application' -
	CBS Publishers, 1990.
2	Bisplinghoff R.L., Ashely H and Hogman R.L.,
	"Aeroelasticity", Addision Wesley Publication, New Tork,
	1983.
3	Den Hartog, "Mechanical Vibrations" Crastre Press, 2008.

4	TSE. F.	-		-				-		, "N	lech	anic	al V	'ibra	atio	ns"
	COs				PSOs											
	LOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	2	1	-	-	-	-	1	1	1	-	2	ı	-
	2	3	2	2	1	1	-	-	-	1	1	1	-	3	1	-
	3	3	2	2	1	-	1	-	-	1	1	-	-	3	-	-
	4	3	2	2	1	-	-	-	-	1	1	-	-	3	ı	-
	5	2	1	1	1	-	-	-	-	1	1	-	-	3	-	-
	6	2	1	1	1	-	-	-	-	-	-	1	-	3	-	-
	verall elation	3	3	2	1	1	1	1	-	1	1	1	-	3	1	-

23ME031	ADDITIVE MANUFACTURING	L	T	P	С
		3	0	0	3

- To introduce the development of Additive Manufacturing (AM), various business opportunities and applications.
- To familiarize various software tools, processes and techniques to create physical objects that satisfy product development / prototyping requirements, using AM.
- To be acquainted with vat polymerization and direct energy deposition processes.
- To be familiar with powder bed fusion and material extrusion processes.
- To gain knowledge on applications of binder jetting, material jetting and sheet lamination processes.

UNIT I INTRODUCTION

9

Overview - Need - Development of Additive Manufacturing (AM) Technology: Rapid Prototyping Rapid Tooling - Rapid Manufacturing - Additive Manufacturing. AM Process Chain-ASTM/ISO 52900 Classification - Benefits. Applications: Building Printing - Bio Printing - Food Printing Electronics Printing. Business Opportunities and Future Directions - Case studies: Automobile, Aerospace, Healthcare.

UNIT II DESIGN FOR ADDITIVE MANUFACTURING 9 (DFAM)

Concepts and Objectives - AM Unique Capabilities - Part Consolidation - Topology Optimization Generative design - Lattice Structures - Multi-Material Parts and Graded Materials - Data Processing: CAD Model Preparation - AM File formats: STL-Problems with STL- AMF Design for Part Quality Improvement: Part Orientation - Support Structure - Slicing - Tool Path Generation - Design rules for Extrusion based AM.

UNIT I	II VAT POLYM	IERIZATION AND	DIRECTED			9
	ENERGY DEI	POSIT				
Photo	polymerization:	Stereolithography	Annaratus	(ST	A)	_

Materials -Process - top down and bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Advantages - Applications. Continuous Liquid Interface Production (CLIP) Technology. Directed Energy Deposition: Laser Engineered Net Shaping (LENS) - Process - Material Delivery - Materials -Benefits -Applications.

UNIT IV POWDER BED FUSION AND MATERIAL EXTRUSION

9

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism Materials and Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - Process - Advantages and Applications. Material Extrusion: Fused Deposition Modeling (FDM)- Process-Materials - Applications and Limitations.

UNIT V OTHER ADDITIVE MANUFACTURING PROCESSES

9

Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits- Limitations - Applications. Material Jetting: Multijet Modeling- Materials - Process - Benefits - Applications. Sheet Lamination: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding - Thermal Bonding- Materials-Application and Limitation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the development of AM technology in businesses.
- CO2: Explain the process of transforming a concept into the final product in AM technology.
- CO3: Explain the vat polymerization processes and its applications.
- CO4: Explain direct energy deposition processes and its applications.
- CO5: Explain the process and applications of powder bed fusion and material extrusion.
- CO6: Explain the advantages, limitations, applications of binder

	jetting,	ma	teri	al je	ettir	ng a	nd	she	et la	ami	nati	on p	roce	esse	s.	
TEXT	г воок	S:														
1	"Addit	Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani "Additive manufacturing technologies". 3rd edition Springer Cham, Switzerland. (2021). ISBN: 978-3-030-56126-0.														
2	Manufa Manufa ISBN: 9	Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-582-1.														
REFE	ERENCE	RENCES:														
1	Andrea Manufa Hansea 978344	actu Ga	ırin ırdr	ier i	Rapi	id P	rote	otyj	oing	g, R	apic		anuf	actı		g",
2	Design	Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead														
3	Amit Manufa 2015, IS	Publishing., United Kingdom, 2016, ISBN: 9780081004333. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590.														
4	Kamra and pr 4614-98	acti	ce"	an, Sp	d N orin	Vası ger	E., U	A., nite	"Ra ed S	ipid State	l Pro es, 2	ototy 2006	ypin , ISI	g:] 3N:	Γhe 978	ory 3-1-
5	Liou, Engine develo	erir pm	ng ent'	арј ', (olic	atio	ns:	A	to	ool	bo	x f	or	pro	toty	/pe
	70-						P	Os]	PSC)s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	1	-	-	-	-	1	1	2	1	-
	2	2	1	-	-	1	1	-	-	-	-	1	1	2	1	-
	3	2	1	-	_	1	1	_	-	-	-	1	1	2	1	
	4	2	1	-	-	1	1	-	-	-	-	1	1	2	1	-
	5	2	1	-	-	1	1	-	-	-	-	1	1	2	1	-
	6	2	1	-	-	1	1	-	-	-	-	1	1	2	1	-
	verall elation	2	1	-	-	1	1	-	-	-	-	1	1	2	1	-

23ME036	NON-DESTRUCTIVE TESTING	L	T	P	C
	AND EVALUATION	3	0	0	3

- To understand the importance, principle, concept and inspection methods of various surface NDT methods and develop the skills of interpretation of results effectively.
- To study the working and instrumentation of thermography and eddy current testing methods and apply to interpret the results and investigate the possible defects.
- To get full exposure about principle, instrumentation and standards of various radiographic NDT methods and improve the skill to identify the defects suitably.
- To get deep insight into the principle, types of waves, instrumentation, standards, and calibration methods of ultrasonic NDT methods.
- To understand the importance, principle, concept and inspection methods of various surface NDT methods and develop the skills of interpretation of results effectively.

UNIT I INTRODUCTION

NDT Versus Mechanical testing – Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT- Visual inspection – Unaided and aided.

UNIT II SURFACE NDT METHODS 9

Liquid Penetrant Inspection – Principles, Types of dye and methods of application, developers, advantages and limitations of various methods, Interpretation of results. Magnetic Particle Inspection- Magnetic particle testing, Basic theory of magnetism, Magnetization methods, Interpretation of field indicators,

Particle application, Inspection, Residual magnetism Principles and methods of demagnetization.

UNIT III THERMOGRAPHY AND EDDY CURRENT TESTING

Thermography- Principles, Contact and non-contact inspection methods, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Applications, advantages, Limitations, Interpretation/Evaluation.

UNIT IV ULTRASONIC TESTING (UT) AND 9 ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique – Principle, AE parameters, Applications

UNIT V RADIOGRAPHY

9

9

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square law, characteristics of films - graininess, density, speed, contrast, characteristic curves. Penetrometers, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Digital Radiography.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain the fundamental concepts of NDT
- CO2: Interpret the different methods of NDE
- CO3: Explain the concept of Thermography and Eddy current testing
- CO4: Explain the concept of Ultrasonic Testing
- **CO5:** Explain the concept of Acoustic Emission

CO6:	Explair	th	e co	nce	pt o	of R	adio	ogra	aph	y						
TEXT	BOOK	S:														
1	"ASM]	Met	als	Ha	ndb	ook	, N	on-	Des	tru	ctive	e Ev	alua	tio	n ar	nd
	Quality	, C	ont	rol,	Aı	ner	icar	ı S	ocie	ety	of	Met	als",	, N	l eta	als
	Park, C	hic	, U	SA,	200	, 20	18.									
2	Baldev	Ra	ij, T	T. Ja	ayal	kun	nar,	M	. Tl	nav	asin	nuth	u "	Pra	ctic	al
	Non-D	estr	uct	ive	Te	stir	ıg",	N	aro	sa	Pul	olish	ing	Н	ous	se,
	2014.															
REFE	RENCE	S:														
1	Ravi Pı	raka	ash,	"N	on-	Des	stru	ctiv	re T	esti	ng	Гесŀ	nniq	ues	", 1	st
	revised	ed	itio	n, N	Iew	Ag	e Ir	ter	nati	ona	l Pu	ıblis	hers	, 20	10.	
2	Paul E	Mi	ix, ʻ	"Int	rod	uct	ion	to	No	n-d	estr	ucti	ve to	esti	ng:	a
	training	g gı	ıid€	e", V	Vil€	y, 2	2nd	Edi	itior	ı Ne	ew J	erse	y, 20	005		
3	Charles	harles, J. Hellier, "Handbook of Nondestructive														
	evaluat	_	No. 1. 29	N		_				10						
4	B.P.C.	Ra	ο, ΄	"Pr	acti	cal	Ed	dy	Cu	rre	nt [Γest:	ing"	, <i>F</i>	Alpl	na
	Science		100						-	,	-					
5	Ravi Pı															
	revised	ed	itio	n, N	Iew	Ag	_	-	nati	ona	l Pu	ıblis	hers		200	
(Os	REA	HILL			UI.	P	Os	- 0		EL	HIN	UL	ΨF	SC)s
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1
	2	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1
	3	2	1	-		1	-	-	1	-	-	1	-	2	1	1
	4	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1
	5	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1
	6	2	1	-	-	1	-	-	1	-	-	1	-	2	1	1
	erall	2	1	_	_	1	_	_	1	_	_	1	_	2	1	1
Corr	elation															

23AE057	AEROSPACE MATERIALS	L	T	P	C
		3	0	0	3

- To understand the elements of aerospace materials, mechanical behaviour of materials, ceramics and composites.
- To explain the theory, concepts, principles and governing equations of solid mechanics.
- To analyse the stresses in simple structures as used in the aerospace industry.
- To learn the concepts of corrosion and heat treatment.
- To acquire knowledge in high temperature materials and characterization.

UNIT I ELEMENTS OF AEROSPACE MATERIALS 9

Structure of solid materials – Atomic structure of materials – Crystal structure – Miller indices – Density – Packing factor – Space lattices – X-ray diffraction – Imperfection in crystals – general requirements of materials for aerospace applications.

UNIT II | MECHANICAL BEHAVIOUR OF MATERIALS | 9

Linear and non-linear elastic properties – Yielding, strain hardening, fracture, Bauchinger's effect – Notch effect testing and flaw detection of materials and components – Comparative study of metals, ceramics plastics and composites.

UNIT III | CORROSION & HEAT TREATMENT OF | 9 | METALS AND ALLOYS

Types of corrosion – Effect of corrosion on mechanical properties – Stress corrosion cracking – Corrosion resistance materials used for space vehicles. Heat treatment of carbon steels – aluminium alloys, magnesium alloys and titanium alloys – Effect of alloying treatment, heat resistance alloys – Tool and die steels, magnetic alloys, powder metallurgy.

UNIT IV CERAMICS AND COMPOSITES

9

Introduction - Physical metallurgy - Modern ceramic materials - Cermet - Cutting tools - Glass ceramic - Production of semi-

fabricated forms - Plastics and rubber - Introduction to Nano composites- Carbon/Carbon composites, Fabrication processes involved in metal matrix composites - Shape memory alloys - Applications in aerospace vehicle design.

UNIT V HIGH TEMPERATURE MATERIALS & CHARACTERIZATION

9

Classification, production and characteristics – Methods and testing – Determination of mechanical and thermal properties of materials at elevated temperatures – Application of these materials in Thermal protection systems of Aerospace vehicles – Super alloys – High temperature material characterization.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Interpret the importance of material and its application
- CO2: Infer about the various mechanical behaviour of material
- CO3: Explain about the corrosion in materials
- CO4: Choose the suitable heat treatment process based on material applications
- CO5: Summarize the usage of composite materials in aerospace design component
- CO6: Illustrate application of high temperature material in space vehicles

TEXT BOOKS:

- 1 Martin, J.W., "Engineering Materials, Their properties and Applications", Wykedham Publications (London) Ltd, 1987.
- Titterton.G. "Aircraft Materials and Processes", 5th Ed., Pitman Publishing Co., 1998.

REFERENCES:

Raghavan.V. "Materials Science and Engineering", Prentice Hall of India, 5th Ed., 2011.

	COs					
	CO.		POs			PSOs
	T., App	olied Elastici	ty, McGraw	– Hill Co.,	New Yo	ork, 1993.
	materia	al technolog	ies. Singapoi	re: Spring	er; 2017.	Wang, C.
4			ll RJ, editors			
	2012 M	lay 23.				
3	Mourit	z AP. Introd	luction to ae	rospace n	naterials.	Elsevier;
	Addisc	on Wesley, 19	985.			
2			"Materials	Science	for Er	ngineers",

COs						P	Os						I	PSC	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	-	1	-	-	1	-	-	1	-	2	1	1
2	2	1	1	-	1	-	-	-	1	1	1	1	2	1	ı
3	2	1	1	-	1	-	-	1	1	1	1	1	3	1	1
4	3	2	1	1	1	-	-	-	1	1	1	1	3	1	•
5	2	1	1	- 4	1	-	-	1	1	1	1	1	3	1	1
6 POWE	2	1	1	1	1	1	1	1	1	1	1	1	2	1	1
Overall Correlation	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1

23AE058	THEORY OF ELASTICITY	L	T	P	C
		3	0	0	3
COURS	E OBJECTIVES:				
• To	study the effect of periodic and a peri	odi	c fo	rce	on
m	echanical systems				
• To	learn the natural characteristics of large si	ized	pro	oble	ms
us	ing approximate methods.				
• To	learn the concepts of plane stress and	pl	ane	str	air
pı	oblems				
• To	understand the natural frequency of vibra	atio	ns o	f th	e
b€	ams and torsional vibrations of systems.				
• To	make students aware of theory of plates are	nd s	hel	ls	
UNIT I	BASIC EQUATIONS OF ELASTICITY				9
Definition	n of Stress and Strain: Stress - Strain re	latio	onsl	nips	; -
- ARM 33	s of Equilibrium, Compatibility equation				-
1/400007 165	ns <mark>, Sain</mark> t Venant's principle - Principal St	ress	es,	Stre	SS
	- Stress invariants				
	PLANE STRESS AND PLANE STRAIN	-			9
1827	PROBLEMS	_			
•	tress function, Bi-harmonic equations,				
	, Simple two-dimensional problems i				
coordina	tes like bending of cantilever and simpl	y s	upp	ort	ed
beams					
UNIT	POLAR COORDINATES				9
III					
Equation	s of equilibrium, Strain - Displacement rela	atio	ns.	Stre	SS

Equations of equilibrium, Strain - Displacement relations, Stress - strain relations, Airy's stress function, Axi - symmetric problems, Introduction to Dunder's table, Curved beam analysis, Lame's, Kirsch, Michell's and Boussinesque problems - Rotating discs.

UNIT	TORSION	9
IV		

Navier's theory, St. Venant's theory, Prandtl's theory on torsion, Semi- inverse method and applications to shafts of circular,

Ellipt	ical, Equilateral triangular and rectangular sections.
Mem	brane Analogy.
UNI	INTRODUCTION TO THEORY OF PLATES 9
V	AND SHELLS
Class	ical plate theory - Assumptions - Governing equations -
Boun	dary conditions Navier's method of solution for simply
supp	orted rectangular plates - Levy's method of solution for
rectai	ngular plates under different boundary conditions
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Estimate the linear elasticity in the analysis of structures
	such as beams, plates etc.
CO2:	Determine the facture mechanics of the curved beam
	subject to loads.
CO3:	Interpret the two-dimensional problems in Cartesian and
į.	pol <mark>ar coord</mark> inates
	Determine the response of elastomers-based objects
	Explain the structural section subjected to torsion
CO6:	Identify the governing equations and numerical solution
	for plates and shells
	BOOKS:
1	Ansel C Ugural and Saul K Fenster, 'Advanced Strength
	and Applied Elasticity', 4th Edition, Prentice Hall, New
	Jersey,4th edition 2003.
2	Bhaskar, K., and Varadan, T. K., Theory of
	Isotropic/Orthotropic Elasticity, CRC Press USA, 2009.
3	Timoshenko, S.P., and Goodier, T.N., Theory of Elasticity,
	McGraw - Hill Ltd., Tokyo, 1990.
	ERENCES:
1	Barber, J. R., Elasticity (Solid Mechanics and Its
	Applications), Springer publishers, 3rd edition, 2010.

2	Sokolr	niko	off,	I.	S.,	Ma	the	mat	tical	l T	heo	ry (of I	Elas	ticit	y,
	McGra	aw	- I	Hill,	Ne	ew	Yor	k, 1	1978	3.W	ang	, C.	Т.,	Αp	pli	ed
	Elastic	city,	Mo	Gra	ıw -	- Hi	11 C	lo., l	Nev	v Yo	ork,	199	3.			
3	Wang	ang, C. T., Applied Elasticity, McGraw - Hill Co., New														
	York,	k, 1993.														
4	Volter	ra o	& J.	Н.	Cai	nes	Αc	lvai	ncec	1 St	ren	gth	of N	Mate	eria	ls,
	Prenti	entice Hall, New Jersey, 1991.														
	Os	POs PSOs														
	.Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	3	3	2	-	-	ı	ı	1	-	-	-	2	-	-
	2	3	3	3	2	-	1	-	-	1	1	1	1	2	-	
	3	3	3	3	2	2	1	<i>-</i>	1 1	1	1	1	1	2	2	1
	_	_	_			- 2 2	1 - 1	- 1 1	1 1 1	1 - 1	1 -		1 - 1		- 2 2	1 1
	3	3	3	2	2	_	-	_	1 1	-	1 - - 1		-	2		
	3	3	3	2	2	2	- 1	1		-	-	1	1	2	2	

02 A E05	CDACECDAET CEDUCETURE	T T	T	ъ	C						
23AE059	SPACECRAFT STRUCTURES	1 3	T 0	P 0	3						
COURSE OBJECTIVES:											
	te course gives an exposure to the Space	raft	etr	ucti	ıral						
	quirements.	lait	SII	ucti	паг						
	learn concepts of Structural configuration	and	trad	10-0	ffe						
	understand types of environmental lo										
	anch	Jaan	18	aui	mg						
	understand the factors to consider in ma	teria	1 മേ	lect	ion						
	d types of structural tests	teria	11 50	icci	1011						
	design a spacecraft structure										
	SPACECRAFT DESIGN LOADS				9						
	rtation load factors - Steady-State Loads	- M	ech	anio	_						
	c loads - Acoustic loads - Shock loads - S										
,	ns – Micro-meteorites / Orbital Debris.		P								
45.3	DESIGN OF SPACECRAFT STRUCTUR	E	-		9						
II (
Introduc	ction - Determination of Spacecraft Config	urati	on -	- Fi	rst						
	Spacecraft Structure - Basic Design Suppor										
79277	ed Analyses - Manufacturing of the spacecr										
UNIT	SPACECRAFT MASS AND MODAL	AUTO	NOM	0005	9						
III	EFFECTIVE MASS										
Introduc	ction - Structure Mass - Total Mass	Calc	ulat	ion	-						
Enforce	d Acceleration - Modal Effective Masses	of a	n N	4DC	ϽF						
System.											
UNIT	FATIGUE LIFE PREDICTION				9						
IV											
	ction – Palmgren-Miner Linear Cumula				_						
	Analysis of Load-time Histories - Fa										
	lal Vibrations – Failure due to Narrow-bar	ıded	Ra	ndo	m						
Vibratio											
UNIT	DAMAGE TO SPACECRAFT BY METE	ORC	DID	\mathbf{S}	9						
V	AND ORBITAL DEBRIS										
Introduc	ction - Micro-Meteoroids and Space Debris	Env	iror	nme	nt						

- Micro-Meteoroids Environment Orbital debris Environment
- Hyper Velocity Impact Damage Models Single Plate Penetration Equations - Multi-shock shield - Probability of Impacts.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Identify simplifying assumptions and applicability of structural element theories.
- CO2: Solve by hand simple 1-D axial deformation, torsion, and bending problems.
- CO3: Solve the complex structural mechanics problems using commercial finite element software.
- CO4: Solve simple discrete degree of freedom structural stability problems.
- **CO5:** Estimate the simple structural dynamics problems.
- CO6: Explain the damage to spacecrafts by space debris

TEXT BOOKS:

- 1 Thomas P. Sarafin, Wiley J. Larson, "Spacecraft Structures and Mechanisms: From Concept to Launch", Springer Netherlands, 1995.
- Wijker J.J., "Spacecraft Structures", Springer-Verlag Berlin Heidelberg, 2008.

REFERENCES:

- 1 Carl C. Osgood, "Spacecraft Structures", Prentice-Hall, 1966.
 - **2** Junqiao Xiong, "Spacecraft Structures, Materials and Mechanical Testing", Trans Tech Publication, 2013.
 - Meirovitch, Leonard. "Dynamics of spacecraft structures." Shock and Vibration Computer Programs: Reviews and Summaries 10,1975.

COs	POs											PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	1	2	3	-	-	-	-	2	1	2	2	-
2	3	2	2	1	2	3	1	2	-	-	2	1	2	2	2
3	3	2	2	1	2	3	1	2	2	1	1	2	2	2	2
4	3	2	2	1	2	3	1	2	2	1	2	1	2	2	2
5	3	3	2	2	2	3	1	2	1	1	1	1	2	2	2
6	2	2	1	2	2	3	1	2	1	1	2	1	2	2	2
Overall Correlation	3	2	3	2	2	3	1	2	2	1	2	1	2	2	2

VERTICAL 5 - AIRCRAFT MAINTENANCE AND PRACTICES

23AE060	AIRFRAME MAINTENANCE	L	T	P	C
	AND REPAIR	3	0	0	3

COURSE OBJECTIVES:

- To understand the maintenance processes of aircraft structural components, including welding, sheet metal repair, and non-destructive testing techniques.
- To gain knowledge of the types, repair methods, and special precautions for plastics and composite materials in aircraft.
- To learn the procedures for aircraft jacking, weighing, control surface balancing, and helicopter rotor tracking and balancing.
- To study troubleshooting, inspection, and maintenance of hydraulic, pneumatic, landing gear, and auxiliary systems in aircraft.
- To ensure familiarity with safety practices, hazardous material handling, and troubleshooting methodologies in aviation maintenance

UNIT I MAINTENANCE OF AIRCRAFT STRUCTURAL COMPONENTS

Equipment's used in welding shop and their maintenance - Ensuring quality welds - Welding jigs and fixtures - Soldering and brazing - Laser welding. Sheet metal repair and maintenance: Selection of materials; Repair schemes; Fabrication of replacement patches; Tools - Power/hand; Repair techniques; Peening - Close tolerance fasteners; Sealing compounds; forming/shaping; Calculation of weight of completed repair; Effect of weight - change on surrounding structure. Sheet metal inspection - NDT Riveted repair design - Damage investigation - Reverse engineering.

UNIT II PLASTICS AND COMPOSITES IN AIRCRAFT 9 Review of types of plastics used in airplanes - Maintenance and repair of plastic components - Repair of cracks and holes -

Various repairs schemes - Scopes. Cleaning of fibre reinforced plastic (FRP) materials prior to repair; Break test - Repair Schemes; FRP/honeycomb sandwich materials; laminated FRP structural members and skin panels; Tools/equipment; Vacuum-bag process. Special precautions - Autoclaves.

UNIT III AIRCRAFT JACKING, ASSEMBLY AND 8 RIGGING 9

Airplane jacking and weighing and C.G. Location. Balancing of control surfaces – Inspection maintenance. Helicopter flight controls. Tracking and balancing of main rotor.

UNIT IV REVIEW OF HYDRAULIC AND PNEUMATIC 9 SYSTEM

Trouble shooting and maintenance practices - Service and inspection - Inspection and maintenance of landing gear systems. - Inspection and maintenance of air-conditioning and pressurization system, water and waste system. Installation and maintenance of Instruments - Handling - Testing - Inspection. Inspection and maintenance of auxiliary systems - Rain removal system - Position and warning system - Auxiliary Power Units (APUs).

UNIT V SAFETY PRACTICES TO ANNA UNIVERSITY

Hazardous materials storage and handling, Aircraft furnishing practices - Equipment's. Trouble shooting. Theory and practices.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the welding equipment's and its uses in maintenance of aircraft structural components
- **CO2:** Make use of various sheet metals in aircraft components.
- CO3: Relate the maintenance practices of plastics and Composite materials used in the airframe structures.
- **CO4:** Illustrate the aircraft Ground handlings.
- CO5: Identify the snag on aircraft hydraulic and pneumatic system.

CO6:	Identify the hazardous materials and safety precaution on															
	aviation.															
TEXT	TEXT BOOKS:															
1	Kroes Watkins Delp, "Aircraft Maintenance and Repair",															
	McGraw Hill, New York, 1993.															
2	Loong, Michael. "The essentials of airplane maintenance",															
	Partridge Publishing Singapore, 2015.															
REFE	REFERENCES:															
1	A&P Mechanics, "Aircraft Hand Book", F A A Himalayan															
	Book House, New Delhi, 1996															
2	"Aviation Maintenance Technician Handbook – Airframe															
	Vol 1&2, " FAA U.S. Department of Transportation, 2012															
3	Delp. B	Bent	an	d N	/Ick	inel	y "	Air	craf	t M	[ain	tena	nce	Re	paiı	.",
	McGraw Hill, New York, 1987															
(Os	DR.	27				P	Os	1		7			I	PSC)s
	JOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1/	2	1	1	-	1	1	1	D	1	1	1	1	2	1	-
	2	3	2	1	1	1	1		ľ.		A	1	/	2	1	-
	3	2	2	1	1) -	1	1	1	1	-1	-	10	2	112	1
4 WEER		2	1	1	1	1	-1-	721	2	-	EL	1	1	2	1	-
5		3	2	1	1	1	1	1	- Indian	The state of	ERSI	11.0	1	2	1	-
	6	3	2	1	1	1	3	2	1	-	-	-	2	2	1	1
Overall		3	2	1	1	1	2	1	1	_	_	1	1	2	1	1
Correlation		3	_	1	1	•	_	1	1	_	_	1	1	_	1	1

23AE061		AIRCRAFT GENERAL	L	T	P	C						
		ENGINEERING AND	3	0	0	3						
		MAINTENANCE PRACTICES										
COURSE	OBJ	ECTIVES:										
•	To carryout aircraft ground handling procedure.											
•	Το ι	understand about the ground servicing	of t	the								
	vari	ous aircraft subsystem.										
•	Το ι	understand the procedure of aircraft sy	ster	n								
	mai	ntenance and safety.										
•	Τοι	understand the importance of periodic	insp	oec ¹	tior	of						
	airc	raft.										
•	Τοι	understand the specification of aircraft	har	dw	are							
	com	ponents and its materials.										
•	 To impart the knowledge of aircraft safety and system 											
.00	prod	cess										
UNIT I	AII	RCRAFT GROUND HANDLING AN	D	4.		9						
	SU	PPORT EQUIPMENT		П								
Mooring,	jack	ing, leveling and towing operations -	Pre	par	atio	on						
- Equipme	ent -	- precautions – Engine starting procedu	ıres	- I	isto	on						
engine, tu	rboj	props and turbojets - Engine fire exti			ing	_						
Ground po	owe:	r unit. AFFILIATED TO ANNA UNIVERSITY I A										
UNIT II	GR	OUND SERVICING OF VARIOUS S	UB			9						
	SYS	STEM										
Air condit	ioni	ng and pressurization - Oxygen and c	il s	yste	ems	; –						
Ground u	nits	and their maintenance.										
UNIT III	MA	AINTENANCE OF SAFETY AND				9						
	AII	RCRAFT SYSTEM PROCESSES										
Shop and aircraft safety - Environmental cleanliness -												
Precautions- Hand tools - Precision instruments Special tools												
and equ	ipm	ent's in an airplane maintenanc	e	sho	p	-						
Identificat	ion	terminology.										
UNIT IV	INS	SPECTION AND PUBLICATIONS				9						
Process -	Purp	oose – Types – Inspection intervals – T	ech	niq	ues	s –						
O1 1.1/	_ ^			-								

Checklist - Special inspection - Publications, bulletins, various

manuals - FAA, DGCA and EASA Air worthiness directives -Type certificate Data sheets - ATA Specifications. AIRCRAFT HARDWARE, MATERIALS, UNIT V 9 SYSTEM PROCESSES Specification and correct use of various aircraft hardware (i.e. nuts, bolts, rivets, screws) - American and British systems of specifications - Threads, gears, bearings, - Drills, tapes and reamers - Identification of all types of fluid line fittings. Materials, metallic and non-metallic Plumbing connectors -Cables - Swaging procedures, tests, Advantages of swaging over splicing. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: CO1: Explain the procedures and equipment used in various ground support system for aircraft operations. CO2: Apply knowledge of engine starting procedures for piston engines and GTE. Illustrate the ground servicing of critical aircraft systems. CO3: Interpret the ground servicing procedures for aircraft subsystems CO4: Utilize advanced hand tools, precision instruments, for aircraft maintenance, and modern safety standards in aerospace technology. **CO5:** Summarize the purpose, types, and techniques of aircraft inspection processes in FAA Airworthiness directives and ATA specifications. **CO6:** Explain the specifications standards of aircraft hardware systems and materials.

TEXT BOOKS:

1

Kroes Watkins Delp, "Aircraft Maintenance and Repair", McGraw Hill, New York, 1993.

2	A&P M	A&P Mechanics, "Aircraft Hand Book", F A A Himalayan														
	Book H	lous	se, l	Vev	v De	elhi	, 19	96								
REFE	FERENCES:															
1	A&P M	A&P Mechanics," General Hand Book", F A A Himalayan														
	Bok Ho	Bok House, New Delhi, 1996														
2	Weeras	eke	era,	Sh	eva	ntha	a. "	Int	rod	ucti	on	to N	Mair	iten	and	œ,
	Repair	a	nd	О	ver	hau	ıl	of	A	ircr	aft,	Eı	ngin	es	ar	nd
	Components". SAE International, 2020.															
							P	Os						I	PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	-	-	1	-	1	-	-	1	-	2	-	1
	2	3	2	1	1	-	1	-	1	-	-	1	-	3	-	1
	3	2	1	1	-	-	1	-	1	-	-	-	-	3	-	1
	4	3	2	1	1	-	1	_	1	_	-	-	-	3	-	1
	5 POWER	2	1	1	-	-	1	_	1	-	30	h = /	-	3	<u></u>	1
7	6	2	1	1	-	1	1		1	-	-	-/	V -	3	-	1
	erall elation	3	2	1	-	-	1	-	1	1	5	> -		3	-	1

COLLEGE OF TECHNOLOGY

23AE062	CIVIL AVIATION	L	T	P	C
	REGULATIONS	3	0	0	3

- Understand the requirement of airworthiness certification in civil aircraft
- Can understand how to record the various data for future investigation in civil aircraft.
- Can know the basic requirements and knowledge for institution certification.
- To provide basic knowledge of eligibility and requirements for maintenance licensing
- Explore the various flight testing and basic requirements for safe flying.
- Understand the requirement of airworthiness certification in civil aircraft

UNIT I CAR SERIES 'A' 9

Introduction- Module I CAR series 'A' - Procedure for civil air worthiness requirements and responsibility operators - Air worthiness directorate.

UNIT II | CAR SERIES 'C' 9

Defect recording, reporting, investigation, rectification and analysis; Flight report; reporting and rectification of defects observed on aircraft; analytical study of in-fight readings & recordings; maintenance control by reliability method. CAR SERIES 'D' - and Aircraft Maintenance Programmes: reliability programme (engines); aircraft maintenance programme & their approval; on condition maintenance of reciprocating engines; TBO - revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines; fixing routine maintenance Total Hours and component TBO initial & revisions.

UNIT III	CAR SERIES 'E' and 'F' - APPROVAL OF	9
	ORGANISATIONS	
Approval	of organizations in categories A, B, C, D, E, F, &	G;

requirements of infrastructure at stations other than parent base. CAR SERIES 'F' - Air worthiness and continued air worthiness-Procedure relating to registration of aircraft; procedure for issue / revalidation of type certificate of aircraft and its engines / propeller issue / revalidation of certificate of airworthiness; requirements for renewal of certificate of airworthiness.

UNIT IV | CAR SERIES 'L' - AIRCRAFT MAINTENANCE | ENGINEE LICENSING

Issue of AME license, its classification and experience requirements, complete Series 'L'. CAR SERIES 'M' Mandatory Modifications and Inspections: mandatory modifications and inspections. Procedure for issue of type approval of aircraft components and equipment including instruments

UNIT V CAR SERIES 'T' - FLIGHT TESTING OF AIRCRAFT 9

Flight testing of (series) aircraft for issue of C of A; fight testing of aircraft for which C or A had been previously issued. CAR SERIES 'X' Miscellaneous Requirements: Registration Markings of aircraft; weight and balance control of an aircraft; provision of first aid kits & physician's kit in an aircraft; use furnishing materials in an aircraft; concessions. Aircraft log books; document to be carried on board on Indian registered aircraft; procedure for issue of taxy permit.

proce	dure for issue of taxy permit.
	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Explain the maintenance requirement for airworthiness of
	aircraft and systems.
CO2:	Summarize the procedure followed for airworthiness
	certificate.
CO3:	Illustrate the Airworthiness procedures based on
	Regulation Authorities.
CO4:	Explain the issuance, renewal and experience
	requirements of AMEs.

CO5:	Compa	re t	he l	Flio	ht T		inσ	of a	airc	raft						
	*											1000	dur	200		
	Explain about the aircraft maintenances procedures.															
1		Kroes Watkins Delp, "Aircraft Maintenance and Repair",														
	McGra	w F	Iill,	Ne	w Y	'ork	i, 19	993.								
2	Aircraf	t M	Ianı	ıal	(In	dia)	",	Vol	lum	e -	Lat	est	Edit	ion	, T	he
	English	Во	ok :	Sto	re, 1	71,	Co	nna	ugł	nt C	ircu	s, N	ew l	Del	hi."	•
REFE	English Book Store, 171, Connaught Circus, New Delhi." ERENCES:															
1	A&P N	A&P Mechanics, "Aircraft Hand Book", FAA Himalayan														
	Book H	lous	se, l	Vev	v D	elhi	, 19	96								
2	A&P N	1ecl	nan	ics,'	' G	ene	ral	Haı	nd 1	Boo	k", 1	FAA	Hi	ma	laya	an
	Bok Ho	use	e, N	ew	Del	hi,	199	6							,	
3	Civil A	Civil Aviation Requirements with latest Amendment														
	(Section	n 2	Ai	rwo	orth	ine	ss)	",	Pub	lish	ed	by	DG	CA,	, T	he
	English	Во	ok :	Sto	re, 1	7-1	, Cc	nna	aug	ht C	Circu	1S, N	Iew	De	lhi.	
4	"Aeron		ML / /5	A	_	_	atio		_		lars		relat			to
	Airwor	thir	ness						A.					C		
	A.		N					Os	-		1839	-	-	I	PSC)s
10	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1 GAVEER	2	1	1	0	Ol	2	1	2	5.1	EC	HIN	QL	2	3 <u>Y</u>	2
	2	2	1	1	-/4	<u>-</u>	2	1	2	UNIT	ERSI	nje	utor	2	ous.	2
	3	2	1	1	-	-	2	1	2	-	-	-	-	2	-	2
	4	2	1	1	-	-	2	1	2	-	-	-	-	2	-	2
	5	2	1	1	-	-	2	1	2	-	-	-	-	2	-	2
				-			2	1	2					2		
	6	2	1	1	_	_	_	1	_					_		2
_	6 verall elation	2	1 1	1	- -	_	2	1	2	_	_		_	2	_	2

23AE063	AIRCRAFT ENGINE	L	T	P	C
	MAINTENANCE AND REPAIR	3	0	0	3

- To make the students to familiarize with the Aircraft engine maintenance procedure and practice
- To acquire knowledge of basics of Aeronautics and engine components.
- To learn the concepts of Piston engines.
- To make students aware of aircraft propellers and repair
- To make students aware of aircraft jet engines and repair.
- To make the students to familiarize with the Aircraft engine maintenance procedure and practice

UNIT I PISTON ENGINES

9

Carburation and Fuel injection systems for small and large engines - Ignition system components - spark plug detail - Engine operating conditions at various altitudes - Engine power measurements - Classification of engine lubricants and fuels - Induction, Exhaust and cooling system - Maintenance and inspection check to be carried out. Inspection and maintenance and troubleshooting - Inspection of all engine components - Daily and routine checks - Overhaul procedures - Compression testing of cylinders - Special inspection schedules - Engine fuel, control and exhaust systems - Engine mount and super charger - Checks and inspection procedures.

UNIT	PROPELLERS	9
II		

Propeller theory - operation, construction assembly and installation - Pitch change mechanism- Propeller axially system-Damage and repair criteria - General Inspection procedures - Checks on constant speed propellers - Pitch setting, Propeller Balancing, Blade cuffs, Governor/Propeller operating conditions - Damage and repair criteria.

UNIT III | JET ENGINES

9

Types of jet engines – Fundamental principles – Bearings and seals – Inlets – compressors turbines-exhaust section – Classification and types of lubrication and fuels- Materials used – Details of control, Starting around running and operating procedures – Inspection and Maintenance- Permissible limits of damage and repair criteria of engine components- internal inspection of engines- Compressor washing- field balancing of compressor fans- Component maintenance procedures – Systems maintenance procedures - Use of instruments for online maintenance – Special inspection procedures-Foreign Object Damage - Blade damage.

UNIT IV TESTING AND INSPECTION

9

Symptoms of failure - Fault diagnostics - Case studies of different engine systems - Rectification during testing equipment's for overhaul: Tools and equipment's requirements for various checks and alignment during overhauling - Tools for inspection - Tools for safety and for visual inspection- Methods and instruments for non-destructive testing techniques - Equipment for replacement of parts and their repair. Engine testing: Engine testing procedures and schedule preparation - Online maintenance.

UNIT V OVERHAULING

9

Engine Overhaul - Overhaul procedures - Inspections and cleaning of components - Repairs schedules for overhaul - Balancing of Gas turbine components. Trouble Shooting: Procedures for trouble shooting - Condition monitoring of the engine on ground and at altitude - Engine health monitoring and corrective methods.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

CO1: Apply maintenance procedure to Aircraft Piston Engines.

CO2: Identify the engine components and faults.

CO3:	Explain the maintenance procedure for the propellers.															
CO4:	Apply	nor	n-de	estru	acti	ve 1	test	ing	pro	cec	lure	s to	ide	ntif	y t	he
	defects															
CO5:	Apply	ove	rha	ulir	ıg p	roc	edu	re t	o n	ew	engi	ines				
CO6:	Apply	Apply the compression testing of cylinders.														
TEXT	ВООК	BOOKS:														
1	Kroes '	Wat	kin	s D	elp	, "A	irc	raft	Ma	int	enar	nce	and	Re	pai	r",
	McGra	w F	Iill,	Ne	wΥ	ork	, 19	93.								
2	Kroes	& V	Wil	d, '	'Air	cra	ft F	ow	er	pla	nts	", 7	th I	Edit	ion	-
	McGra	McGraw Hill, New York, 1994."														
REFE	RENCE	RENCES:														
1	A&P N	A&P Mechanics, "Aircraft Hand Book", FAA Himalayan														
	Book H	Book House, New Delhi, 1996														
2	A&P N	A&P Mechanics," General Hand Book", FAA Himalayan														
	Bok Ho	ouse	e, N	ew	Del	hi,	199	6	1		4				4	
3	Turbon	neca	a, "	Gas	s Tı	urbi	ine	Eng	gine	es "	, Th	ne E	ngli	sh	Во	ok
	Store ",						- 10	h.	4			. 1				
4	United				_						-					
	Turbin					lits	s C	per	atio	n",	Th	e E	ngli	sh	Во	ok
	Store, N	Vew	De	elhi.	. " "	.01		.01	- 0	J	EL	LIII	IOL		31	
(COs						P	Os	111111111111111111111111111111111111111	20140	V. E.C.	1.6.1.6		I	PSC)s
		1	2	3	4	5	6	7	8	9	10	11		1	2	3
	1	3	2	1	1	1	1	-	-	1	-	-	1	2	1	-
	2	3	2	1	1	1	2	-	-	1	-	-	1	3	1	-
	3	3 2 1 1 1 1 1 3 1 -								-						
	4										-					
	5	3 2 1 1 1 1 1 - 1 3 1 -									-					
	6									1	-					
_	erall	3	2	1	1	2	2	_	_	1	_	_	1	3	2	_
Corr	elation															

23AE064	AIR TRAFFIC CONTROL	L	T	P	С
		3	0	0	3

- To introduce the basic of air traffic control.
- To impart knowledge about air traffic systems.
- To gain more knowledge on flight information systems.
- To learn about aerodrome data.
- To gain knowledge on navigation systems.

UNIT I BASIC CONCEPTS

9

Objectives of air traffic control systems - Parts of ATC services - Scope and Provision of ATCs - VFR & IFR operations - Classification of ATS air spaces - Various kinds of separation - Altimeter setting procedures - Establishment, designation and identification of units providing ATS - Division of responsibility of control

UNIT II | AIR TRAFFIC SYSTEMS

9

Area control service, assignment of cruising levels - minimum flight altitude - ATS routes and significant points - RNAV and RNP - Vertical, lateral and longitudinal separations based on time / distance -ATC clearances - Flight plans - position report

UNIT III | FLIGHT INFORMATION SYSTEMS

9

Radar service, Basic radar terminology – Identification procedures using primary / secondary radar – performance checks – use of radar in area and approach control services – assurance control and co-ordination between radar / non radar control – emergencies – Flight information and advisory service – Alerting service – Co-ordination and emergency procedures – Rules of the air

UNIT IV | AERODROME DATA

9

Aerodrome data - Basic terminology - Aerodrome reference code - Aerodrome reference point - Aerodrome elevation -Aerodrome reference temperature - Instrument runway, physical Characteristics; length of primary / secondary runway - Width of runways - Minimum distance between parallel runways etc. - obstacles restriction

UNIT V NAVIGATION AND OTHER SERVICES

9

Visual aids for navigation Wind direction indicator – Landing direction indicator – Location and characteristics of signal area – Markings, general requirements – Various markings – Lights, general requirements – Aerodrome beacon, identification beacon – Simple approach lighting system and various lighting systems – VASI & PAPI – Visual aids for denoting obstacles; object to be marked and lighter – Emergency and other services

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- **CO1:** Explain airspace standards and various parts of ATC.
- **CO2:** Utilize the flight plan and position report.
- CO3: Explain the various navigation systems.
- CO4: Summarize the flight information service and alerting service.
- CO5: Interpret the basic terminology of aerodrome.
- CO6: Explain the physical characteristic of runway and visual navigation aid used in aerodrome.

TEXT BOOKS:

- Isaac, Anne R., and Bert Ruitenberg. "Air traffic control: human performance factors". Routledge, 2017.
- McGee, James P., Anne S. Mavor, and Christopher D. Wickens, eds. "Flight to the future: Human factors in air traffic control". National Academies Press, 1997.

REFERENCES:

- Bradbury, John N. "ICAO and future air navigation systems." In Automation and systems issues in air traffic control, pp. 79-99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991.
- Michael S. Nolan., "Fundamentals of Air Traffic Control",

	Cengag	ge L	ear	ning	g,19	90.										
3	Wells	.A-	"Ai	irpo	ort	Pla	nni	ng	an	d	Mai	nage	emei	nt",	, 4	th
	Edition	- M	[cG1	raw	-Hi	11, L	ono	lon	-200	00.						
4	P S S	eng	utt	uva	an.,	"]	Fun	dar	nen	tals	of	Ai	r T	ran	spc	rt
	Manage	eme	ent"	, M	cG1	aw	-Hi	11, 2	003						-	
-	7 0 c						P	Os						I	PSC)s
(COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1	1	-	-	-	-	-	-	-	-	-	-	-	-
	2	3	2	1	1	1	2	-	-	1	-	-	3	-	1	-
	3	2	1	1	-	2	2	-	-	1	-	-	3	-	2	-
	4	2	1	1	-	3	2	-	-	1	-	-	3	-	3	-
	5	2	1	1	-	3	2	-	-	1	-	-	3	-	3	-
	6	2	1	1	-	3	2	-	-	1	-	-	3	-	3	-
	verall	2	1	1	1	3	2	7	-20	1	-	ē -	2	-	3	_
(1000	alation	H#/9)	700	I	1		- 400	St.	- 4	3.00	7000	F	100		0.0	

COLLEGE OF TECHNOLOGY

23AE065	AIRPORT MANAGEMENT	L	T	P	C
		3	0	0	3

- To acquire solid background of managerial skills in airport management.
- To develop personality to face business difficulties.
- To control multicultural conditions.
- To identify the relevant analytical and logical skills to deal with problems in the airline industry.
- To learn the concepts of performing well in teams, professionalism, and the knowledge acquired in the field of airport planning, airport security, passengers forecasting, aerodromes work etc.

UNIT I | INTRODUCTION

(

History of aviation – Organization, global, social & ethical environment – History of aviation in India -Major players in the airline industry – Swot analysis of the different airline companies in India – Market potential of airline industry in India – New airport development plans – Current challenges in the airline industry – Competition in the airline industry – Domestic and international from an Indian perspective.

UNIT II | AIRPORT INFRASTRUCTURE AND | MANAGEMENT

9

Airport planning – Terminal planning design and operation – Airport operations – airport functions -Organization structure in an airline – Airport authority of India – comparison of global and Indian airport management – Role of AAI -Airline privatization – Full privatization – Gradual privatization – Partial privatization.

UNIT III | AIR TRANSPORT SERVICES

9

Various airport services – International air transport services – Indian scenario – an overview of airports in Delhi, Mumbai, Hyderabad and Bangalore – The role of private operations – Airport development fees, rates, tariffs.

UNIT	T IV INSTITUTIONAL FRAMEWORK	9
Role	of DGCA - Slot allocation - Methodology followed by A	ГΕ
and	DGCA -management of bilateral -Economic regulations.	
UNI	T V CONTROLLING	9
Role	of air traffic control - Airspace and navigational aids	-
Cont	trol process - Case studies in airline industry - Mumb	ai
Delh	i airport privatization - Navi Mumbai airport tenderii	ng
proc	ess – 6 cases in the airline industry.	
	TOTAL: 45 PERIO	DS
COL	JRSE OUTCOMES:	
	After completion of the course, the students will be able t	0:
CO1	Interpret business difficulties.	
CO2	Develop airport infrastructure and management	
CO3	Identify and apply the relevant analytical and logic	cal
	skills to deal with problems in the airline industry.	
CO4	Develop well in teams, professionalism etc.	Ĭ.
CO5	Apply the knowledge acquired in the field of airpo	ort
Α.	planning, airport security, passengers forecasting	ıg,
	aerodromes work etc.	5
CO6	Explain the aircraft management and flight information	on
	system	
TEX	T BOOKS:	
1	Graham. A. Managing airports: an internation	ıal
	perspective – butterworts – Heinemann, Oxford 2001.	
2	Wells. A. Airport planning and management, 4th edition	on
	McGraw- Hill, London 2000.	
	ERENCES:	
1	Bradbury, John N. "ICAO and future air navigation	on
	systems." In Automation and systems issues in air traff	
	control",. Berlin, Heidelberg: Springer Berlin Heidelber	g,
	1991.	
2	Michael S. Nolan., "Fundamentals of Air Traffic Control	l",
	Cengage Learning,1990	

- Wells .A-"Airport Planning and Management", 4th Edition- McGraw-Hill, London-2000.
- 4 P S Senguttuvaan., "Fundamentals of Air Transport Management", McGraw-Hill, 2003.

COs						P	Os						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	-	1	1	1	-	-	-	1	1	2	1	-
2	3	2	1	1	1	2	1	-	-	-	1	1	3	1	-
3	3	2	1	1	1	1	1	-	-	-	2	1	3	1	-
4	3	2	1	1	1	1	2	-	-	-	1	1	3	1	-
5	3	2	1	1	2	1	1	-	-	-	1	2	3	1	-
6	2	1	1	-	1	2	1	-	-	-	1	1	3	1	-
Overall Correlation	3	2	1	1	2	2	2	-	-	-	1	1	3	1	-

COLLEGE OF TECHNOLOGY

23AE066	AIRCRAFT SAFETY AND	L	T	P	C
	OPERATIONS	3	0	0	3
COURSEC	DBJECTIVES:		Į.		
• To	o introduce the basic of air traffic control.				
• To	o impart knowledge about air traffic syst	ems			
• To	o gain more knowledge on flight informa	tior	sys	sten	ns.
• To	learn about aerodrome data.				
• To	o gain knowledge on navigation systems				
	UMAN FACTORS IN AVIATION SAF		,		9
Theory of	Risk - Changing the behaviour of the	risk	tak	kers	_
Attitudes -	Discipline - Punishment - Protection	of	Saf	ety	_
Motivating	Safe behaviour - Training involving hur	nan	fac	tors	. –
Human Per	formance Concerns – Human Performan	ice I	act	ors.	
UNIT AV	VIATION SAFETY				9
II OW	ER DREA	P		43	
Aviation sa	fety - Meaning, Need, Economic of Avia	atio	n sa	fety	_
Safety Vs I	Mis <mark>sio</mark> n – Zero Accident Rate – Accide	ent	Cau	ıses	_
Multiple Vs	s Single Cause – Aircraft Accident – Air	craf	t M	isha	ıр
- Aircraft Iı	ncident - Building Aviation Safety Progra	am.			
UNIT III A'	VIATION SAFETY PROGRAM ELEME	NT	S	C.	9
Internal Re	porting Systems – Information Distributi	on s	syst	ems	; –
Aviation S	Safety Committees – Aviation safety	7 I1	nspe	ectio	on
Programs	- Aviation safety program evalua-	tion	- :	Flig	ht
operation s	safety inspection - Aviation safety ed	luca	tior	ı ar	nd
training - A	accident preparation and investigation				
UNIT IV AI	RCRAFT MAINTENANCE SAFETY				9
Aircraft Dis	screpancies - Delayed and Deferred Dis	scre	pan	cies	_
Training -	Configuration control - Maintenance	Eng	ine	Ru	ns
and Taxiing	g – Maintenance Test Flights – Maintena	nce	An	alys	sis
- Mainter	nance Safety Programs - Mainten	ance	e 5	Safe	ty
Inspections					
	RPORT EMERGENCY				9
Airport Ce	ertification Manual – Airport Emerge	ency	P	lan	-

Airpo	orts - Heliports Criteria - Airport and Heliport Safety
_	ctions.
F	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Infer aviation safety management, accident and incident,
	building aviation safety program.
CO2:	Explain the involvement of human factors in aviation
	safety.
CO3:	Summarize the Aviation safety program and internal
	reporting system.
CO4:	Interpret the Aircraft maintenance safety regulations and
	appropriate inspections.
CO5:	Identify about the airport emergence response plans
	initiated.
CO6:	Explain about the various types of safety procedures in
	aero industries.
TEXT	BOOKS:
1	Stolzer, Alan J., Robert L. Sumwalt, and John J. Goglia.
	"Safety management systems in aviation". CRC Press,
	2023.
2	Wells, Alexander T., and Seth B. Young. "Airport
	planning & management". McGraw-Hill, 2004
REFE	RENCES:
1	Müller, Roland, Andreas Wittmer, and Christopher Drax.
	"Aviation risk and safety management." Cham: Springer
	(2014): 45-48.
2	Yeun, Richard, Paul Bates, and Patrick Murray. "Aviation
	safety management systems." World Review of
	Intermodal Transportation Research 5, no. 2 (2014): 168-
	196.

3	Mani	riho, Emm	y Arsonval, and	d Edissa U	wayo. "Airline
	and	Airport	Operations".	Éditions	universitaires
	europ	péennes, 20	18.		

COs						P	Os						I	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	-	1	1	1	-	-	-	1	1	2	1	-
2	2	1	1	-	2	1	1	-	-	-	1	1	3	2	-
3	2	2	1	-	1	1	2	-	-	-	2	1	3	1	-
4	2	2	1	-	1	1	1	-	-	-	1	1	3	1	-
5	3	2	1	1	2	1	1	-	-	-	1	2	3	2	-
6	2	1	1	-	1	1	2	-	-	-	1	1	3	1	-
Overall Correlation	3	2	1	1	2	2	2	-	-	-	2	2	3	2	-

23AE067	CRISIS MANAGEMENT IN	L	T	P	C
	AIRCRAFT INDUSTRY	3	0	0	3

- To learn about the fundamentals of Aviation Safety
- To understand about the Human Factors in Aviation Safety
- To get knowledge about Aviation Safety Programs
- To learn about the Aircraft Maintenance Safety
- To impart knowledge about the crisis management in airline industry

UNIT I INTRODUCTION TO CRISIS MANAGEMENT

Crisis management- Context of the crisis in the aircraft industry-Crisis management basics- Crisis stages- Establishing a crisis management team- The role of the crisis manager.

UNIT II CRISIS MANAGEMENT IN ACTION

9

Putting crisis management into action- Psychology of crisis management decisions-Emergency response scenarios-Contingency plans- Damage control- A crisis management checklist.

UNIT III | AIRLINE CRISIS MANAGEMENT

9

Context of the crisis - The airline industry; Organizational crisis and communication- Causes, Crisis typologies- Coombs typology; Characteristics of the crises- Consequences- Modeling crises- Crisis communication- Strategic communication.

UNIT IV | CRASH MANAGEMENT

9

Pre-crisis - Existing in pre-crisis phase- preparing for the worst-Contingency planning- Crisis-stage Disaster strike- Confronting the crisis- Post-crisis The National Transportation Board- Director General of Civil Aviation.

UNIT V | CASE STUDIES

9

Northwest airlines flight 255- American airlines flight 191- Delta airlines flight 191- Trans world airlines flight 800- Pan American World Airways flight 103- US Air flight 427- Value jet flight 592.

	TOTAL: 45 PERIODS
COU	RSE OUTCOMES:
	After completion of the course, the students will be able to:
CO1:	Infer aviation safety management, accident and incident,
	building aviation safety program.
CO2:	Explain the involvement of human factors in aviation
	safety.
CO3:	Summarize the Aviation safety program and internal
	reporting system.
CO4:	Identify the Aircraft maintenance safety regulations and
	appropriate inspections.
CO5:	Make use of knowledge about the airport emergence
	response plans initiated.
CO6:	Explain about the various types of safety procedures in
	aero industries.
- / 60	TBOOKS:
1	Sally J. Ray, "Strategic communication in crisis
	management: Lessons from the Airline Industry", 1999.
2	Reese, Peter. "In Turbulent Skies: British Aviation Successes
	and Setbacks-1945-1975". The History Press, 2020.
	RENCES:
1	Cushing, S. "Fatal Words: Communication clashes and
	aircraft crashes", University of Chicago Press, 1994.
2	Fink S. "Crisis Management: Planning for the inevitable",
	Newyork, 1986.
3	Pauchant, T., Mitro, I. "Transforming the crisis prone
	organization: Preventing individual, organizational and
4	environmental tragedies", San Fransisco: Jossey-Bass.
4	Maniriho, Emmy Arsonval, and Edissa Uwayo. "Airline and Airport Operations". Éditions universitaires
	européennes, 2018.

COs						P	Os							PSC	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	-	1	2	1	-	-	-	1	2	2	1	-
2	2	1	1	-	1	1	1	-	-	-	1	1	3	1	-
3	2	1	1	-	1	2	1	-	-	-	1	1	3	1	-
4	3	2	1	1	2	1	1	-	-	-	2	1	3	2	-
5	2	2	1	1	1	1	2	-	-	ı	1	1	3	1	1
6	2	1	1	1	1	1	1	-	-	-	1	2	3	1	-
Overall Correlation	3	2	1	1	2	1	1	1	-	1	1	1	3	2	1

VERTICAL 6 - DIVERSIFIED COURSES

23AE068	FOUNDATION OF	L	T	P	C
	MANUFACTURING	3	0	0	3
	TECHNOLOGY				

COURSE OBJECTIVES:

- To make familiar with the working principles of various metal casting processes.
- To learn and apply the working principles of various metal joining processes.
- To analyse the working principles of bulk deformation of metals.
- To learn the working principles of sheet metal forming process.
- To study and practice the working principles of plastics molding.

UNIT I METAL CASTING PROCESSES 9

Sand Casting - Sand Mould - Type of patterns - Pattern Materials - Pattern allowances - Molding sand Properties and testing - Cores - Types and applications - Molding machines - Types and applications - Melting furnaces - Principle of special casting processes - Shell, investment - Ceramic mould - Pressure die casting - low pressure , gravity - Tilt pouring, high pressure die casting.

UNIT II METAL JOINING PROCESSES 9

Fusion welding processes - Oxy fuel welding - Filler and Flux materials--Arc welding, Electrodes, Coating and specifications - Gas Tungsten arc welding -Gas metal arc welding - Submerged arc welding - Electro slag welding- Plasma arc welding - Resistance welding Processes -Electron beam welding -Laser beam Welding Friction welding - Friction stir welding - Diffusion welding - Thermit Welding, Weld defects - inspection & remedies.

UNIT III BULK DEFORMATION PROCESSES 9 Hot working and cold working of metals - Forging processes -

Open, impression and closed die forging –cold forging-Characteristics of the processes – Typical forging operations – rolling of metals – Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion. Introduction to shaping operations.

UNIT IV | SHEET METAL PROCESSES

9

Sheet metal characteristics – Typical shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods –special forming processes - Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning.

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

9

Types and characteristics of plastics – Molding of thermoplastics & Thermosetting polymers– working principles and typical applications – Injection molding – Plunger and screw machines – Compression molding, Transfer Molding – Typical industrial applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Explain the principle of different metal casting processes.
- CO2: Illustrate the various metal joining processes.
- **CO3:** Outline the different bulk deformation processes.
- CO4: Summarize the various sheet metal forming processes.
- CO5: Demonstrate the use of suitable molding techniques for manufacturing of plastics components.
- **CO6:** Illustrate the Manufacturing process control techniques.

TEXT BOOKS:

1

Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India Edition, 2006.

2	P.N.Ra	0 N	lanı	ufac	tur	ino	Te	chn	olo	σv ,	Voli	ıme	1 N	Лс (Gra	w
_	hill Edu					6	10	CIIII	010	6 <i>)</i>	, 010	<i>.</i>	1 1	10	OI u	
DEEL	ERENCE		.1011	201												
			_	. 1	1									. 1		
1	Roy.					_							ıateı	als	3	of
	manufa				•											
2	S. Gow	/ri	P. 1	Haı	riha	ran	, A	.Su	resh	ı Ba	abu,	Ma	anuf	act	urii	ng
	Techno	log	y I,	Pea	rso	n E	duc	atio	n, 2	2008	3.					
3	Paul D	ega	rma	аE,	Bla	ick	J.T	anc	l Ro	ona	ld A	. K	oshe	er, I	Elig	th
	Edition	, M	ate	rials	s an	d P	roc	esse	es, i	n N	I anı	ıfac	turii	ng,	Eig	ht
	Edition	Pr,	ent	ice ·	- H	all d	of Ir	ndia	ı, 19	97.						
4	HajraC	hou	ıldh	ary	, S	s.K	an	ıd	На	jra	Ch	oud	lhur	y.	Aŀ	ζ.,
	Elemen	ıts	of	wo	rksl	nop	Т	echi	nolo	gy,	vo	lum	e I	ar	nd	II,
						_							te			
	Mumba	_														
5	Sharma	i, F	.C.,	Α	Te	xt	boo	k c	of p	roc	lucti	on	Tec	hnc	olog	v,
/	S.Chan		No. 7 PS										7			,,,
	7.6° A					7	\rightarrow	Os						I	PSC)s
	COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
-\	187	2	1	1	1	3	-	1	-	-	1	1	1	3	3	_
27/	2 C/VEED	2	1	1	1	2	. LE	2	: 0	F_T	ĘC	1	GL.	3	2	_
	3	2	2	1	À	2	HED	2	NNA	UNI	1	1	2	3	2	_
	4		2	1	1	3		1	_		1	1	1	3	3	
		3		_	_	_	-	1	-	-		_	_		_	-
	5	3	2	1	1	2	-	-	-	-	1	1	1	3	2	-
	6	3	2	1	1	3	1	1	2	-	1	1	2	1	3	2
O	verall	3	2	1	1	3	1	2	2	_	1	1	2	3	3	2
	relation									_				.,		_

23AS701	ROCKETS AND LAUNCH	L	T	P	C
	VEHICLES	3	0	0	3

- To compute and analyse the various forces and moments acting on a rocket.
- To formulate the equations of motions for flight and separation phases.
- To understand the combustion and propulsion systems in rocket.
- To select suitable materials for the rockets and launch vehicles.
- To understand the design, performance and testing aspects.
- To comprehend the stage separation of multistage rockets

UNIT I ROCKET DYNAMICS

9

Peculiarities of space environment and its description– Effect of space environment on materials of spacecraft structure and astronauts- Manned space missions – Effect on satellite life time-Space debris Management.

UNIT II | SOLID PROPULSION AND PYROTECHNICS | 9

Solid propellant rockets – Classification – Components and their design considerations – Propellant grain design – grain mechanical properties – Ballistics and burn rate design issues – Igniter design – Pyrotechnic devices and systems – Classification – Mechanisms and application of pyrotechnic devices in rockets and launch vehicles – Design problems in rocket systems.

UNIT III LIQUID PROPULSION AND CONTROL 9 SYSTEMS

Liquid propellant rockets – Classification and components – Thrust chamber, feed systems, propellant tanks, turbo-pumps, types of valves and applications – Their design considerations – Different bipropellant systems like cryogenics and their characteristics – Pogo and slosh engine gimbal systems and thrusters for control – Thrust control systems – Design

problems.
UNIT IV MULTI-STAGING OF ROCKET AND 9
SEPARATION DYNAMIC
Navigation and guidance systems in rockets and launch vehicles
- Aerodynamic control systems of launch vehicles - Multi-
staging of rockets - Vehicle optimization techniques - Stage
separation system - Dynamics, separation techniques - Rocket
flight dispersion, numerical problems.
UNIT V ASTROPHYSICS 9
Design requirements and selection - Performance evaluation
and assessment - Space environment on the selection of
materials for rockets and spacecraft - Material selection for
specific requirements - Advance materials-super alloys and
composite materials - Qualification of rocket and missile
systems – types of testing and evaluation of design and function.
TOTAL: 45 PERIODS
COURSE OUTCOMES:
After completion of the course, the students will be able to:
CO1: Identify various rocket and launch vehicle systems, derive
motion equations, and explore advanced rockets for
future missions. APPLIATED TO ANNA UNIVERSITY I AUTONOMOUS
CO2: Organize design concepts and operational principles of
solid propellant propulsion and pyrotechnic systems.
CO3: Apply functionality and design principles of liquid
propellant propulsion and control systems.
CO4: Analyze motion equations, dynamics of stage separation,
navigation, guidance, and control systems, and multistage
rocket design.
CO5: Plan system design, construction, functionality,
performance, testing, and material selection for rocket
systems.
CO6: Classify the guidance and navigation system of the rocket

TFY	Г ВООК	S.														
1	Corneli		T	W		'Ro	cket	- P	ron	ulsi	on	and	Sn	асе	flio	ht
•	Dynam		-						-		011	aria	υp	acc	6	
2	Raman										leio	n"	М	acr	nilla	an
_	Publish								11	opu	1310	π,	111	acı.	11111	A11
REEL	ERENCE		1110	114 1	.1130	Lu	., 20	10.								
1	Sutton,		D '	"Ro	cko	+ D₁	ron	ılci	on	Flor	non	te"	1 47;1	017	No	TA7
•	York, 9					ι 1 1	юрі	uisi	OH	Lici	псп	ις ,	V V 11	cy,	INC	vv
2	-					The	Po	cke.	+ E:1	loc"	Ι	111.0	om	22.	1 E	1
_	Joseph 2013.	J1111	ше	ISUI	ı,	тпе	KO	cke	ιΓI	ies	, Lu	ıu.C	om,	Z11 0	л E(۸.,
3		1	<u>л</u> (C: a.			Mic	i1.		ن د د د	lana		- d	C		1
3	George												ma	C	ш	OI
4	System		-										D		1 .	
4	Ronald					-						•	e Pr	opı	11S10	on
	Analys	ıs a	na l	Des	ıgn	, IV			7-H:	111.	1995		A		200	
(COs	2/27						Os	4	_	40	44	40		PSC	
/	7.6	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1/ ^	3	2	1	1	1	7	_	1	1		1	N.	2	1	1
	2	3	2	1	1	1	-		-	1	1	1	1	2	1	-
	3	3	2	1	1	1	-	ā	1	1	1	1	1	3	1	1
	4 WEER	3	3	2	2	1	- l <u>-</u> l-	UI.		1	1	1	1	3	1	-
	5	3	2	1	-	1	VII. Edit	1000	1	1	1	1	1	3	1	1
	6	2	1	-	-	1	1	1	1	1	1	1	1	2	1	1
O	verall	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
	elation		_											\mathcal{L}		

23AE069	DRONE TECHNOLOGIES	L	T	P	C
		3	0	0	3

- To understand the fundamental concepts, history, and business opportunities associated with drone technology.
- To acquire knowledge of drone design, fabrication, and programming, including assembling and configuring components.
- To learn drone flight operations, control mechanisms, and the integration of sensors and storage devices.
- To explore commercial applications of drones in various industries such as agriculture, logistics, and inspection services.
- To understand safety practices, aviation regulations, licensing, and advancements in drone autonomy and swarm technology.

UNIT I INTRODUCTION TO DRONE TECHNOLOGY 9

Drone Concept - Vocabulary Terminology - History of drone - Types of current generation of drones based on their method of propulsion - Drone technology impact on the businesses - Drone business through entrepreneurship - Opportunities/applications for entrepreneurship and employability.

UNIT II DRONE DESIGN, FABRICATION AND PROGRAMMING 9

Classifications of the UAV - Overview of the main drone parts - Technical characteristics of the parts - Function of the component parts - Assembling a drone - The energy sources - Level of autonomy- Drones configurations - The methods of programming drone - Download program - Install program on computer- Running Programs - Multi rotor stabilization - Flight modes - Wi-Fi connection.

UNIT III DRONE FLYING AND OPERATION 9 Concept of operation for drone - Flight modes - Operate a small

drone in a controlled environment - Drone controls Flight operations - management tool - Sensors - Onboard storage capacity - Removable storage devices - Linked mobile devices and applications.

UNIT IV DRONE COMMERCIAL APPLICATIONS

9

Choosing a drone based on the application - Drones in the insurance sector - Drones in delivering mail, Parcels and other cargo - Drones in agriculture - Drones in inspection of transmission lines and power distribution - Drones in filming and panoramic picturing.

UNIT V | FUTURE DRONES AND SAFETY

9

The safety risks - Guidelines to fly safely - Specific aviation regulation and standardization - Drone license - Miniaturization of drones - Increasing autonomy of drones - The use of drones in swarms.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Infer various types of drone and the technologies used in it on different applications.
- CO2: Design and fabricate drones of different configurations and execute program for autonomous drones.
- **CO3:** Execute the suitable operating procedures for functioning a drone.
- **CO4:** Develop drones for specific commercial applications.
- CO5: Infer the guidelines and safety standards associated with Aviation regulations.
- **CO6:** Implement the autonomy functions in swarm drones.

TEXT BOOKS:

1 Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", John Wiley & Sons, Inc. 2021.

2 Garvit Pandya, "Basics of Unmanned Aerial Vehicles: Time to start working on Drone Technology", Notion Press, 2021.

REFERENCES:

- John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016.
- 2 Jha, A. R. "Theory, design, and applications of unmanned aerial vehicles". CRC Press, 2016.
- 3 Sachi Nandan Mohanty, J.V.R. Ravindra, "Drone Technology: Future Trends and Practical Applications", Wiley, 2023.
- 4 Terry Kilby and Belinda Kilby, "Make: Getting Started with Drones", Maker Media, Inc., 2016.

COs				-	_	P	Os	ĕ					1	PSC)s
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	1	1	1	1	2	_	-	-	2	2	1	2
2	3	3	2	1	1	2	1	2	1	-	-	3	2	1	2
3	3	3	3	2	1	2	1	2	1		-	3	2	1	2
4	3	2	2	1	1	1	1	2	-	-	-	2	2	1	2
5 SINEE	3	3	3	3	1	2	1	2	-	Ē	.FJI	3	2	1	2
6	2	2	1	1	1	2	1	2	- Urel	V.E.B.S.	112	3	2	1	2
Overall Correlation	3	3	3	2	1	2	1	2	-	-	-	3	2	1	2

23AE070	HELICOPTER MAINTENANCE	L	T	P	C
		3	0	0	3

- To understand the fundamental components and ground handling of helicopters, including gears and bearings.
- To gain knowledge about main rotor systems, including maintenance, balancing, and vibration management techniques.
- To learn the maintenance and inspection of helicopter main rotor transmissions and associated systems.
- To explore power plant installation, maintenance, and tail rotor system servicing and rigging.
- To understand the maintenance of helicopter airframes, airframe systems, and special-purpose equipment.

UNIT I HELICOPTER FUNDAMENTALS

9

Basic directions- pitch, roll, and yaw - Ground handling - towing, taxiing, and parking helicopters safely, bearing- Types-roller, thrust, ball bearings - Gears - bevel, spiral bevel, planetary gears- transmit power.

UNIT II MAIN ROTOR SYSTEM

9

Head maintenance – blade alignment – Static main rotor balance – Vibration – Tracking – Span wise dynamic balance – Blade sweeping –Electronic balancing – Dampener maintenance – Counter weight adjustment – Auto rotation adjustments – Mast & Flight Control Rotor – Swash plate flight control systems collective – Cyclic – Push pull tubes – Torque tubes – Bell cranks – Mixer box – Gradient unit control boosts – Maintenance & Inspection control rigging.

UNIT III MAIN ROTOR TRANSMISSIONS

9

Engine transmission coupling – Drive shaft – Maintenance clutch – Free wheeling units – Spray clutch – Roller unit – Torque meter – Rotor brake – Maintenance of these components – vibrations – Mounting systems – Transmissions.

UNIT IV POWER PLANTS & TAIL ROTORS Fixed wing power plant modifications - Installation - Different type of power plant maintenance. Tail rotor system - Servicing tail rotor track - System rigging. AIRFRAMES AND RELATED SYSTEMS UNIT V Fuselage maintenance - identifying cracks, corrosion, and other structural damages -Materials- load distribution - Airframe Systems - Hydraulic systems- Maintenance practices- Fuel Systems -- Special purpose equipment- Hoists and winches-Auxiliary fuel tanks. **TOTAL: 45 PERIODS COURSE OUTCOMES:** After completion of the course, the students will be able to: **CO1:** Explain about the Helicopter fundamentals. CO2: Identify various main rotor system. **CO3:** Explain about the main rotor transmission systems. CO4: Compare the various types of powerplants used for helicopter. CO5: Choose the suitable airframe structure. CO6: Explain about the various maintenance practices in helicopter TEXT BOOKS: Watkinson, John. "Art of the Helicopter". Elsevier, 2003. 1 Gupta. L "Helicopter Engineering", Himalayan Books, 2 1996. REFERENCES: "Helicopter theory". 1 Wayne. Courier Johnson, Corporation, 2012... Joseph Schafer, "Basic Helicopter Maintenance", Jeppesen 2 1980.

R W Prouty, Helicopter Aerodynamics, Phillips Pub Co,

3

1993.

COs						P	Os						F	SO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	-	2	-	2	-	2	3	-	-	3	2	-
2	3	2	1	1	2	-	2	-	2	3	-	-	2	2	ı
3	2	1	-	-	2	-	2	-	2	3	-	-	2	2	-
4	2	1	-	-	2	-	2	-	2	3	-	-	2	2	-
5	3	2	1	1	2	1		-	2	3	-	-	2	2	-
6	2	1	-	-	3	-	2	-	2	3	-	-	2	3	-
Overall Correlation	3	2	1	1	3	-	2	-	2	3	-	-	2	3	-

23AS601	SPACE MECHANICS	L	T	P	C
		3	0	0	3

- Understand the space environment, its effects on spacecraft and astronauts, and strategies for managing space debris.
- Learn orbital mechanics concepts, including Kepler's laws, two-body problems, and celestial coordinate systems.
- Analyze interplanetary missions, focusing on orbits, trajectories, and mission planning techniques.
- Explore the design and optimization of space launch vehicles, including propulsion, thermal, and communication systems.
- Study astrophysics concepts, astronomical observations, and the structure of the galaxy using modern techniques.

UNIT I SPACE ENVIRONMENT

9

Peculiarities of space environment and its description– Effect of space environment on materials of spacecraft structure and astronauts- Manned space missions – Effect on satellite life time-Space debris Management.

UNIT II ORBITAL MECHANICS

9

The solar system - Reference frames and coordinate systems - Terminology related to the celestial sphere and its associated concepts - Kepler's laws of planetary motion and proof of the laws - Newton's universal law of gravitation - The many body problem - Lagrange-Jacobi identity - The circular restricted three body problem - Liberation points - The general N-body problem - Two body problem - Relations between position and time.

UNIT III INTERPLANATERY MISSION

9

Orbits and trajectories- Effect of injection condition- Effect of earth's rotation, perturbation analysis-Parking orbit- Transfer trajectory- Impulsive shot; rendezvous- recent interplanetary missions.

UNIT IV SPACE LAUNCH VEHICLE

9

Space Vehicle Design: requirements, Specifications and design process – Rocket equation – Velocity budget, Staging, Launch vehicle sizing, Launch into an orbit, range safety – Rocket propulsion options – Configuration and structural design – NGC systems – Thermal control – Power systems – Communication systems – Design for reentry – Vehicle integration.

UNIT V | ASTROPHYSICS

9

Mass, Length and Time Scales in Astrophysics - The Emergence of Modern Astrophysics - Application of Physics to Astrophysics. - Relevance of General Relativity - Sources of Astronomical Information - Astronomy in Different Bands Of Electromagnetic Radiation - Optical Astronomy - Radio Astronomy - X-Ray Astronomy Other New Astronomies - Astronomical Nomenclature- Our Galaxy And Its Interstellar Matter - The Shape And Size Of Our Galaxy - Some Basics Of Star Count Analysis.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Make use of the satellite injection, satellite perturbations and trajectory control
- **CO2:** Apply orbital mechanics for space application
- CO3: Examine the trajectory/orbit of a space vehicle or a satellite in a suitable coordinate system.
- **CO4:** Analyze the delta-v required for transferring a spacecraft from one orbit to another.
- **CO5:** Explain astrophysics in the space application.
- **CO6:** Summarize the space launch vehicle and its uses.

TEXT BOOKS:

1 Choudhuri, Arnab Rai. "Astrophysics for physicists", Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK, 2010.,

2	Cuiffin	1 /	: -1-	- -1	D		1	т т) I	Сист	1-	IIC.		17.	1.:.	.1.
2	Griffin,							-				-				
	Design			EC	luca	11101	1 56	erie	S. ,	JK	rre	ncn.	-Res	stoi	1 V.	A:
DEE	AIAA ,		4.													
	ERENCE										_					
1	E. Stu	hlir	ıger	a	nd	G.	M	lesn	ner.	. "	Spa	ce S	Scie	nce	aı	nd
	Engine	erir	ıg".	1st	Ed	itio	n, N	1cG	raw	<i>y-</i> H	ill, N	Jew	Yor	k ,1	965	5.
2	W.N. I	Hes	s. '	'Sp	ace	Sc	ienc	œ".	1s	t E	ditio	on,	Blac	kie	aı	nd
	Son,196	65.		-												
3	Howar	d (lurt	is.	"O	rbit	al l	Med	har	nics	for	En	gine	ers	ar	nd
	Scientis												8	0010		
4												1			1	Α.
4	Marcel				-				-							
	Practica		_	nee	ering	g A	ppı	oac	ch",	Ca	ımbı	ridg	e U	niv	ersi	ty
	Press, 1	.997	.													
	COs						P	Os						I	SC)s
'	COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	1	1	1	1	1	2	1	1
1	2	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
N	3	3	3	2	1	1	1	1	1	1	1	1	1	3	1	1
1	4	3	3	2	2	1	1	1	1	1	1	1	1	3	1	1
	5 CINERO	2	1	1	10	(1)	1	1	1	1	1	-1 \	(1)	3	1/	1
	6	2	1	1	1	1	1	11	N 1 IA	1	/E 1 51	11 A	u 1 0	3	015	1
_	verall relation	3	2	1	1	1	1	1	1	1	1	1	1	1	1	1

23AE071	FUNDAMENTALS OF MACHINE	L	T	P	C
	THEORY	3	0	0	3

- To understand the fundamental concepts of kinematics, including the terminology, inversions, and analysis of simple mechanisms like 4-bar and slider-crank chains.
- To analyze the motion and force transmission in cam mechanisms, create displacement diagrams, and design plate cam profiles.
- To gain knowledge of toothed gearing systems, gear trains, and related concepts, including the law of gearing, interference, undercutting, and epicyclic gear trains.
- To explore the role of friction in machine components, including applications in screw threads, clutches, brakes, and belt drives, and assess their operational impacts.
- To develop an understanding of mass balancing in machines, including static and dynamic balancing, and analyze the effects of gyroscopic forces and vibrations in mechanical systems.

UNIT I KINEMATIC ANALYSIS IN SIMPLE MECHANISMS AND CAMS

Mechanisms – Terminology and definitions – Kinematics inversions and analysis of 4 bar and slide crank chain – Velocity and acceleration polygons – Cams – Classifications – Displacement diagrams - Layout of plate cam profiles.

UNIT II TOOTHED GEARING AND GEAR TRAINS 9

Gear terminology – Law of toothed gearing – Involute gearing – Gear tooth action - Interference and undercutting – Gear trains – Parallel axis gear trains – Epicyclic gear trains.

UNIT III FRICTION ASPECTS IN MACHINE 9 COMPONENTS 9

Surface contacts – Sliding and Rolling friction – Friction drives – Friction in screw threads – Friction clutches – Belt drives – Friction aspects in brakes.

UNIT	IV BALANCING OF MASSES	9
Static	and Dynamic balancing - Balancing of revolving masses	s –
Balan	ncing machines- Gyroscope and Porter Governor.	
UNIT	TV VIBRATION	9
Free	vibrations - Natural Frequency - Damped Vibration	-
Bend	ing critical speed of simple shaft - Forced vibration	-
Harm	nonic Forcing - Vibration isolation.	
	TOTAL: 45 PERIO	DS
COU	RSE OUTCOMES:	
	After completion of the course, the students will be able t	o:
CO1:	Apply the linkages and the CAM mechanisms f	or
	specified output motions.	
CO2:	Construct the features of Gears and Gear Trains	
CO3:	Apply friction principles in the design of engineering	ng
	components such as screw threads, clutches, brakes, ar	nd
	belt drives.	
CO4:	Apply analytical and graphical methods to balan	ce
A.	revolving masses	in .
CO5:	Apply the concepts of gyroscope and its effects	
CO6:	Solve the free and forced vibration system.	
TEXT	T BOOKS:	
1	Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory	of
	Machines and Mechanisms", Oxford University Pres	ss,
	2017.	
2	Thomas Bevan, "The Theory of Machines", Pearson	on
	Education Ltd., 2010.	
REFE	ERENCES:	
1	Cleghorn. W. L., Nikolai Dechev, "Mechanisms	of
	Machines", Oxford University Press, 2015.	
2	Rao.J.S. and Dukkipati.R.V. "Mechanism and Machin	ne
	Theory", New Age International Pvt. Ltd., 2006.	
3	Rattan, S.S, "Theory of Machines", McGraw-H	ill
	Education Pvt. Ltd., 2014.	

4	Rober	t]	L.	No	rtoi	٦,	Kir	nem	atic	S	and	D	yna	mic	S	of
	Machi	ner	y, T	`ata	Mc	Gra	w-I	Hill,	200)9.						
	Os						P	Os						I	PSC	s
	.Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	2	1	1	1	1	1	1	1	1	1	1	2	1	1
	2	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
	3	3	2	1	1	1	1	1	1	1	1	1	1	3	1	1
	4	3	3	2	2	1	1	1	1	1	1	1	1	3	1	1
	5	2	1	-	-	1	1	1	1	1	1	1	1	3	1	1
	6	3	3	2	2	1	1	1	1	1	1	1	1	3	1	1
_	erall elation	3	2	2	2	1	1	1	1	1	1	1	1	1	1	1

23AE072	HIGH TEMPERATURE	L	T	P	C
	MATERIALS	3	0	0	3

- To understand the mechanisms of creep deformation, including its various stages, and identify the metallurgical factors influencing component performance at elevated temperatures.
- To explore methods for designing components to resist creep, including transient creep models, strain hardening concepts, and life prediction using empirical relationships like the Monkman-Grant equation.
- To analyze different types of fractures, including brittle and ductile failure mechanisms, and study fracture behavior across temperature ranges for various materials.
- To examine oxidation and hot corrosion processes, understand their effects on materials, and learn methods to prevent or mitigate their impact through alloy design and protective measures.
- To gain knowledge of high-temperature materials, particularly superalloys, and understand their strengthening mechanisms, phase transformations, and suitability for extreme environmental conditions.

UNIT I CREEP 9

Factors influencing functional life of components at elevated temperatures, definition of creep curve, various stages of creep, metallurgical factors influencing various stages, effect of stress, temperatures and strain rate.

UNIT II DESIGN FOR CREEP RESISTANCE

9

Design of transient Creep time, Hardening, Strain hardening, Expressions of rupture life of Creep, Ductile and Brittle materials, Monkman-Grant relationship.

UNIT III FRACTURE

9

Various types of fracture, brittle to ductile from low temperature to high temperature, cleavage fracture due to micro void coalescence - Diffusion controlled void growth; fracture maps for different alloys and oxides.

UNIT IV OXIDATION AND HOT CORROSION

9

Oxidation, Pilling, Bedworth ratio, Kinetic laws of oxidation – Defect structure and control of Oxidation by alloy additions- Hot gas corrosion deposit- Modified hot gas corrosion- Fluxing mechanisms- effect of alloying elements on hot corrosion-Interaction of hot corrosion and creep- Methods of combat hot corrosion.

UNIT V | SUPER ALLOYS AND OTHER MATERIALS

9

Iron base- Nickel base and Cobalt base super alloys- Composition control- Solid solution strengthening- precipitation hardening by gamma prime- grain boundary strengthening- TCP phase-Embrittlement- solidification of single crystals- Intermetallics-High temperature ceramics.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Analyze the factors that influence the functional life of components at elevated temperatures, focusing on creep behavior and its stages.
- CO2: Apply design principles for creep resistance by evaluating transient creep time, hardening mechanisms, and rupture life expressions for ductile and brittle materials.
- CO3: Examine different fracture mechanisms in materials subjected to high temperatures, including brittle-to-ductile transitions and micro void coalescence.
- CO4: Inspect oxidation and hot corrosion mechanisms, and apply methods to control and combat these processes through alloying and other techniques.
- CO5: Analyze the interaction between hot corrosion and creep in high-temperature environments and apply strategies to mitigate their combined effects on material degradation.

CO	C. A 1	1		1 1		(1	1	•	1	1.	•		•	1 1
CO	6: Apply				_		-		•				_			
	and co					,								engt	ner	ung
	mecha		ms	and	hig	gh-t	emj	pera	tur	e pe	ertoi	maı	nce.			
TEX	XT BOOI															
1	Raj. R.											d T	emp	oera	tur	es",
	Americ															
2	Hertzb	erg	R.V	N.,	"De	efor	ma	tion	an	d F	ract	ure	Me	cha	nics	s of
	Engine	erin	g n	nate	rial	s", 4	4thI	Edit	ion,	Jol	nn W	Viley	ı, US	SA,	199	6.
REI	FERENC	ES:														
1	Boyle	J.T	, (Spe	nce	r J	,	"Str	ess	Α	nal	ysis	fo	r	Cre	ep"
	,Butter	wor	ths,	, UK	(, 19	983.										
2	Bresser	s.J.,	"(Cree	ep	and	1 I	atig	gue	in	Н	igh	Te	mp	erat	ture
•								•	_			_		-		
		, A	ppli	ied	Scie	ence	, 19	81.								
3	Alloys" McLear								lidi	fiec	l M	ater	ials	for	· H	ligh
3	Alloys" McLear	n D)., '						lidi	fiec	l M	ater	ials			ligh ce",
3	Alloys"	n D ratu)., ' ire	"Di	rect	iona	ally	So	lidi	fiec	l M	ater	ials			0
3	Alloys" McLear Temper	n D ratu etals)., ' ire s So	"Di	rect y, U	iona	ally , 19	So					ials hav	Se	ervi	0
	Alloys" McLear Temper The Me	n D ratu etals ey	o., ' ire So	"Dinciet	rect y, U .I	iona JSA H,	ally , 19	So 85. Me	cha	nica				Se	ervi	ce",
4	Alloys" McLear Temper The Me Courtn Materia	n D ratu etals ey	o., ' ire So	"Dinciet	rect y, U .I	iona JSA H,	ally , 19 , US	So 85. Me	cha	nica				Se	r	of
4	Alloys" McLear Temper The Me	n D ratu etals ey	o., ' ire So	"Dinciet	rect y, U .I	iona JSA H,	ally , 19 , US	So 85. Me	cha	nica	ıl			Se	ervi	of
4	Alloys" McLear Temper The Me Courtn Materia	n E ratu etals ey als",	o., for some series of the ser	"Dir	y, U .I w-I	iona JSA H, Hill,	, 19 , US P	So 85. Me SA,	cha:	nica	ıl	Ве	hav	Se	ervi r PS(of Os
4	Alloys" McLear Temper The Me Courtn Materia	ratuetalsetals)., ire s So, Mc	"Dir	y, U .H w-I 4	iona JSA H, Hill, 5	, 19 , US P	So 85. Me SA,	cha:	nica	ıl	Ве	hav	iour	r PSC 2	of Os
4	Alloys" McLear Temper The Me Courtn Materia	ratuetals ey als", 1 3)., 'ire So, Mc	"Dir	y, U .I uw-I 4 2	iona JSA I, Hill, 5	ally , 19 , US P 6	So 85. Me SA,	cha:	nica	10 -	Ве	hav	1 2 2	ervi r PS(of Os
4	Alloys" McLear Temper The Me Courtn Materia COs 1 2 3	ey 1 3 3		"Distriction of the Country of the C	y, U .H .H 2 1	JSA H, Hill,	19 , 19 , US P 6 -	So 85. Me SA, 100 S 7	8 - -	9 - -	10 - -	Be 11	hav	1 2 2	PS(0 2	of Os 3
4	Alloys" McLear Temper The Me Courtn Materia COs 1 2 3 4	raturatusey 1 3 3 3	2 3 2 3	"Diricciet	.IIIIIIIIII.	iona JSA I, Hill, 5	ally , 19 , US P 6	So 85. Me SA,	cha:	nica	10 -	Ве	hav	1 2 2 2 2 2	r PSC 2	of Os
4	Alloys" McLear Temper The Me Courtn Materia COs 1 2 3 4 5	n Draturatus etals 7, 3 3 3 3 3	.Mc	"Diricciety Grade 1	.H	5	, 19 ", US P 6 - - -	So S	8 - - -	9 - - -	10 - - -	111	hav	1 2 2 2 2 2	PS(2	of Os 3
4	Alloys" McLear Temper The Me Courtn Materia COs 1 2 3 4 5 6	raturatusey 1 3 3 3	2 3 2 3	"Diricciet	.IIIIIIIIII.	JSA H, Hill,	19 , 19 , US P 6 -	So 85. Me SA, 100 S 7	8 - -	9 - -	10 - -	Be 11	hav	1 2 2 2 2 2	PS(0 2	of Os 3
4 O	Alloys" McLear Temper The Me Courtn Materia COs 1 2 3 4 5	n Draturatus etals 7, 3 3 3 3 3	.Mc	"Diricciety Grade 1	.H	5	, 19 ", US P 6 - - -	So S	8 - - -	9 - - -	10 - - -	111	hav	1 2 2 2 2 2	PS(2	of Os 3

23AE073	ROCKETS AND MISSILES	L	T	P	C
		3	0	0	3

- To impart knowledge on the aerodynamic characteristics of different classes of missiles.
- To provide the methodology to estimate the drag on a subsonic/supersonic missile.
- To introduce the 1D and 2D motion of rockets in free space and in homogeneous gravitational field.
- To explore the need for multi staging in rockets and control techniques.
- To introduce propulsion system and materials for rockets.
- To select appropriate materials for rockets and missiles.

UNIT I CLASSIFICATION OF ROCKETS AND 9 LAUNCH VEHICLES

History of rockets and missiles, Various methods of classification of missiles and rockets – Basic aerodynamic characteristics of surface to surface, surface to air, air to surface and air to air missiles – Examples of various Indian space launch vehicles and missiles – Current status of Indian rocket and missile programme with respect to international scenario.

UNIT II ROCKET MOTION IN FREE SPACE AND 9 GRAVITATIONAL FIELD

One Dimensional and Two-Dimensional rocket Motions in Free Space and Homogeneous Gravitational Fields – description of Vertical, Inclined and Gravity Turn Trajectories – Determination of range and Altitude, Simple Approximations to Burnout Velocity and altitude- estimation of culmination time and altitude.

UNIT III AERODYNAMICS OF ROCKETS AND 9 MISSILES

Airframe Components of Rockets and Missiles – Forces Acting on a Missile While Passing Through Atmosphere – Classification of Missiles – Methods of Describing Aerodynamic Forces and Moments - Lateral Aerodynamic Moment - Lateral Damping Moment and Longitudinal Moment of a Rocket - Lift and Drag Forces - Drag Estimation.

UNIT IV STAGING AND CONTROL OF ROCKETS AND MISSILES

Multistaging of rockets and ballistic missiles - Multistage Vehicle Optimization - Stage Separation Dynamics - Stage Separation Techniques in atmosphere and in space, Introduction to aerodynamic and jet control methods - Various types of aerodynamic control methods for tactical and short range missiles- Aerodynamic characteristics - various types of rocket thrust vector control methods.

UNIT V ROCKET PROPULSION SYSTEMSAND 9 MATERIALS FOR ROCKETS AND MISSILES

Ignition System in rockets – Types of Igniters– Design Consideration of liquid Rocket Combustion Chamber, Injector Propellant Feed Lines, Valves, Propellant Tanks Outlet and propellant feed Systems – Propellant Slash and Propellant Hammer – Elimination of Geysering Effect in Missiles – Selection of Materials – Special Requirements of Materials to Perform under Adverse Conditions.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to:

- CO1: Classify various rockets and missiles based on their aerodynamic characteristics and historical development.
- CO2: Analyze one-dimensional and two-dimensional rocket motions in free space and homogeneous gravitational fields, including the ability to describe different trajectories.
- CO3: Explain the aerodynamic forces and moments that act on a missile in atmosphere.

CO4	_	Explain the principles of multistage in rockets and														
	missil															
		otimization techniques.														
CO5	: Explai	Explain the design considerations for rocket propulsion														
	systen	stems, including ignition systems, combustion														
	chaml	chambers, and propellant feed lines, and the mechanisms														
	to mit	to mitigate issues.														
CO6	: Explai	Explain the propulsion systems and materials used in														
	rockets and missiles.															
TEXT BOOKS:																
1		Cornelisse, J.W., "Rocket Propulsion and Space Dynamics",														
		J.W., Freeman & Co. Ltd.,London, 1982.														
2		Sutton, G.P., et al., "Rocket Propulsion Elements", John														
DEE	Wiley & Sons Inc., New York, 1993.															
KEF		ERENCES:														
-		Mathur, M., and Sharma, R.P., "Gas Turbines and Jet and Rocket Propulsion", Standard Publishers, New Delhi 1998.														
2		Parker, E.R., "Materials for Missiles and Spacecraft",														
A		McGraw-Hill Book Co. Inc., 1982.														
3	Chin S	Chin SS, "Missile Configuration Design", Mc Graw Hill,														
	- Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	New York, 1961.														
4		rvin Hobbs," Fundamentals of Rockets, Missiles And														
	Spaceci	raft'	", L:	itera	ary	Lice			LLC	C, 2	013.			-	200	
	COs -	_	_	_	_	_		Os		_	40	44	10		SO	
	1	1	2	3	4	5	6	7	8	9	10	11		1	2	3
	1	2	1	1	-	-	-	-	-	1	1	1	-	3	-	-
	2	3	3	2	2	1	_	1	-	1	1	1	-	3	1	-
	3	2	1	1	-		-	-	1	1	1	1	-	3		1
	4	2	2	1	-	1	1	-	-	1	1	1	-	3	1	-
	5	2	1	1	1		-	-	-	1	1	1	1	3		-
	6	2	1	1	1	1	1	-	-	-	-	1	1	2	1	-
Overall		3	2	2	1	1	1	1	1	1	1	1	1	3	1	1
Correlation		Ū												Ŭ		